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ABSTRACT

Context. The paper focuses on the problem of estimating the center of distribution of the random component of experimental
data for density models with a negative kurtosis.

Objective. The goal of this research is to develop methods to improve the efficiency of polynomial estimation of parameters of
experimental data with a negative kurtosis coefficient.

Method. The study applies a relatively new approach to obtaining estimates for the center of the probability distribution from the
results of experimental data with a stochastic component. This approach is based on polynomial estimation methods that rely on the
mathematical apparatus of Kunchenko's stochastic polynomials and the description of random variables by higher-order statistics
(moments or cumulants). A number of probability density distributions with a negative kurtosis coefficient are used as models of the

random component.

As a measure of efficiency, the ratio of variance of the estimates for the center of the distribution found using polynomial and
classical methods based on the parameter of amount of information obtained is used.

The relative accuracy of polynomial estimates in comparison with the estimates of the mean, median and quantile estimates (cen-
ter of curvature) is researched using the Monte Carlo method for multiple tests.

Results. Polynomial methods for estimating the distribution center parameter for data models of probability distribution density

with a negative kurtosis coefficient have been constructed.

Conclusions. The research carried out in this paper confirms the potentially high efficiency of polynomial estimates of the coor-
dinates of the center of the experimental data, which are adequately described by model distributions with a negative kurtosis. Statis-
tical modeling has confirmed the effectiveness of the obtained estimates in comparison with the known non-parametric estimates
based on the statistics of the mean, median, and quantile, even with small sample sizes.

KEYWORDS: data sampling, estimation, stochastic polynomial, cumulants, negative kurtosis.

ABBREVIATIONS
PMM - polynomial maximization method;

NOMENCLATURE

8j(0) = E{x;} are mathematical expectations that de-
pend on the parameter being estimated;

9(oymean 18 a coefficient of variance reduction relative
to the method of moments;

h; —h; are weighting coefficients;

Jn(0) is an amount of obtained information;

N is a number of experiments to obtain a predeter-
mined accuracy;

n is a sample volume;

r is a predefined order of the polynomial;

X is a sample value;

X is a sample of equally distributed random variables;

Q; are sample statistical initial moments;

v3 and vy, are cumulant coefficients;

0 is an informative parameter;

0 is an estimation of informative parameter;

& is a random component of sample data;
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Gz(e)r is a theoretical variance of the parameter esti-
mated by the PMM,;

62(6)mean is an empirical value of the variance of the
mean estimates;

62(e)med is an empirical value of the variance of the
median estimates;

éz(e)qvant is an empirical value of the variance of the
quantile estimates;

éz(e)pMm3 is an empirical value of the variance of
the PMM estimates (r = 3);
%> 1s a second-order cumulant;

INTRODUCTION

Statistical estimation methods are the usually core
mathematical tool for many tasks where the analysis of
experimental data is required, such as interpretation of
scientific experiments, stochastic signal processing, prod-
uct quality assurance, non-destructive testing of struc-
tures, network intrusion detection systems, theoretical
fundamental metrology etc. The need to use them is pre-
determined by the impact of various noises and interfer-
ences, random errors or errors of measuring instruments
on the experimental data. In such cases, a typical ap-
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proach is to present the data model as an additive interac-
tion of informative parameter and a stochastic component
[1,2].

There are several tasks in which a stochastic compo-
nent of the experimental data symmetrical in nature, and
under the following condition, the center of the probabil-
ity distribution of this stochastic component can be de-
termined as center of symmetry, and its coordinate will be
the actual value of the informative parameter [3].

Quite often, in practice, simple averaging is used to cal-
culate an estimate of the coordinate the center of the sto-
chastic experimental data distribution. However, the appli-
cation of arithmetic mean to estimate the parameters of
random series is actually optimal only for models with a
Gaussian probability distribution density. But in fact, it is
impossible to represent all the variety of real probability
distributions of the random component with this law alone.
Therefore, some tasks require the use of other distribution
laws, sometimes significantly different from the normal
one [2-5].

The object of study is the process of estimating the
parameters of random variable models with the moment-
cumulant description.

The subject of study is models of experimental data
with negative kurtosis and methods of polynomial estima-
tion of their parameters.

