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ABSTRACT

Context. Some of the authors’ recent papers were devoted to the Kolmogorov-Wiener filter for telecommunication traffic predic-
tion in some stationary models, such as the fractional Gaussian noise model, the power-law structure function model, and the GFSD
(Gaussian fractional sum-difference) model. Recently, the so-called generalized fractional Gaussian noise model was proposed for
stationary telecommunication traffic description in some cases. So, in this paper the theoretical fundamentals of the continuous Kol-
mogorov-Wiener filter used for the prediction of the generalized fractional Gaussian noise are investigated.

Objective. The aim of the work is to obtain the filter weight function as an approximate solution of the corresponding Wiener—
Hopf integral equation with the kernel equal to the generalized fractional Gaussian noise correlation function.

Method. A truncated Walsh function expansion is proposed in order to obtain the corresponding solution. This expansion is a
special case of the Galerkin method, in the framework of which the unknown function is sought as a truncated series in orthogonal
functions. The integral brackets and the results for the mean absolute percentage errors, which are a measure of discrepancy between
the left-hand side and the right-hand side of the Wiener-Hopf integral equation, are calculated numerically on the basis of the Wolf-
ram Mathematica package.

Results. The investigation is made for approximations up to sixty four Walsh functions. Different model parameters are investi-
gated. It is shown that for different model parameters the proposed method is convergent and leads to small mean absolute percent-
age errors for approximations of rather large numbers of Walsh functions.

Conclusions. The paper is devoted to a theoretical construction of the continuous Kolmogorov-Wiener filter weight function for
the prediction of a stationary random process described by the generalized fractional Gaussian noise model. As is known, this model
may give a good description of some actual telecommunication traffic data in systems with packet data transfer. The corresponding
weight function is sought on the basis of the truncated Walsh function expansion method. The corresponding discrepancy errors are
small and the method is convergent.

KEYWORDS: continuous Kolmogorov-Wiener filter, weight function, Galerkin method, Walsh functions, generalized frac-
tional Gaussian noise, telecommunication traffic.

ABBREVIATIONS h(t) is the Kolmogorov-Wiener filter weight function;

GFGN is a generalized fractional Gaussian noise; H is the Hurst exponent;

FGN 18 afractlpnal Gagssmn noise, R(t) is a traffic correlation function in the GFGN
GFSD is Gaussian fractional sum-difference;

MAPE is a mean absolute percentage error. model; .
a € (0,1] is a GFGN model parameter;
NOMENCLATURE o is a traffic standard deviation;
T 1is a time interval on which the input process data n is a number of Walsh functions in the correspond-
are observed; ing approximations;
Z is a time interval for which the forecast should be gs are coefficients multlplylng the Walsh functions;

made;
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walg (t) are the Walsh functions in the Walsh numera-
tion orthogonal on t €[0,T];

Left(t) is the left-hand side of the Wiener-Hopf inte-
gral equation;

Right(t) is the right-hand side of the Wiener-Hopf in-
tegral equation;

Gys are integral brackets;

By are free terms in the linear system of algebraic

equations in g;

ngn) are values of the Walsh functions in correspond-
ing points;

Vi, Qg are auxiliary integrals.

INTRODUCTION

The problem of traffic prediction is very important for
telecommunications, see the corresponding description in
[1,2].

Our recent papers were devoted to such a simple ap-
proach as the Kolmogorov-Wiener filter for stationary
traffic prediction. For example, in our recent paper [3] it
is shown that both the continuous and the discrete Kol-
mogorov-Wiener filter may be applicable to the predic-
tion of smoothed heavy-tail data similar to FGN which
may describe telecommunication traffic in systems with
data packet transfer.

Recently Ming Li proposed a GFGN model for sta-
tionary traffic description [4]. The theoretical fundamen-
tals of the Kolmogorov-Winer filter construction for traf-
fic in the GFGN model are still to be investigated, so this
paper is devoted to the corresponding investigation.

The object of study is the Kolmogorov-Wiener filter
for the prediction of continuous stationary telecommuni-
cation traffic in the GFGN model.

The subject of study is the weight function of the
corresponding filter.

The aim of the work is to obtain the weight function
on the basis of the truncated Walsh function expansion
method.

1 PROBLEM STATEMENT
The weight function under consideration obeys the
following Wiener-Hopf integral equation, see, for exam-

ple, [5]:

}dth(r)R(t—r):R(t+Z) (1)

where the traffic correlation function in the GFGN model
is as follows [4]:

R(t) =§[(|t|a +1)2H +‘|t|a —1‘2H 2t j @)
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It should be stressed that in the case where a=1 the
GFGN model coincides with the FGN model.

The problem statement is as follows: to obtain the un-
known filter weight function as an approximate solution
of equation (1) with the correlation function (2) on the
basis of the truncated Walsh function expansion method.

