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ABSTRACT

Context. Solving hydrodynamic problems is associated with high computational complexity and therefore requires considerable
computing resources and time. The proposed approach makes it possible to significantly reduce the time for solving such problems
by applying a combination of two improved modeling methods.

Objective. The goal is to create a comprehensive hydrodynamic modeling method that requires significantly less time to deter-
mine the dynamics of the velocity field by using the modified lattice Boltzmann method and the pressure distribution by using a con-
volutional neural network.

Method. A method of hydrodynamic modeling is proposed, which realizes the synergistic effect arising from the combination of
the improved lattice Boltzmann method and a convolutional neural network with a specially adapted structure. The essence of the
method consists of implementing a sequence of iterations, each of which simulates the process of changing parameters when moving
to the next time layer. Each iteration includes a predictor step and a corrector step. At the predictor step, the lattice Boltzmann
method works, which allows us to obtain the field of fluid velocities in the working area at the next time layer using the field of ve-
locities at the previous layer. At the corrector step, we apply an improved convolutional neural network trained on a previously cre-
ated data set. Using a neural network allows us to determine the pressure distribution on a new time layer with a predetermined accu-
racy. After adding the fluid compressibility correction on the new time layer, we get a refined value of the velocity field, which can
be used as initial data for applying the lattice Boltzmann method at the next iteration. Calculations stop when the specified number of
iterations is reached.

Results. The operation of the proposed method was studied on the example of modeling fluid movement in a fragment of the
human gastrointestinal tract. The simulation results showed that the time spent implementing the simulation process was reduced by
6-7 times while maintaining acceptable accuracy for practical tasks.

Conclusions. The proposed hydrodynamic modeling method with a convolutional neural network and the lattice Boltzmann
method significantly reduces the time and computing resources required to implement the modeling process in areas with complex
geometry. Further development of this method will make it possible to implement real-time hydrodynamic modeling in three-
dimensional domains.

KEYWORDS: hydrodynamic modeling, convolutional neural network, lattice Boltzmann method.

ABBREVIATIONS u is a dynamic viscosity;
LBM is a lattice Boltzmann method;
CNN is a convolutional neural network;
BGK is a Bhatnagar-Gross-Krook model.

I is an identity tensor.

INTRODUCTION
The rapid growth in the popularity of artificial neural
networks, methods of analyzing large volumes of data,

. . N and other alternative approaches has led to the discovery
X is a vector that specifies the position of the elemen-  of several breakthrough technologies. In particular, sig-

NOMENCLATURE
f 1is a distribution function;

tary volume of liquid in space; nificant progress is observed in studying complex physi-
k is a discretization index of the kinematic velocity; cal processes that can be mathematically described by
vy is a kinematic velocity vector; boundary value problems based on differential equations

with partial derivatives. In the paper, we will consider
applying this approach to determining the hydrodynamic
parameters of liquids. The traditional way of modeling the
f 0 is an equilibrium distribution function; corresponding physical process is the numerical solution
n is a kinematic viscosity; of the boundary value problem, which includes the flow
continuity equation and the Navier-Stokes equation. In the
practical implementation of this approach, in the case of a
modeling area with a complex shape, some difficulties
always arise, which are manifested due to the problems of
achieving convergence of the corresponding numerical
method, which is inextricably linked with the need to use

w, is weight factor for equilibrium function;
t is a parameter that specifies a point in time;

T is a time of relaxation;
AX is a grid spacing;

At is a time step;

C is a speed in the grid;

T is a viscous stress tensor;

® is the Kronecker product; significant computing resources to ensure obtaining re-
¢ is a body forces; sults with high accuracy. However, the high accuracy of
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the results could be more accurate in many cases due to
the impossibility of accurately determining the initial data
for solving this or that boundary value problem. A natural
approach to solving this problem is developing a toolkit to
solve the given situation with some predetermined ap-
proximation.

The object of study is the process of modeling the
physical phenomenon of the movement of liquids in ob-
jects with complex geometry under the influence of exter-
nal forces.

The subject of the study The subject of the study is a
modeling method that uses the synergistic effect of the
joint use of the improved lattice Boltzmann method and
the application of a convolutional neural network with a
special structure.

