
p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2023. № 4 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2023. № 4 

 
 

© Novotarskyi M. A., Kuzmych V. A., 2023 
DOI 10.15588/1607-3274-2023-4-6  
 

UDC 004.942:001.57 
 

THE METHOD OF HYDRODYNAMIC MODELING USING A CONVOLUTIONAL 
NEURAL NETWORK 

 
Novotarskyi M. A. – Dr. Sc., Professor of the Department of Computer Engineering, National Technical University 

of Ukraine “Ihor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine. 
Kuzmych V. A. – Post-graduate student of the Department of Computer Engineering, National Technical Univer-

sity of Ukraine “Ihor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine. 
 

ABSTRACT 
Context. Solving hydrodynamic problems is associated with high computational complexity and therefore requires considerable 

computing resources and time. The proposed approach makes it possible to significantly reduce the time for solving such problems 
by applying a combination of two improved modeling methods.  

Objective. The goal is to create a comprehensive hydrodynamic modeling method that requires significantly less time to deter-
mine the dynamics of the velocity field by using the modified lattice Boltzmann method and the pressure distribution by using a con-
volutional neural network. 

Method. A method of hydrodynamic modeling is proposed, which realizes the synergistic effect arising from the combination of 
the improved lattice Boltzmann method and a convolutional neural network with a specially adapted structure. The essence of the 
method consists of implementing a sequence of iterations, each of which simulates the process of changing parameters when moving 
to the next time layer. Each iteration includes a predictor step and a corrector step. At the predictor step, the lattice Boltzmann 
method works, which allows us to obtain the field of fluid velocities in the working area at the next time layer using the field of ve-
locities at the previous layer. At the corrector step, we apply an improved convolutional neural network trained on a previously cre-
ated data set. Using a neural network allows us to determine the pressure distribution on a new time layer with a predetermined accu-
racy. After adding the fluid compressibility correction on the new time layer, we get a refined value of the velocity field, which can 
be used as initial data for applying the lattice Boltzmann method at the next iteration. Calculations stop when the specified number of 
iterations is reached.  

Results. The operation of the proposed method was studied on the example of modeling fluid movement in a fragment of the 
human gastrointestinal tract. The simulation results showed that the time spent implementing the simulation process was reduced by 
6–7 times while maintaining acceptable accuracy for practical tasks. 

Conclusions. The proposed hydrodynamic modeling method with a convolutional neural network and the lattice Boltzmann 
method significantly reduces the time and computing resources required to implement the modeling process in areas with complex 
geometry. Further development of this method will make it possible to implement real-time hydrodynamic modeling in three-
dimensional domains. 

KEYWORDS: hydrodynamic modeling, convolutional neural network, lattice Boltzmann method. 
 

ABBREVIATIONS 
LBM is a lattice Boltzmann method; 
СNN is a convolutional neural network; 
BGK is a Bhatnagar-Gross-Krook model. 

 
NOMENCLATURE 

f  is a distribution function; 

x  is a vector that specifies the position of the elemen-
tary volume of liquid in space; 

k  is a discretization index of the kinematic velocity; 

kv  is a kinematic velocity vector; 

kw  is weight factor for equilibrium function; 

t  is a parameter that specifies a point in time; 
eqf  is an equilibrium distribution function; 

η  is a kinematic viscosity; 

τ  is a time of relaxation; 
x  is a grid spacing; 
t  is a time step; 

c  is a speed in the grid; 
τ  is a viscous stress tensor; 
  is the Kronecker product; 
 is a body forces; 

μ  is a dynamic viscosity; 

I  is an identity tensor. 
 

INTRODUCTION 
The rapid growth in the popularity of artificial neural 

networks, methods of analyzing large volumes of data, 
and other alternative approaches has led to the discovery 
of several breakthrough technologies. In particular, sig-
nificant progress is observed in studying complex physi-
cal processes that can be mathematically described by 
boundary value problems based on differential equations 
with partial derivatives. In the paper, we will consider 
applying this approach to determining the hydrodynamic 
parameters of liquids. The traditional way of modeling the 
corresponding physical process is the numerical solution 
of the boundary value problem, which includes the flow 
continuity equation and the Navier-Stokes equation. In the 
practical implementation of this approach, in the case of a 
modeling area with a complex shape, some difficulties 
always arise, which are manifested due to the problems of 
achieving convergence of the corresponding numerical 
method, which is inextricably linked with the need to use 
significant computing resources to ensure obtaining re-
sults with high accuracy. However, the high accuracy of 
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the results could be more accurate in many cases due to 
the impossibility of accurately determining the initial data 
for solving this or that boundary value problem. A natural 
approach to solving this problem is developing a toolkit to 
solve the given situation with some predetermined ap-
proximation. 

