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ABSTRACT

Context. In this article, a generalized parametric identification procedure for linear nonstationary systems is proposed, which
uses spline functions and orthogonal expansion in a series according to the Walsh function system, which makes it possible to find
estimates of the desired parameters by minimizing the integral quadratic criterion of discrepancy based on solving a system of linear
algebraic equations for a wide class of linear dynamical systems. The accuracy of parameter estimation is ensured by constructing a
spline with a given accuracy and choosing the number of terms of the Walsh series expansion when solving systems of linear alge-
braic equations by the A. N. Tikhonov regularization method. To improve the accuracy of the assessment, an algorithm for adaptive
partitioning of the observation interval is proposed. The partitioning criterion is the weighted square of the discrepancy between the
state variables of the control object and the state variables of the model. The choice of the number of terms of the expansion into the
Walsh series is carried out on the basis of adaptive approximation of non-stationary parameters in the observation interval, based on
the specified accuracy of their estimates. The quality of the management of objects with variable parameters is largely determined by
the accuracy of the evaluation of their parameters. Hence, obtaining reliable information about the actual nature of parameter changes
is undoubtedly an urgent task.

Objective. Improving the accuracy of parameter estimation of a wide class of linear dynamical systems through the joint use of
spline functions and Walsh functions.

Method. A generalized parametric identification procedure for a wide class of linear dynamical systems is proposed. The choice
of the number of terms of the expansion into the Walsh series is made on the basis of the proposed algorithm for adaptive partitioning
of the observation interval.

Results. The results of modeling of specific linear non-stationary systems confirm the effectiveness of using the proposed ap-
proaches to estimating non-stationary parameters.

Conclusions. The joint use of spline functions and Walsh functions makes it possible, based on the proposed generalized para-
metric identification procedure, to obtain analytically estimated parameters, which is very convenient for subsequent use in the syn-
thesis of optimal controls of real technical objects. This procedure is applicable to a wide class of linear dynamical systems with con-
centrated and distributed parameters.

KEYWORDS: linear non-stationary systems, spline functions, Walsh functions, operating matrix, Tikhonov regularization
method, piecewise constant approximation.

NOMENCLATURE

—(@) .
#(t) - state vector; g ,l — vector of estimates of all unknown parameters;

?(t) — derivative of state vector; O( §§l) ) — an integral quadratic discrepancy criterion;
u(t)— control vector; d @ ¢ — bitwise addition modulo 2.
A(?) — matrix parameters a;(t);

B(#) — matrix parameters by(?); INTRODUCTION

a;(t) — estimates of unknown parameters a (¢); It is known that all real control objects are nonlinear
and non-stationary to one degree or another. The analysis

by(¢) — estimates of unknown parameters by (¢) ; and synthesis of control systems for such objects is a

S, (z) —vector of spline functions of the state vector; complex mathematical problem, the solution of which has
_ ) ) so far been obtained for some special cases [1-4]. How-
S, (7) — vector of spline functions of the vector of ever, most control objects make it possible to accept a
controls; non-stationary and linearized system of equations as a
<7;>— discrete grid with increments A ; mathematical model and apply the developed mathemati-

cal apparatus for solving linear non-stationary differential
equa synthesis of optimal equation systems for such ob-
jects remains a difficult task due to the non-stationarity of
the parameters. Often this problem is complicated by the
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@r(t) — vector of Walsh functions ¢;(2);
Rxn) — operational integration matrix;
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fact that the parameters of dynamic models of control
objects are unknown in advance and their preliminary
assessment is required. In this regard, the subject area of
research in this article is limited to the class of continuous
linear non-stationary systems with monotonic and sign-
constant parameters that describe a significant number of
control objects.

The object of research is the identification of pa-
rameters of a wide class of linear dynamical systems and
its implementation for systems with non-stationary pa-
rameters.

The subject of the research is a generalized algo-
rithm for parametric identification of the parameters of
linear dynamic systems, in this case, systems with non-
stationary parameters.

The aim of the research is to develop an efficient al-
gorithm for the parametric identification of linear dy-
namic systems based on the combined use of spline func-
tions and Walsh functions.

1 PROBLEM STATEMENT
The task of parametric identification in this case is as
follows. For a model of a linear dynamical system de-
scribed by a system of differential equations of the form

(1) = A@)F@) + BOu )t € by, T | 51) =@, (D)

where A(t)= {aij (t)}, B(t)= {bl-k (t)}, — matrices of size X

and nxm, respectively, whose elements are sign-constant
sign[al«j (t)J = const,signlb, ()| = const, (2)

monotonous
sign[dal-j 1)/ dtJ = const,sign|db, (t)/ dt]= const 3)

functions that have continuous first derivatives and
bounded domains of definition on a time interval[tO,Tf 1,

it is necessary to evaluate unknown

ters a;,(T;).by. (7).

