
p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-4-13

ПРОГРЕСИВНІ ІНФОРМАЦІЙНІ
ТЕХНОЛОГІЇ

PROGRESSIVE INFORMATION
TECHNOLOGIES

UDC 004.94 : 004.2

SYNTHESIS OF VHDL-MODEL OF A FINITE STATE MACHINE
WITH DATAPATH OF TRANSITIONS

Barkalov A. A. – Dr. Sc., Professor, Professor of Institute of Computer Science and Electronics, University of
Zielona Gora, Zielona Gora, Poland.

Titarenko L. A. – Dr. Sc., Professor, Professor of Institute of Computer Science and Electronics, University of
Zielona Gora, Zielona Gora, Poland.

Babakov R. M. – Dr. Sc., Associate Professor, Professor of Department of Information Technologies, Vasyl Stus
Donetsk National University, Vinnytsia, Ukraine.

ABSTRACT
Context. The problem of building a program model of a finite state machine with datapath of transitions using VHDL language

is considered. The model synthesis process is identified with the synthesis of this type of finite state machine, since the built model
can be used both for the analysis of the device’s behavior and for the synthesis of its logic circuit in the FPGA basis. The object of
the research is the automated synthesis of the logic circuit of the finite state machine with the datapath of transitions, based on the
results of which numerical characteristics of the hardware expenses for the implementation of the state machine circuit can be ob-
tained. This makes it possible to evaluate the effectiveness of using this structure of the finite state machine when implementing a
given control algorithm.

Objective. Development and research of a VHDL model of a finite state machine with datapath of transitions for the analysis of
the behavior of the state machine and the quantitative assessment of hardware expenses in its logic circuit.

Method. The research is based on the structural diagram of a finite state machine with datapath of transitions. The synthesis of
individual blocks of the structure of the state machine is carried out according to a certain procedure by the given graph-scheme of
the con-trol algorithm. It is proposed to present the result of the synthesis in the form of a VHDL description based on the fixed val-
ues of the states codes of the state machine. The process of synthesizing the datapath of transitions, the block of formation of codes
of transitions operations and the block of formation of microoperations is demonstrated. VHDL description of that blocks is carried
out in a synthesizable style, which allows synthesis of the logic circuit of the finite state machine based on FPGA with the help of
modern CAD and obtaining numerical characteristics of the circuit, in particular, the value of hardware expenses. To analyze the
correctness of the synthesized circuit, the process of developing the behavioral component of the VHDL model, the function of
which is the generation of input signals of the finite state machine, is considered. The classical combination of the synthesizable and
behavioral parts of the model allows presenting the results of the synthesis of a finite state machine with datapath of transitions as a
separate project that can be used as a structural component of the designed digital system.

Results. Using the example of an abstract graph-scheme of the control algorithm, a VHDL model of a finite state machine with
datapath of transitions was developed. With the help of CAD AMD Vivado, a synthesis of the developed model was carried out and
behavioral modeling of the operation of the finite state machine circuit was carried out. The results of the circuit synthesis made it
possible to obtain the value of hardware expenses when implementing the circuit in the FPGA basis. According to the results of be-
havioral modeling, time diagrams were obtained, which testify to the correctness of the implementation of the functions of transitions
and outputs of the synthesized state machine.

Conclusions. In traditional VHDL models of finite state machines, the states do not contain specific codes and are identified us-
ing literals. This allows CAD to encode states at its own discretion. However, this approach is not suitable for describing a finite state
machine with datapath of transitions. The transformation of states codes using a set of arithmetic and logic operations requires the
use of fixed values of states codes, which determines the specifics of the VHDL model proposed in this paper. This and similar mod-
els can be used, in particular, in the study of the effectiveness of a finite state machine according to the criterion of hardware ex-
penses in the device circuit.

KEYWORDS: finite state machine, datapath of transitions, VHDL model, hardware expenses, AMD Vivado CAD.

ABBREVIATIONS
CPLD is a complex programmable logic device;
FSM is a finite state machine;
DT is a datapath of transitions;
GSA is a graph-scheme of algorithm;
LUT is a look-up table;
TO – transitions operation.

NOMENCLATURE
A, X, Y – sets of FSM states, logical conditions and

microoperations accordingly;
M, L, N – number of FSM states, logical conditions

and microoperations accordingly;
R – bit depth of state code;
B – number of FSM transitions;

135

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-4-13

O – set of transitions operations;
I – number of transitions operations;
RW – bit depth of code of transitions operation;
am, K1(am), K2(am) – current state and its scalar and

vector codes;
as, K1(as), K2(as) – transition state and its scalar and

vector codes;
Xh – logical conditions that ensure the transition h;
Yh – microoperations formed during the transition h;
Dh – signals of code of transition state;
Wh – signals of code of transitions operations.