The purpose of the work is to increase the efficiency
of polynomial estimation of parameters of experimental
data with a negative kurtosis coefficient when creating
methods and tools for mathematical and computer model-
ling based on the application of the polynomial maximiza-
tion method and moment-cumulant description of random
variables to improve the quality of the estimates obtained
by increasing their accuracy in the functioning of data
processing systems of the corresponding class.

1 PROBLEM STATEMENT
It is necessary to estimate the value of the informative
parameter 6 based on statistical processing of the vector
X = {Xl,xz,...xn} of sample values X=0+§, which are

statistically independent and identically distributed and
obtained by conducting multiple experiments.

It is assumed that the mathematical model of the ran-
dom component of the data & is adequately described by

the distribution laws shown in Table 1.

The research is supposed to obtain estimates of the
center of the distribution, analytical expressions describ-
ing the variances of the PMM estimates, and, using Monte
Carlo statistical modelling, to check the actual efficiency
of the estimates compared to the ones obtained by other
methods, depending on the amount of sample data and the
distribution with a negative kurtosis.

2 REVIEW OF THE LITERATURE

In a number of tasks of processing experimental data
of various origins, it turns out that the random component
in them has a distribution with a negative kurtosis, and the
type of distribution itself is concave (bimodal). Models of
such distributions are used in information and measure-
ment systems [2, 7], in determining electromagnetic com-
patibility [8—10], in sociology [11], evolutionary biology
[12], hydrology [13], and other fields.

Among such probability density models, according to
which the random component of the experimental data is
distributed, the following can be distinguished: U-
quadratic distribution, arcsine distribution, V-shaped dis-
tribution and symmetrical Kumaraswamy distribution.
These distributions are symmetric, have a negative kurto-
sis, and have another property: they are defined on a lim-
ited interval. A graphical representation of their probabil-
ity density is shown in Figure 1. Table 1 shows the
mathematical expressions for the probability density func-
tion of the corresponding laws:

Table 1 — Mathematical representation of probability distribution

Ne Type of distribution Distribution parameters
) (0 =alx-pP el
a p X)=ol\X— - 3 =
(b-a) 5
1 _
b) P(X) :2— W:b_a W:M
myw? —(x—h)? 2 2
X—a
c) p(x) = |b—2| a=0 b=1
d) p(x):a.b.xafl(l_xa})il a=0.5 b=05
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Figure 1 — Symmetric distributions with negative kurtosis: a — U-quadratic distribution, b — arcsine distribution,
¢ — V-shaped distribution, d — symmetrical Kumaraswamy distribution

It is well known that the application of mathematical
models of the random component of experimental data
with any probability distribution requires the use of cer-
tain mathematical procedures for statistical processing.
The existing fundamental approaches to finding estimates
of the parameters of such models are based on the method
of moments and the method of maximum likelihood or its
modifications, respectively. The first one has a relatively
low accuracy, but is notable for its simple calculation.
The other requires the implementation of rather complex
algorithms and the availability of as large a sample size as
possible, which characterizes it as asymptotically efficient
[13—15]. In addition to these methods, other statistics can
also be used to obtain an estimate: median, quantile (cen-
ter of curvature) or rank estimates [5, 16].

3 MATERIALS AND METHODS
In general, finding estimates of an unknown scalar pa-
rameter 6 by the polynomial maximization method over
a sample of equally distributed random variables
X = {Xl,xz,...xn} involves solving a polynomial equation
of the form:

r 1 n i
2.hi () ;Z(Xv —ai(e)) =0, (1)
i=1

v=l 0=0

where r — predefined order of the polynomial,
8j(0) =E{x;} — mathematical expectations that depend

on the parameter being estimated. The weighting coeffi-
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cients h;(0) of equation (1) can be found under the condi-
tion of ensuring the minimum variance of the estimates of
the parameter 0 when using a polynomial of power
r [17]. These coefficients are found from solving a sys-
tem of linear algebraic equations of the form:

r d i -
;hi OF, j(0) = a;©). j=Lr. @)
i=

where the centered correlants
Fi,j (6) = (Xi+j(e) — Otl(e)()tj(e) , |, J =1r. When forming

a stochastic polynomial of power r for equation (2), it is
necessary to have a partial probability description in the
form of a set of moments up to the 2r -th order.

