
p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Mochurad L. I., Mamchur M. V., 2023
DOI 10.15588/1607-3274-2023-4-11

UDC 519.6

PARALLEL AND DISTRIBUTED COMPUTING TECHNOLOGIES FOR
AUTONOMOUS VEHICLE NAVIGATION

Mochurad L. I. – PhD, Associate Professor, Department of Artificial Intelligence, Lviv Polytechnic National Uni-
versity, Lviv, Ukraine.

Mamchur M. V. – Student, Department of Artificial Intelligence, Lviv Polytechnic National University, Lviv,
Ukraine.

ABSTRACT
Context. Autonomous vehicles are becoming increasingly popular, and one of the important modern challenges in their

development is ensuring their effective navigation in space and movement within designated lanes. This paper examines a method of
spatial orientation for vehicles using computer vision and artificial neural networks. The research focused on the navigation system
of an autonomous vehicle, which incorporates the use of modern distributed and parallel computing technologies.

Objective. The aim of this work is to enhance modern autonomous vehicle navigation algorithms through parallel training of
artificial neural networks and to determine the optimal combination of technologies and nodes of devices to increase speed and
enable real-time decision-making capabilities in spatial navigation for autonomous vehicles.

Method. The research establishes that the utilization of computer vision and neural networks for road lane segmentation proves
to be an effective method for spatial orientation of autonomous vehicles. For multi-core computing systems, the application of
parallel programming technology, OpenMP, for neural network training on processors with varying numbers of parallel threads
increases the algorithm’s execution speed. However, the use of CUDA technology for neural network training on a graphics
processing unit significantly enhances prediction speeds compared to OpenMP. Additionally, the feasibility of employing PyTorch
Distributed Data Parallel (DDP) technology for training the neural network across multiple graphics processing units (nodes)
simultaneously was explored. This approach further improved prediction execution times compared to using a single graphics
processing unit.

Results. An algorithm for training and prediction of an artificial neural network was developed using two independent nodes,
each equipped with separate graphics processing units, and their synchronization for exchanging training results after each epoch,
employing PyTorch Distributed Data Parallel (DDP) technology. This approach allows for scalable computations across a higher
number of resources, significantly expediting the model training process.

Conclusions. The conducted experiments have affirmed the effectiveness of the proposed algorithm, warranting the recommen-
dation of this research for further advancement in autonomous vehicles and enhancement of their navigational capabilities. Notably,
the research outcomes can find applications in various domains, encompassing automotive manufacturing, logistics, and urban trans-
portation infrastructure. The obtained results are expected to assist future researchers in understanding the most efficient hardware
and software resources to employ for implementing AI-based navigation systems in autonomous vehicles. Prospects for future inves-
tigations may encompass refining the accuracy of the proposed parallel algorithm without compromising its efficiency metrics. Fur-
thermore, there is potential for experimental exploration of the proposed algorithm in more intricate practical scenarios of diverse
nature and dimensions.

KEYWORDS: computer vision, neural networks, navigation methods, CUDA technology, PyTorch DDP technology.

ABBREVIATIONS
NN is a Neural Network;
OpenMP is an Open Multi-Processing;
CUDA is a Compute Unified Device Architecture;
DDP is a Distributed Data Parallel;
LiDAR is a Light Detection and Ranging;
ACO is an Ant Colony Optimization;
CNN is a Convolutional Neural Network;
IoT is an Internet of Things;
FPN is a Feature Pyramid Network;
CPU is a central processing unit;
GPU is a graphics processing unit.

NOMENCLATURE
N is the number of records in the dataset;
p is the cores count;

1()T іs an execution time of a sequential algorithm;

()pT іs an execution time of a parallel algorithm.

INTRODUCTION
With the advancement of autonomous vehicles, the

demand for high-precision navigation systems and

efficient algorithms is becoming increasingly crucial.
Optimization and enhancement of existing artificial
intelligence methods to improve navigation accuracy,
along with the application of parallel computing to boost
algorithm speed, have the potential to unlock new
opportunities and contribute significantly to the
development of the autonomous transportation
sector [1, 2]. Algorithm and navigation method
optimization can contribute to ecological and economic
development as autonomous vehicles have the potential to
reduce fuel costs and facilitate efficient infrastructure
utilization.

Improvements in navigation algorithms can have a
positive impact on various sectors, including logistics,
automated warehouses, and robotics, where precise
localization and navigation are critically important for
effective operations [3, 4].

Since autonomous vehicles must react to real-time
road situations, parallel computing helps ensure the swift
execution of algorithms, which is vital for road safety and
efficiency [5].

111

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Mochurad L. I., Mamchur M. V., 2023
DOI 10.15588/1607-3274-2023-4-11

This work investigates the effectiveness of
parallelizing the training and prediction algorithm of an
artificial neural network for road lane segmentation across
various devices: processor, graphics processing unit
(GPU), and two GPUs simultaneously. Different
distributed and parallel computing technologies are
considered, including OpenMP [6], CUDA [7], and
PyTorch DDP [8].

The object of this research is the navigation system
of an autonomous vehicle, which encompasses various
contemporary distributed and parallel computing
technologies.

The subject of investigation comprises existing
algorithms utilized for enhancing spatial navigation in
autonomous vehicles, as well as parallel computing
technologies aimed at improving the performance of these
algorithms.

The purpose of this work is to enhance current
navigation algorithms for autonomous vehicles in space
by means of parallel training of artificial neural networks,
and to determine the optimal combination of technologies
and devices to increase speed and enable real-time
decision-making capabilities.

1 PROBLEM STATEMENT

Let 1{(,)}N
train i i iD x y be the training dataset,

where ix denotes the input data and iy denotes the cor-

responding ground truth lane segmentation labels for S

samples, i.e., , 1{ }S
i i s sx x and , 1{ }S

i i s sy y , by analogy

let testD be the test dataset.

Suppose represents the parameters of the artificial
neural network model, C represents the configuration
space, encompassing parameters such as thread counts
and parallel programming methodologies.