INTRODUCTION
Digital systems are widely used in human activity [1].

One of the central units of a digital systems is a control
unit that coordinates the functioning of all system compo-
nents [2, 3]. The control unit can be implemented in the
form of a finite state machine (FSM), in which the control
algorithm is implemented schematically [4, 5]. FSM can
be implemented in the form of a Mealy FSM model or a
Moore FSM model [2–5]. In comparison with other
classes of control units, the FSM is characterized by
maximum speed and maximum hardware expenses [2, 3].
Higher hardware expenses worsen such characteristics of
the FSM circuit as cost, dimensions, energy consumption,
reliability [6]. Therefore, the task of reducing hardware
expenses in the finite state machine circuit is an important
scientific and practical problem, forming a corresponding
scientific direction [1–7].

One of the FSM types is a finite state machine with
datapath of transitions (FSM with DT). Its structure in-
cludes a special datapath that converts states codes by a
set of operations [8]. This approach allows, under certain
conditions, to reduce hardware expenses in comparison
with other FSM structures.

The design of the circuit of a digital device in the
FPGA basis is carried out using specialized CAD based
on the VHDL model of the device. At the moment, the
problem of developing a VHDL model of the FSM with
DT remains unresolved. This complicates the practical
application of this class of finite state machines. This pa-
per proposes a solution to the problem of building a
VHDL model of an FSM with DT given by a graph-
scheme (GSA) of control algorithm.

The object of the study is the automated synthesis of
the logic circuit of a finite state machine with datapath of
transitions in CAD AMD Vivado according to a VHDL
model that corresponds to a given GSA.

The synthesis of a canonical finite state machine can
be carried out in automatic mode using the XST tool built
into CAD according to the VHDL model recommended
by Xilinx [9]. In the case of FSM with DT, a VHDL
model should be used, in the synthesis of which the capa-
bilities of the XST tool are not used. One of the features
of this model is the assignment of states codes of the FSM
in the form of binary constants.

The subject of the study is a VHDL model of a finite
state machine with datapath of transitions, which allows

both the synthesis of the FSM circuit in the FPGA basis
and the verification of the correctness of the functioning
of the circuit by means of behavioral modeling in AMD
Vivado CAD.

The purpose of the work is the development and re-
search of the structure and methods of building a VHDL
model of a finite state machine with datapath of transi-
tions with the aim of systematizing approaches to the
automated design of this class of finite state machines in
the FPGA basis.

1 PROBLEM STATEMENT

Let us assume that a finite state machine with datapath
of transitions is given by the graph-scheme of the algo-
rithm G and is characterized by sets of states
A={a1, ..., aM}, input signals X={x1, ..., xL} and microop-
erations Y={y1, ..., yN}. The design of the FSM logic cir-
cuit involves the implementation of the transition function
T=T(X, T) and the output function Y=Y(X, T) in the FPGA
element basis using AMD Vivado CAD (until 2023 –
Xilinx Vivado CAD). The input data for design is the
VHDL model of the designed device, which contains syn-
thesized and behavioral parts and allows obtaining a
quantitative value of hardware expenses for the imple-
mentation of the circuit of the state machine in a given
element basis.

The work solves the problem of developing a VHDL
model of an FSM with DT according to a given GSA and
its investigation by means of AMD Vivado CAD.

2 REVIEW OF THE LITERATURE

In the modern theory of finite state machines, a wide
range of methods for optimizing hardware expenses in the
FSM circuit is known. For example, such methods are
methods of structural decomposition [7], the essence of
which consists in multiple transformation of logical sig-
nals, which leads to corresponding changes in the struc-
tural diagram of the FSM.

In this article, the method of operational transforma-
tion of states codes is considered as a method of hardware
expenses optimization [8]. According to it, the conversion
of states codes in the system of FSM transitions is carried
out not by means of a system of canonical Boolean equa-
tions, but by means of a set of arithmetic and logical op-
erations. Combinational circuits that implement these
operations form the so-called datapath of transitions (DT).
As a result, a structure of FSM with DT is formed, the
synthesis of which is discussed in [10].

In paper [11], the justification of the effectiveness of
FSM with DT in comparison with the canonical FSM
structure according to the criterion of hardware expenses
is presented. However, the canonical structure of FSM
today has a rather theoretical value, while the practical
implementation of FSM circuits is carried out with the
help of appropriate CAD software, for example, AMD
Vivado CAD. This is primarily due to the use of the
FPGA element basis supported by CAD.