The purpose of the work The purpose of the work is
to shorten the time of modeling changes in fluid move-
ment parameters and increase the accuracy of parameter
determination by correcting the deviation from com-
pressibility.

1 PROBLEM STATEMENT

In the general case, modeling of fluid movement is
performed by solving a boundary value problem based on
the Navier-Stokes equation. For this purpose, the discreti-
zation of the equation and domain is used to apply the
appropriate numerical methods. The main problem that
arises on this path is ensuring the convergence of numeri-
cal methods in the case of studying an area with complex
geometry and the significant computational complexity of
the corresponding algorithms, which leads to a consider-
able expenditure of time and computing resources.

An alternative approach is to use the lattice Boltzmann
method. This method describes the movement of the lig-
uid at the mesoscopic level through the interaction of the
elementary volumes of the liquid, which is represented by
the Boltzmann equation:

e
UYL ek ()
ot OX T

The right-hand side of this equation describes the col-
lision process of elementary volumes. This work uses the
so-called BGK model, which is often applied to liquids
moving at a speed that does not exceed the Mach number
for the given liquid. The disadvantage of this approach is
the accumulation of errors when determining the hydro-
dynamic parameters due to density fluctuations.

To overcome the abovementioned shortcoming, we
offer a method of specifying the fluid pressure on each
time layer.

2 REVIEW OF THE LITERATURE
Applying the lattice Boltzmann method makes it pos-
sible to describe the dynamics of the velocity field by
colliding elementary volumes of liquid at the mesoscopic
level. The history of publications on LBM already dates
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back several decades[1]. Many practical applications with
a severe theoretical basis were implemented [2]. The
popularity of this method is due to a large number of ad-
vantages, which include relatively low computational
complexity [3], the possibility of studying areas with
complex geometry [4], and the possibility of parallelizing
computational processes [5].

A significant drawback of this method is the increase
in the error in determining the parameters of the velocity
field with an increase in the number of iterations. This
shortcoming does not allow modeling complex physical
processes with a given accuracy on long time intervals,
which are essential for describing operations in living
nature.

A neural network is proposed as a tool to overcome
this drawback.

The main advantages of using methods based on neu-
ral networks:

1. A neural network provides an analytically presented
solution that can be applied repeatedly after preliminary
training.

2. Methods based on neural networks can be applied
to a broad class of differential equations.

3. These methods include a smaller set of parameters
and therefore require fewer resources for implementation.

4. Have mechanisms for regulating the level of gener-
alization of the solution.

Today, a relatively large number of varieties of artifi-
cial neural networks are known. Most of them correspond
to already well-developed methods of solving differential
equations. Historically, an approach focused on deep neu-
ral networks was one of the first to be proposed [7]. The
application of a deep neural network with extended learn-
ing based on the backpropagation algorithm is also of-
fered in [8]. The mentioned methods can be used to solve
both ordinary differential equations and differential equa-
tions with partial derivatives. They can be used to explore
two-dimensional and three-dimensional areas. The disad-
vantage of the methods is the high labor intensity at the
neural network learning stage.

Reducing the complexity can be achieved by modify-
ing the structure of the neural network by adding radial
basis functions (RBF) and other facilities to the deep neu-
ral network [8]. For example, [9] describes a method that
combines a deep neural network with an evolutionary
algorithm. The paper shows that the proposed structure
can approximate arbitrary functions and their derivatives.

The paper [10] proposed a combination of an artifi-
cial neural network with the Karhunen-Loev decomposi-
tion [11], which is focused on modeling the solution of
the two-dimensional Navier-Stokes equation.

Cellular neural networks [10, 11], an analog comput-
ing paradigm, are considered alternative structures for
implementing differential equation-solving processes.
This concept of analog computing is used to solve com-
plex nonlinear differential equations. This method is
based on the Taylor series expansion.

The modern approach to solving partial differential
equations is based on convolutional neural networks
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(CNN). Compared to deep neural networks, we get a sig-
nificantly shorter training time and higher accuracy of
solution modeling [12]. At the same time, the main sig-
nificant advantage of using CNN is the possibility of us-
ing complex boundary conditions since the geometry of
the area can be included in the learning process.