The object of study is the process of modeling the 
physical phenomenon of the movement of liquids in ob-
jects with complex geometry under the influence of exter-
nal forces. 

The subject of the study The subject of the study is a 
modeling method that uses the synergistic effect of the 
joint use of the improved lattice Boltzmann method and 
the application of a convolutional neural network with a 
special structure.  

The purpose of the work The purpose of the work is 
to shorten the time of modeling changes in fluid move-
ment parameters and increase the accuracy of parameter 
determination by correcting the deviation from com-
pressibility. 

 
1 PROBLEM STATEMENT 

In the general case, modeling of fluid movement is 
performed by solving a boundary value problem based on 
the Navier-Stokes equation. For this purpose, the discreti-
zation of the equation and domain is used to apply the 
appropriate numerical methods. The main problem that 
arises on this path is ensuring the convergence of numeri-
cal methods in the case of studying an area with complex 
geometry and the significant computational complexity of 
the corresponding algorithms, which leads to a consider-
able expenditure of time and computing resources. 

An alternative approach is to use the lattice Boltzmann 
method. This method describes the movement of the liq-
uid at the mesoscopic level through the interaction of the 
elementary volumes of the liquid, which is represented by 
the Boltzmann equation: 
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The right-hand side of this equation describes the col-

lision process of elementary volumes. This work uses the 
so-called BGK model, which is often applied to liquids 
moving at a speed that does not exceed the Mach number 
for the given liquid. The disadvantage of this approach is 
the accumulation of errors when determining the hydro-
dynamic parameters due to density fluctuations. 

To overcome the abovementioned shortcoming, we 
offer a method of specifying the fluid pressure on each 
time layer. 

 
2 REVIEW OF THE LITERATURE 

Applying the lattice Boltzmann method makes it pos-
sible to describe the dynamics of the velocity field by 
colliding elementary volumes of liquid at the mesoscopic 
level. The history of publications on LBM already dates 

back several decades[1]. Many practical applications with 
a severe theoretical basis were implemented [2]. The 
popularity of this method is due to a large number of ad-
vantages, which include relatively low computational 
complexity [3], the possibility of studying areas with 
complex geometry [4], and the possibility of parallelizing 
computational processes [5]. 

A significant drawback of this method is the increase 
in the error in determining the parameters of the velocity 
field with an increase in the number of iterations. This 
shortcoming does not allow modeling complex physical 
processes with a given accuracy on long time intervals, 
which are essential for describing operations in living 
nature. 

A neural network is proposed as a tool to overcome 
this drawback. 

The main advantages of using methods based on neu-
ral networks: 

1. A neural network provides an analytically presented 
solution that can be applied repeatedly after preliminary 
training. 

2. Methods based on neural networks can be applied 
to a broad class of differential equations. 

3. These methods include a smaller set of parameters 
and therefore require fewer resources for implementation. 

4. Have mechanisms for regulating the level of gener-
alization of the solution. 

Today, a relatively large number of varieties of artifi-
cial neural networks are known. Most of them correspond 
to already well-developed methods of solving differential 
equations. Historically, an approach focused on deep neu-
ral networks was one of the first to be proposed [7]. The 
application of a deep neural network with extended learn-
ing based on the backpropagation algorithm is also of-
fered in [8]. The mentioned methods can be used to solve 
both ordinary differential equations and differential equa-
tions with partial derivatives. They can be used to explore 
two-dimensional and three-dimensional areas. The disad-
vantage of the methods is the high labor intensity at the 
neural network learning stage. 

Reducing the complexity can be achieved by modify-
ing the structure of the neural network by adding radial 
basis functions (RBF) and other facilities to the deep neu-
ral network [8]. For example, [9] describes a method that 
combines a deep neural network with an evolutionary 
algorithm. The paper shows that the proposed structure 
can approximate arbitrary functions and their derivatives. 