It is known from [17-19] that when using power
transforms as basis functions, polynomial estimates ob-
tained with the powers of the polynomial r=12 are
equivalent to estimates of the mean for any symmetric
distribution law of random variables. Therefore, in order
to obtain estimates of the PMM that can prevail in accu-
racy, it is necessary to use a stochastic polynomial of
power r=3. To form the polynomial equation (1) with
the unknown parameter 0, the relations for the first 6
initial moments were calculated. They will depend on the
desired parameter 0, the second-order cumulant y, , and

the cumulant coefficients v, and yg :
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0 (0)=6, 05(0) = 0% +7,, a3(0)=6>+30y,,
04(0)=0%+60%, +B+v4)15

a5(0) =0 +100%y, +503+74)x3, 3)
0 (0) = 0% +150%, +1502(3+y,4)x3 +
+(15(1+74) +76)2%3-

To find the weighting coefficients that minimize the vari-
ance of the PMM estimates of the distribution center pa-
rameter, the necessary expressions for the derivatives of
the first 3 moments are as follows:

d d d
EOH(G) = 1,50@(9) = 29,@%(9) =30 +72). (4

If we use a polynomial of power r =3, then the equa-

tion for finding the PMM estimates 6 for the case of a
symmetrically distributed random component of the ex-
perimental data can be written as follows:

n n
Y [x, —0]+hy > [X\% —(0% + Xz)]+
v=1 v=1

)

n
+h3z[xv3 — (0% +30y,)

v=1

0=0

where h; —h; — are the weighting coefficients obtained

from the analytical solution of the system of equations (2)
by the Kramer method, and taking into account expres-
sions (3) and (4), and are as follows:

= 3071 =(6+12v4 47012
(Y4 =974 —6-76)x3

-30
hy = 4 =, (6)
(Y4 =914 —-6-v6)%2
h V4

3 = .
(14 =94 —6-76)23

If the found coefficients (6) are substituted into the
into the PMM equation (5), then a polynomial equation of
the third power with respect to the parameter 0 is ob-
tained:

3 2
Ple + P29 + P39+ P4 9:6 =0 5 (7)

where the coefficients P, —P, depend on the second-

order cumulant %, and the cumulant coefficients y, and
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It is known [16, 19] that the solution of the cubic
equation of the form (7) is obtained analytically on the
basis of Cardano's formulas. However, there are alterna-
tive methods for obtaining an analytical solution, for ex-
ample, the general cubic formula, Viete's substitution,
trigonometric and hyperbolic solutions, and the Lagrange
method [20]. The effectiveness of these methods depends
on the type of roots of the cubic equation. It is known that
the correct solution of a PMM is a real root, which in
general can be more than one, which requires additional
verification by the criterion of minimum variance.

In [18], it was proposed to use numerical iterative al-
gorithms for solving nonlinear equations. As an initial
approximation for finding the root of equation (7), it is
proposed to use a linear estimate of the desired parameter
in the form of a sample mean ;. The condition for stop-

ping iterations is set based on the standard deviation of
the estimates.

It is known that the Newton-Raphson method is most
commonly used to solve nonlinear equations and their
systems, but the method of simple iteration, the method of
fastest descent, etc. can also be applied.

So, in fact, the question of using mathematical meth-
ods to solve a polynomial maximization equation requires
a more thorough study, comparing analytical and numeri-
cal methods, the speed of algorithms, and the types of
roots obtained.

It was proved in [17] that the estimates obtained as a
result of solving the PMM equation are valid and asymp-
totically unbiased. It is also important that there is an ana-
lytical solution for the variance of such estimates. It is
based on the concept of the amount of information ob-
tained about the estimated parameter 0 and is calculated
using a well-known formula:

r d
Jinee) =N (e)ﬁai(e)- (®)
i1

The previously found values of the moments and
weighting coefficients are used here. The inverse of the
amount of obtained information in the asymptotic case
tends to the variance of the estimated parameter, namely:

2 . -1
S(oyr = M J gy - ©)

n—0

Analogous to [16—-17], for a comparative analysis of
the relative accuracy of estimates, it is advisable to intro-
duce the concept of the coefficient of variance reduction:

2
S(6)PMM3
Yeomean="—">H -
G(0)mean
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This coefficient indicates the ratio of the variance of
the PMM estimates of the parameter 0 obtained from the
r -order polynomial equation to the variance of the PMM
estimates when r =1 or to the variance of the method of
moments estimates.