2 REVIEW OF THE LITERATURE

There are a variety of different and rather sophisti-
cated approaches to traffic prediction, see, for example,
[6-8]. Our recent papers were devoted to the Kolmo-
gorov-Wiener filter approach. For example, the theoreti-
cal fundamentals of the weigh function construction were
investigated for the power-law structure function model
[9], for the FGN model [10], and for the GFSD model
[11]. Telecommunication traffic in the systems with data
packet transfer nowadays is treated as a heavy-tail random
process, see, for example, [12—14] and references therein.
In [3], the applicability of the Kolmogorov-Wiener filter
to the prediction of smoothed heavy-tail data is shown.

In [4], the so-called GFGN model for traffic descrip-
tion is proposed. For example, in [4] it is stressed that
such a model gives a good description of the experimental
traffic data recorded by the Bellcore in 1989, recorded by
the Digital Equipment Corporation in 1995, and recorded
by the Measurement and Analysis on the Working Group
Traffic Archive in 2019.

Any theoretical construction of the continuous Kol-
mogorov-Wiener filter for the prediction of a process de-
scribed by the GFGN model is still to be done. So, the
aim of this paper is to obtain the corresponding filter
weight function.

The corresponding investigation is made in the
framework of the Galerkin method [15] on the basis of a
Walsh function expansion. The Walsh functions in the
Walsh numeration are used, see [16].

3 MATERIALS AND METHODS
The unknown weight function is sought in the form

n
h(t)= 2 gswals (1), 3)
s=1

which on substitution into (1) followed by integration
leads to the following matrix expression for the unknown
coefficients g (see similar expressions, for example, in

[11]):

) (G G - G B,
9:2 _ G:21 G:zz G:Zn By ’ @)
gn Gnl an Gnn Bn

where
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TT
Gys = I J drdtwaly (t)walg (t)R(t-1),
00

] 5)
= [ dtwal, (t)R(t+2).
0
Similarly to [16], it may be shown that
n n
Gy = ZW( W (©)
where
W = wal (21-nT1
il ooa2n )
IT sT
S (7
Vi = I j dtdtR (t—1)
(I-DT (s-1)
n n
Similarly to [16], it may be shown that
Vis =Visis+1> Vis =Vsi» Gjk =Gy, (®)
so only the quantities V,;, | = 1,n should be calculated on

the basis of the integration (7), while all the other quanti-

ties V,, may be calculated on the basis of (8) with account

for calculated results for Vj; . The corresponding analyti-

cal calculation may meet difficulties, so the following
approximate expressions were used:

5

.
n
= dtdR(t—1)= Y R(i-j)-107-107,
0 ij

(-
" 9
i=0.1.107,2-107, ..., and so on while i <T/n, ©)
I-D)T (1-1)T I-1)T
=u,u+l-1073,(—)+2~10’3,...,
n n n

and so on while j<IT/n.

The idea of (9) is that the square region t<[0,T/n],
te[(I-1)T/n,IT/n] is divided into small squares with a
side equal to 10~ . Of course, such a calculation is valid
only if T/n>107,

framework of the numerical calculations made in this

paper.
Similarly to [16], it may be shown that

but this inequality holds in the
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Zwk”’o.s (10)
where
sT/n
Q= dtR(t+2). (11)
(s-1)T/n

The integrals Qg are calculated in the Wolfram
Mathematica package by direct integral calculation.

So, the quantities Vj; are calculated on the basis of
(9), all the other quantities Vg are calculated from V}; on

the basis of (8), and the corresponding integral brackets
G jk are calculated on the basis of (6) with account for (7)

and (8). The coefficients By are calculated on the basis of

(10) with account for (11). Then the unknown coefficients
g, are calculated on the basis of (4), and the unknown

weight function is obtained on the basis of (3).

4 EXPERIMENTS
The following values of the parameters are investi-
gated:
T=100, z=3, H=0.75. (12)
The following values of the model parameters are in-
vestigated: a=0.8, a=0.4, and a=0.08. The quality
of the obtained solution for the weight function is checked
by the calculation of the corresponding MAPE error,
which is a measure of discrepancy between the left-hand
side and the right-hand side of equation (1):

. .
MAPE = lj| Left(t) ~Right(t) 0o, (13)
T 0| Right (t) |
where
Left(t Idth R(t—), Right(t)=R(t+z). (14

The method of trapezoids is used for an approximate
numerical calculation of the function Left(t) :

T 1

Lefi(t) zz(ﬁ-?(h(m(t_ )+

T T
+h| j+— IR t=j—— ||, 15
(’ 103} ( 103m 1
. T T T
=0,l-—,2-—,...,(10° = 1) —-.
J 10°7 10° ( )103

The MAPE is roughly estimated as
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MAPE:%'Z|Left(li.);f{1{ght(J)I.loo%’
. T T T
=0,1-—,2-—,...(10° =1)- — .
)=5 10°77 10*° ( )102

Numerical results for the MAPE are given in the next
section.

