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ABSTRACT
Context. Neural Ordinary Differential Equations is a deep neural networks family that leverage numerical methods approaches
for solving the problem of time series reconstruction, given small amount of unevenly distributed samples.
Objective. The goal of the following research is the synthesis of a deep neural network that is able to solve input signal recon-

struction and time series extrapolation task.

Method. The proposed method exhibits the benefits of solving time series extrapolation task over forecasting one. A model that

implements encoder-decoder architecture with differential equation solving in latent space, is proposed. The latter approach was
proven to demonstrate outstanding performance in solving time series reconstruction task given a small percentage of noisy and un-
even distributed input signals. The proposed Latent Ordinary Differential Equations Variational Autoencoder (LODE-VAE) model
was benchmarked on synthetic non-stationary data with added white noise and randomly sampled with random intervals between

each signal.

Results. The proposed method was implemented via deep neural network to solve time series extrapolation task.

Conclusions. The conducted experiments have confirmed that proposed model solves the given task effectively and is recom-
mended to apply it to solving real-world problems that require reconstructing dynamics of non-stationary processes. The prospects
for further research may include the process of computational optimization of proposed models, as well as conducting additional
experiments involving different baselines, e. g. Generative Adversarial Networks or attention Networks.

KEYWORDS: neural ordinary differential equations, deep neural networks, variational autoencoders, recurrent neural networks,

long term short memory networks

ABBREVIATIONS

NN is a neural network;

ODE is an ordinary differential equation;

LSTM is a long short-term memory network;

GRU is a gated recurrent unit network

ARMA is an autoregressive moving average model,;

ARIMA is an autoregressive integrated moving aver-
age model;

GARCH is a generalized autoregressive conditional
heteroskedasticity;

ELBO is an evidence lower bound function.

NOMENCLATURE
y is an unknown non-stationary non-negative con-

tinuous-time series;

t is a continuous time point, t e t;

A =A(t) is an intensity parameter of time distribu-
tion, T>0;

0 is a model parameter vector;

y is a observed sample from time series;
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Y is a multivariate discrete-time or continuous-time
process;

X; 1is an input vector to neural network at time t,
Xt €EX;

E is a time series reconstruction loss;

N is a Normal distribution;

o is a standard deviation of y ;

a is a time series sampling percentage;

y(rec) = 9U f(X) is a reconstructed time series;

hy is a hidden state of neural network at time t,
hyeh;

Z,is a latent space initial parameter for decoder net-

work;
€ is a moving average parameter for time series V ;

by, is a bias vector for hidden state of a recurrent neu-

ral network;
b, is a bias vector for output state of a recurrent neu-
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by is a bias vector for reset state of a recurrent neural

network;
W, is a weight matrix for hidden state of a recurrent

neural network;
W, is a weight matrix for output state of a recurrent

neural network;
W, is a weight matrix for reset state of a recurrent

neural network;

h; is a temporary hidden state at time t ;

ht" is a candidate hidden state at time t ;

INTRODUCTION

Time series analysis nowadays is one of the most rap-
idly developing field of computational statistics. In recent
years it gained a significant push towards applying ma-
chine learning methods to solve the problem of predicting
real-world processes in various fields, e.g., physics or
finances. The most popular approaches that are applied to
overcome the given problems include autoregressive
modeling via ARIMA and GARCH models [1-5]. These
models completely rely on assumptions of autoregressive
nature of given process, i.e., linear dependence between
current state of process with previous ones, and stationar-
ity, i.e., absence of mean/variance fluctuations through
time of observation of given process. In order to process
non-stationary data, ARIMA models leverage mecha-
nisms of taking finite difference of given time series data
to vanish trend curves and thus transform such data into
stationary time series [6]. On the other hand, GARCH
models perform conditional heteroskedasticity modeling
via moving average estimation of variance [7]. The draw-
backs of these approaches are implicated in assumption of
linear dependence between lags of a given process.