The paper [10] proposed a combination of an artifi-
cial neural network with the Karhunen-Loev decomposi-
tion [11], which is focused on modeling the solution of 
the two-dimensional Navier-Stokes equation. 

Cellular neural networks [10, 11], an analog comput-
ing paradigm, are considered alternative structures for 
implementing differential equation-solving processes. 
This concept of analog computing is used to solve com-
plex nonlinear differential equations. This method is 
based on the Taylor series expansion. 

The modern approach to solving partial differential 
equations is based on convolutional neural networks 
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(CNN). Compared to deep neural networks, we get a sig-
nificantly shorter training time and higher accuracy of 
solution modeling [12]. At the same time, the main sig-
nificant advantage of using CNN is the possibility of us-
ing complex boundary conditions since the geometry of 
the area can be included in the learning process. 

In this work, the use of a convolutional neural net-
work is proposed. The structure of the network and the 
method are adapted to solving boundary value problems 
based on the two-dimensional Poisson equation, which is 
an essential component of the complex way that models 
the process of movement of an incompressible fluid. 

 
3 MATERIALS AND METHODS 

The way of modeling the movement of fluids aims 
to determine the distribution of pressure and the velocity 
field in a given area and changes in these parameters over 
time. The proposed complex method is represented by a 
cyclically repeated sequence of iterations, each containing 
two steps: a predictor step and a corrector step. Fig. 1 
shows the general algorithm of this method, in which the 
functions of the predictor are concentrated in block 2, and 
the corrector’s functions are implemented by blocks 4 and 
5. 

 
Figure 1 – Algorithm for implementing the complex method 

 
Block 1. Within the framework of this block, the study 

area is discretized, and the initial data set is formed, 
which contains the parameters of the velocity field vectors 
specified in the discretization nodes. Block 2 uses the 
generated set as initial data to implement the lattice 
Boltzmann method. The lattice Boltzmann method is used 
to model the evolution of the parameters of the initial 

velocity field. Using the value of the velocity field for the 
time layer to perform one iteration within the framework 
of this model, we get an updated velocity field on the time 
layer. We determine the fluid pressure in the discretiza-
tion nodes on the updated time layer with the value 
formed in block 3. The pressure distribution is calculated 
by a previously trained convolutional neural network, 
represented by block 4. Using the refined pressure value 
on the time layer in block 5, we determine the corrected 
velocity field on this time layer. If the current time layer 
is smaller than the maximum specified time layer, we use 
the refined velocity field as initial data for the lattice 
Boltzmann method. 

This method is based on the use of the physical model 
of the Boltzmann equation, which corresponds to the be-
havior of the liquid flow at the macroscopic level [13]. To 
apply the Boltzmann equation, it is necessary to consider 
the fluid flow as a set of elementary volumes. Then the 
Boltzmann equation describes the evolution of one ele-
mentary volume in the form of a distribution function, 
where is the vector that specifies the position of the ele-
mentary volume of liquid in space, is the velocity vector 
of the elementary volume, and is the parameter that speci-
fies the moment of time. In its general form, the Boltz-
mann equation can be represented by the expression (1). 

We discretize the space of velocities at the mesoscopic 
level by applying a two-dimensional grid using nine 
bounce directions of elementary volumes, as shown in 
Fig. 2. 

 
Figure 2 – Discretization of the domain and velocity field 

 
Such a discretization scheme is called D2Q9. It pro-

vides sufficient modeling accuracy and is recommended, 
for example, in [16] for a similar class of problems. If we 
set 121  xxx , and the coordinates of the initial 

node  0,0 , then the coordinates of 9 vectors can be writ-

ten as follows:  
 

 0,00 v ,    0,11 v ,       0,12 v , 
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 1,03 v ,     1,04 v ,    1,15 v , 

 1,16 v ,   1,17 v ,  1,18 v . 

 
For the region discretized in this way, we set the dis-

cretized Boltzmann equation: 
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The right-hand side of this equation describes the col-

lision process of elementary volumes. This work uses the 
BGK model, which is often applied to liquids moving at a 
speed that does not exceed the Mach number for the given 
liquid. 

Calculating the macroscopic parameters of speed and 
pressure for a liquid can be calculated as the result of the 
sequential execution of two steps for each of the discreti-
zation vectors kv . In the first step, we will form a discrete 

kinetic equation for the distribution function of  kf : 

 

        ,,,
τ

1
,, txftxftxfttxf eq

kkkk   (3)

 

where  1,
2

1

c
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2
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 t .This equation determines the 

value of each distribution function at the domain discreti-
zation node after colliding the elementary fluid volumes 
at the corresponding node. 