In this work, the use of a convolutional neural net-
work is proposed. The structure of the network and the
method are adapted to solving boundary value problems
based on the two-dimensional Poisson equation, which is
an essential component of the complex way that models
the process of movement of an incompressible fluid.

3 MATERIALS AND METHODS

The way of modeling the movement of fluids aims
to determine the distribution of pressure and the velocity
field in a given area and changes in these parameters over
time. The proposed complex method is represented by a
cyclically repeated sequence of iterations, each containing
two steps: a predictor step and a corrector step. Fig. 1
shows the general algorithm of this method, in which the
functions of the predictor are concentrated in block 2, and
the corrector’s functions are implemented by blocks 4 and

5.
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Figure 1 — Algorithm for implementing the complex method

Block 1. Within the framework of this block, the study
area is discretized, and the initial data set is formed,
which contains the parameters of the velocity field vectors
specified in the discretization nodes. Block 2 uses the
generated set as initial data to implement the lattice
Boltzmann method. The lattice Boltzmann method is used

to model the evolution of the parameters of the initial
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velocity field. Using the value of the velocity field for the
time layer to perform one iteration within the framework
of this model, we get an updated velocity field on the time
layer. We determine the fluid pressure in the discretiza-
tion nodes on the updated time layer with the value
formed in block 3. The pressure distribution is calculated
by a previously trained convolutional neural network,
represented by block 4. Using the refined pressure value
on the time layer in block 5, we determine the corrected
velocity field on this time layer. If the current time layer
is smaller than the maximum specified time layer, we use
the refined velocity field as initial data for the lattice
Boltzmann method.

This method is based on the use of the physical model
of the Boltzmann equation, which corresponds to the be-
havior of the liquid flow at the macroscopic level [13]. To
apply the Boltzmann equation, it is necessary to consider
the fluid flow as a set of elementary volumes. Then the
Boltzmann equation describes the evolution of one ele-
mentary volume in the form of a distribution function,
where is the vector that specifies the position of the ele-
mentary volume of liquid in space, is the velocity vector
of the elementary volume, and is the parameter that speci-
fies the moment of time. In its general form, the Boltz-
mann equation can be represented by the expression (1).

We discretize the space of velocities at the mesoscopic
level by applying a two-dimensional grid using nine
bounce directions of elementary volumes, as shown in
Fig. 2.
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Figure 2 — Discretization of the domain and velocity field

Such a discretization scheme is called D2Q9. It pro-
vides sufficient modeling accuracy and is recommended,
for example, in [16] for a similar class of problems. If we
set AX=AX, =AX, =1, and the coordinates of the initial

node (0,0) , then the coordinates of 9 vectors can be writ-

ten as follows:

Vo =(00). v =(10), v, =(-10),
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v; =(01), v, =(0-1), vs=(L1),
Ve =(=11), v, =(=1,-1), vg = (1,-1).

For the region discretized in this way, we set the dis-
cretized Boltzmann equation:

€q
Ay T k=B @
ot OX T

The right-hand side of this equation describes the col-
lision process of elementary volumes. This work uses the
BGK model, which is often applied to liquids moving at a
speed that does not exceed the Mach number for the given
liquid.

Calculating the macroscopic parameters of speed and
pressure for a liquid can be calculated as the result of the
sequential execution of two steps for each of the discreti-
zation vectors V, . In the first step, we will form a discrete

kinetic equation for the distribution function of f :

bt A= f (o) - L)- 18900] @)
T

n
2
Cs

1 . . .
where tT= +E, At =1.This equation determines the

value of each distribution function at the domain discreti-
zation node after colliding the elementary fluid volumes
at the corresponding node.