To overcome these challenges recurrent neural net-
works (RNN) [8] were introduced. RNN rely on the same
concept of “dependency” between time series states as in
autoregressive models, except that it applies nonlinear
transformations of input states and hidden states. These
chains of operations allow RNN to model nonstationary
series without performing reduction to stationarity. LSTM
models are the most widely used RNN application, since
they achieve ability to capture patterns in time-dependent
data at large scale of observation [8, 9]. Since 2014, new
family of recurrent neural networks was introduced —
gated recurrent unit network (GRU) [8, 9]. GRU is, in
essence, a lightweighted version of LSTM, offering re-
duced complexity whilst learning, both time and space.
However, the weakest point of given approaches is that
they are invariant to occurrence gaps, i.e., they built re-
garding the assumption that intervals between each sam-
ple are equal. However, for various cases that assumption
is not a valid one, e.g., for tracking real-time financial
data.
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The object of study is the process of time series re-
construction from samples with uneven distribution re-
garding time. This data is difficult to predict since both
autoregressive models, and recurrent neural networks are
invariant to intra-sample gaps, Therefore, it is proposed to
construct a new model, called latent ordinary differential
equations variational autoencoders to improve the quality
of predictions of given data and to solve process recrea-
tion task.

The subject of study is methods for time series pre-
diction and recreation.

The purpose of the work is to create a machine
learning model to solve time series reconstruction from
small and unevenly distributed data samples.

1 PROBLEM STATEMENT
For a given sample Y of time series Y it is desired to

(rec)

create a  reconstruction y such  that

Ve>0, d(y(rec)’ y)<e, where d(,) is some distance

metric.
2 REVIEW OF THE LITERATURE
Autoregressive models, such as ARMA [9], presented
in 1951, are the most used ones for the time series model-
ing task. They consider the time series to be in the form

i=1
suitable for learning behavior of stationary processes and
hence, are widely and successfully used applied to this
task [1-5, 9, 10].

In order to cope with non-stationary processes,
ARIMA models were introduced [1, 11]. They perform
numerical differentiation techniques, i.e. applying finite
differences operator Vg (Yy)=Vq4_1(Y¢* —Vi_1),.d €N to

a given time series to vanish it’s non-stationarity [1].
The other autoregressive approach is to model station-
processes in the form

p q
Vi =00+ .61V i+ 2.0p.jj [1]. ARMA models are
j=1

ary

p q
Yo =€ [0+ 0iyii + .0 jorj [1].
i=1 i=1
Since the breakthrough in the development of compu-
tational capacities, it became feasible to examine machine
learning algorithms, and, in particular, artificial neural
networks, on time series modeling and predictions tasks.
One of the most successful approaches is to apply recur-
rent neural networks to discrete-time time series.
Consider sample of time series Y; of the form

D:<xt,yt>. RNN in this case is a mapping function

f :x{ > V¢, and that function is essentially a chain of

non-linear transformations over affine transformations
that are provided by state-space modeling of Yy, [8].
Classic RNN models these chains in a following way:

hy = o(Wyn Xt +Whnht +bp),

OPEN a ACCESS




p-ISSN 1607-3274 Pagioenexkrponika, inpopmaTuka, ynpasainsas. 2023. Ne 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. Ne 4

Yt =Up = (Whyhy +Dby).

RNN is trained to maximize logarithmic likelihood
log p(y; | x,U,W,V,c) [8]. However, despite the ability
to model non-stationary time series, RNN has a severe
drawback — gradient vanishing — that is caused by it’s
architecture [8].

To overcome this challenge, LSTM model was intro-
duced in 1997 [12]. LSTM offers more complex architec-
ture yet greater precision of forecasts, introducing 3
“gates” — input, output and forget. The latter one imple-
ments the process of capturing short-term dependencies at
a long scale, thus giving it’s name to the method [8, 12].

In 2014, GRU model was firstly described [8, 13].
GRU model aims to achieve the same quality of forecasts
but at a lower computational cost, reducing number of
parameters to train. Despite LSTM-based models have
become de facto standard in recent years, GRU models
are also widely used [8, 13].

In recent years, new family of neural networks was in-
troduced, called neural ordinary differential equations
[14]. Neural ODE model interprets time series as a con-
tinuous process with unknown dynamics and thus solving
a differential equation with respect to the hidden state and

time: ?j_ltl: f (h(1),t,0) . Neural ODEs are proven to be

effective for survival analysis [15] and weather data pre-
diction [16].