The second step determines the redistribution of the 
values of the distribution functions on the new time layer: 

 
   ttxftttvxf kkk  ,, . (4)

 
After determining the distribution functions at the 

given time level, we calculate the density and velocity of 
the fluid in the given discretization node using the formu-
las: 
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Equation (3) also includes the equilibrium distribution 

function  txf eq
k , . We determine this function based on 

the calculations presented in [17]: 
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Based on [18], we can claim that the method remains 
stable under 0.5τ  . But practical applications of the 
technique have shown that instability can also occur when 
tau goes to 0.5. Avoiding a significant growth of the lat-
tice velocity helps maintain the method’s stability. In the 

framework 
3

c
cs   the value of pressure is 2ρ scp   for 

the ideal gas. To calculate the pressure in a region filled 
with a moving incompressible fluid, we must solve a 
boundary value problem based on the Poisson equation.  

Block 4 of the complex method implementation algo-
rithm (Fig. 1) includes solving the Poisson equation sepa-
rately on each time layer to refine the pressure distribu-
tion in the liquid. We use the previously obtained velocity 
field on this time layer to do this. The transition to the 
next time layer at low values of the Mach number is per-
formed using the lattice Boltzmann method, which allows 
us to simulate the change in the velocity field. Since the 
lattice Boltzmann method, when modeling the parameters 
of an incompressible fluid, can allow certain density fluc-
tuations that affect the accuracy of determining the veloc-
ity field, we must consider these errors when creating the 
corresponding Poisson equation.  

We modify the design scheme proposed in [19] to do 
this. This scheme consists of three steps. In the first step, 
the velocity field values are calculated using an explicit 
iterative scheme, which is based on a discrete representa-
tion of the convective and diffuse parts of the momentum 
equation. In the second step, the resulting velocity field is 
corrected by the pressure gradient determined after solv-
ing the Poisson equation for pressure. The third step is a 
correction step that ensures the convergence of the itera-
tive determination of the velocity field in the first step. 

The main difference of the approach proposed in this 
paper is that the determination of the velocity field in the 
next time layer occurs by using the modified lattice 
Boltzmann method, which is based on the strictly proven 
fact that at small values of the Mach number, we obtain a 
result that coincides with the solution in terms of the 
boundary value problem: 
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The viscous stress tensor for a compressible Newto-
nian fluid can be determined through the fluid velocity 
field as: 
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For a small Mach number when moving to an incom-
pressible boundary value problem, the value of the term 
can be simplified as follows [20]: 

  uv τ
ρ

1
. (9)
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To determine the pressure distribution on the new time 
layer, we define the Poisson equation for pressure [20]: 
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where 1,21  txxx  are steps in spatial and 

temporal coordinates. 
Modeling the solution of equation (10) takes place in 

two stages. The first step is to create a dataset for further 
use of the convolutional neural network. 

We discretize the left and right parts of equation (10). 
For the left side of equation (10), we get: 
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Due to the fact that we neglect the compressibility of 

the investigated fluids, we can apply a linear discretiza-
tion of the right-hand side of equation (10) using the cen-
tral difference. Then: 
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The resulting system of linear algebraic equations is 

solved using the iterative Jacobi method [13]. 
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The obtained pressure distribution is considered and 

used as an object of the training data set. Training of a 
convolutional neural network takes place on the training 
data set formed in this way to solve this type of problem 
effectively. All problems of obtaining the pressure distri-
bution on each time layer when solving applied problems 
will be solved in the future with the help of a convolu-
tional network in a significantly shorter time. 

After obtaining the values of the pressure field, we ad-
just the values of the velocity field: 
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Thus, we get the velocity field on the new time layer. 
We use these data as initial data when applying the 
Boltzmann lattice model. This process is repeated if the 
simulation process continues in time. 

Let us briefly consider the development of the men-
tioned convolutional network and the results of its appli-
cation. 

Based on the previous work [21], a convolutional neu-
ral network was developed to model the solution of the 
boundary value problem based on the Poisson equation. 
Some changes were made to adapt the basic structure of 
the neural network to the actual problem. The general 
structure of the developed neural network is shown in 
Fig. 3. 