The second step determines the redistribution of the
values of the distribution functions on the new time layer:

fi (X + VAL t+At) = f, (x,t+At). 4)

After determining the distribution functions at the
given time level, we calculate the density and velocity of
the fluid in the given discretization node using the formu-
las:

1
p= Zi:o fi,u :EZi:O fivic - ®)

Equation (3) also includes the equilibrium distribution
function f2(x,t). We determine this function based on

the calculations presented in [17]:

e =pwk(1+cizvku +%(vku)2 —iuzj. (6)

where C=—7,Wy=—

1
Wy = Wo =Wy =Wy =
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Based on [18], we can claim that the method remains
stable under t>0.5. But practical applications of the
technique have shown that instability can also occur when
tau goes to 0.5. Avoiding a significant growth of the lat-
tice velocity helps maintain the method’s stability. In the

framework ¢, = % the value of pressure is p = pCs2 for
the ideal gas. To calculate the pressure in a region filled
with a moving incompressible fluid, we must solve a
boundary value problem based on the Poisson equation.

Block 4 of the complex method implementation algo-
rithm (Fig. 1) includes solving the Poisson equation sepa-
rately on each time layer to refine the pressure distribu-
tion in the liquid. We use the previously obtained velocity
field on this time layer to do this. The transition to the
next time layer at low values of the Mach number is per-
formed using the lattice Boltzmann method, which allows
us to simulate the change in the velocity field. Since the
lattice Boltzmann method, when modeling the parameters
of an incompressible fluid, can allow certain density fluc-
tuations that affect the accuracy of determining the veloc-
ity field, we must consider these errors when creating the
corresponding Poisson equation.

We modify the design scheme proposed in [19] to do
this. This scheme consists of three steps. In the first step,
the velocity field values are calculated using an explicit
iterative scheme, which is based on a discrete representa-
tion of the convective and diffuse parts of the momentum
equation. In the second step, the resulting velocity field is
corrected by the pressure gradient determined after solv-
ing the Poisson equation for pressure. The third step is a
correction step that ensures the convergence of the itera-
tive determination of the velocity field in the first step.

The main difference of the approach proposed in this
paper is that the determination of the velocity field in the
next time layer occurs by using the modified lattice
Boltzmann method, which is based on the strictly proven
fact that at small values of the Mach number, we obtain a
result that coincides with the solution in terms of the
boundary value problem:

%w.(pu):o,

(7
8Lu+V~(u ®u):ﬂ+lv-(%)+(p.
at PP

The viscous stress tensor for a compressible Newto-
nian fluid can be determined through the fluid velocity
field as:

- 2{@ _%(Vu)l_} ®)

For a small Mach number when moving to an incom-
pressible boundary value problem, the value of the term
can be simplified as follows [20]:

1y. (t)=vAu. )
p
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To determine the pressure distribution on the new time
layer, we define the Poisson equation for pressure [20]:

V{EVpJ:Vu*,
p

(10)

where AX; =AX, =AX, At=1 are steps in spatial and
temporal coordinates.

Modeling the solution of equation (10) takes place in
two stages. The first step is to create a dataset for further
use of the convolutional neural network.

We discretize the left and right parts of equation (10).
For the left side of equation (10), we get:

V[lej _ Pioy,j _2pi,2j *tPisj
p AX{

LR =2pij+ Pij+
Ax3

Due to the fact that we neglect the compressibility of
the investigated fluids, we can apply a linear discretiza-
tion of the right-hand side of equation (10) using the cen-
tral difference. Then:

O[O ) _((Dierj—Gij
ot oOx 2A%

The resulting system of linear algebraic equations is
solved using the iterative Jacobi method [13].

2 2

v (ol g+ ol g o + (ol + o Jax
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:Z(pin—l,j + Pl + Pt + PR jo1 — AX Si,j)

Uijrt —Oijo1 ) _o
2AXy b

The obtained pressure distribution is considered and
used as an object of the training data set. Training of a
convolutional neural network takes place on the training
data set formed in this way to solve this type of problem
effectively. All problems of obtaining the pressure distri-
bution on each time layer when solving applied problems
will be solved in the future with the help of a convolu-
tional network in a significantly shorter time.

After obtaining the values of the pressure field, we ad-
just the values of the velocity field:

0 1 [ Pis,j = Pienj + Pisj+1 B -1
pi,j 2AX '
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Thus, we get the velocity field on the new time layer.
We use these data as initial data when applying the
Boltzmann lattice model. This process is repeated if the
simulation process continues in time.