The parameters will be evaluated based on minimizing
the square of the discrepancy

parame-

to+T;

[=min [ [(()- @)% - B@yafdet @)

2 REVIEW OF THE LITERATURE
Currently, there are many methods for evaluating the
parameters of control objects, which can be divided into
two large classes: adaptive and non-adaptive [10-12].
When considering linear objects, the mathematical de-
scription of which is given in the state space, and the co-
efficients of differential equations provide complete in-

formation about the dynamic properties, estimates of un-
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known parameters can be obtained by both adaptive and
non-adaptive methods. At the design stage, non-adaptive
identification methods are usually used, which, although
they require a large amount of calculations, also allow
obtaining more accurate values of the estimated parame-
ters over the entire observation interval. To obtain esti-
mates of the variable coefficients of differential equations,
various direct methods are used, among which the follow-
ing methods have become most popular: least squares and
its various variants, differential approximation, stochastic
approximation, sequential integration, etc. [13—16]. Each
of them has its advantages and disadvantages, but all of
them are applicable if the assumption of quasi-stationarity
of changing the parameters of the control object is ac-
cepted. In the case of non-stationarity of the parameters of
the control object, orthogonal functions have found great
practical application. Traditionally, approximation by
finite sums of orthogonal functions has been used to
evaluate such dynamic characteristics of objects as a tran-
sient function or an impulse transient function [17, 18]. In
recent years, many papers have appeared on the use of
orthogonal systems of functions for estimating the pa-
rameters of a mathematical model given by differential
equations, both for stationary linear objects with distrib-
uted parameters and for linear non-stationary objects with
concentrated parameters, and differing from each other
mainly by the choice of one or another system of or-
thonormal functions. Here the basic approach is as fol-
lows: the initial model, represented by ordinary differen-
tial equations for concentrated systems or partial differen-
tial equations for distributed systems, is transformed into
integral equations: all known and unknown functions are
decomposed into finite series according to the selected
orthogonal functions and then substituted into the trans-
formed model; the so-called operational matrix [19, 20] is
introduced to integrate the selected system of functions,
which allows further obtaining an identification algorithm
in the form of algebraic equations. A great interest in the
theory of estimation has also arisen due to a significant
change in the possibilities of applying the theory of esti-
mation associated with the enormous capabilities of mod-
ern computers. Taking into account the last remark, the
use of the apparatus of orthogonal Walsh basis functions
is of undoubted interest for identification [20-22]. Firstly,
this is due to the fact that Walsh functions take values
only +1 and represent an apparatus closely related to bi-
nary decomposition. And, since the decomposition of
variables according to the Walsh function system requires
their analytical representation, the paper uses the mathe-
matical apparatus of polynomial approximation in the
form of spline functions, in particular, cubic splines [23].
It is obvious that the use of functional (4) in paramet-
ric identification problems presupposes the presence of a
well-known analytical expression for both the vector of

state variables x(¢) and its derivative x(¢). The known

difficulties associated with the definition of these expres-
sions are proposed in this article to overcome using the
mathematical apparatus of spline functions [23]. The
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question of the possibility of decomposing functions into
a series according to the Walsh function system boils
down to finding out the possibility of approximating this
function by a piecewise constant function.

3 MATERIALS AND METHODS
Since the observation intervals differ in duration, it is
advisable to bring them to a normalized interval [0,1]. To
do this, it is necessary to introduce a dimensionless time

t—1, . .
T= 0 equal to and leading the control interval to the

a
normalized interval [0,1].

In addition, to obtain analytical expressions of state
variables taken at discrete time points, provided that the
state vector is fully measurable and meets conditions (2)
and (3), as mentioned earlier, it is advisable to use cubic
splines. Considering the above, the following parametric
identification procedure based on spline functions and
Walsh functions is proposed:

Step 1. On the normalized interval, set a grid with a

step<7; > (i :O,_N;tN =1) . Determine the values of the
state X(7;)and control u(z;) vectors.

Step 2. On the selected grid perform interpolation, ob-
tain an analytical expression for evaluating the vector
function of the state and control, respectively, in the form

of cubic splines S,(z) and S, (7).

Step 3. For the found functions S.(7) and S,(7) for n

unknown, time-normalized parameters of the system (1),
we apply the orthogonal expansion into the Walsh series.
Step 4. Normalize the initial system (1) in time and bring
it to an integral form.

Stage 5. Using the properties of Walsh functions, we
replace the Walsh functions in the transformed form with
a square integration matrix of the form P, of dimen-
sion N = 2" [20]. The essence of this property is that the
integral of the Walsh function remains in the class of the
Walsh function system, i.e.

Py (x)dx = P(NXN)(EN (x) >

O =

where ,(x) = {g,(x)..0y(x)} — a vector whose components

are Walsh functions.

By reducing the left and right sides of the resulting
equation by the vector of the selected system of Walsh
functions, we obtain a system of algebraic equations.

Step 6. We solve the resulting algebraic system of
equations with respect to unknown parameters repre-
sented by a set of coefficients of the interval [0,1], recal-
culating the model parameters found accordingly.