136

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-4-13

Since FSM is often included in designed digital sys-
tems, support for its synthesis is implemented at the AMD
Vivado CAD level as part of the XST tool [9]. This tool
supports several FSM synthesis methods aimed at opti-
mizing various characteristics of the device circuit when
implemented in the FPGA basis. Modeling the process of
synthesizing the circuit of the state machine allows you to
obtain the numerical values of the hardware expenses in
the circuit of the device, expressed in the number of used
LUT-elements.

The XST synthesis tool, built into the AMD Vivado
CAD, is able, under certain conditions, to find code frag-
ments in the VHDL model of the device that correspond
to the description of the finite state machine (by state ma-
chine we mean a machine with undefined states codes).
This process is called finite state machine extraction
(FSM extraction). For the found state machine, the XST
tool performs the following actions:

– states coding according to the chosen method;
– synthesis of the register circuit in accordance with

the chosen method of states encoding;
– synthesis and optimization of the circuit for transi-

tion and output functions.
To ensure the possibility of automatic extraction of the

state machine, in its VHDL description the following pro-
visions should be observed:

1. The FSM states are specified in the form of a set of
literals combined in an element of the enumerated type.

2. The memory register must be synchronous and have
the ability to be reset to the initial state by a Reset signal.

3. Implementation of the transition and output func-
tion systems is realized using the case operator.

These requirements make it possible to specify an
FSM in the form of a VHDL model using one, two or
three processes [9, 12–14]. Regardless of how many proc-
esses uses the state machine, the XST tool is capable of
extracting the state machine from the VHDL code and
coding the states according to the chosen coding method.

The disadvantage of using the XST tool is that it is not
possible to set specific values of states codes during the
FSM synthesis. This makes it impossible to use optimiza-
tion methods that are based on special coding of states.
These methods also include the method of operational
transformation of states codes. Therefore, the XST tool
cannot be used for the synthesis of an FSM with DT cir-
cuit. As a result, the requirements for the VHDL model of
the FSM given in [9, 12–14] cannot be directly applied to
the FSM with DT and need to be adjusted.

3 MATERIALS AND METHODS
The structural diagram of an FSM with DT is shown

in Fig. 1 and contains the following blocks [10].

Figure 1 – Structural diagram of an FSM with DT

1. Block DT realizes the following function:

T = T (T, W), (1)

that is, converts the current state code T to a transition
state code using a transitions operation with the W code.

2. Block W realizes the following function:

W = W (T, X), (2)

that is, it forms transitions operations codes that control
the operations of the DT.

3. Block BMO realizes the function

Y = Y (X, T) (3)

in the case of Mealy FSM or function

Y = Y (T) (4)

in the case of a Moore FSM, that is, it provides the im-
plementation of FSM output function. In fig. 1, the pres-
ence of a connection marked with a dashed line allows
you to consider the structure as a Mealy FSM, the absence
of a connection – as a Moore FSM.

The internal structure of the DT is shown in Fig. 2
[10].

Figure 2 – Internal structure of DT

Blocks C1 – CI correspond to combinational circuits

implementing a set of transitions operations (TO)
O={O1, ..., OI}. In general, each TO can be arithmetic,
logical or combined. When designing these blocks, if pos-
sible, each block should be optimized in order to increase
performance and reduce hardware expenses.

The MUX block is an R-bit multiplexer with I-
directions. Under the guidance of the W signals at the
output of the multiplexer, the R-bit code D of the next
FSM state is formed, which enters the input of the mem-
ory register RG.

The RG block is an R-bit synchronous register with
the function of resetting to the initial state by the Reset
signal. It should be noted that in the case of FSM with
DT, the initial state does not necessarily have a zero code.
This register performs the function of the memory of the
datapath of transitions and the function of the memory
register of the finite state machine.

Let FSM be given by GSA G (Fig. 3). This GSA is
marked by states of Moore FSM and contains the set of
states of the states A={a0, ..., a20} with cardinality M=21,
the set of logical conditions X={x1, x2, x3} with cardinality
L=3, multiple set of microoperations (output signals)

Y

X

W DT W T BMO

C1

C2

CI

1
2

I

. . .

W Reset

Clock

RG T

MUX

... D

137

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-4-13

Y={y1, ..., y7} with cardinality N=7 and B=29 FSM transi-
tions. GSA has an abstract structure and content of opera-
tor vertices and is intended to demonstrate the process of
building a VHDL model of an FSM with DT.

The main and most difficult stage of the synthesis of
an FSM with DT is the so-called algebraic synthesis of
FSM. In the process of algebraic synthesis, the following
occurs [10]:

1. The FSM states are matched with unique codes
from a certain set of states codes. In the case of GSA G,
R=5 binary digits are enough to encode M=21 states.