The functions (, ,)trainJ D C and (, ,)testJ D C

quantify the optimization criterion for the training and test
dataset, encapsulating metrics that measure the efficiency
of the parallelized algorithm. These metrics include
aspects such as training duration, and prediction error.

In summary, the problem is to determine optimal pa-
rameters of the artificial neural network model and
configuration space C that lead to the most efficient
parallelization of the artificial neural network-based lane
segmentation on test dataset, so that

(, ,) min.testJ D C

2 REVIEW OF THE LITERATURE

During the analysis of scientific papers and sources, a
list of facts that served as the foundation for this research
was identified. The first fact is that artificial intelligence
methods are finding increasing applications in
autonomous vehicles. This is due to their potential to
significantly enhance road safety and make vehicle
control more efficient and comfortable for drivers.
According to a study, the use of autonomous vehicles

with a 50% share can reduce the number of road accidents
by 29% [9]. The second fact is that spatial navigation in
autonomous vehicles relies on a combination of various
technologies, including computer vision and artificial
neural networks [10]. The third fact is that different
parallel computing technologies are employed for training
artificial neural networks [11, 12]. Other navigation
methods for autonomous vehicles that utilize artificial
intelligence include deep learning and image recognition-
based techniques, such as the use of LiDAR sensors and
cameras to gather environment data and create a 3D road
map. This enables the vehicle to determine its location
and identify surrounding objects [10].

Convolutional neural networks are effective when
working with input data like images, including those from
autonomous vehicle cameras [13]. Convolutional
encoder-decoder architectures, on the other hand, are used
to reduce the dimensionality of images and are often
employed for image segmentation tasks [14].

For training neural networks used in autonomous
vehicles, large datasets are required, particularly images
of roads and road markings. One way to increase data
volume is through data augmentation, which involves
applying random transformations to images, such as
scaling and rotation [15]. When using neural networks for
vehicle navigation, factors like changes in lighting and
atmospheric conditions must be considered. To address
this, neural network models with additional layers
responsible for data normalization (Batch Normalization)
and the introduction of random noise to input data can be
used [16]. To combine data from different sensors,
Kalman filters and enhanced versions of these filters can
be employed [17].

In [18], a method for lane boundary detection is pre-
sented, which operates by extracting candidate lane seg-
ments from an image and subsequently selecting the most
prominent lane using dynamic programming. The authors
utilize real road videos for experiments, demonstrating the
effectiveness of their proposed approach. However, this
method is considered outdated and does not account for
factors such as changes in lighting and atmospheric condi-
tions.

In [19], authors propose a hybrid approach based on
Ant Colony Optimization (ACO) for line detection in
images, using the Canny edge detection method and
Hough transform for line extraction. The proposed system
operates quickly but, as noted by the authors, is confi-
dently applicable only on straight roads.

In [20], authors address road scene segmentation for
RGB images using recent advancements in semantic seg-
mentation through convolutional neural networks (CNN)
and convolutional encoder-decoders. They introduce sev-
eral architecture improvements that balance segmentation
quality and computational speed. Experimental results
indicate that their model provides accurate lane predic-
tions in the original image size..

In [21], the authors addressed the problem of lane
detection using an Internet of Things (IoT) system for

112

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Mochurad L. I., Mamchur M. V., 2023
DOI 10.15588/1607-3274-2023-4-11

interaction between different modules, including the car
module, cloud module, and remote car controller. The
method for lane detection and tracking is executed
initially on the car module and then transmitted to the
cloud module for additional processing. The authors
achieved a processing speed of approximately 31 ms per
frame. An explicit drawback of this approach is the
requirement for the car to be within the cellular network
coverage area and have access to the internet, which is not
always guaranteed, particularly on remote highways.

In [22], the authors utilize deep learning to tackle the
lane segmentation problem, employing deep
convolutional neural networks. The system achieves a
respectable accuracy of 96%, but it requires 132 ms for
processing a single frame.

One of the limitations of the previously presented
algorithm and many others analyzed by us is that authors
consider training and operating neural networks on a
single powerful node (video processor) for lane
segmentation, which can significantly limit the speed of
learning and predictions of such networks in real-world
scenarios. Our approach involves multiple independent
nodes with separate video processors for parallel training
and prediction, ensuring greater scalability and speed.
Additionally, our approach utilizes PyTorch DDP
technology for efficient communication and
synchronization between nodes.

In summary, while the literature review reveals
several promising approaches to lane segmentation in
autonomous driving, most of them do not explore multi-
node (video processor) training. Our proposed algorithm,
based on parallel training and prediction on multiple
independent nodes with separate video processors and
PyTorch DDP communication, represents significant
progress in terms of efficiency and scalability.

3 MATERIALS AND METHODS

To solve image processing tasks, CNNs
(Convolutional Neural Networks) are widely used,
including for object segmentation in images [13]. CNN
consists of a sequence of convolutional and pooling
layers, allowing the model to automatically identify
important features of images at different levels.

Convolutional layers perform the convolution
operation, which involves moving filters (of varying sizes
and shapes) over the image to extract different image
features such as edges, corners, textures, and more. The
result of convolution is a feature map that highlights
important regions of the image. Pooling layers reduce the
size of the feature map and retain the most important
features from each region, reducing the number of
network parameters and preventing overfitting. CNNs
leverage internal pixel relationships within the image for
effective object segmentation. Operations of this type
form the basis of convolutional encoders-decoders and
Feature Pyramid Networks (FPN), which are used to
address the lane segmentation task in the present study.

This network was proposed in 2017 with the aim of
improving the object segmentation process in images.
FPN (Feature Pyramid Network) consists of several con-
volutional layers that interact with the object in the image
at different scales [23].

For the segmentation task, a slightly modified version
of the FPN network is used, where each FPN level is
gradually increased using convolutional functions and
bilinear upscaling until it reaches a scale of 1/4. Then,
these outputs are added and finally transformed into pixel-
level output [24]. In general, the use of the FPN network
for segmentation tasks allows for improved accuracy of
results by optimally utilizing features at different scales of
image resolution.