3 MATERIALS AND METHODS
It is proposed to recreate time series structure from the
latent space (i.e., some mapping of feature space) process

dynamics. Let’s add a mapping f :P™ — P", such that:
H=f(Y), (1)

where H represents hidden dynamics in latent space and
thus is proposed to be modeled via Neural ODE:

dh
e g(h(1),t,6p). 2

Integrating (2) with respect to time allows forecasting
multivariate continuous-time process (1) in latent space.
Then, to retrieve forecast of Y it is necessary to add an

inverse mapping f~1:P" - P™. However, the inverse
mapping could not exist under certain conditions, e.g., f

is not bijective. In that case, to overcome this restriction,
it is proposed to use encoder-decoder approach, i.e., de-

fining another mapping g :P" — P™, such that:

Y = g(H). 3)
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By substituting (1) and (4) as a parameters to the
given reconstruction loss, an optimization problem is de-
fined:

E(Y,¥)- min. C)

There are multiple approaches to define exact task in
the form of problem (4). Let’s consider that process Y is
drawn from unknown random vector of distribution p(x) .

Then chain of transformations defined by (1) and (4) pro-

duce the process Y , drawn from random vector of distri-
bution p(h). Then to measure difference between these

two distributions it is proposed to use Kullback-Leibler
divergence, defined as:

KL(pI)= | p()log2 ™ dx. )
p(x)

—o0

However, since p(x) is an unknown distribution,

mentioning that distribution proposed approach should
define both mappings (1) and (3), it is proposed to define
a joint probability distribution p(x,h), and applying de-

fining it as:
p(x,h) = p(h|x)p(x) = p(h) p(x | h). (6)
Taking a logarithm of (7):

log p(x,h) =log p(h | x) +log p(x) =

~ log p(h) + log p(x | h). M

To achieve deterministic measure of “fitness” of dis-
tributions p(h)= p(h|0) and p(x)= p(x]|06), where O
is a parameters vector of the desired model, let’s apply a
mathematical expectation operator with respect to latent
state h to (8):

[a(h)log p(x |0)dh =
h

= {q(h) log p(x,h |0)dh - (®)

—[a(h)log p(h |x,0)dh
h

Left-hand side of (8) is simply equals to p(x|0).

Then let’s add and subtract mathematical expectation of
logarithmic probability of hidden state:
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p(x|0) =
= [a(h)(log p(x,h6) —log p(h))dh —

h ©)
— [a(h)(log p(h |x,0) — log p(h))dh.

h

Last component of right-hand side of the equation (9)
is Kullback-Leibler divergence of q(h) and p(h|x,0)

distributions, and the first one is ELBO. ELBO is pro-
posed to use as a reconstruction loss of a proposed model.

Let’s define the mapping functions in the scope of
problem (1)-(9). It is proposed to use a recurrent neural
network, in particular, GRU as an encoder mapping, i.e.
mapping (1) is defined as:

hy = (Yo, hp_1,0), (10)
U = 6(Wy X; +Wiyhe +by) (11)
i = oWy X; + Wi he +by) (12)
by = (W % +W, he +b.) (13)
he = uhy +(1-uph, (14)

Hence it is proposed to interpret latent space features
as the dynamics of given process, defined by (1), (10) is
defined as:

he = Sol(fg,h_y,1), (15)

where Sol is a numeric ODE solver, e.g., Runge-Kutta
method.

Let’s add a layer that produces parameter for latent pa-
rameter Z and define mapping (4) as:

Vtet, z; =Sol(zy,0¢,t),
X~ p(x|z,0).

(16)
(17

For achieving time sensitivity, it is feasible to model
probability distributions of time spots using non-
stationary Poisson processes. By adding and modeling
intensity parameter A, (16)—(17) can be augmented in the
following way:

Vt et, t ~ PoissProcess(A(7)). (18)
Then (10) could be augmented by adding:
tmax
10g(t | tsin »tmax - 1)) = 2 log A0 = [A(tydt. (19)

tet t

min
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By applying task (10)—(17) to input samples, drawn
from Y and minimizing loss, defined in (9) and (19),
task of time series reconstruction was achieved.

4 EXPERIMENTS

To solve previously defined task and measure the ef-
fectiveness of proposed approach the computer program
that implements time series reconstruction was developed.

For time series reconstruction experiment a following
synthetic dataset was chosen:

y =sin(25nt) + ¢, € ~ N(0,5). (20)

Multiple samples were drawn from (20) with the fol-
lowing setups:

1. 0=[0.1,0.5,1];

2. a=[0.15,0.35,0.55].