The variance G(ZG)mean of the estimates of the parame-

ter 0, found by the method of moments, does not depend
on the value of this parameter. It is uniquely determined
by the ratio of the second-order cumulant 7y, to the vol-

ume of the sample n [17]:
2 X2
G (0)mean = T (11)
If substituting the values of the obtained weighting
coefficients (6) and the derivatives of the moments (4)
into expression (8), then in the asymptotic case (at
n— o), it is possible to determine the variance of the
PMM estimates of the order of the polynomial r=3

through the value of the cumulant coefficients:

2
529 PMM :’X‘_2 1_7—4 .
©® 3 n 6+9’Y4+’Y6

(12)

In this case, the coefficient of variance reduction (10)
will depend on the cumulant coefficients characterizing
the kurtosis of the random variable and has the form:

2

Y4
9(@)mean =1 6+974 +7¢ 13)
As a result of the research, theoretical coefficients for
reducing the variance of estimates of the center of distri-
butions with a negative kurtosis coefficient were calcu-
lated, as shown in Table 2. Since the selected distribution
models have constant cumulant coefficients characteriz-

ing the kurtosis, the values obtained are numerical:

Table 2 — Theoretical coefficients of variance reduction

Ne Bun posnoziny 9(6)mean Y4 Y6
a) U-quadratic distribution 0,037 -1,81 13,69
b) Arcsine distribution 0,1 -1,5 10
c) V-shaped distribution 0,074 -1,67 12
d) Symmetrical Kumaraswamy distribution 0,058 —-1,46 9,42

As shown in Table 2, all distributions are non-
Gaussian, but it is the coefficient y, that is negative. The

results obtained do not contradict the domain of permissi-
ble values of cumulant coefficients shown in [17], and
they cannot take on arbitrary values.

Based on the results of the research on the use of the
PMM to estimate the parameter 0, it is possible to say
that such estimates are superior in accuracy to the classi-
cal average method for distributions with a negative kur-
tosis. Thus, when the order of the stochastic polynomial
is r =3, the efficiency advantage of the PMM estimates
of the distribution center is more than 10 times. Al-
though, of course, in solving certain practical problems,
the efficiency advantage of such estimates using the
PMM may be somewhat less.

4 EXPERIMENTS

Usually, it is quite problematic to check and prove the
effectiveness of both methods and algorithms in practice
due to the limited amount of data obtained through a real-
world experiment. A way out of this situation may be the
use of simulation modeling methods, among which the
most common is the Monte Carlo method, which is based
on obtaining a large number of random data realizations
that have stochastic properties of the real process being
reproduced.

In this work, a software implementation of a series of
repeated experiments was developed in Mathematica to
compare the accuracy of the PMM estimates of the poly-
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nomial order r =3 with other classical estimates. For this
purpose, the experiment was supplemented with the cal-
culation of median and quantile estimates (center of
curve), which are also used to determine the center of the
distribution.

As shown above, expression (10) can serve as a pre-
cise criterion of efficiency, but for experimental data it
will contain empirical values of the variance reduction
coefficients of the corresponding estimates:

. c’(Ze)Prvuvm N G(ZG)PMMS
Yeoymean =—5 > YOmed =—5 >
G (@)mean S (®)med
AZ (14)
N S(6)PMM3
Yogvan=—3 >
O(p)qvan

where 6(26)mean , 6%e)med > 6(26)qvana cAf(ze)PMM3 — aver-
age values of the variance of estimates for N experi-
ments, obtained using the mean, median, quantile esti-
mate, and PMM (r =3), respectively.

In the implementation of the experiment, the estimates of
the sample initial moments for substitution into the stochastic
polynomial equation were obtained using the known formula:

5)

A LN
aj :_ZXV' I:1,
n
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When analyzing expressions (11) and (12), we can
talk about the asymptotic efficiency of the methods, i.e.,
to obtain valid results, the sample of one experiment
should be as large as possible. As for averaging the vari-
ance of the estimates, it is also necessary to have a certain
number of experiments to ensure a predetermined accu-
racy and statistical stability of the modeling results. This
calculation is performed using confidence intervals [21].