The time complexity of the convolutional encoder-
decoder (FPN network) depends on the size of the input
and output data, as well as the number of layers and filters
in the network. In general, the time complexity can be
expressed as a function of the number of operations re-
quired to process the input data.

Assuming that the convolutional encoder-decoder has
L layers, filters with a size of F F at each layer, and
input data with a size of D D , then the general time
complexity of the algorithm is:

2 2().O N L D F

Due to the fact that for each layer, the input data is

processed by filters of size F F , each of size and this
process is repeated L times (number of layers).

During parallelization using the CPU, the time
complexity decreases proportionally to the number of
physical threads engaged in computing mathematical
operations during training (for example, calculating
activation functions), where / .N N THREADS

During parallelization using a GPU, the time
complexity decreases proportionally to the number of
computational units (CUDA cores) on the graphics
processor and their speed, where / _ .N N GRID SIZE

During parallelization using GPU and additionally
PyTorch DDP, the time complexity decreases
proportionally to the CUDA cores and is further divided
by the number of nodes with video processors used, since
the data (N) is shared among them for processing, where

/ (_ _).N N GRID SIZE N DEVIES

For training the neural network, the PyTorch library
was utilized, which achieves parallelization of the training
process through OpenMP. During the course of the re-
search, the specific directives that were employed and the
manner in which basic operations are parallelized during
training were analyzed, specifically:

– To determine the number of used threads, the func-
tion omp_set _num_ threadsሺሻ is employed;

– The #pragma	omp	parallel	for directive is used

for parallelizing the ReLU activation function;	

113

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Mochurad L. I., Mamchur M. V., 2023
DOI 10.15588/1607-3274-2023-4-11

– The #pragme	omp	parallel	for	schedule static

directive is utilized for parallelizing the loop of the Adam
optimizer;

– The #pragma	omp	parallel directive is applied for

parallelizing the operations of the convolutional layer;
– Matrix multiplication operations (batch_matmul) are

parallelized using the

 #pragma	omp	parallel	for	collapse 2 directive.

Regarding the parallelization of the algorithm using
CUDA technology, in our case, we utilized the CUDA
kernel implementation in PyTorch, which, in turn,
leverages existing NVIDIA solutions such as CUBLAS
and CUDNN.

Since we have a single kernel, PyTorch by default
employs the following values for constructing the grid:

THREADS _PER _BLOCK 	512;

BLOCKS _PER _SM 	4;

As a result of parallelizing the algorithm using CUDA

technology:
– For parallelizing the operations of the convolutional

layer, cudnnConvolutionBackwardFilter was used, which
is a part of CUDNN;

– For parallelizing pooling operations, we utilize
cudnnPoolingForward, which is provided with an array of
tensors;

– For batch normalization, we employ cudnnBatch-
NormalizationForward and cudnnBatchNormalization-
Backward.

The PyTorch DistributedDataParallel (DDP) technol-
ogy allows distributing computations across multiple de-
vices, such as servers or GPUs, to accelerate the training
speed of models. PyTorch DDP employs an asynchronous
approach to data and computation distribution among
devices. It utilizes collective communication mechanisms,
enabling each device to exchange data with others in the
group. Additionally, PyTorch DDP ensures automatic
parameter synchronization among devices during training.
With PyTorch DDP, computations can be distributed
across multiple servers or nodes, thereby enhancing com-

putational power and reducing model training time.
Moreover, PyTorch DDP supports automatic scaling of
computational resources based on demand, facilitating
efficient utilization of limited resources. DDP follows the
CUDA algorithm, with the only difference being that the
dataset is evenly split between two nodes, and the weights
are synchronized using gradient aggregation at the end of
each epoch, resulting in a 2x acceleration.

In the process of training machine learning models,
input data plays a significant role. The quality and quan-
tity of data can impact the accuracy and performance of
the model. Therefore, it is crucial to properly select and
prepare input data for model training.

One of the most popular applications for creating
datasets for autonomous driving models is the CARLA
Simulator [25]. This open-source software allows simulat-
ing urban traffic and autonomous vehicles. CARLA en-
ables the creation of diverse scenarios for model training
and testing, including simulations of various weather con-
ditions, road traffic, pedestrian behavior, and other objects
on the road.

The dataset created using the CARLA Simulator con-
sists of images of road lanes with markings and other road
elements. Each image is sized 1024x512 pixels and is
presented in color. The total size of the dataset is
2.05 GB.

The images for training are captured by a camera
mounted on a simulated vehicle. The annotated images
provide segmentation masks. Each pixel in the annotated
image is classified as:

– part of the left lane boundary;
– part of the right lane boundary;
– none of the above (background).
The dataset was intentionally divided into a training

and validation set: 3075 images for training and 129 for
validation, along with 3075 and 129 corresponding mask
images, respectively.

The challenge associated with this dataset is to train
the model to accurately predict the segmentation masks
for the validation dataset (see Fig. 1).

a b

Figure 1 – The example of training samples:
a – original image; b – corresponding image-mask

114

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Mochurad L. I., Mamchur M. V., 2023
DOI 10.15588/1607-3274-2023-4-11

Data augmentation can be used to increase the amount
of training data and improve the quality of the model [26].
For example, images can be altered using techniques such
as cropping, different positioning, color adjustments,
resizing, and other transformations. Data augmentation
can be particularly useful when working with limited
data. In cases where the dataset lacks sufficient data for a
specific task, augmentation can create new data by
manipulating existing examples. This can help prevent
overfitting, provide a more diverse dataset, and enhance
the model’s generalization ability.

One tool for data augmentation is the Python library
“imgaug”. It offers a variety of functions for image
transformations, including rotation, scaling, color
changes, noise addition, and more. Additionally, there are
other libraries and tools available for data augmentation
that can be used to enhance the quality of both data and
machine learning models.

The developed algorithm performs data augmentation
before training the network to enhance the accuracy of
network training (an example of this is illustrated in
Figure 2). The operations used in this sequence are as
follows:

– ShiftScaleRotate: shifts, scales, and rotates the
image with random parameters.

– IAAAdditiveGaussianNoise: adds Gaussian noise
to the image with a probability of 0.2.