For model there were chosen 2 options — LODE-VAE
without modeling distribution of time points and LODE-
VAE with modeling distribution of time points using (18).
For reference, first model is called LODE-VAE-N and
LODE-VAE-P.

For both models the next parameters were chosen:

1. Dimension size of latent state dynamics process
is 6.

2. Dimension size of integrated state vector is 6.

3. Dimension size of decoded vector is 1.

4. Number of epochs is 200.

5. Learning rate is adaptive with exponential decay
with start rate at 0.01.

6. ODEs are solved using Dormand-Prince method.

Metrics for benchmarking are mean squared error

(MSE) and coefficient of determination RZ.
Results of LODE-VAE-N model benchmarking by
MSE metric are shown in Table 1.

5 RESULTS
In the following Tables 1 — 4 results of benchmarking
of LODE-VAE-N and LODE-VAE-P models by MSE

and R? metrics are provided. Since MSE and R? metrics
are both used for validating model adequacy for forecast-
ing time series, their optimization objectives are opposite

— MSE needs to be minimized and R* needs to be maxi-
mized.

6 DISCUSSION

As follows from Tables 1-4, MSE and R? metric val-
ues of benchmarking of LODE-VAE-N and LODE-VAE-
P differs slightly. Despite the difference, both models are
well suitable for time series reconstruction and forecast-
ing from obtained unevenly distributed samples.

Tables 1-4 show the same tendencies for both metrics
and both models — the more data is available the better the
quality of predictions.
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Table 1 — Results of LODE-VAE-N model benchmarking by

MSE metric
a\c 0.1 0.5 1
0.15 0.4309 0.7043 1.4491
0.35 0.4081 0.5921 1.4104
0.55 0.3802 0.6757 1.2195

As expected, model performed reconstruction task
well, and results the better the noise level is lower

Results of LODE-VAE-P model benchmarking by
MSE metric are shown in Table 2.

Table 2 — Results of LODE-VAE-P model benchmarking by

MSE metric
a\c 0.1 0.5 1
0.15 0.4011 0.583 1.4583
0.35 0.3301 0.6047 1.3876
0.55 0.1065 0.429 1.0456

As is shown above, learning time distribution better
model forecasts, and the gap between two models is in-
creasing with more dense samples.

Results of LODE-VAE-N model benchmarking by

R? metric are shown in Table 3. Coefficient of determi-
nation is stable and increasing slowly with increasing
density of sampling and decreasing noise level. The same
is true for LODE-VAE-P.

Results of LODE-VAE-P model benchmarking by R?
metric are shown in Table 4.

Table 3 — Results of LODE-VAE-N model benchmarking by

R? metric
a\o 0.1 0.5 1
0.15 0.7343 0.5943 0.5523
0.35 0.7529 0.6303 0.571
0.55 0.827 0.6988 0.61

Table 4 — Results of LODE-VAE-P model benchmarking by

R? metric
o\o 0.1 0.5 1
0.15 0.843 0.5413 0.5612
0.35 0.8501 0.6171 0.6001
0.55 0.9146 0.7307 0.658

LODE-VAE-P model is demonstrating better results
for all the metrics and all the experiment setups. By lever-
aging separate model for learning the distribution of time
points in the sample, the latter model can better approxi-
mate the ground truth distribution of the sample.
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CONCLUSIONS

The problem of continuous-time processes reconstruc-
tion from noised and unevenly distributed samples is
solved in this work.

The scientific novelty of obtained results shows that
neural ordinary differential equations models could be
embedded into variational autoencoders framework for
reconstructing dynamic of given unknown but observed
process. Combining numerical integration techniques with
stochastic generative models is a valid and effective ap-
proach for modeling and forecasting non-stationary time
series.

The practical significance of current work and its’
results is that implemented models could be applied to
forecast non-stationary processes from real world, such as
climate-related processes or simplifying simulations of
physical processes.

Prospects for further research are to study different
approaches to use as a decoder network, replacing varia-
tional autoencoders with different stochastic generative
models.
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HEWPOHHI 3BUYAMHI IA®EPEHIIAJIGHI PIBHAHHSA JJI1 PEKOHCTPYKIIIT YACOBHUX PSAIIB

AnapocoB /I. B. — acnipanT [HCTUTYTY NpUKIIaIHOTO CHCTEMHOTO aHaji3y HauioHaqbHOrO TEXHIYHOrO yHiBEpCHTETy YKpaiHH
«KwuiBcpkuit nonitexuiunuii inctutyT iMeHi Iropst Cikopcbkoro», Kuis, Ykpaina.