5 RESULTS
The obtained results for the MAPE are given in Ta-
ble 1.

Table 1 — MAPE values (in %, rounded off to 2 significant dig-
its) for the approximation of N Walsh functions for different
values of the parameter a

a=0.08 a=04 a=0.38
n=2 1.9 7.6 15
n=4 0.93 3.4 6.7
n= 0.66 1.7 3.0
n=16 0.44 0.92 15
n=32 0.30 0.40 0.62
n=64 0.23 0.37 0.50

Comparison graphs for the approximations of 64
Walsh functions are given in Fig. 1 — Fig. 3.

— Right(t)
mmmm Left(t)

The left-hand and the right-hand
sides of the integral equation (1)

7 Time { & [0.7]
Figure 1 — Graphs of Left(t) and Right(t) for the approximation
of 64 Walsh functions; a=0.8

— Right(t)

sides of the integral equation (1)

The left-hand and the right-hand

 Time ¢ £[0.7]
Figure 2 — Graphs of Left(t) and Right(t) for the approximation of 64
Walsh functions; a = 0.4
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The left-hand and the right-hand
sides of the integral equation (1)

Time IE[OI]
Figure 3 — Graphs of Left(t) and Right(t) for the approximation of 64
Walsh functions; a =0.08

As can be seen, the left-hand side and the right-hand
side of (1) are rather close.

6 DISCUSSION

As can be seen, the approximations of rather great
numbers of the Walsh functions are accurate enough. The
accuracy increases with the number of the Walsh func-
tions. Thus, the proposed method of solving the integral
equation (1) is convergent for the correlation function (2).

It should also be stressed that the corresponding ap-
proximations are rather accurate for all the three consid-
ered values of the parameter a, thus indicating that the
proposed method works well. Of course, the estimation of
the MAPE on the basis of (16) is rather rough, but it is
adequate in order of magnitude. As can be seen from the
obtained graphs, the left-hand side of the integral equation
(1) is indeed rather close to the corresponding right-hand
side for the approximation of 64 Walsh functions.

The paper is devoted to a theoretical construction of
the continuous Kolmogorov-Wiener filter weight function
for the prediction of a stationary random process de-
scribed by the GFGN model. As indicated in [4], that
model may give a good description of some actual tele-
communication traffic data.

The corresponding weight function is the solution of
the Wiener-Hopf integral equation (1). This equation is
solved on the basis of the Galerkin method with the help
of a truncated expansion in the Walsh functions. The
Walsh functions in the Walsh numeration are used. The
algorithm of the weight function derivation is described in
detail. The quality of agreement between the left-hand
side and the right-hand side of the integral equation is
estimated by the MAPE parameter. It is shown that for a
rather large number of Walsh functions the agreement is
good enough, and the corresponding MAPE values are
rather small. Graph comparisons are given to illustrate the
fact that the corresponding left-hand side is indeed close
to the corresponding right-hand side for the obtained solu-
tions. It is shown that the MAPE decreases with the num-
ber of Walsh functions, which justifies the convergence of
the method. The approximations of up to 64 Walsh func-
tions are investigated. The calculations are made with the

help of the Wolfram Mathematica package.
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The use of a Walsh function expansion is known not
only for integral equations, but also for variational calcu-
lus, see [17, 18]. As is known, variational calculus is
widely used in optimal control problems, see, for exam-
ple, [19, 20]. Paper [20] is devoted to a practical electrical
engineering problem, so the mathematics of this paper
may be applicable in part to, for example, electrical engi-
neering problems.

CONCLUSIONS
The Kolmogorov-Wiener filter weight function for the
prediction of continuous stationary telecommunication
traffic in the GFGN model is calculated on the basis of
the truncated Walsh function expansion method. Ap-
proximations up to 64 Walsh functions are investigated.
The convergence of the method is illustrated.

The results of this paper may be useful for the practi-
cal prediction of stationary telecommunication traffic in
systems with data packet transfer.

The scientific novelty of the paper is the fact that for
the first time the Kolmogorov-Wiener filter weight func-
tion is calculated for the prediction of telecommunication
traffic in the GFGN model.

The practical significance is that the obtained results
may be applied to the practical prediction of telecommu-
nication traffic in systems with data packet transfer.