Let us briefly consider the development of the men-
tioned convolutional network and the results of its appli-
cation.

Based on the previous work [21], a convolutional neu-
ral network was developed to model the solution of the
boundary value problem based on the Poisson equation.
Some changes were made to adapt the basic structure of
the neural network to the actual problem. The general
structure of the developed neural network is shown in
Fig. 3.

First, the size of the input data was increased — from
96%96 to 128x128, which made it possible to simulate the
movement of liquids with greater accuracy. The “bottom-
up pathway” and “top-down pathway” parts of the net-
work were also expanded by adding additional convolu-
tional layer blocks. Also, the “output conv” block was
extended by increasing the convolutional layers from 2 to
4. Each layer now receives an additional input tensor
“rho_input” of size 128x128 that contains the density
value.

The output of the model is a two-dimensional array of
size 128x128. The values of the previously generated
solutions were normalized to a distribution with a mean
value of 0 and a standard deviation of 1 to ensure the
stability of the learning of the convolutional network. The
process of obtaining the solution of the Poisson equation
in physical units of measurement is as follows: the value
of the output array of the neural network is inversely
normalized, and thus the original distribution of the train-
ing data is restored.

To create a training dataset that will ensure the accu-
racy and efficiency of the neural network, 18 space ge-
ometries were prepared. They were used to simulate the
movement of liquids using the LBM method. The nu-
merical solution of equation (12) was used to calculate the
values of the pressure field. Different random values of
the initial fluid velocity, density, and relaxation time were
used in the simulation of each geometry to ensure the
variability of the dataset. In this case, the neural network
features are the values of free members and density, and
the target variable is the pressure value. In this way, a
training dataset consisting of 75,000 objects was formed.
A test dataset of 10,000 objects was created in the same
way.

To implement the developed neural network, we used
the following software: Python programming language,
TensorFlow 2.4.1 machine learning framework. The
Adam optimizer [22] was used to optimize the parameters
of the neural network. The values of the optimizer pa-
rameters were as follows: learning_rate=0.0005, beta_1 =
0.95, beta_2 = 0.99, epsilon = le—7. Each of the parame-
ters performs the following function: learning_rate is a
parameter in the optimization algorithm that determines
the step size of updating the coefficients of the neural
network at each learning iteration; beta 1 is the forgetting
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coefficient for the gradient; beta 2 is the forgetting factor
for the second moment of the gradient; epsilon is a small
constant introduced to ensure optimization stability. The
average absolute error represents the loss function for this
model. An MSI GeForce GTX 1660 Super Ventus OC

Bottom-Up Pathway

6GB GDDR6 GPU was used to train the neural network
for 300 epochs. The value of the average absolute error on
the test data set was 0.001021.

Top-Down Pathway

residual_4 pling_2d
| 9
residual_3 pling_2d
| e
residual_2 up_sampling_2d
| 9
residual_1 up_sampling_2d
| 9
pre_conv
h
dist_input
f_input -np
Figure 3 — The general structure of a convolutional neural network
4 EXPERIMENTS

To test the developed method, we used the model of
the section of the human colon, which is shown in Fig. 4.

Black color indicates the working area, white color in-
dicates the bounding surface.

The working area was discretized by a 128x128 grid.
The parameters of the method are as follows: 1=0.5012,
p=1000. The boundary condition of fluid inflow from

the right boundary was applied, equal to

. (Zntj
sin| ——
T

In the experiment, modeling was carried out using two
methods: LBM and the LBM method with velocity field
correction. The velocity field was measured at simulation
iterations 300 and 900. The simulation results are shown
in Fig. 5 and 6.

Vo =0.01x ,where T =110.
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Figure 4 — Model of the section of the human colon
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Figure 5 — Distribution of the velocity field at the 300th iteration. On the left is the LBM method, on the right is the proposed
method with speed correction
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Figure 6 — Distribution of the velocity field at the 900th iteration. On the left is the LBM method, on the right is the proposed method
with speed correction

Fig. 7 shows the results of measurements of the devia-
tion of the average density values and from the initial
density value in the computational domain after 1500
iterations.