2. FSM transitions correspond to certain transitions
operations from a given set of TOs. The use of one TO for
the implementation of several state machine transitions is
permissible and contributes to the reduction of the total

number of used TOs and, accordingly, to the reduction of
hardware expenses in the FSM circuit. Those transitions
that cannot be implemented by any of the specified TOs
should be implemented in a canonical way using a system
of Boolean equations.

We will carry out an algebraic synthesis for GSA G
under the condition that the set of transitions operations is
formed by the following ones: O = {O1, O2, O3}:

 O1: D = T + 710; (5)
 O2: D = T & 010012; (6)
 O3: D = T  000112. (7)

Figure 3 – Graph-scheme of algorithm G

END

START

y1 y2

y3 y4 y5

y3 y6 y6

y1 y3

y1 y2

y1 y4 y6

y7

y5

y3 y4

y4 y7

y2 y4 y5

y2 y5

y3 y6 y4

y1 y3

y3 y5 y7

y1 y2 y7

y4 y5

x1
1 0

x2
1 0

x3
1 0 x1

1 0

x2
1 0

x2
1

0

x2
1

0

x3

0

1

a1

a2

a3 a4

a6

a5

a12

a13

a7

a8

a9

a10

a11

a16 a14

a15

a17

a18 a19

a20

a0

a0

138

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-4-13

In these expressions, T is the code of the current FSM
state, D is the code of the state of the transition, which is
formed at the output of the multiplexer and enters the RG
(Fig. 2).

TO O1 corresponds to the operation of adding the
decimal constant 7 to the code of the current state. The
code of the current state T is interpreted as an unsigned
decimal number of 5 binary digits size. The operation is
implemented on the basis of a 5-digit binary adder, in
which the carry from the higher bit is discarded. This is
equivalent to the operation “(T + 7) mod 32”. For exam-
ple, (25+10) mod 32 = 3.

TO O2 is a bitwise logical conjunction operation on
the binary value of the current state code T and the binary
constant 01001.

TO O3 is a bitwise logical operation XOR on the bi-
nary value of the current state code T and the binary con-
stant 00011.

In general, some FSM transitions can be implemented
in a canonical way without using the specified transitions
operations. The circuit that implements all such transi-
tions will act as a separate combinational circuit Ci as part
of the DT (Fig. 2). In order for the multiplexer to be able
to pass through the result of the operation of this circuit,
we must consider it as a separate TO O4, which has its
own code. Formally, O4 is some function  of the code of
the current state of the automaton:

O4: T =  (T). (8)

Successful execution of algebraic synthesis gives us a
formal solution of the algebraic synthesis problem [10]. In
general, there may be several formal solutions. As an ex-
ample, consider the formal solution shown in Fig. 4 (the
method of obtaining it is not considered in this paper).

Figure 4 – Formal solution of problem of algebraic synthesis of an FSM with DT for GSA G (example)

16=10000

16=10000

19=100112

1=000012

2=00010 24=11000

31=11111

0=00000

7=00111

14=01110

21=10101

28=11100

6=00110

5=00101

12=001100

8=01000 13=01101

20=10100

27=11011

11=01011 15=01111

9=01001

x1
1 0

x2
1 0

x3
1 0 x1

1 0

x2
1 0

x2
1

0

x2
1

x3

0

1

a1

a2

a3 a4

a6

a5

a12

a13

a7

a8

a9

a10

a11

a16 a14

a15

a17

a18 a19

a20

a0

a0

+7

 00011

& 01001

 00011

O4 +7

O4

 00011

& 01001

+7

+7

0

+7  00011

+7
 00011

O4

 00011 & 01001 & 01001 +7

 00011 +7
+7

& 01001

& 01001 & 01001

+7

& 01001

+7

139

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-4-13

Since the operational transformation of states codes
does not affect the FSM output function, in Fig. 4 inside
operational vertices, microoperations are not shown. In-
stead of them, selected decimal values of states codes and
their binary equivalents are shown. Each FSM transition
is marked by a transitions operation that is mapped to it.
Operation O1 is marked with “+7”, O2 – “& 01001”, O3 –
“ 00011” for clarity. Transitions implemented in the
canonical way (a2a4, a5a5, a6a7) are marked with
the symbol O4.

Let’s explain the operational implementation of transi-
tions in Fig. 4. Transition from state a0 coded with
K(a0)=1610=100002 to state a1 coded with
K(a1)=1910=100112 is carried out using O3. Transition
from state a16 coded with K(a16)=810=010002 to state a19
coded with K(a19)=1510=011112 is carried out using O1.
Transition from state a3 coded with K(a3)=210=000102 to
state a5 coded with K(a5)=010=000002 is carried out using
O2.