If a parameter 0 with mathematical expectation 0 is
estimated from a sample and has a mean M (X), then
there exists a value & such that |6—M (X)| <&, which
will be the accuracy of the estimate. The probability of
fulfillment of this inequality is its reliability
P(0-M(X)|<e)=E.

Since the scheme of independent statistical tests with a
relative frequency of occurrence of the required event
m/N is considered, for sufficiently large N, a distribu-
tion close to normal will be obtained. Therefore, for each
value of reliability E , the value of the function ®(t)=E
can be selected from the probability integral tables for
such a value tg that the accuracy ¢ is equal:

e=tg/D(M/N) =tg {/D(X)/N . (16)
Thus, the number of experiments to obtain a given ac-
curacy will be found as follows:

N =tZD(X)/&?. (17)

If a number of random variables are evaluated during
one experiment, then maxD;(X) is usually chosen to
calculate the number of experiments N .

Typically, the reliability is set at E =0.95, so the ta-
ble value found is tg =1.96 . The accuracy of calculating
the variance and the coefficient of variance reduction will
be adequate when the number has two decimal places, i.e.
€=0.01. Calculating the variance values for the given
probability distribution models with constant parameters,
it is obtained max D;j(X)=0.6. Thus, the required num-
ber of experiments to get a given accuracy is as follows:

2
D(X
N =¥=23000. (18)
&
5 RESULTS

The results of statistical modeling by the Monte Carlo
method for the various distributions considered in the
research and the volume of experimental sample values
n=20+200 obtained at the number of experiments

N =23-10° are presented in Table 3.

For a more visual representation and comparison, the
coefficients of variance reduction obtained as a result of
Monte Carlo simulation relative to the method of mo-
ments and their theoretical values were plotted, since they
were calculated analytically. Figure 2 shows them de-
pending on the volume of the sample n.

6 DISCUSSION

Usually, methods that perform nonlinear processing of
any data, especially stochastic data, lead to the complica-
tion of mathematical and computational algorithms. The
polynomial estimation of the parameters of the experi-
mental data proposed in this study is no exception. More-
over, it is known that increasing the order of the stochas-
tic polynomial r does not lead to a linear dependence of
the increase in the accuracy of the obtained estimates.
This fact somewhat reduces the application of the method
in practice and forces a compromise between increasing
accuracy or complexity. That is why in this study it was
decided to choose the order r =3 of the stochastic poly-
nomial.

The analysis of the results of theoretical (Table 2) and
experimental (Table 3) studies of variance reduction coef-
ficients shows their significant correlation. This is espe-
cially evident when the sample size n increases, and also
indicates the correctness of the statistical modeling. Such
results fully confirm the asymptotic efficiency of poly-
nomial estimation based on the property of the amount of
obtained information (8).

Table 3 — Coefficients of variance reduction of estimates

PC3yHLTaTI/I CTAaTUCTHYHOT'O MOACIHOBAaHHA
e 9(e)mean 9(0)med 9(oyqvan
Buz posnoainy ()3
n

20 50 100 200 20 50 100 | 200 20 50 100 200
U-quadratic 0,037 | 0.16 | 0.044 | 0.038 | 0.035 | 0.018 | 0.002 | 0.001 | 0.001 | 0.284 | 0.161 | 0.151 | 0.153
distribution
Arcsine
resine 0,1 | 0305 | 0.138 | 0.114 | 0.102 | 0.077 | 0.031 | 0.024 | 0.021 | 0.236 | 0.108 | 0.088 | 0.082
distribution
V-shaped 0,074 | 025 | 0097 | 008 | 0.071 | 0.039 | 0.009 | 0.005 | 0.003 | 0319 | 0.17 | 0.154 | 0.14
distribution
Symmetrical
Kumaraswamy 0,058 | 0.196 | 0.093 | 0.068 | 0,061 | 0.109 | 0.044 | 0.031 | 0.026 | 0.284 | 0.138 | 0.108 | 0.094
distribution
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Figure 2 — Comparison of the efficiency of methods for finding center coordinate estimates depending on the volume of the sam-
ple: a — U-quadratic distribution, b — arcsine distribution,
¢ — V-shaped distribution, d — symmetrical Kumaraswamy distribution