When modeling with the developed method, the den-
sity values deviate less from the initial density value than
the usual LBM method. Therefore, the obtained results
indicate higher stability when modeling fluid movement
using the combined method.

The computational speed of the developed method
was measured in comparison with other methods. Three
methods were used for comparison. The first method is
the conventional LBM method without rate correction
described in equation (14), the second method is the pro-
posed rate-corrected LBM method using a convolutional
neural network to solve equation (13), the third method is
a velocity-corrected LBM method that uses the AMG
numerical method [23] to solve equation (13). The com-
parative results of the experiments are shown in Table 1.

© Novotarskyi M. A., Kuzmych V. A., 2023
DOI 10.15588/1607-3274-2023-4-6

64

Table 1 — Comparison of modeling methods

Modeling method Time of one iteration, sec
LBM 0.00301

LBM-+ neural network 0.06087

LBM+ numerical method 0.54123

— LBM
—— LBM+CNN

density deviation, %

500 1000

iterations

Figure 7 — The average value of the deviation of the density
during the simulation
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The experimental results show that the simulation
speed of one iteration of the developed method is 6-7
times faster than the speed of the method that uses the
numerical solution of the Poisson equation. Also, in com-
parison with the usual LBM method, the condition of
fluid incompressibility is preserved.

5 RESULTS

The main result is that a new method of modeling
two-dimensional hydrodynamic processes is proposed,
which is characterized by increased accuracy and lower
resource consumption compared to known methods. The
sequence of actions for implementing the method is repre-
sented by the algorithm shown in Fig 1. The positive ef-
fect is achieved by combining the modified lattice Boltz-
mann method to determine the velocity field at the next
time step. At each time step, we simulate the solution of
the Poisson equation using a convolutional neural net-
work to determine the pressure distribution. The obtained
results make it possible to correct the deviation of the
density to increase the simulation’s accuracy. A parallel
numerical method was used to reduce the time of prepar-
ing a dataset for neural network training. To practically
confirm this approach’s effectiveness, modeling the
physical process of fluid movement in a fragment of the
digestive tract was performed. All technical parameters of
this experiment are given in this paper. Studies have
shown that the simulation speed of one iteration of the
developed method is 67 times faster than the speed of
the method that uses the numerical solution of the Poisson
equation. The value of the average absolute error on the
set of test data is 0.001021.

6 DISCUSSION

The traditional approach to modeling hydrodynamic
processes is based on solving a boundary value problem,
which includes the Navier-Stokes equation and the flow
continuity equation. This problem can be solved by one of
the numerical methods, which causes significant difficulties
in the case of the complex geometry of the surface area and
requires significant resources since it is necessary to use
excessive accuracy to ensure the convergence of the nu-
merical method.

When modeling the movement of liquids in living na-
ture, it is essential to get an estimate of the dynamics of the
process in a short time with relatively low accuracy. There-
fore, LBM is more often used for such tasks. This method
allows us to get the desired solution in a significantly
shorter time, but several disadvantages characterize it. One
of the critical disadvantages is that this method is funda-
mentally oriented towards compressible liquids, and the
dynamics of density change are challenging to control. An-
other significant drawback is the considerable laborious-
ness of the correct definition of the boundary conditions,
given the complex geometry of the area.

Another approach to solving this problem includes us-
ing a predictor-corrector method. The predictor applies an
explicit iterative scheme to determine the velocity field at
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the next time layer, and the corrector refines the value of
the velocity field using the pressure distribution.

This work is devoted to developing this approach by
improving both the predictor and corrector stages. To im-
prove the accuracy of the simulation, a modified LBM is
used in the predictor stage, and a pre-trained convolutional
neural network is applied in the corrector stage to solve the
Poisson equation. Combining these two approaches made it
possible to improve the speed and accuracy of modeling in
aregion with complex geometry.

Further development of this approach consists of apply-
ing reinforcement learning mechanisms at the corrector
stage, which will improve the accuracy of the obtained
modeling results with significant changes in the geometry
of the area without spending time retraining the convolu-
tional network.

After certain refinements, the proposed method can be
used to study hydrodynamic parameters in three-
dimensional domains.