The procedure proposed above for parametric identifi-
cation of a linear non-stationary system of the form (1)
uses spline interpolation and orthogonal decomposition of
functions into a Walsh series and allows us to obtain es-
timates of non-stationary parameters in the form of ap-
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proximations by Walsh series. Let us show a practical
implementation of this parametric identification proce-
dure for system (1).

The state vector x(z) is defined on the interval [0,1] by

its values x ) = x(t;,) in a finite number of points
t; € [tO,T r ki =0,N). As before, to obtain an analytical
expression for x(¢) and y;c(t) , we use cubic spline func-
tions S (t) , making the transition from Xx(#,)(i :O,_N) to
S@).te [to,Tf].

Functions and estimate

1 (1).5,(1). (1)
&y(t),l;,.k(t)(i, j:I,_n),(k:I,_m) of unknown parameters
a;;(1),by. (1) of matrices A(t), B(¢) , assuming their inte-
grability on a segment lto,T /,J’ can be approximated by

decomposition into a Walsh series of the following form:

R-1
up(®) = Yulp, ()=o),
r=0

R-1 — T —
S0y~ Y5V, (1) =5 pp(0),
r=0

. R-1 o

5= X5V (0) =5 (), 5)
r=0

i

—1 _(ij —@HT —
BaDo,(ty=a"" @(0),

a6y~ Y

r=0

A R-1 i —([k)T p—
b= XM (t)=b"" x(t),
r=0

-7
where @, (t) = {0y (1)s.r@, (O)s.s 0z, (1)} — R-dimensio-
nal vector of Walsh functions.
Here:

—(k)T k k k }
u = {l,{(() ),...,M£ )9--',u£?)1 P
—(\T . . ;

S(l) = S(gl),...,Sﬁl);"ﬂ I(Ql—l}’ —

sor o g0, 50|

R-dimensional vectors of constant Fourier coefficients of
the Walsh series of functions uk(t),Si(t),Si(t), respec-
tively, whose elements are defined as

f ) Ty
u® =1(T; —ty) [ u, ()@, ()t s =1(T; 1) [ S, (), (1),
t0

)
2
T

$O =1/T, —15) f (), (t)dt(r =0,R—1);

ty
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—@NT i i o | T)T . . .

a "l a®, a® 5T = b
R-dimensional vectors of unknown constant coefficients
of the Walsh series of estimated parameter functions

a;; (), by (1).
Then, given the ratio (5), the model of the system (1)
will have the form

0T, ,ZlK;if>r&R)(;u>Tékﬂ+é[(,;("/:)r;)R)(;mrékﬂ(i :1,7:)_ (6)

The vector of the desired parameters ;l)(i :L_n)

equations (6) can be written as a vector of estimates of the
constant coefficients of the Walsh series

PRl {(zl) A0 GO G Gl a0

AR5 - ap-1» 7
BB, AP LB b fm ]

and the integral quadratic discrepancy criterion of the
form (4) of the model (6) , taking into account (7), is rep-
resented as

—T— | ~T—

o™= j 5Tk Z(a PR)s

—(ik)T—

2
o026 ot m)} dati=ln  (8)

The number of identifiable model parameters (6) is
equalto nx (n+m)x R .

It is obvious that the task of parametric identification
. . —0 . T . ..
is to find estimates g (i =1,7) that provide a minimum

of the functional (8). Using the necessary conditions for
the minimum of criterion (8) for the desired parameters

00,(g")/0a =0,
00,(g" /b =0, »
(z=Ln),(t=1,m),(p=0,R~1),(i =1,n)

we obtain a system of equations

[ {”)’w Z(a““rm)(v R>—§<i"“%<ﬁ‘“%>} [ 0,
k=1

f
7,

I[ RS XN rm—:;'1(/?""%7)(&“”&,()}x[—rp,,(?‘”&w}dt=0’

fo

]dt 0;

which we will write in a form convenient for the follow-
ing transformations, namely:
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g[ (Za“”rpr)(a)p)@s“’w,) t+

Jj=1 r=0

IIH 0, o (zj(zj}/

IHZ{JY”% ](w,,{zs%, Hdz(z—ln) (p=0,R-1);

IKZ“ 90 o[ Essa. [ e, j}m ©)

r=0

>

k=

+
>
J=le

(R, R-1 R-1
| [Zbﬁ’“wrj(%(Zuik’er(Zui’)wrj t=
+2 U5 =0 =0

Tl (R-1 R-1 _
= Hzs‘i”wj(w,,{zuﬁ“wr]}r(r =1,m),(p=0,R-1),(i =1,n).
ty r=0 r=0

Taking into account the multiplicativity property of
the Walsh function system, after a series of transforma-
tions, we obtain at a given interval, equations (9) in the
form

n Ty R-1
3 {(Zu“”w j(z

=0 7=0

r=0

g5

k=14,

foh,ﬂ,%,.,)]dr J (s w,@,,xzs% )iz =1,m),(p=0,R=1);

=0 1 r=0

> I (xav (p,@p)(Zw,,’”co,,mHz I (359 ,6,)%

j=lt, r=0 k=l r=0

va‘k’)w,, dt—j (s sw,@pxzu‘”w,)]dt(r Lm),(p=0,R=1),(i=1,n),

1=0 ty r=0

where d @ ¢ — bitwise addition modulo 2;

(AT A ke ke ke
f :{f jZ) f(jZ) (/ )} h {hé ) ( ) '7h[(€—l) ,
—UnT i i .