Let’s encode operations of transitions O1 – O4 with
unique binary codes of bit depth RW =  log2 4  = 2,
formed by variables W = {w1, w2}. The result of coding is
presented in Table 1.

Table 1 – Coding of transitions operations
Oi w1 w2

O1 0 0

O2 0 1

O3 1 0

O4 1 1

Let us present the result of algebraic synthesis in the

form of an operational table of transitions (OTT) [10],
which for our example has the form of a Table 2.

In the Table 4, each row corresponds to a separate
FSM transition, the number of which is indicated in col-
umn h. The Wh column contains codes of transitions op-
erations according to the table 1. In each cell of the Wh
column, only those variables w that are equal to 1 in the
code of the corresponding TO, are shown. For example,
the transition h=5 is implemented using operation O3 with
binary code 10 (w1=1, w2=0), so in the row h=5 in the
column Wh, only the variable w1 is indicated, which is
equal to 1 in binary code 10.

Let’s proceed to the construction of the VHDL model
of the FSM with DT, the OTT of which corresponds to
the table. 2. We will present the model in the form of syn-
thesizable and behavioral parts [5, 12, 14]. Consider the
description of the synthesized part.

Table 2 – Operational table of transitions (GSA G)
am K1(am) K2(am) as K1(as) K2(as) Xh Wh Yh h

a0 16 10000 a1 19 10011 1 w1 – 1

a1 19 10011 a2 1 00001 1 w2 y1 y2 2

a3 2 00010 x1 w1 3 a2 1 00001

a4 24 11000 x̅1 w1 w2

y3 y4 y5

4

a1 1 00001 x2 w1 5 a3 2 00010

a5 0 00000 x̅2 w2

y3 y6

6

a4 24 11000 a6 31 11111 1 – y6 7

a8 28 11100 x3 w1 w2 8 a5 0 00000

a12 7 00111 x̅3 –

y1 y2

9

a7 21 10101 x2 w1 w2 10 a6 31 11111

a9 6 00110 x̅2 –

y1 y3

11

a7 21 10101 a8 28 11100 1 – y5 12

a8 28 11100 a6 31 11111 1 w1 y3 y4 13

a9 6 00110 a10 5 00101 1 w1 y4 y7 14

a10 5 00101 a11 12 01100 1 – y2 y4 y5 15

a16 8 01000 x3 w2 16 a11 12 01100

a1 19 10011 x̅3 –

y2 y5

17

a12 7 00111 a13 14 01110 1 – y1 y4 y6 18

a14 13 01101 x1 w1 19 a13 14 01110

a16 8 01000 x̅1 w2

y7

20

a14 13 01101 a15 20 10100 1 – y4 21

a5 0 00000 x2 w2 22 a15 20 10100

a17 27 11011 x̅2 –

y1 y3

23

a18 11 01011 x2 w1 24 a16 8 01000

a19 15 01111 x̅2 –

y3 y6

25

a17 27 11011 a20 9 01001 1 w2 y3 y5 y7 26

a18 11 01011 a20 9 01001 1 w2 y1 27

a19 15 01111 a20 9 01001 1 w2 y2 y7 28

a20 9 01001 a0 16 10000 1 – y4 y5 29

140

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-4-13

entity FSM is
 generic(R: integer := 5; -- State code capacity
 Rw: integer := 2; -- W code capacity
 L: integer := 3; -- Number of input signals
 N: integer := 5); -- Number of microoperations
 port (X: in std_logic_vector(1 to L); -- Input signals
 Y: out std_logic_vector(1 to N); -- Microoperations
 C: in std_logic; -- Clock
 Reset: in std_logic); -- Reset
end FSM;

In the “generic” section, the setting constants that de-
termine the bit depth of the signal buses are defined. The
“port” section contains the bus of input signals X, the bus
of output microoperations Y, the synchronization signal
Clock and the Reset signal, by which the code of the ini-
tial state of the FSM is written into the memory register.

The architecture section contains a description of the
internal FSM signals, as well as a description of the struc-
tural blocks in the view of processes in accordance with
Fig. 1 and 2. The beginning of the description of the ar-
chitecture block looks like next:

architecture FSM_A of FSM is

signal T, D: unsigned(1 to R); -- State code and Next state code
signal Canonic : unsigned(1 to R); -- Result of 'canonical' transitions
signal nT: unsigned(1 to R); -- Negative values of State code
signal nX: std_logic_vector(1 to L); -- Negative values of input signals
signal W: std_logic_vector(1 to Rw); -- Code of datapath operation

begin

nT <= not T;
nX <= not X;

Here, the “Canonic” signal is the code of the next

state, formed in a canonical way. Its use will be discussed
later.