– CLAHE: applies the Contrast Limited Adaptive
Histogram Equalization algorithm to enhance image
contrast.

– RandomBrightness: changes the brightness of the
image by a random amount.

– RandomGamma: adjusts the gamma of the image
to a random value.

– IAASharpen: sharpens the image.
– Blur: applies blurring to the image to reduce

sharpness.
– MotionBlur: adds motion blur to the image.
– RandomContrast: changes the contrast of the

image by a random amount.
– HueSaturationValue: changes the hue and

saturation of the image to random values.
After applying this sequence of operations, the images

will slightly differ from each other, which allowed us to
improve the model’s performance on the validation data-
set.

Step-by-Step Description of the Proposed Algorithm:
1. Import necessary libraries.

Figure 2 – Resulting augmented input image (left) and corresponding masks (right)

115

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Mochurad L. I., Mamchur M. V., 2023
DOI 10.15588/1607-3274-2023-4-11

2. Declare the class CarlaLanesDataset with methods
`__init__`, `__getitem__`, and `__len__`, which will be
used to retrieve and preprocess the data.

3. Load the dataset into memory (training and
validation sets).

4. Declare methods get_training_augmentation,
get_validation_augmentation, and get_preprocessing to
define transformations for data augmentation and
preprocessing.

5. Apply augmentation to the loaded training dataset.
6. Initialize the artificial neural network model object.
7. Initialize the loss function and optimizer objects.
8. Parallel execution of the training process:
– On CPU using OpenMP technology.
– On GPU using CUDA technology.
– On multiple GPUs using CUDA technology and

PyTorch DDP.
9. Validate on the testing dataset.
Next step taken is to calculate the theoretical

acceleration and efficiency metrics for parallel algorithms
using different numbers of threads when parallel
computations are performed on the CPU. Additionally,
we calculated the acceleration metrics for parallel
algorithms on the GPU. To compute these metrics, we
used the following formulas:

1()
() ,

()
p

p

T N
S N

T N
 (1)

()
() . p

p
S N

E N
p

 (2)

Here, Equation (1) is used to calculate the speedup,
and Equation (2) – the efficiency.

First, let’s perform a theoretical speedup estimation
for various numbers of processors used for training the
neural network. It should be noted that calculating the
theoretical speedup for training a model on the GPU is
analytically impossible since the number of graphic cores
used during training is unknown.

2 2
1

2
2 22

(3075) (3075)
() 2,

3075(3075)
2

T O L D F
S N

T
O L D F

2 2
1

4
2 24

(3075) (3075)
() 4,

3075(3075)
4

T O L D F
S N

T
O L D F

2 2
1

8
2 28

(3075) (3075)
() 8.

3075(3075)
8

T O L D F
S N

T
O L D F

Let’s derive the theoretical estimates of efficiency:

2
2

()
() 1,

2

S N
E N

4
4

()
() 1,

4

S N
E N

8
8

()
() 1.

8

S N
E N

It should be noted that the provided estimates apply to
a system with p processor (core) computational units.

4 EXPERIMENTS
During the research, the training of the neural network

was conducted on a CPU using the OpenMP technology.
For this purpose, a computer with an Intel(R) Xeon(R)
CPU @ 2.20GHz processor with 2 cores and 4 threads
was utilized. The network training was carried out over 5
epochs.

Parallelization was achieved through the inter-op
functionality of OpenMP – a specific thread pool is
allocated for performing individual tasks, such as
processing one of the input parameters. Inter-op allows us
to handle micro-operations like pooling, batch operations,
or matrix multiplication by dividing sub-tasks among
threads. As a result of inter-op, the tasks of an iteration
are synchronized, marking its completion.

The results of training the neural network on the CPU
using OpenMP technology revealed a test dataset
accuracy of approximately 96%. The network’s prediction
results are depicted in Fig. 3.

Figure 3 – The prediction results of the trained neural network. The first column displays images from the test dataset, the middle

column shows the corresponding ground truth lane masks, and the left column presents the predicted lane masks

116

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Mochurad L. I., Mamchur M. V., 2023
DOI 10.15588/1607-3274-2023-4-11

The training algorithm was also parallelized on GPU
using CUDA technology. Specifically, the network
training was conducted on an NVIDIA T4 graphics card,
a professional GPU released in 2018 designed for high-
performance computing and artificial intelligence
applications. It is built on the Nvidia Turing architecture
and boasts 2560 CUDA cores, enabling it to handle large
datasets and perform tasks such as deep learning and
machine learning with high precision. The GPU comes
equipped with 16 gigabytes of fast video memory.

PyTorch leverages pre-existing NVIDIA cores along
with CUBLAS and CUDNN frameworks. These cores
receive requests for executing intra-op tasks from
CUBLAS and inter-op tasks from the CUDNN
framework, and then perform these operations using
available CUDA cores.

By utilizing PyTorch DDP technology, we were able
to utilize a second device with a similar GPU module,
effectively harnessing a total of 5120 CUDA cores for
training. This parallel execution approach not only allows
us to combine different GPUs but also avoids being
restricted to a single physical device [27], which might
limit the number of GPUs that can be attached. This
approach enables us to scale the network to any desired
size. The primary device serves as a synchronization
point, while other nodes are launched with specified IP
addresses, and they receive work ranges and necessary
computation data from the controlling device to perform
calculations.

5 RESULTS

In Table 1, we will present the time costs of sequential
and parallel implementations on CPU using OpenMP
technology, on GPU with CUDA, and on GPU with

PyTorch DDP technology. The results of Table 1 are also
visualized in Fig. 4.

Table 1 – Training Time of Neural Network on CPU, Single

GPU, and Dual GPUs (in minutes)

CPU + OpenMP Sequential
excution

2 4 8

GPU +
CUDA

2xGPU +
DDP

333.5 144 123.6 144.6 9.1 4.8

From Table 1 and Figure 4, it is evident that the

results of multi-threaded training demonstrate that
increasing the number of threads up to 4 leads to
improved performance, followed by a decline at 8 threads.
Transitioning from 1 to 2 threads doubles the speed due to
the presence of only 2 physical cores, indicating the
validity of the obtained results. Moving from 2 to 4
threads results in a slight speed increase since the number
of physical cores remains the same, but the logical cores
provide additional cache memory for the threads.
However, utilizing 8 threads depletes the available cache
memory, prompting the processor to reload data to allow
both threads to share a cache memory, resulting in cache
miss penalties.