:{w(()f’),...,wfif’),. “”} v = (()"’),...,vfik”,...,vg‘ff -

B

R-dimensional vectors whose elements are composed of the
sum of products of known Fourier coefficients S/ and

S, u? 51,8 u uf

and and and

uft) (r=0,R—-1) of the orthogonal expansion into the
Walsh series of splines and control functionsS () and
S.(#), u () and S.(¢), S;()and u,(?), u,(¢) and

u,(t), respectively, determined from the following rela-

tions:
AR SREE
f”lj ZZSJ r@r (10)
kz k) (z
n) = zu< 52, (11)
(]t) — ZS(/) ;(«%r’ (12)
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(kt) — Z”(k) O]

Uy, » (1 = 0, R=1).

(13)

or

Z<Z(Z(ar 7 j 0,0,0,000) +

lo

+Z(Z<Z<135"“h,ﬁ"z> [ 0e,d00) =

fy

—Z<Z(s, ® j Doy, d0) (z=11).(p =0, R-1);

[

Z<Z(Z(a wil” J 00,0, ) +
+Z<Z<Z(b' ‘“)I(/),@p%dt)))—

o) I _ L
=YX u” [ poyp,dn) (¢ =1m),(p=0,R=1),(i=1,n).

Due to the orthogonality property of the system of
Walsh functions on a given interval, the latter system of
equations is transformed into (n+m)x R a system of lin-

ear algebraic equations to obtain an estimate of the vector

of parameters ;i)(i = G) (7) of the form
L& 1)+ b sy =

oD _ .
=35, 59, (z=1n).(p=0,R-1);
-
(14)
~(7 ik ki
> (Xaw /&,>+Z<Zb< Vg, =
j r

o -
=2sru,(f®)p(t=1,m),(p =0,R-1).
"

Equations (14) can be written as

C(i)g(i) :E(i)' (15)

Here CY is a size (n+m)Rx(n+m)R matrix having
a block structure

( : @
Flle)an . Hnllgme

n

c =

W(l}gan V(llgme

m m

the elements of which are defined as follows:
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ol R el e
I R )
75)2) zE)Z) vit/.g) ;E.)t)
F = ?;;) HO = hﬂf) = ?v(,f) o= ;(;.f’
ol ] | e
2l el
72”1 _h;; )1 | _w.%"’)l | _Vézm)l ]

where
= P O =T =0,R—D)~1xnR ~ di-

mensional vector whose elements are determined from the
relations (10);

=y = e =L, (r =0, R ~1xnR — di-

mensional vector whose elements are determined from the
relations (11);

= Wy = G =L, (- =0,R—D)~1xnR — di-

mensional vector whose elements are determined from the
relations (12);

vy =% Lk =Tm),(r=0,R—)~IxmR - di-

mensional vector whose elements are determined from the
relations (13);

ST _ {q(;l) W@ @) ) ) () }
0

sees QR 5 qy 5e ,qp sl g_1s-40 o qR_1>
e
(’)T i i i i
- d o =id, ,Sld,ill Sd, = (n+mR -~ di-

mensional vector of free terms of equation (15), whose
elements are determined from the relations

—1e(i)

<’Z>—zs s, (p=0,R=1),(z=1,n), (16)
Rl(z)
(”)—Zs ul,(p=0,R-1),(t=1,m) (17)

To ensure the required accuracy of parameter estima-
tion, it is necessary to solve the problem of optimal choice
of the number of terms of the Walsh series expansion. To
solve this problem, an algorithm for adaptive partitioning
of the observation interval based on piecewise constant

approximation is proposed below.
OPEN 8 ACCESS m
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Thus, the desired unknown coefficients of equation
(15) are determined from relations (10)—(14), (16), (17).
The algorithm is constructed as follows:

. —@) . . .
Step 1. We accept /=1. An estimate gﬁl is obtained in
the interval [tl(i),t[(i)lH] , Where tl(j-)lH = tl(i) +0;,0;, >0
according to the generalized parametric identification
algorithm given above.
Step 2. In the

@y _ ,(OH
I =1

interval [ ,tl(i){] , Where

+1n,0;, according to the equations of state of

the model (1) with estimates 2") , the state of the model

xiM Q) is calculated, while we assume
M (DH \VH
GRS EEAGH

Step 3. In the neighborhood
[ =500 <1 1Dy of the interval

) o P
[0 ,¢1, the functional I=1/PY (x;(t,)-x" (t,))
p=l
is considered.
If I > ¢ then the parameter 77, is reduced, the parame-

ter 77, = uny(0 < g <1, = const) is entered and the tran-

sition to step 2 occurs. If after m steps 7,, = u"n, =0,
then the transition to step 4.