A general analysis of the results of comparing differ-
ent estimation methods with the PMM shows its high ef-
ficiency. It is demonstrated by the fact that the PMM has
an average 3-5 times higher accuracy of estimates than
classical methods, as shown in Figure 2. This is also true
for small (20 values) sample volumes, which is important
for limited experiments, although the smallest reduction
in the variance of the estimate in such cases is observed
compared to the method of quantile estimates. As for the
median estimate, the PMM has the greatest advantage
over it in terms of accuracy for models with a gentler
curve.

As the sample volume increases, the coefficient of
variance reduction tends to its theoretical value, as it
should be, which is confirmed by the results of statistical
modeling. This trend can be observed both in the numeri-
cal results (Table 3) and in the graphical interpretation
(Figure 2), which shows a comparison of the experimental
value and the theoretical one. Although the coefficient of
variance reduction increases with decreasing non-
Gaussianity of the experimental data (the advantage in
accuracy decreases), the advantage of polynomial esti-
mates remains significant.

CONCLUSIONS

The research conducted in this paper confirms the po-
tentially high efficiency of the polynomial maximization
method in determining estimates of the coordinates of the
center of distribution of experimental data that are ade-
quately described by models of probability distributions
with a negative kurtosis. An important and essential fea-
ture of this approach is the fact that it does not require any
prior information about the type and parameters of the
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distributions. However, for the purpose of demonstration,
the necessary well-known models were used, which are
adequate to the task at hand. The paper shows that the
algorithm for finding the PMM estimates of an informa-
tive parameter using the polynomial order r=3 can be
reduced to solving a cubic equation. For this purpose,
both explicit and numerical methods can be used. The
coefficients of this equation are obtained from the calcula-
tion of a posteriori estimates of the initial moments up to
the 6-th order of the stochastic component of the experi-
mental data.

The basis for finding the coefficient of variance reduc-
tion in this paper is the concept of the amount of informa-
tion extracted, which is identical to Fisher's information
for the Maximum Likelihood Estimation. However, the
amount of information extracted was calculated based on
sample statistical characteristics, such as moments and
cumulants. The result is an analytical expression that, for
each model distribution, when substituting the numerical
values of the interval on which it is defined, gives a num-
ber in the final case.

Statistical modeling has confirmed the effectiveness of
the PMM estimates compared to known nonparametric
estimates based on the mean, median, and quantile statis-
tics, even with small sample sizes. The simulation results
show that the accuracy of the proposed approach is some-
times significantly (more than 3 times) higher than classi-
cal nonparametric estimates.
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MOJITHOMIAJIBHE OI[THIOBAHHSI TAPAMETPIB MOJIEJIEN TAHUX 3 BII’€EMHUM KOE®IIIEHTOM
EKCHECY

Yenunora B. B. — acmipant xadeapn KOMIT IOTEpHHX HayK Ta CHCTEMHOTO aHAizy, UepkachbKkuil Nep>KaBHUH TEXHOJOTIUHHUHA
yHiBepcutet, Yepkacu, Ykpaina.

Yenunora A. B. — xaHz. TexH. HayK, HOLEHT, AeKaH (akyiapTeTy iHGOpMaNifHUX TEXHOJIOTIH Ta cucteM, Uepkacbkuil nepxas-
HUH TEXHOJIOTIYHMH yHiBepcuteT, Uepkacu, Ykpaina.

IManarin B. B. — 1-p TexH. Hayk, npodecop, 3aBigyBau kageapu poOOTOTEXHIYHUX 1 TEIIEKOMYHIKAL[IHHUX CHCTEM Ta KibepOes-
nexu, Yepkacbkuil nep)kaBHUN TeXHOJIOTYHMI yHiBepcuTeT, Uepkacu, YkpaiHa.