6 DISCUSSION

Considering the achieved speedup through the use of
OpenMP technology, it can be concluded that employing
OpenMP for neural network training on CPU is an
effective method to reduce training time, especially in
cases where GPU usage is not feasible.

Training the neural network using GPU is 36.6 times
more efficient than sequential CPU training and 14 times
more efficient than CPU training with 4 threads. With two
GPUs, the training time per epoch is reduced to 4.8

Figure 4 – Comparative diagram illustrating the training time dependency of a neural network on CPU with the involvement of
threads, on a single GPU, and on two GPUs

117

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Mochurad L. I., Mamchur M. V., 2023
DOI 10.15588/1607-3274-2023-4-11

minutes, which is 1.86 times more efficient compared to
using a single GPU. However, the acceleration is not
precisely twofold, as each device has independent video
memory, and we need to synchronize training results
between the devices in our local network of compute
nodes after each epoch, which consumes some time.

Table 2 – Actual acceleration metrics of the parallel algorithm
depending on the number of utilized threads on CPU, as well as
the parallel algorithm on GPU and on two GPUs simultaneously

CPU, number of threads

2 4 8

GPU 2xGPU

2.33 2.69 2.31 36.6 69.5

From Table 2, we observe that we achieved higher
acceleration metrics for two threads compared to the
theoretical values, which is due to the specifics of the
Linux kernel scheduler prioritizing tasks with multiple
active threads, thereby resulting in a single-threaded
program having significantly lower computational speed
than expected.

Since the process with one thread resulted in reduced
performance, parallel execution with two threads yielded
higher acceleration metrics.

When transitioning from 2 to 4 threads, the efficiency
growth is marginal, as the number of physical cores
remains unchanged, but the logical cores provide
additional cache memory for threads.

With the utilization of 8 threads, the available cache
memory is exhausted, prompting the processor to reload
data to allow both threads to use the same cache memory,
resulting in cache miss penalties.

Consequently, training the neural network using DDP
is 69.5 times more efficient than sequential CPU training
and 25.8 times more efficient than CPU training with 4
threads. Furthermore, it is 1.86 times more efficient than
training with a single GPU.

Table 3 – Actual efficiency metrics of the parallel algorithm

depending on the number of threads used on CPU
Number of threads

2 4 8

1.16 0.67 0.29

Analyzing the results of Table 3, it can be observed

that the actual efficiency metrics do not align with the
theoretical ones. This discrepancy arises from the fact that
the considered CPU has only 2 physical cores, but 4
logical cores provide additional cache memory for
threads. However, as the number of threads increases to 8,
the overhead of supporting these threads becomes
predominant. Hence, the obtained results are reliable.

CONCLUSIONS
The paper analyzes contemporary approaches and

methods for solving the problem of road lane
segmentation to localize vehicles. During the analysis of
scientific articles and sources, a list of facts was identified
upon which this research is based.

It has been found that the utilization of modern
parallel and distributed computing technologies on both
CPU and GPU can significantly reduce the training time
of neural networks for addressing the problem outlined in
this study.

The scientific novelty of the obtained results lies in
the introduction of a parallel algorithm for solving the
road lane segmentation task using multiple GPUs with
CUDA technology and PyTorch DDP. It has been
established that the use of DDP expands computational
capabilities by adding new independent nodes that can
utilize both GPUs and CPUs. Therefore, this technology
allows bypassing the limitations of calculations on a
single device and achieving acceleration by orders of
magnitude, sacrificing time only for exchanging
intermediate training results between nodes.

In this work, based on the proposed algorithm, it was
possible to achieve approximately a 90% increase in
acceleration when using training on two nodes with
NVIDIA T4 GPUs compared to one node. This is around
25 times faster compared to using the OpenMP
technology for multi-core computer systems.

Furthermore, it was found that the time required for
lane prediction for a single road frame by the model
reached 19 ms, which is 1.63 times faster than in [20] and
6 times faster than in [21].

The algorithm employed in this study enabled
achieving an accuracy of 96%, which is similar to [22].
However, it can be confidently stated that without
compromising accuracy, significant acceleration of
solving the road lane segmentation task for vehicle
localization was achieved, specifically by a factor of 7.

The practical significance of the obtained results lies
in the development of software that implements the
proposed algorithm, as well as conducting a series of
numerical experiments aimed at comparing the use of
modern distributed and parallel computing technologies
for autonomous vehicle navigation. The findings of this
research can have a positive impact on road safety, cost-
effectiveness, environmental friendliness, and
transportation accessibility. Furthermore, they can
contribute to the advancement of smart cities, integration
of transportation systems, and enhance the
competitiveness of automotive manufacturers. This
research can also provide insights into the most efficient
hardware and software tools to employ for implementing
AI-based navigation systems in autonomous vehicles,
depending on the situation [28].

The prospects for further research involve exploring
the proposed parallel algorithm for a wide range of
practical tasks.

118

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Mochurad L. I., Mamchur M. V., 2023
DOI 10.15588/1607-3274-2023-4-11

REFERENCES
1. Varsi A., Taylory J., Kekempanosz L., Pyzer-Knapp E.,

Maskell S. A Fast Parallel Particle Filter for Shared Memory
Systems, IEEE Signal Process. Lett, 2020, Vol. 27,
pp. 1570–1574.

2. Huang K., Cao J. Parallel Differential Evolutionary Particle
Filtering Algorithm Based on the CUDA Unfolding Cycle,
Wireless Communications and Mobile Computing, 2021,
Vol. 2021, pp. 1–12.