Otherwise, when [<g . the interval [tl("),tl(i)ll] is

- SO H LG
formed, where the estimate g, [¢,;,,",Z;,;] is taken and

the transition to step 2. Otherwise, go to step 4.

Step 4. In the interval[tl(i),tl(i)l] the estimate

al)(i = L_n) is taken.

Step 5. We assume /=/+1 and make the transition
to step 1. The algorithm provides for viewing the entire
observation interval.

The algorithm continues until the entire observation
interval has been viewed. The smallest segment of the
piecewise constant approximation determines the number
of terms in the expansion in the Walsh series for a given
accuracy €. The block diagram of the adaptive algorithm
for sampling the observation interval is shown in Fig. 1.

The smallest segment of the piecewise constant ap-
proximation determines the number of terms in the expan-
sion in the Walsh series for a given accuracy e.

As noted earlier, the system of equations (15) is a sys-
tem with approximately given initial data, the error of
which depends on the error of approximation of the state
of the system (1) by splines, the choice of the number of
terms of the expansion of functions into a Walsh series,
computational errors. To solve the system (15), the regu-
larization method of A. N. Tikhonov is used [24-26].
Thus, the algorithm for estimating the parameters of a
linear non-stationary system (1) is reduced to solving n
systems of linear algebraic equations of the form (15).
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Figure 1 — Block-diagram of the algorithm for adaptive parti-
tioning of the observation interval

4 EXPERIMENTS
As an example of the practical implementation of a
generalized parametric identification algorithm, consider
the problem of parametric identification of a non-
stationary object of the second order

31(60) = @ (0%, (1),

;cz ) = by (Hu(t),t €[0,1],
x,(0)=5,x,(0) =3,u(t) =-1.

The exact values of the estimated parameters are de-
scribed by the following functions:

a12(t) = exp(—O,St),b2 (t) = 155 eXp(—0,3t).

As an example of the practical implementation of the
algorithm for adaptive partitioning of the observation in-
terval, consider the problem of identifying a non-
stationary object of the second order

31(6) = ay (0% (0),

x.2 (t) = by ()u(?),t € [0,100].

We accept the following values of variable

x(0)=30,x,(0)=50,b,(¢) =Lu(t) =-1.

The exact value of the estimated parameter
a5 (1) = 0,000012¢% —0,0014¢% + 0,033 + 2.

The parameters of the time interval partitioning algo-
rithms were set as follows:

L=10;P=5:6"=1;0, =1forall I;n,=10;6=0,2;4=0,5.
5 RESULTS

The results of parameter estimation a,(¢),b,(t) are

shown in Fig. 2 and Fig. 3, respectively, where the fol-
lowing designations are accepted: solid curve — exact

value a,(t),b,(t), respectively; black dots indicate the

values of the estimates &lz(t),l;2 (t) , respectively, using 8

oXores

171

Walsh functions; white — 4 Walsh functions.
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The estimation results for fixed and adaptive partition-
ing of the observation interval are shown in Fig. 4, where

curve 1 is the exact value of a,(¢); curve 2 is the esti-
mate a,,(¢) for a fixed partition; curve 3 is the estimate

a,,(t) for adaptive partitioning. The parameter estimation
accuracy is characterized by the value

), M ), Y 2
0% = 2 [oa(¢,)] /Z_ZO[aIZ(Zm)] .

m=0

z
18 1/4 3/8 1/2 58 3/4 7/8 1 t

Figure 2 — Parameter Estimation a;; (¢)

0.90 +

\\

18 1/4 3/8 1/2 5/8 3/4 7/8 1 t

Figure 3 — Parameter Estimation b, (¢)
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6 DISCUSSION

From the above graphs Fig. 2 and Fig. 3, it follows
that with an increase in the number of Walsh functions,
the accuracy of parameter estimation increases, to ensure
which the required number of expansions in a Walsh se-
ries which is determined based on the algorithm for adap-
tive partitioning of the observation interval.

Comparison of the estimates obtained with a fixed and
adaptive partitioning (Fig.4) of the time interval for the
considered example allows us to conclude that the accu-
racy of the parameter estimate can be significantly im-
proved when using an algorithm with an adaptive choice
of the interval by choosing the number of expansion terms
in the Walsh series, based on the smallest segment of the
piecewise constant approximation of a non-stationary
parameter. Determination of non-stationary parameters of
linear dynamic systems in analytical form in the form of
Walsh series allows solving problems of analysis and
synthesis of optimal control systems [27]. When optimiz-
ing systems with a priori unknown non-stationary pa-
rameters, it is advisable to use this adaptive algorithm for
partitioning the observation interval in combination with
the well-known method MPC (model predictive control).