First, the size of the input data was increased – from 
96×96 to 128×128, which made it possible to simulate the 
movement of liquids with greater accuracy. The “bottom-
up pathway” and “top-down pathway” parts of the net-
work were also expanded by adding additional convolu-
tional layer blocks. Also, the “output_conv” block was 
extended by increasing the convolutional layers from 2 to 
4. Each layer now receives an additional input tensor 
“rho_input” of size 128×128 that contains the density 
value. 

The output of the model is a two-dimensional array of 
size 128×128. The values of the previously generated 
solutions were normalized to a distribution with a mean 
value of 0 and a standard deviation of 1  to ensure the 
stability of the learning of the convolutional network. The 
process of obtaining the solution of the Poisson equation 
in physical units of measurement is as follows: the value 
of the output array of the neural network is inversely 
normalized, and thus the original distribution of the train-
ing data is restored. 

To create a training dataset that will ensure the accu-
racy and efficiency of the neural network, 18 space ge-
ometries were prepared. They were used to simulate the 
movement of liquids using the LBM method. The nu-
merical solution of equation (12) was used to calculate the 
values of the pressure field. Different random values of 
the initial fluid velocity, density, and relaxation time were 
used in the simulation of each geometry to ensure the 
variability of the dataset. In this case, the neural network 
features are the values of free members and density, and 
the target variable is the pressure value. In this way, a 
training dataset consisting of 75,000 objects was formed. 
A test dataset of 10,000 objects was created in the same 
way. 

To implement the developed neural network, we used 
the following software: Python programming language, 
TensorFlow 2.4.1 machine learning framework. The 
Adam optimizer [22] was used to optimize the parameters 
of the neural network. The values of the optimizer pa-
rameters were as follows: learning_rate=0.0005, beta_1 = 
0.95, beta_2 = 0.99, epsilon = 1e–7. Each of the parame-
ters performs the following function: learning_rate is a 
parameter in the optimization algorithm that determines 
the step size of updating the coefficients of the neural 
network at each learning iteration; beta_1 is the forgetting 
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coefficient for the gradient; beta_2 is the forgetting factor 
for the second moment of the gradient; epsilon is a small 
constant introduced to ensure optimization stability. The 
average absolute error represents the loss function for this 
model. An MSI GeForce GTX 1660 Super Ventus OC 

6GB GDDR6 GPU was used to train the neural network 
for 300 epochs. The value of the average absolute error on 
the test data set was 0.001021. 
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Figure 3 – The general structure of a convolutional neural network 

 
4 EXPERIMENTS 

To test the developed method, we used the model of 
the section of the human colon, which is shown in Fig. 4. 

Black color indicates the working area, white color in-
dicates the bounding surface. 

The working area was discretized by a 128×128 grid. 
The parameters of the method are as follows: τ 0.5012 , 

1000ρ  . The boundary condition of fluid inflow from 

the right boundary was applied, equal to 









T

t
v

π2
sin01.00 , where 110T . 

In the experiment, modeling was carried out using two 
methods: LBM and the LBM method with velocity field 
correction. The velocity field was measured at simulation 
iterations 300 and 900. The simulation results are shown 
in Fig. 5 and 6. 

 

 
Figure 4 – Model of the section of the human colon 
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Figure 5 – Distribution of the velocity field at the 300th iteration. On the left is the LBM method, on the right is the proposed 

method with speed correction 
 

 
Figure 6 – Distribution of the velocity field at the 900th iteration. On the left is the LBM method, on the right is the proposed method 

with speed correction 
 
Fig. 7 shows the results of measurements of the devia-

tion of the average density values and from the initial 
density value in the computational domain after 1500 
iterations.  

When modeling with the developed method, the den-
sity values deviate less from the initial density value than 
the usual LBM method. Therefore, the obtained results 
indicate higher stability when modeling fluid movement 
using the combined method. 

The computational speed of the developed method 
was measured in comparison with other methods. Three 
methods were used for comparison. The first method is 
the conventional LBM method without rate correction 
described in equation (14), the second method is the pro-
posed rate-corrected LBM method using a convolutional 
neural network to solve equation (13), the third method is 
a velocity-corrected LBM method that uses the AMG 
numerical method [23] to solve equation (13). The com-
parative results of the experiments are shown in Table 1. 