Prospects for further research are to investigate the
Galerkin method for other orthogonal systems of func-
tions, for example, polynomial or trigonometric ones, and
to compare the obtained MAPE results with the results
based on the Walsh functions. Another plan for the future
is to generate simulated data described by the GFGN
model and to investigate the corresponding prediction for
them.
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AHOTANIS

AxTyanbHicTh. Jleski 3 HewoiaBHiX cTarteil aBTopis mpucesueHi ¢instpy Koamoroposa-Binepa 1uist mporHo3yBaHHs TEIEKOMY-
HiKauiiHoro Tpadiky B AESIKHX CTalliOHAPHUX MOJEISX, TAKHX SK MOJEJb (PaKTalibHOTO TayCiBCHKOTO LIyMY, MOJENb CTEICHEBOT
cTpykrypHoi ¢ynkunii Ta GFSD (Gaussian fractional sum-difference) mogens. HemonaBHo Tak 3BaHa MOJIENb y3aralbHEHOTO (pak-
TaJIFHOTO TayCiBCHKOTO IIyMy OyJia 3amponoHOBaHa JJIs OMUCY CTAaliOHapHOTO TEIEKOMYHIKamiiHOTO TpadiKy B NESKHX BHMAIKAX.
Tox B Il CTAaTTi JOCTIHPKEHO TEOPETHYHI OCHOBU HenepepBHoro ¢insrpa Koiamoroposa-BiHepa, 3acTOCOBHOTO IJIsl TPOTHO3YBaHHS
y3arajlbHeHOTro (hPaKkTaIbHOTO rayCiBCHKOTO IIyMy.

Meta po6oTu. Meroto poboTH € OTpUMaTH BaroBy (YHKI[FO (QiabTpa sK HaOIMKEHHH PO3B’ 30K BIAMOBIIHOTO iHTErPAILHOTO
piBHsiHHS Binepa-Xomnda 3 ssapom, 1o 10piBHIOE KOPEISIiiHIH (yHKLIT y3araabHEeHOro (ppakTabHOTO rayCiBChKOTO HIyMy.

Metoa. Meton 06ipBaHHX PO3BHHEHB 32 (GyHKIisIMU Boiiia 3anpornoHoBaHo it OTPUMaHHsI BiAMOBIHOTO po3B’si3Ky. Take po-
3BUHEHHS € YaCTUHHHM BHUIIaJKOM MeTonay ['aepkiHa, B paMKax sIKOro HeBigoma (YHKILs IIyKaeTbCsl Y BUMIISAAI 00ipBAaHOTO PO3BH-
HEHHS 32 OPTOTOHANBHUMH (QYHKLIAMU. [HTErpasbHi Ay »KKH Ta pe3yIbTaTH IS CepeIHbO1 aOCOMIOTHOI BiICOTKOBOI MOMMIIKA BiIXH-
Ty JIiBO1 YaCTHHU 1HTETpajbHOTO piBHAHHS Binepa-Xomda Bix mpaBoi o6uncieHi yncensHO Ha 0cHOBI makety Wolfram Mathematica.

PesyabTaTn. JlocmimkeHHs 3po0iaeHe sl HaOIKeHb BKIFOYHO J0 HaONMKEHHS IIICTACCATH YOTUPBOX (QyHKUi Bomma. Jlo-
CIIiJKEeHO pi3Hi mapamerpu Mozeni. [Tokazano, mo Juist pi3HUX IMapaMeTpiB MOJENI 3alpOIIOHOBAHHMI METO[] € 30KHUM Ta HMPHU3BO-
JIITh JIO MAJIUX Cepe/IHIX aOCOTFOTHUX BiJICOTKOBHX IMOMMIIOK JUTS HAOIMKEHB JIOBOJII BEJTUKOI KITBKOCTI (yHKIi# Boira.

BucnoBkn. CTaTTIO MPUCBAYCHO TEOPETHYHIA MOOYm0BI BaroBoi (yHkiii HemepepBHoro ¢inerpa Kommoroposa-Binepa mis
IPOTHO3YBAHHS CTAL[IOHAPHOTO BUIIAJKOBOIO MPOLECY, L0 OMHUCYETHCS MOJEIUIIO y3aralbHEHOro ()paKTaJbHOTO rayCiBChKOro IIy-
My. Sk Bimomo, Taka MoJeib MOXKE 00pe ONMCYBATH IEBHI SKCIIEPUMEHTANbHI JaHi B CHCTEMax 3 MaKeTHOIO Iepeadcio JaHuX.
BignosizHa BaroBa ()yHKIISl OTyKa€THCS HA OCHOBI 00IpBaHOTO PO3BHHEHHS 3a QyHKUisiMA Bomma. BinnoBigHi MOMUIKY BiAXHITY €
MaJIMH Ta METOX € 301KHIM.

KJIFOYOBI CJIOBA: nenepepBruii pinsTp Konmoroposa-Binepa, Barosa ¢yskuis, meton ["anepkina, ¢hyskunii Bomma, y3a-
TaJbHEHUH (paKTaIbHUIN rayciBCHKUI IIyM, TEIEKOMYHIKAIiHHKI Tpadik.
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