7 CONCLUSION

A generalized procedure for determining a wide class
of linear systems is proposed. Exact estimation of the
parameters controlled by the collection of a spline with a
given frequency and the choice of the number of expan-
sion terms in the Walsh series, when referring to the sys-
tem linear algebraic regularity rules A. N. Tikhonov. In
connection with the need for a regularity in the division of
the observation interval. The splitting criterion is the
weighted square of the residual between object control
state variables and model state variables. The choice of
the number of expansion terms in the Walsh series was
carried out on the basis of a responsible approximation of
non-stationary parameters in the observation interval,
based on the given value of their estimates. The results of
modeling models of linear non-stationary systems for the
efficiency of using the proposed approaches to estimating
non-stationary parameters are presented. The joint use of
spline functions and Walsh functions allows, on the basis
of the proposed generalized procedure, to obtain the pa-
rameter of determining the estimated parameters in an
analytical form, which is very convenient for use in the
synthesis of optimal controls for real technical objects.
This procedure is applicable to the distributed class of
linear distributions of systems with lumped and distrib-
uted parameters. For systems with distributed parameters,
spline interpolation is carried out by a two-dimensional
spline and, accordingly, a double Walsh series is used for
orthogonal decomposition of the population and unknown
functions.

ACKNOWLEDGEMENTS
The work was carried out at the Institute of Telecom-
munications and Global Information Space of the Na-
tional Academy of Sciences of Ukraine within the frame-

OPEN a ACCESS m



p-ISSN 1607-3274 PagioenexrpoHika, iHpopmaTuka, ynpasmainss. 2023. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. Ne 2

work of the state budget research project “Intelligent in-
formation systems and technologies for innovative devel-

opment

of the city” (state registration number:

0121U112237). The authors express their deep gratitude
to the Director of the Institute, Corresponding Member of
the National Academy of Sciences of Ukraine Oleksandr
Trofymchuk for valuable and constructive advice and
comments while working on this work.

10.

11.

12.

REFERENCES
Luo Y., Gupta V., Kolar M. Dynamic Regret Minimization
for Control of Non-stationary Linear Dynamical Systems,
Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 2022, Vol. 6, Issue 1, pp. 1-72.
[Online] Available: https://doi.org/10.1145/3508029.
Dymkou S., Dymkov M., Rogers E. Optimal Control of
Non-stationary Differential Linear Repetitive Processes, In-
tegral Equations and Operator Theory, 2008, Vol. 60,
pp. 201-216.
Molinari B. P. The time-invariant linear-quadratic optimal
control problem, Automatica, 1977, Vol. 13, Issue 4,
pp- 347-357. [Online] Available:
https://doi.org/10.1016/0005-1098(77)90017-6
Athans M., Falb P. L. Optimal control: an introduction to the
theory and its applications. Courier Corporation, 2013,
696 p.
Kvitko A., Firulina O., Eremin A. Solving Boundary Value
Problem for a Nonlinear Stationary Controllable System
with Synthesizing Control [Electronic resource], Mathe-
matical Problems in Engineering. [Online]. Access mode:
https://doi.org/10.1155/2017/8529760.
Groetsc Ch., Scherzer O. Non-stationary iterated Tikhonov —
Morozov method and third-order differential equations for
the evaluation of unbounded operators, Mathematical Meth-
ods in the Applied Sciences, 2000, Vol. 23(15), pp. 1287—
1300. DOI: 10.1002/1099-1476(200010)23:15<1287: AID-
MMA165>3.0.CO;2-N.
Nagahara M. Dynamical Systems and Optimal Control
[Electronic  resource]. Japan, 2020. Access mode:
https://doi.org/10.1561/9781680837254.ch7.
Zhang Y., Fidan B., Ioannou P. Backstepping control of
linear time-varying systems with known and unknown pa-
rameters, /EEE Trans. Automatic Control, 2003, Vol. 48,
No. 11, pp. 1908-1925.
Sun Zhendong, Ge S. S. Analysis and synthesis of switched
linear control systems, Automatica, 2005, Vol. 41, pp. 181—
195. [Online] Available:
https://doi.org/10.1016/j.automatica.2004.09.015.
Ke H., Li W. Adaptive control using multiple models with-
out switching, Journal of Theoretical and Applied Informa-
tion Technology, 2013, Vol. 53(2), pp. 229-235.
Cai T. T., Zhang L., Zhou H. H. Adaptive Functional Linear
Regression Via Functional Principal Component Analysis
And Block Thresholding, Statistica Sinica, 2018, Vol. 28,
pp- 2455-2468. DOLI:
https://doi.org/10.5705/ss.202017.0099.
Efromovich S. Optimal nonparametric estimation of the
density of regression errors with finite support, 41SM, 2007.
Vol. 59, pp. 617-654. DOI: 10.1007/s10463-006-0067-3.