 
 
 

Table 1 – Comparison of modeling methods 
Modeling method Time of one iteration, sec 

LBM 0.00301 

LBM+ neural network 0.06087 

LBM+ numerical method 0.54123 

 

 
Figure 7 – The average value of the deviation of the density 

during the simulation 
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The experimental results show that the simulation 
speed of one iteration of the developed method is 6–7 
times faster than the speed of the method that uses the 
numerical solution of the Poisson equation. Also, in com-
parison with the usual LBM method, the condition of 
fluid incompressibility is preserved. 

 
5 RESULTS 

The main result is that a new method of modeling 
two-dimensional hydrodynamic processes is proposed, 
which is characterized by increased accuracy and lower 
resource consumption compared to known methods. The 
sequence of actions for implementing the method is repre-
sented by the algorithm shown in Fig 1. The positive ef-
fect is achieved by combining the modified lattice Boltz-
mann method to determine the velocity field at the next 
time step. At each time step, we simulate the solution of 
the Poisson equation using a convolutional neural net-
work to determine the pressure distribution. The obtained 
results make it possible to correct the deviation of the 
density to increase the simulation’s accuracy. A parallel 
numerical method was used to reduce the time of prepar-
ing a dataset for neural network training. To practically 
confirm this approach’s effectiveness, modeling the 
physical process of fluid movement in a fragment of the 
digestive tract was performed. All technical parameters of 
this experiment are given in this paper. Studies have 
shown that the simulation speed of one iteration of the 
developed method is 6–7 times faster than the speed of 
the method that uses the numerical solution of the Poisson 
equation. The value of the average absolute error on the 
set of test data is 0.001021. 

 
6 DISCUSSION 

The traditional approach to modeling hydrodynamic 
processes is based on solving a boundary value problem, 
which includes the Navier-Stokes equation and the flow 
continuity equation. This problem can be solved by one of 
the numerical methods, which causes significant difficulties 
in the case of the complex geometry of the surface area and 
requires significant resources since it is necessary to use 
excessive accuracy to ensure the convergence of the nu-
merical method. 

When modeling the movement of liquids in living na-
ture, it is essential to get an estimate of the dynamics of the 
process in a short time with relatively low accuracy. There-
fore, LBM is more often used for such tasks. This method 
allows us to get the desired solution in a significantly 
shorter time, but several disadvantages characterize it. One 
of the critical disadvantages is that this method is funda-
mentally oriented towards compressible liquids, and the 
dynamics of density change are challenging to control. An-
other significant drawback is the considerable laborious-
ness of the correct definition of the boundary conditions, 
given the complex geometry of the area. 

Another approach to solving this problem includes us-
ing a predictor-corrector method. The predictor applies an 
explicit iterative scheme to determine the velocity field at 

the next time layer, and the corrector refines the value of 
the velocity field using the pressure distribution. 

This work is devoted to developing this approach by 
improving both the predictor and corrector stages. To im-
prove the accuracy of the simulation, a modified LBM is 
used in the predictor stage, and a pre-trained convolutional 
neural network is applied in the corrector stage to solve the 
Poisson equation. Combining these two approaches made it 
possible to improve the speed and accuracy of modeling in 
a region with complex geometry. 

Further development of this approach consists of apply-
ing reinforcement learning mechanisms at the corrector 
stage, which will improve the accuracy of the obtained 
modeling results with significant changes in the geometry 
of the area without spending time retraining the convolu-
tional network. 

After certain refinements, the proposed method can be 
used to study hydrodynamic parameters in three-
dimensional domains. 

 
CONCLUSIONS 

The urgent problem of developing a software system 
for mathematical modeling of the movement of liquids in 
areas with complex geometry, which is characteristic of 
living organisms, is being solved. 

The scientific novelty of the obtained results lies in 
the fact that, for the first time, a method for modeling the 
movement of fluids in living organisms has been pro-
posed, which reduces the modeling time and increases its 
accuracy compared to known approaches due to the syn-
ergistic effect obtained by improving the modeling pa-
rameters at each step of the iterative process, which in-
cludes a predictor stage and a corrector stage. The predic-
tor stage implements a modified LBM in which a modi-
fied equilibrium distribution function is applied, which 
increases the accuracy of determining the distribution 
function in one iteration step by the BGK model. The 
LBM implementation time is reduced by parallelizing the 
calculation of discrete values of the distribution function 
during the collision of elementary liquid volumes at the 
mesoscopic level. The corrector stage realizes a reduction 
in modeling time due to the use of a previously trained 
convolutional network, the structure of which is adapted 
to the solution of a specific problem. 