AHOTAIIA
AKTyansHicTb. B po6oTi po3risiHyTO 3a1a4y OLHIOBAaHHS LEHTPY PO3MOAULY BHIIAJKOBOI CKJIAJOBOI €KCIIEPUMEHTAIbHUX Jla-
HHX JUIsI MOZIENeH IiNBHOCTI 3 BiZl’eMHUM Koe(illieHTOM eKciecy.
Meta. MeToto poOOTH € OTPUMaHHS METOJIB MiIBUILECHHI €(PEKTUBHOCTI IMOJIHOMIaIFHOTO OLIHIOBaHHS MapaMeTpiB eKcIepu-
MEHTAIBbHUX JaHHX 3 Bill’€MHHM KOe(iIliEHTOM eKcIecy.
Metoa. B nocmimkenHi 3acTOCOBaHO BIIHOCHO HOBHUI MiJXiJA VIS OTPUMAHHS OLIHOK LIEHTPY PO3MOALTY IMOBIPHOCTI 3 pe3yJib-
TaTiB €KCIIEPUMEHTAIBHHX JaHUX, IO MAIOTh CTOXAaCTHYHY CKiIamoBy. Lleit minxix 3acHOBaHO Ha MOJIHOMIaJIbBHUX METOJax OLIHIO-
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BaHHsI, KOTPi CIUPAIOTHCS HA MATEMAaTHYHHUI amapar CTOXaCTUYHUX HosiiHOMiB KyHueHka Ta OIiC BHUIAKOBUX BEJMYUH CTATHCTH-
KaMH BUILHX HOPSIKIB (MOMEHTaMH M KyMyJIssHTaMu). B sikocTi Moesteit BiagKoBoi CKIajoBoi B poOOTi BUKOPHCTAHO Psijl PO3MHO-
JIUTIB IIJIBHOCTI IMOBIPHOCTI 3 BiJi’€MHUM KOCQIIliEHTOM EKCIecy.

B sikocTi Mipy epeKTHBHOCTI OL[IHOK 0yJI0 BUKOPUCTAHO BiJAHOIICHHS JUCHEPCii OL[IHKK LEHTPY PO3MOiNy, 3HalICHOT 3 BUKOPH-
CTaHHSIM IOJTIHOMIaJbHHUX Ta KJIACHYHUX METO/IB, BUXOASYH i3 mapaMeTpa KUIbKOCTi 100y Tol iHpopmarii.

Jocnimkeno, i3 3actocyBaHHsIM MeToxy Monte-Kapno mns 6araTtopa3oBux BHNPOOYBaHb, BiIHOCHY TOYHICTH MOJIHOMIabHHAX
OIIHOK Y TIOPiBHSHHI 3 OI[IHKAMHU CEPEIHBOTO, ME/IiaH! Ta KBAaHTWJIFHHUX OIIIHOK (LIEHTPY MEPETHHY).

PesyabsTaTtn. [ToGynoBaHo moiiHOMiaNbHI METOAW OILIHIOBAHHS IapaMeTpa LEHTPY PO3MOIULY Ul MOAENeH NaHWX HIITBHOCTI
PpO3MoaLTy IMOBIPHOCTI 3 BiJi’€MHAM KOCQIIIIEHTOM EKCIecy.

BucnoBku. J{ocnimkenns, mo OyiM MpoBeAeH] B AaHild poOOTi, MiATBEpKYIOTh HOTEHIIHHO BUCOKY €(eKTHBHICTh IOJIIHOMIa-
JIBHUX OL[IHOK KOOPAMHATH LICHTPY €KCIICPUMEHTAIBLHUX JaHHX, [0 aJCKBATHO OMUCYIOTHCS MOJCIBHIMHE PO3IIOIIIAMHE 3 BiJl’EMHUM
koeiriearom ekciecy. CTaTUCTUYHE MOJCIIOBAHHS MiATBEPAMIO €(EKTUBHICTH OTPHUMAHMX OLIHOK B IOPIBHSHHI i3 BiJOMHMH
HerapaMeTPUYHUMH OLIIHKAMH{, HA OCHOBI CTaTHCTHK CEPEIHBOTrO, MEIiaHH | KBAHTHIBGHOI OLIHKH, MPUYOMY HABIiTh MPU MAIIUX
00’emMax BHOIPKH.

KJIFOYOBI CJIOBA: Bubipka gaHHX, OLIHIOBAHHS, CTOXaCTUYHHI TONIHOM, KyMYJISIHTH, BiZl’€MHUI eKcIiec.
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