3. Kretzschmar H., Kuderer M., Burgard W. Learning to pre-
dict trajectories of cooperatively navigating agents, 2014
IEEE International Conference on Robotics and Automation
(ICRA). Hong Kong, China, 2014, pp. 4015–4020.

4. Wang P., Yang J., Zhang Y., Wang Q., Sun B., Guo D. Ob-
stacle-Avoidance Path-Planning Algorithm for Autonomous
Vehicles Based on B-Spline Algorithm, World Electr. Veh.
J, 2022, Vol. 13, №12:233, pp. 1–15.

5. Xu L., Ouyang Y., Ford J., Banerjee S., Chen M. Real-time
3D traffic scene understanding from moving vehicles, IEEE
Transactions on Intelligent Transportation Systems, 2018,
Vol. 19, № 9, pp. 2827–2838.

6. Mochurad L. Optimization of Regression Analysis by
Conducting Parallel Calculations, COLINS-2021: 5th Inter-
national Conference on Computational Linguistics and In-
telligent Systems. Kharkiv, Ukraine, 22–23 April, 2021,
pp. 982–996.

7. Mochurad L. Canny Edge Detection Analysis Based on
Parallel Algorithm, Constructed Complexity Scale and
CUDA, Computing and Informatics, 2022, Vol. 41, № 4,
pp. 957–980.

8. Li Sh., Zhao Yanli, Varma Rohan, Salpekar Om-
kar, Noordhuis Pieter, Li Teng, Paszke Adam, Smith Jeff,
Vaughan Brian, Damania Pritam, Chintala Soumith
PyTorch Distributed: Experiences on Accelerating Data
Parallel Training, Proceedings of the VLDB Endowment,
2020, Vol. 13, № 12, pp. 3005–3018.

9. Petrović Đ., Mijailovic R., Pešić D. Traffic Accidents with
Autonomous Vehicles: Type of Collisions, Manoeuvres and
Errors of Conventional Vehicles’ Drivers, Transportation
Research Procedia, 2020, Vol. 45, pp. 161–168.

10. Haris M., Glowacz A. Navigating an Automated Driving
Vehicle via the Early Fusion of Multi-Modality, Sensors,
2022, Vol. 22, № 4, pp. 1–18.

11. Hoffmann R. B., Löff J. , Griebler D. et al. OpenMP as run-
time for providing high-level stream parallelism on multi-
cores, J. Supercomput, 2022, Vol. 78, pp. 7655–7676.

12. Sierra-Canto X. Madera-Ramirez F., V. Uc-Cetina//Parallel
Training of a Back-Propagation Neural Network Using
CUDA, Ninth International Conference on Machine
Learning and Applications. Washington, DC, USA, IEEE,
2010, pp. 307–312.

13. Sewak M., Karim Md. R., Pujari P. Implement advanced
deep learning models using Python. Practical convolutional
neural networks. Birmingam-Mumbai:Packt Publishing,
2018, 218 p.

14. Badrinarayanan V., Kendall A., Cipolla R. SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image
Segmentation, in IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2017, Vol. 39, № 12, pp. 2481–
2495.

15. Shijie J., Ping W., Peiyi J. and Siping H. Research on data
augmentation for image classification based on convolution
neural networks, 2017 Chinese Automation Congress
(CAC). Jinan, China, IEEE, 2017, pp. 4165–4170.

16. Bjorck N. Gomes Carla P, Bart Selman, and Kilian Q
Weinberger Understanding batch normalization, In Ad-
vances in Neural Information Processing Systems: 32nd
Conference on Neural Information Processing Systems
(NeurIPS 2018). Montréal, Canada, 2018, pp. 7694–7705.

17. Chen J., Chen K., Ding C., Wang G., Liu Q. and Liu X. An
Adaptive Kalman Filtering Approach to Sensing and Pre-
dicting Air Quality Index Values, in IEEE Access, 2020,
Vol. 8, pp. 4265–4272.

18. Kang D.-J. Jung M.-H. Road lane segmentation using dy-
namic programming for active safety vehicles, Pattern Rec-
ognition Letters, 2003, Vol. 24, Issue 16, pp. 3177–3185.

19. Daigavane P. M., Bajaj P. R. Road Lane Detection with
Improved Canny Edges Using Ant Colony Optimization,
3rd International Conference on Emerging Trends in
Engineering and Technology. Goa, India, 2010, pp. 76–80.

20. Oliveira G. L., Burgard W., Brox T. Efficient deep models
for monocular road segmentation, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).
Daejeon, Korea (South), 2016, pp. 4885–4891.

21. Ghanem S., Kanungo P., Panda G. et al. Lane detection
under artificial colored light in tunnels and on highways: an
IoT-based framework for smart city infrastructure, Complex
Intell. Syst., 2023, Vol. 9, pp. 3601–3612.

22. Kortli Ya., Gabsi Souhir, Lew F. C., Lew Ya. V., Jridi M.,
Merzougui M., Atri M. Deep embedded hybrid CNN-LSTM
network for lane detection on NVIDIA Jetson Xavier NX,
Knowledge-Based Systems, 2022, Vol. 240, pp. 1–33.

23. Hu M., Li Y., Fang L., Wang S. A2-FPN: Attention Aggre-
gation Based Feature Pyramid Network for Instance Seg-
mentation, Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021,
pp. 15343–15352.

24. Zapata M.A.D., Erkent Ö., Laugier Ch. YOLO-based Pan-
optic Segmentation Network, COMPSAC 2021 – Intelligent
and Resilient Computing for a Collaborative World 45th
Anniversary Conference. Madrid, Spain, Jul 2021, pp. 1–5.

25. Gómez-Huélamo C., Del Egido J., Bergasa L. M. et al. Train
here, drive there: ROS based end-to-end autonomous-
driving pipeline validation in CARLA simulator using the
NHTSA typology, Multimed Tools Appl., 2022, Vol. 81,
pp. 4213–4240.

26. Kostrikov I., Yarats D., Fergus R.. Image augmentation is
all you need: Regularizing deep reinforcement learning from
pixels [Electronic resource]. Access mode:
https://arxiv.org/abs/2004.13649.