The practical significance of the obtained results is 
that a software system has been developed for simulating 
the movement of liquids in areas of complex shape, sig-
nificantly reducing the simulation time and using comput-
ing resources, provided that the obtained results are of 
acceptable accuracy. Experiments were conducted using 
different workloads of the developed software simulation 
system. The obtained results made it possible to recom-
mend using this software system when studying the 
movement of fluids in living nature, particularly when 
studying the digestive and cardiovascular systems of liv-
ing organisms. 

Prospects for further research consist in expanding the 
possibilities of this method for its application to three-
dimensional areas of complex shape. Another direction 
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for improving this method is using reinforcement learning 
mechanisms to reduce the time it takes to reconfigure a 
convolutional neural network for an expanded range of 
tasks. 
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МЕТОД ГІДРОДИНАМІЧНОГО МОДЕЛЮВАННЯ З ВИКОРИСТАННЯМ ЗВЕРТКОВОЇ НЕЙРОННОЇ МЕРЕЖІ 

 
Новотарський М. А. – д-р техн. наук, професор кафедри обчислювальної техніки Національного технічного універси-

тету України «Київський політехнічний інститут імені Ігоря Сікорського». 
Кузьмич В. А. – аспірант кафедри обчислювальної техніки Національного технічного університету України «Київський 

політехнічний інститут імені Ігоря Сікорського». 
 

AНОТАЦІЯ 
Актуальність. Розв’язування гідродинамічних задач пов’язане з високою обчислювальною складністю і тому вимагає 

значних обчислювальних ресурсів і часу. Запропонований підхід дозволяє суттєво скоротити час розв’язування таких задач 
шляхом застосування комбінації двох вдосконалених методів моделювання. 

Мета. Метою є створення комплексного методу гідродинамічного моделювання, який вимагає значно менше часу для 
визначення динаміки поля швидкостей за рахунок використання модифікованого решітчастого методу Больцмана і розподі-
лу тиску за рахунок використання згорткової нейронної мережі. 

Метод. Запропоновано метод гідродинамічного моделювання, який реалізує синергетичний ефект, що виникає при по-
єднанні вдосконаленого решітчастого методу Больцмана та згорткової нейронної мережі з спеціально адаптованою структу-
рою. Суть методу полягає у реалізації послідовності ітерацій, на кожній з яких відбувається моделювання процесу зміни 
параметрів при переході на наступний часовий шар. Кожна ітерація включає крок предиктора та крок коректора. На кроці 
предиктора працює решітчастий метод Больцмана, який дозволяє отримати поле швидкостей рідини в робочій зоні на на-
ступному часовому шарі за допомогою поля швидкостей на попередньому шарі. На кроці коректора ми застосовуємо вдос-
коналену згорткову нейронну мережу, навчену на раніше створеному наборі даних. Використання нейронної мережі дозво-
ляє визначити розподіл тиску на новому часовому шарі із заданою точністю. Після додавання поправки на стисливість ріди-
ни на новому часовому шарі ми отримуємо уточнені значення поля швидкостей, які можна використовувати як початкові 
дані для застосування решітчастого методу Больцмана на наступній ітерації. Обчислення припиняються при досягненні 
заданої кількості ітерацій. 

Результати. Роботу запропонованого методу досліджено на прикладі моделювання руху рідини у фрагменті шлунково-
кишкового тракту людини. Результати моделювання показали, що час, витрачений на реалізацію процесу моделювання, 
скоротився у 6–7 разів при збереженні прийнятної для практичних завдань точності. 

Висновки. Запропонований метод гідродинамічного моделювання зі згортковою нейронною мережею та решітчастим 
методом Больцмана суттєво скорочує час та обчислювальні ресурси, необхідні для реалізації процесу моделювання в облас-
тях зі складною геометрією. Подальший розвиток цього методу дозволить реалізувати гідродинамічне моделювання в реа-
льному часі в тривимірних областях. 

КЛЮЧОВІ СЛОВА: гідродинамічне моделювання, згорткова нейронна мережа, решітчастий метод Больцмана. 
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