Below a process block describing the FSM memory
register is shown. The register switches synchronously
with the rising edge of the Clock signal.

process(C) -- Memory Register
begin
 if rising_edge(C) then
 if Reset = '1' then
 T <= "10000";
 else
 T <= D;
 end if;
 end if;
end process;

The peculiarity of this description is that by a Reset
signal equal to one, the register is transferred to the initial
state, the code of which, according to the results of alge-
braic synthesis (Table 2), is equal to 100002.

Let’s synthesize the block W, which forms the signals
w1, w2 of the transitions operation code (Fig. 1). We im-
plement these signals using canonical Boolean equations
according to the table 2 and expression (2).

.

;

191817215

11331126231212

216113

982635231201

aaaxa

xaxaxaxaxaaw

xaxa

aaxaxaxaxaaw







We will use binary vectors <T1, ..., T5> to represent

the FSM states codes. Then, according to the coding of
the states given in the Table 2, the Boolean equations for
signals w1, w2 take the following form:

;

25432115432154321

54321254321354321

254321154321543211

xTTTTTxTTTTTTTTTT

TTTTTxTTTTTxTTTTT

xTTTTTxTTTTTTTTTTw







.

54321

5432154321254321

154321354321254321

254321154321543212

TTTTT

TTTTTTTTTTxTTTTT

xTTTTTxTTTTTxTTTTT

xTTTTTxTTTTTTTTTTw









In general, these equations can be minimized in any

convenient way. In this paper, we will not perform mini-
mization and will immediately present block W in the
form of the following VHDL process:

141

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-4-13

process (T, X, nT, nX) -- Block W
 begin
 W(1) <= (T(1) and nT(2) and nT(3) and nT(4) and nT(5)) or
 (nT(1) and nT(2) and nT(3) and nT(4) and T(5)) or
 (nT(1) and nT(2) and nT(3) and T(4) and nT(5) and X(2)) or
 (nT(1) and nT(2) and nT(3) and nT(4) and nT(5) and X(3)) or
 (T(1) and T(2) and T(3) and T(4) and T(5) and X(2)) or
 (T(1) and T(2) and T(3) and nT(4) and nT(5)) or
 (nT(1) and nT(2) and T(3) and T(4) and nT(5)) or
 (nT(1) and T(2) and T(3) and T(4) and nT(5) and X(1)) or
 (nT(1) and T(2) and nT(3) and nT(4) and nT(5) and X(2));

 W(2) <= (T(1) and nT(2) and nT(3) and T(4) and T(5)) or
 (nT(1) and nT(2) and nT(3) and nT(4) and T(5) and nX(1)) or
 (nT(1) and nT(2) and nT(3) and T(4) and nT(5) and nX(2)) or
 (nT(1) and nT(2) and nT(3) and nT(4) and nT(5) and X(3)) or
 (T(1) and T(2) and T(3) and T(4) and T(5) and X(2)) or
 (nT(1) and T(2) and T(3) and nT(4) and nT(5) and X(3)) or
 (nT(1) and T(2) and T(3) and T(4) and nT(5) and nX(1)) or
 (T(1) and nT(2) and T(3) and nT(4) and nT(5) and X(2)) or
 (T(1) and T(2) and nT(3) and T(4) and T(5)) or
 (nT(1) and T(2) and nT(3) and T(4) and T(5)) or
 (nT(1) and T(2) and T(3) and T(4) and T(5));
end process;

Please note that to ensure the correctness of the simu-
lation, the process sensitivity list contains both direct and
inverse values of the X and T signals.

Let’s proceed to the synthesis of the datapath of tran-
sition. Let’s clarify the structure of the DT shown in Fig.
2, according to the results of algebraic synthesis. The
clarification of the structure consists in the fact that it
contains four combinational circuits C1 – C4, which corre-
spond to transitions operations O1 – O4, and the multi-
plexer is controlled by a two-bit binary code W=<w1, w2>.

As will be shown below, combinational circuits C1 –
 C3 have a trivial implementation using operators from the
synthesizable subset of VHDL. However, block C4 is non-
standard, as it represents a canonical implementation of a
certain part of an FSM transitions. In the general case, the
code of the current state T and signals of logical condi-
tions X are received at its inputs. So the refined structure
of the OAP for GSA G is shown in Fig. 5.

Before developing the VHDL description of the DT,
let’s synthesize the C4 block. For this purpose, we will use
the technique discussed in [2, 3].

Transitions implemented in the canonical way, in Ta-
ble 2, have numbers 4, 8 and 10. Let’s do the following.

1. Let’s agree to use the Boolean vector <D1, ..., D5>
to encode the transition state code.

Figure 5 – Clarified structure of DT (GSA G)

2. Let’s form a separate table of transitions from these
lines, in which instead of the column Wh there is a column
Dh. This column indicates those components of the vector
<D1, ..., D5> which are equal to 1 in the binary code of the
transition state K2(as) of this row of the table.