27. Li Sh. et al. Pytorch distributed: Experiences on accelerating
data parallel training [Electronic resource]. Access mode:
https://arxiv.org/abs/2006.15704.

28. Severino A., Curto S., Barberi S., Arena F., Pau G.
Autonomous Vehicles: An Analysis Both on Their Distinct-
iveness and the Potential Impact on Urban Transport Sys-
tems, Appl. Sci., 2021, Vol. 11, № 8:3604, pp. 1–17.

Received 18.08.2023.
Accepted 21.11.2023.

119

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Mochurad L. I., Mamchur M. V., 2023
DOI 10.15588/1607-3274-2023-4-11

УДК 519.6

ТЕХНОЛОГІЇ ПАРАЛЕЛЬНИХ І РОЗПОДІЛЕНИХ ОБЧИСЛЕНЬ ДЛЯ АВТОНОМНОЇ НАВІГАЦІЇ
ТРАНСПОРТНИХ ЗАСОБІВ

Мочурад Л. І. – канд. техн. наук, доцент, доцент кафедри систем штучного інтелекту національного університету

«Львівська політехніка», Львів, Україна.
Мамчур М. В. – студент кафедри систем штучного інтелекту національного університету «Львівська політехніка»,

Львів, Україна.

AНОТАЦІЯ
Актуальність. Автономні автомобілі стають все більш популярними і одним з важливих сучасних завдань розробки та-

ких автомобілів є забезпечення ефективної навігації останніх у просторі та їх руху у своїй виділеній проїзній смузі. У даній
роботі розглянуто метод орієнтування у просторі автомобіля за допомогою комп’ютерного зору та штучних нейронних ме-
реж. Об’єктом дослідження була система навігації автономного автомобіля, що включає в себе використання сучасних тех-
нологій розподілених та паралельних обчислень.

Мета роботи – вдосконалення сучасних алгоритмів навігації автономного автомобіля у просторі на основі паралельного
навчання штучних нейронних мереж та визначення найоптимальнішої комбінації технологій та пристроїв для збільшення
швидкості та можливості отримання рішення в режимі реального часу.

Метод. У роботі встановлено, що використання комп’ютерного зору та нейронних мереж для сегментації смуги дорож-
нього руху є ефективним методом орієнтації автономного автомобіля у просторі. При цьому для багатоядерних обчислюва-
льних систем застосування технології паралельного програмування OpenMP для тренування нейронної мережі на процесорі
з різним числом паралельних потоків збільшує швидкість виконання алгоритму. Проте використання технології CUDA для
навчання нейронної мережі на відеопроцесорі дозволило значно збільшити швидкість передбачень в порівнянні з OpenMP.
Також досліджено можливість використання технології PyTorch DDP для навчання нейронної мережі на декількох відеоп-
роцесорах (вузлах) одночасно, що , в свою чергу, ще більш покращило час виконання передбачень в порівнянні з викорис-
танням одного відеопроцесора.

Результати. Розроблено алгоритм навчання та передбачення штучної нейронної мережі на двох незалежних вузлах з
окремими відеопроцесорами та їх синхронізацією задля обміну результатами навчання після кожної епохи із використанням
технології PyTorch DDP, що дозволяє масштабувати розрахунки при наявності більшої кількості потужностей і значно при-
швидшити навчання моделі.

Висновки. Проведені експерименти підтвердили ефективність запропонованого алгоритму і дозволяють рекомендувати
дане дослідження для подальшого розвитку автономних автомобілів та покращення їх навігаційних можливостей. Зокрема
результати дослідження можуть знайти застосування у різних сферах, включаючи автомобільну транспортну промисловість,
логістику та транспортну інфраструктуру міст. Отримані результати повинні допомогти наступним дослідникам зрозуміти,
які апаратні та програмні засоби найефективніше використовувати для реалізації навігаційних систем на основі штучного
інтелекту в автономних автомобілях. Перспективами подальших досліджень може бути покращення точності запропонова-
ного паралельного алгоритму не погіршуючи показників ефективності, а також експериментальне дослідження запропоно-
ваного алгоритму на більш складних практичних задачах різної природи та розмірності.

КЛЮЧОВІ СЛОВА: комп’ютерний зір, нейронні мережі, методи навігації, технологія CUDA, технології PyTorch DDP.

ЛІТЕРАТУРА
1. A Fast Parallel Particle Filter for Shared Memory Systems /

A. Varsi, J. Taylory, L. Kekempanosz et al.] // IEEE Signal
Process. Lett. – 2020. –Vol. 27. – P. 1570–1574.

2. Huang K. Parallel Differential Evolutionary Particle
Filtering Algorithm Based on the CUDA Unfolding Cycle /
K. Huang, J. Cao // Wireless Communications and Mobile
Computing. – 2021. – Vol. 2021. – P. 1–12.

3. Kretzschmar H. Learning to predict trajectories of coopera-
tively navigating agents / H. Kretzschmar, M. Kuderer,
W. Burgard // 2014 IEEE International Conference on Ro-
botics and Automation (ICRA). – Hong Kong, China,
2014. – P. 4015–4020.

4. Obstacle-Avoidance Path-Planning Algorithm for Autono-
mous Vehicles Based on B-Spline Algorithm / [P. Wang,
J. Yang, Y. Zhang et al.] // World Electr. Veh. J. – 2022. –
Vol. 13, №12:233. – Р. 1–15.

5. Real-time 3D traffic scene understanding from moving ve-
hicles / [L. Xu, Y. Ouyang, J. Ford et al.] // IEEE Transac-
tions on Intelligent Transportation Systems. – 2018. –
Vol. 19, № 9. – P. 2827–2838.

6. Mochurad L. Optimization of Regression Analysis by Con-
ducting Parallel Calculations / L. Mochurad // COLINS-

2021: 5th International Conference on Computational Lin-
guistics and Intelligent Systems. – Kharkiv, Ukraine, 22–23
April, 2021. – P. 982–996.

7. Mochurad L. Canny Edge Detection Analysis Based on
Parallel Algorithm, Constructed Complexity Scale and
CUDA / L. Mochurad // Computing and Informatics. –
2022. – Vol. 41, № 4. – P. 957–980.