© Stenin O. A., Drozdovych 1. G., Soldatova M. O., 2023
DOI 10.15588/1607-3274-2023-2-17

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Zhang Y., Fidan B., Ioannou P. A. Backstepping control of
linear time-varying systems with known and unknown pa-
rameters, /[EEE Trans. Automatic Control, 2003, Vol. 48,
No. 11, pp. 1908-1925. DOI: 10.1109/TAC.2003.819074.
Janczak D., Grishin Y. State estimation of linear dynamic
system with unknown input and uncertain observation using
dynamic programming, Control and Cybernetics, 2006,
Vol. 35(4), pp. 851-862.
Ramsay J. O., Hooker G., Campbell D., Cao J. Functional
Data Analysis with R and MATLAB, Journal of the Royal
Statistical Society. Series B (Statistical Methodology), 2007,
Vol. 69, No. 5, pp. 741-796.
Nieman R., Fisher D., Seborg T. A review of process identi-
fication and parameter estimation techniques, /nternational
Journal of Control, 1971, Vol. 13, Issue 2, pp. 209-264.
DOI: 10.1080/00207177108931940.
Xu K. Two updated methods for impulse response function
estimation, Mechanical Systems and Signal Processing,
1993, Vol. 7, Issue 5, pp. 451-460. DOI:
10.1006/mssp.1993.102.
Blazhievska 1., Zaiats V. Estimation of impulse response
functions in two-output systems, Communication in Statis-
tics — Theory and Methods, 2018, Vol. 49, No. 2, pp. 257—
280. DOTI: 10.1080/03610926.2018.1536210.
Sparis P. D., Mouroutsos S. G. The operational matrix of
differentiation for orthogonal polynomial series, Interna-
tional Journal of Control, 1986, Vol. 44, No. 1, pp. 1-15.
DOI: 10.1080/00207178608933579.
Sparis P. D., Mouroutsos S. G. A comparative study of the
operational matrices of integration and differentiation for or-
thogonal polynomial series, International Journal of Con-
trol, 1985, Vol. 42, No. 3, pp. 621-638. DOI:
10.1080/002071785
Stoffer D. S. Walsh-Fourier Analysis and Its Statistical Ap-
plications, Journal of the American Statistical Association,
1991, Vol. 86, No. 4, pp. 461-479. DOI:
https://doi.org/10.2307/2290595.
Deb A., Sen S., Datta A. K. Walsh Functions and their Ap-
plications: A Review, IETE Technical Review, 2015, Vol. 9,
No. 3, pp- 238-252. DOLI:
10.1080/02564602.1992.11438882.
Al-Said E. A. The use of cubic splines in the numerical solu-
tion of a system of second-order boundary value problems,
Computers & Mathematics with Applications, 2001, Vol. 42,
No. 6-7, pp. 861-869. DOI: 10.1016/S0898-
1221(01)00204-8.
Fuhry M., Reichel L. A new Tikhonov regularization
method, Numerical Algorithms, 2012, Vol. 59, No. 3,
pp. 433—445. DOTI: 10.1007/s11075-011-9498-x.
Yang X.-J., Wang L. A modified Tikhonov regularization
method, Journal of Computational and Applied Mathemat-
ics, 2015, Vol. 288, pp. 180-192.  DOL:
https://doi.org/10.1016/j.cam.2015.04.011.
Postnov V. A. Use of Tikhonov’s regularization method for
solving identification problem for elastic systems, Mechan-
ics of Solids, 2010, Vol. 45, Issue 1, pp. 51-56. DOI:
10.3103/S0025654410010085Received 00.00.2000.
Received 12.04.2023.
Accepted 25.05.2023.

OPEN a ACCESS m

173



p-ISSN 1607-3274 PagioenexrpoHika, iHpopmaTuka, ynpasmainss. 2023. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. Ne 2

V]IK 004.93

3ACTOCYBAHHS CIUTAMH-®YHKIINA TA ®YHKIIIA YOJIIIA B 3ATAYAX ITAPAMETPHYHOT
ITEHTU®IKALIT JIIHIMHUX HECTAIIIOHAPHUX CUCTEM

Crenin O. A. — podecop kadpenpu TexHiuHOi kidepHeTuKk HTYY «KueBcrkuii momitexHiuauid iHCTUTYT iMeHi [rops Cikopcsb-
koro», KuiB, Ykpaina.

Jdpo3nosuu L. T'. — crapmmii HaykoBHil CHIBpOOITHHK BiIALTY NMPUPOHIX pecypciB IHCTHTYT TeleKoMyHIKaIii 1 riodaasHOro
iHdopwmariitHoro npoctopy HAH Vkpainu, Kuis, Ykpaina.

CoagaroBa M. O. — noneHT Kadepu aBTOMAaTH3UPOBAHHBIX cUCTeM 00paboTkn nHpopManmu 1 ynpasierus HTYY «Kuesch-
KHH NOMITeXHIYHUH 1HCTHTYT iMeHi [ropst Cikopcbkoro», KuiB, Ykpaina