As a result, we will get a table of transitions imple-
mented in the canonical way (Table 3).

Table 3 – Table of transitions implemented in the canonical way (GSA G)
am K1(am) K2(am) as K1(as) K2(as) Xh Dh Yh h

a2 1 00001 a4 24 11000 x̅1 D1 D2 y3 y4 y5 1

a5 0 00000 a8 28 11100 x3 D1 D2 D3 y1 y2 2

a6 31 11111 a7 21 10101 x2 D1 D3 D5 y1 y3 3

Each of the three transitions presented in the Table 3,
corresponds to the own term formed by the conjunction of
signals T1, ..., T5 of the code of the current state (column
K2(am)) and the corresponding signal of the logical condi-
tion (column Xh). Let’s form these terms:

1543211 xTTTTTQ  ;

3543212 xTTTTTQ  ;

2543213 xTTTTTQ  .

Now we can form the equation for signals D1 – D5 ac-
cording to the contents of column Dh. Since the D4 signal
is not present in the Dh column, we will consider it always
equal to 0.

3211 QQQD  ;

212 QQD  ;

323 QQD  ;

04 D ;

C1

C2

C3

1
2
3
4

w1 Reset

Clock

RG T

MUX

D

C4

X

w2

142

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-4-13

35 QD  .

The VHDL code for the combinational circuit C4 is
given below. As you can see, the vector <D1, ..., D5> in
this model corresponds to the “Canonic” signal. Although

this signal is declared as “unsigned (1 to R) ”, each bit is
generated separately. Also, pay attention to the presence
in the process sensitivity list of both direct and inverse
values of T and X signals.

 process (T, X, nT, nX) -- Canonical transitions
 variable Q1: std_logic;
 variable Q2: std_logic;
 variable Q3: std_logic;
 begin
 Q1 := nT(1) and nT(2) and nT(3) and nT(4) and T(5) and nX(1);
 Q2 := nT(1) and nT(2) and nT(3) and nT(4) and nT(5) and X(3);
 Q3 := T(1) and T(2) and T(3) and T(4) and T(5) and X(2);

 Canonic(1) <= Q1 or Q2 or Q3;
 Canonic(2) <= Q1 or Q2;
 Canonic(3) <= Q2 or Q3;
 Canonic(4) <= '0';
 Canonic(5) <= Q3;
 end process;

Although the combinational circuit C4 is described as
a separate process, structurally it is part of the DT block
(Fig. 5). The description of the DT block in VHDL is as
follows:

process (T, W, Canonic) -- Datapath
begin
 case W is
 when "00" => -- O1
 D <= T + 7;
 when "01" => -- O2
 D <= T and "01001";
 when "10" => -- O3
 D <= T xor "00011";
 when "11" => -- O4
 D <= Canonic;
 when others =>
 D <= "00000";
 end case;
end process;

The basis of this process is the “case” operator, which
has four branches corresponding to operation codes of
transitions O1 – O4. Operations O1 – O4 are implemented
with the help of “+”, “and” and “xor” operators, which
are included in the synthesized subset of VHDL and can
work directly with the “unsigned” data type. In the case of
O4, to the output bus D the result obtained from the output
of the combinational circuit C4 (input signal “Canonic”) is
passed through.

The following fragment of the VHDL code describes
the BMO block that forms FSM output signals according
to (4). The method of describing this block is not funda-
mental and can be implemented both with the help of the
“case” operator and by setting a system of canonical Boo-
lean equations by analogy with the considered blocks W
and C4. Also, this block can be synthesized using various
methods of output function optimization [2–4, 7].

process (T, nT)
begin
 case T is
 when "10011" => Y <= "1100000";
 when "00001" => Y <= "0011100";
 when "00010" => Y <= "0010010";
 when "11000" => Y <= "0000010";
 when "00000" => Y <= "1100000";
 when "11111" => Y <= "1010000";
 when "10101" => Y <= "0000100";
 when "11100" => Y <= "0011000";
 when "00110" => Y <= "0001001";
 when "00101" => Y <= "0101100";
 when "01100" => Y <= "0100100";
 when "00111" => Y <= "1001010";
 when "01110" => Y <= "0000001";
 when "01101" => Y <= "0001000";
 when "10100" => Y <= "1010000";
 when "01000" => Y <= "0010010";
 when "11011" => Y <= "0010101";
 when "01011" => Y <= "1000000";
 when "01111" => Y <= "0100001";
 when "01001" => Y <= "0001100";
 when others => Y <= "0000000";
 end case;
end process;

The fragments of the VHDL code considered above
form a synthesizable part of the VHDL model of the FSM
with DT. For the correct functioning of the model, its first
lines should be lines connecting the necessary libraries:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;

As the last line, you should add the architecture block
completion statement:

end FSM_A;

To check the correctness of the considered VHDL
model, it is necessary to develop its behavioral part. The
function of the behavioral part in our case is the genera-
tion of external signals and their supply to the FSM in-
puts. Time intervals of signals generation in this case are
of no fundamental importance, since behavioral modeling
will take place without reference to the physical charac-
teristics of the device.