8. Li Sh. PyTorch Distributed: Experiences on Accelerating
Data Parallel Training / [Shen Li, Yanli Zhao, Rohan Varma
et al.] // Proceedings of the VLDB Endowment, 2020. –
Vol. 13, № 12. – P. 3005–3018.

9. Petrović Đ. Traffic Accidents with Autonomous Vehicles:
Type of Collisions, Manoeuvres and Errors of Conventional
Vehicles’ Drivers / Đ. Petrović, R. Mijailovic, D. Pešić //
Transportation Research Procedia. – 2020. – Vol. 45. –
P. 161–168.

10. Haris M. Navigating an Automated Driving Vehicle via the
Early Fusion of Multi-Modality / M. Haris, A. Glowacz //
Sensors. – 2022. – Vol. 22, № 4. – P. 1–18.

11. Hoffmann R. B. OpenMP as runtime for providing high-
level stream parallelism on multi-cores / R. B. Hoffmann,
J. Löff, D. Griebler et al. // J. Supercomput. – 2022. –
Vol. 78. – P. 7655–7676.

120

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Mochurad L. I., Mamchur M. V., 2023
DOI 10.15588/1607-3274-2023-4-11

12. Sierra-Canto X. Parallel Training of a Back-Propagation
Neural Network Using CUDA / X. Sierra-Canto, F. Madera-
Ramirez, V. Uc-Cetina// Ninth International Conference on
Machine Learning and Applications. – Washington, DC,
USA:IEEE, 2010. – P. 307–312.

13. Sewak M. Implement advanced deep learning models using
Python / M. Sewak, Md. R. Karim, P. Pujari // Practical
convolutional neural networks. – Birmingam-Mumbai :
Packt Publishing, 2018. – 218 p.

14. Badrinarayanan V. SegNet: A Deep Convolutional Encoder-
Decoder Architecture for Image Segmentation / V. Badrina-
rayanan, A. Kendall, R. Cipolla // in IEEE Transactions on
Pattern Analysis and Machine Intelligence. – 2017. –
Vol. 39, № 12. – P. 2481–2495.

15. Shijie J. Research on data augmentation for image classifi-
cation based on convolution neural networks / J. Shijie,
W. Ping, J. Peiyi and H. Siping // 2017 Chinese Automation
Congress (CAC). – Jinan, China : IEEE, 2017. – P. 4165–
4170.

16. Bjorck N. Understanding batch normalization / Nils Bjorck,
Carla P Gomes, Bart Selman, and Kilian Q Weinberger // In
Advances in Neural Information Processing Systems: 32nd
Conference on Neural Information Processing Systems
(NeurIPS 2018), Montréal, Canada, 2018. – P. 7694–7705.

17. An Adaptive Kalman Filtering Approach to Sensing and
Predicting Air Quality Index Values / J. Chen, K. Chen, C.
Ding et al.] // in IEEE Access. – 2020. – Vol. 8. – P. 4265–
4272.

18. Kang D.-J. Road lane segmentation using dynamic pro-
gramming for active safety vehicles / Dong-Joong Kang and
Mun-Ho Jung // Pattern Recognition Letters. – 2003. –
Vol. 24, Issue 16. – P. 3177–3185.

19. Daigavane P. M. Road Lane Detection with Improved
Canny Edges Using Ant Colony Optimization / P. M. Dai-
gavane, P. R. Bajaj // 3rd International Conference on
Emerging Trends in Engineering and Technology. – Goa,
India, 2010. – P. 76–80.

20. Oliveira G. L. Efficient deep models for monocular road
segmentation / G. L. Oliveira, W. Burgard, T. Brox //

IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). – Daejeon, Korea (South), 2016. –
P. 4885–4891.

21. Lane detection under artificial colored light in tunnels and
on highways: an IoT-based framework for smart city infra-
structure / [S. Ghanem, P. Kanungo, G. Panda et al.] //
Complex Intell. Syst. – 2023. – Vol. 9, 2023. – P. 3601–
3612.

22. Kortli Ya. Deep embedded hybrid CNN–LSTM network for
lane detection on NVIDIA Jetson Xavier NX / [Yassin
Kortli, Souhir Gabsi, Lew F. C. et al.], // Knowledge-Based
Systems. – 2022. – Vol. 240. – P. 1–33.

23. A2-FPN: Attention Aggregation Based Feature Pyramid
Network for Instance Segmentation / [Miao Hu, Yali Li, Lu
Fang, Shengjin Wang] // Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR). – 2021. – P. 15343–15352.

24. Zapata M.A.D., Erkent Ö., Laugier Ch. YOLO-based Pan-
optic Segmentation Network / Manuel Alejandro Diaz Za-
pata, Özgür Erkent, Christian Laugier // COMPSAC 2021 –
Intelligent and Resilient Computing for a Collaborative
World 45th Anniversary Conference. – Madrid, Spain, Jul
2021. – P. 1–5.

25. Train here, drive there: ROS based end-to-end autonomous-
driving pipeline validation in CARLA simulator using the
NHTSA typology / [C. Gómez-Huélamo, J. Del Egido,
L. M. Bergasa et al.] // Multimed Tools Appl. – 2022. –
Vol. 81. – P. 4213–4240.

26. Kostrikov I. Image augmentation is all you need: Regulariz-
ing deep reinforcement learning from pixels / I. Kostrikov,
D. Yarats, R. Fergus // arXiv preprint arXiv:2004.13649. –
2020. – P. 1–22.

27. Li Sh. Pytorch distributed: Experiences on accelerating data
parallel training / Shen Li et al. // arXiv preprint
arXiv:2006.15704. – 2020. – P. 1–14.

28. Severino A. Autonomous Vehicles: An Analysis Both on
Their Distinctiveness and the Potential Impact on Urban
Transport Systems / [A. Severino, S. Curto, S. Barberi et al.]
// Appl. Sci. – 2021. – Vol. 11, № 8:3604. – P. 1–17.

121