CONCLUSIONS

The urgent problem of developing a software system
for mathematical modeling of the movement of liquids in
areas with complex geometry, which is characteristic of
living organisms, is being solved.

The scientific novelty of the obtained results lies in
the fact that, for the first time, a method for modeling the
movement of fluids in living organisms has been pro-
posed, which reduces the modeling time and increases its
accuracy compared to known approaches due to the syn-
ergistic effect obtained by improving the modeling pa-
rameters at each step of the iterative process, which in-
cludes a predictor stage and a corrector stage. The predic-
tor stage implements a modified LBM in which a modi-
fied equilibrium distribution function is applied, which
increases the accuracy of determining the distribution
function in one iteration step by the BGK model. The
LBM implementation time is reduced by parallelizing the
calculation of discrete values of the distribution function
during the collision of elementary liquid volumes at the
mesoscopic level. The corrector stage realizes a reduction
in modeling time due to the use of a previously trained
convolutional network, the structure of which is adapted
to the solution of a specific problem.

The practical significance of the obtained results is
that a software system has been developed for simulating
the movement of liquids in areas of complex shape, sig-
nificantly reducing the simulation time and using comput-
ing resources, provided that the obtained results are of
acceptable accuracy. Experiments were conducted using
different workloads of the developed software simulation
system. The obtained results made it possible to recom-
mend using this software system when studying the
movement of fluids in living nature, particularly when
studying the digestive and cardiovascular systems of liv-
ing organisms.

Prospects for further research consist in expanding the
possibilities of this method for its application to three-
dimensional areas of complex shape. Another direction
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for improving this method is using reinforcement learning
mechanisms to reduce the time it takes to reconfigure a
convolutional neural network for an expanded range of
tasks.
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YK 004.942:001.57
METO/I TIIPOJAHAMIYHOI'O MOJEJTIOBAHHS 3 BAKOPUCTAHHAM 3BEPTKOBOI HEWPOHHOI MEPEXI

HoBorapcebkuii M. A. — 1-p TexH. Hayk, npodecop kadeapu obUncIOBaIbHOI TeXHiKM HalioHalIbHOTO TeXHIYHOTO YHiBEpCH-
Tety Ykpainu «KuiBchkuii momiTexHiuHuit iHCTUTYT iMeHi Irops CikopchKorom.

Ky3bpmuu B. A. — acmipasT kadenpu obuncmoBanpHOl TexHIKH HamioHanpHOTo TeXHIYHOTO yHiBepcuTeTy YKpainu «KuiBchKuid
MIOTITEXHIYHUH IHCTHTYT iMeHi Iropst CikopcbKoroy.

AHOTAIIA

AKTyanbHicTh. P0o3B’s13yBaHHs TiipolMHAMIYHUX 3aJ]ia4 OB’ s3aHE 3 BUCOKOIO OOUYMCITIOBAIBHOIO CKIJIAQIHICTIO i TOMY BUMarae
3HaYHUX OOUHMCIIIOBAIBHUX PECypCiB i yacy. 3anpornoHOBaHMIl MiXiA 103BOJISE CYTTEBO CKOPOTUTH Yac PO3B’A3yBaHHS TAKUX 3a1ad
LISIXOM 3aCTOCYBaHHS KOMOIHAIIii IBOX BIOCKOHAIICHUX METO/IiB MO/ICIIOBAHHSI.

Meta. MeToI0 € CTBOPEHHSI KOMIUIEKCHOTO METOAY TiZPOJMHAMIYHOTO MOJICTIOBAHHS, KM BUMarae 3Ha4HO MEHILE Yacy Ul
BHU3HAYEHHS JUHAMIKH TIOJIS MIBUAKOCTEH 32 PaXyHOK BUKOPHCTaHHS MOAM(IKOBAHOTO pemIiTyacToro MeToay bompimana i po3nomi-
JIy THCKY 33 PaXyHOK BUKOPHCTaHHS 3TOPTKOBOI HEHPOHHOI MEpexi.