AHOTAIIA

AKTYyaJbHiCTb. Y CTaTTi 3aIPOIIOHOBAHO y3aralbHEeHy MPOLEeNypy MapaMeTpUyIHOi i1eHTH}iKaLil TiHITHUX HecTalllOHAPHUX CH-
CTEM, SIKa BUKOPHUCTOBY€ CIUIAH-(QYHKI] Ta OPTOTOHANbHE PO3KIAJAAaHHs B PSAA 32 CUCTEMOI0 (QyHKIIN Youlma, Mo 103BOJIsIE 3HAX0-
JUTH ONIHKM IIyKaHMX MapaMeTpiB MNIIIXOM MiHiMi3amii IHTErpanbHOTO KBAaApPAaTHYHOTO KPHUTEPil0o HEe30DKHOCTI Ha OCHOBI
PO3B’sI3aHHS CUCTEMH JTiHIIHUX anreOpaidHuX piBHSAHB IS IMUPOKOTO KIACy JIHIHUX IMHAMIYHUX CHCTeM. TOYHICTH OIHIOBAaHHS
napaMeTpiB 3a0e3nedyeTbesi HOOYJOBOIO CIUIaliHa i3 3aJaHOI0 TOYHICTIO Ta BHOOPOM KiJIBKOCTI WIEHIB PO3KJIaLy B psii Youma npu
PO3B’s3aHHI CUCTEM JIIHIMHHUX anreOpaidHuX piBHSIHB MeTonoM peryisipusanii A. H. Tuxonosa. 1 miJBHUINEHHS TOYHOCTI OIL[IHKA
3aMpONOHOBAHO ANTOPUTM aJallTUBHOTO PO3OUTTS IHTEpBajly CriocTepekeHHs. KpurepieM po3OUTTS € 3Ba)KeHHI KBaapaT po30ikHO-
CTi MK 3MIHHHMH CcTaHy 00’€KTa KepyBaHHS Ta 3MIHHHMH CTaHy MoJieii. BuOip KinbKOCTI WwieHiB po3kiany B psia Youiia 3aiicHIo-
€ThCS Ha OCHOBI aalTHBHOI alipOKCUMAIlii HeCTAI[lOHAPHUX MAapaMeTPiB Ha IHTEPBai CHOCTEPEKEHHS, BUXOASYH i3 3aaHO1 TOYHOC-
Ti iX OIiHOK. SIKiCTh ympaBiiHHS 00’€KTaMH 31 3MIHHUMH MapaMeTpaMy 3HAYHOKO MipOI0 BH3HAYA€ThCS TOYHICTIO OLIHIOBAHHS iX
napaMerpiB. ToMy oTpuMaHHS ZOCTOBipHOI iH(pOpMamii Ipo AiiCHUHA XapakTep 3MiHH IapaMeTpiB €, Oe3MepPeTHO, aKTyaNbHOIO 3a/a-
Yero.

Merta. [TinBUIIEHHS TOYHOCTI OLIHIOBAHHS MapaMeTPiB IIHPOKOTO KJAcy JIHIHHUX JUHAMIYHUX CHCTEM LIISIXOM CIIUIBHOTO BH-
KOpHCTaHHs CIUTaHH-QyHKIIH Ta GyHKUiN Yomma.

Mertopa. 3amnponoHOBaHO y3arajbHEHY MPOLEAYPY MapaMeTpHyHol ineHTH(iKanil MMPOKOro Kiacy JiHIHHUX TUHAMIYHUX CHC-
TeM. Bubip KinmbKOCTI WieHiB po3kiiaay B psia Youla 31iiiCHIOETCS. HA OCHOBI 3aIIPOIIOHOBAHOTO AJITOPUTMY aJallTUBHOTO PO3OUTTS
iHTEepBaly CIIOCTEPEKEHHS.

PesyabTaTn. Pesynprati MomenoBaHH KOHKPETHHX JIHIMHIX HECTAIOHAPHUX CHCTEM IMiATBEPUKYIOTh €(eKTUBHICTH BUKOPH-
CTaHHS 3aIIPOIIOHOBAHMX IiIXO/IB 0 OLIHIOBAaHHS HECTAIlIOHAPHHUX MapaMeTpiB.

BucnoBknu. CrinbHe BUKOPHUCTAHHS CIDIAHH-QYHKIIN Ta GyHKHiH Yoima no3BOIsSE Ha OCHOBI 3alPONOHOBAHOI y3araIbHEHOL
MIPOLeypH MapaMeTPUIHOI iTeHTU(IKAI] OTPIMATH OLIHKY MapaMeTpiB B aHATITUIHOMY BHTJIAII, IO € JyXKe 3py9HHM IS 1T0a-
JBIIOTO BUKOPUCTAHHS IIPH CHHTE31 ONITUMAJIBHUX CHCTEM YIPaBIIiHHS peabHUMHU 00’ ektamu. [laHa mmponexypa 3acTOCOBHA 10 IIIH-
POKOTO KJ1acy JIIHIHHUX AMHAMIYHHUX CHCTEM 3 30CEPEKEHIMH Ta PO3MOIIICHUMH NapaMeTpaMu.

KJIFOYOBI CJIOBA: niniiiHi HecTalioHapHi cucteMy, cruiaiH-QyHkuii, GyHkiii Yomia, onepariifHa MaTpuLs, METOJ] pery-
nsipu3anii THXOHOBA, KyCKOBO-CTajIa alpoOKCUMAILisL.
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