AHOTANLIA

AKTyanbHicTb. PO3risiHyTO 3amady PEKOHCTPYKLIi HeCTalliOHapHMX YacOBUX psiB Ha OCHOBI MoOJeieil KOIyBaJbHHK-
JICKO/TyBaJIbHUK 3 JIOMOMOTOK HEHPOHHMX 3BHYAHHMX IudepeHuianbHuX piBHAHb. O0’€KTOM JOCIIIDKEHHS € 33/1a4a BiJHOBJICHHS
Ta MPOTHO3YBAaHHs HECTAl[lOHAPHMX YacOBMi PsJIiB Ta IPOLECIB B HelepeBHOMY uaci. Mera po0OOTH — CHHTE3 MOJEJi Ha OCHOBI
apXiTEeKTypH KOIyBaJIbHUK-ICKOMYBAJIbHUK Ta 3 BUKOPUCTAHHSAM MOJCNICH THITy HEHPOHHHX 3BHYAMHHMX MU(PEPEHUINHUX PiBHSIHB
JUISL PEKOHCTPYKIIi 4acOBUX PSIB M0 3alIyMJICHUMH, HEPIBHOMIPHO PO3MOAICHUMH Y Yac, BXiIHUMH CHTHAJIAMU.

Mertoa. 3anporoHOBaHO METOJ, IO pealli3ye apXiTeKTypy KOAyBallbHUKa-IEKOAyBaJIbHUKA Ta aNNapar IUTyYHUX HEHPOHHHX
MepexX 3 pO3B’sA3aHHAM IU(EpeHIiaTbHUX PIBHAHB y JTJaATEHTHOMY MPOCTOpi. bylio BcTaHOBEHO, IO JaHWH MiAXiX JEMOHCTPYE BH-
COKY e(eKTHBHICTb Ta SIKICTh MPOTHO31B MIPY BUPIIICHH] 3a/1a4i PEKOHCTPYKII YaCOBUX PAIIB MO 3aIlIyMJICHUM BXiJIHUM CUTHAJIAM 3
BUIA/IKOBUMH iHTEpBalaMi MK CUTHaJIaMH. 3alipOlIOHOBaHa MO/IENb BapialliifHOro aBTOKOAyBaJIbHUKA Ha 3 BUKOPUCTAHHSM arapa-
Ty HeflpoHHHX Mepex Oysla NPOTEeCTOBaHA HA CHHTCTHYHMX HECTAL[lOHAPHMX JAHUX 3 J0JaBaHIM OLTUM IIYMOM i CEMIUTIHIOM 3 BH-
MaJIKOBUMH 1HTEPBAJIaMH MiXK KO>KHUM CUTHAJIOM.

PesyabTaTu. Po3po0biicHi MOKa3HUKU peasti3oBaHi MPOrpaMHoO 1 AOCIIKEHI IPU BUPINICHHI 3a7a4i PeKOHCTPYKIIT HecTarioHap-
HOTO PsIIY 3 CE30HHICTIO.

BucHoBku. IIpoBeneHi €KCHEPUMEHTH MiATBEPANIIH, L0 3alpOIOHOBaHA MOEib ©()EeKTHBHO BHUpIlIye 3aJaHy 3ajady i
PEKOMEH/IYEThCSl 3aCTOCOBYBATH 11 JUIsl BUDIIICHHS PEalbHUX 3aBJaHb, 1[0 BUMAraloTh PEKOHCTPYKIII IMHAMIKM HECTalliOHAPHHUX
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HEHpPOHHUX MEpeX Ta apXiTeKTyp aBTOKOIYBaJIbHHUKIB. 30KpeMa MpPOMOHYETHCS BUKOPHUCTOBYBATH iHINI MiIXOAW T€HEPATHUBHOTO
HEWPOMEPEKEBOTO MOJEIIOBAHHS, SIK TeHEPATHBHO-3MarajibHi MepeXi y KOHTEKCT] BiJHOBICHHS CTPYKTYPH 9aCOBOTO PSITY
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