MeToa. 3anpornoHOBaHO METO] TiIPOANHAMIYHOTO MOJICIIOBAHHS, SKUH pealli3ye CHHepreTHYHHI e(eKT, 0 BUHUKAE TPH II0-
€/IHaHHI BJIOCKOHAJIEHOTO PEIIiTYacTOro Metoy bosibiiMana Ta 3ropTKoBOT HEHPOHHOI MEpEeXi 3 CIeLialbHO aJalTOBAHOIO CTPYKTY-
poro. CyTh MeTOIy MOJISirae y peaiizailii MOCTiIOBHOCTI iTepailiii, Ha KOXKHIH 3 SIKHX BiJ0OYBa€ThCS MOJCITIOBAHHS MPOIECY 3MiHU
napaMeTpiB IpH Mepexoi Ha HacTynHuil yacoBuil map. KoxkHa itepariisi BKIIOYae KPOK MPEIUKTOpa Ta KPoK Kopekropa. Ha kpori
MPeMKTOpa Mpamkoe peliTyacTuii Meton bosbliMana, sSKUii 103BOJISIE OTPUMATH IM0JI€ MIBHIAKOCTEH piavHU B poOodiii 30HI Ha Ha-
CTYIIHOMY 4acOBOMY ILIapi 3a JOMOMOTO0 IOJIS IIBMAKOCTEIl Ha MornepeHpoMy mapi. Ha Kpori KopekTopa MU 3aCTOCOBYEMO BJOC-
KOHaJIeHy 3rOpTKOBY HEHPOHHY MEpEKy, HaBUCHY Ha paHillle CTBOPEHOMY Habopi 1aHuX. BukopucTaHHS HEHPOHHOI Mepexki J03BO-
JIsi€ BU3HAUUTH PO3MOALT THCKY Ha HOBOMY YacOBOMY IIapi i3 3a/taHoro TouHicTIo. Ilicis mogaBaHHs ITONPaBKY HA CTHCIUBICTD PitH-
HHM Ha HOBOMY YacOBOMY LIapi MH OTPUMY€EMO YTOYHEHI 3HAUCHHS IOJIS LIBUIKOCTEH, SKi MOXKHA BUKOPHCTOBYBATH SIK ITOYATKOBI
JIaHi JJs1 3aCTOCYBaHHS PEIITYacTOro MeToay bosblMaHa Ha HAcTymHid iteparii. OOYHCICHHS NPUIHHSAIOTHCS TPH JOCATHEHHI
3a7aHol KITbKOCTI iTepamii.

Pe3yabTaTn. PoGOTY 3ampornoHoBaHOr0 METOLY AOCTIKEHO Ha MPHUKJIAZl MOJCIIOBAHHS PyXY PIIMHH y (parMeHTi HITyHKOBO-
KHUIIKOBOIO TPAKTY JIIOMMHH. Pe3ynbTaTH MOZIENIOBAHHS IIOKA3aliM, IO 4ac, BUTPAUCHHH Ha pealli3alliio MpoLecy MOJEIIOBaHH!,
CKOpOTHBCS y 6—7 pa3iB mpH 30epekeHH] MPUHHATHOIL AT MPaKTUYHUX 3aBJaHb TOYHOCTI.

BucHoBKH. 3anpoIIOHOBaHUI METOJ| TiAPOAMHAMIYHOTO MOJEITIOBAHHS 31 3rOPTKOBOIO HEHPOHHOIO MEPEXKEI0 Ta PELIiTYaCTUM
MeTooM BonbiMana cyTTeBO CKOpoUye Hac Ta 0OUHCIIIOBAIBHI PEeCypCcH, HEOOXIIHI IS peaizamii mporecy MOAENIOBaHHS B o0Jac-
TSIX 31 CKJIaJHOIO reometpieto. [Tomanbimmii pO3BUTOK IIHOTO METOJY JIO3BOJHTH pealli3yBaTH TipoAnHaMiuHe MOJEIIOBAaHHS B pea-
JIBHOMY 4Yaci B TPHBHUMIPHUX 00JIacTsIX.

KJIFOYOBI CJIOBA: rizpoauHamMiuHe MOJICTIOBAHHS, 3rOPTKOBA HEHPOHHA Meperka, peliTyacTuit Meto boabiiMaHa.
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