The behavioral part can be described by the following
VHDL code fragment:

143

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-4-13

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;

entity Model is
 generic(R: integer := 5; -- State code capacity
 Rw: integer := 2; -- W code capacity
 N: integer := 7; -- Number of microoperations
 L: integer := 3); -- Number of logical conditions
 port (Y: out std_logic_vector(1 to N)); -- Microoperations
end Model;

architecture Model_A of Model is
signal C: std_logic; -- Clock
signal Reset: std_logic; -- Reset
signal X: std_logic_vector(1 to L); -- Logical conditions

component FSM is
 generic(R: integer := 5; -- State code capacity
 Rw: integer := 2; -- W code capacity
 L: integer := 3; -- Number of logical conditions
 N: integer := 7); -- Number of microoperations
 port (X: in std_logic_vector(1 to L); -- Input signals
 Y: out std_logic_vector(1 to N); -- Microoperations
 C: in std_logic; -- Clock
 Reset: in std_logic); -- Reset
end component FSM;

begin
 process -- Clock
 begin
 C <= '0'; wait for 80 ns;
 C <= '1'; wait for 20 ns;
 end process;

 Reset <= '0' after 0 ns, '1' after 10 ns, '0' after 90 ns; -- Reset

 process -- X1
 begin
 X(1) <= '1'; wait for 17 ns; X(1) <= '0'; wait for 37 ns;
 end process;

 process -- X2
 begin
 X(2) <= '1'; wait for 43 ns; X(2) <= '0'; wait for 36 ns;
 end process;

 process -- X3
 begin
 X(3) <= '1'; wait for 38 ns; X(3) <= '0'; wait for 17 ns;
 end process;

 L1: component FSM
 port map (X, Y, C, Reset);

end Model_A;

The behavioral part has the following features:
1. Microoperations formed by the FSM are displayed

on the output port Y.
2. The Clock signal has an interval of 100 ns. The Re-

set signal is generated once at the start of the device’s
functioning.

3. Signals X are formed in separate processes, which
makes them independent of each other. The intervals of
the upper and lower levels are random and can have any
values.

4 EXPERIMENTS
For the developed VHDL model of FSM with DT, the

authors conducted experimental research with the help of
CAD AMD Vivado version 2023.1 (Vivado ML Standard
Edition, free version). The research sets two goals:

1. Checking the correctness of the work of the synthe-
sized FSM circuit using behavioral modeling.

2. Checking the possibility of synthesis of MPA logic
circuit in FPGA basis.

Achieving the first goal will allow us to consider the
proposed approach to building a VHDL model of an FSM
with DT correct. Achieving the second goal will confirm
the possibility of using the developed model to evaluate

144

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-4-13

the effectiveness of FSM with DT according to the crite-
rion of hardware expenses [11].

5 RESULTS

Behavioral modeling of the developed model of FSM
with DT for GSA G was performed in AMD Vivado
CAD using standard modeling parameters. A fragment of

the timing diagram of the state machine is shown in
Fig. 6. Signals T and D are in unsigned decimal format,
other signals are in binary format. Three markers are set
on the diagram, which allow to analyze important mo-
ments of time in functioning of the FSM. Let’s consider
them.

Figure 6 – Time diagram of functioning of FSM with DT (fragment)

Until the moment t1=2650 ns, the FSM is in the state
with code T=3110=111112 (state a6) and forms microop-
erations y1, y3. At time t1, signal x2 becomes equal to 0,
which sets the values of signals w1 and w2 into zero val-
ues. This results to executing of operation O1:

D = 3110 + 710 = (38 mod 32)10 = 610 = 001102.

This value is formed on bus D and is the state code of
the transition of the FSM in the next cycle of functioning.

At the moment t2=2680 ns, the rising edge of the syn-
chronization signal C arrives. Following this signal, the
value D=610=001102 is loaded into the memory register
and appears on the bus T. Thus, the FSM correctly transi-
tioned from state a6 with code 3110 to state a9 with code
610. Also, with a change in T, there is a change in the out-
put signals: microoperations y4, y7 are formed on the Y
bus. This coincides with Fig. 3 and confirms the correct
functioning of the BMO circuit.

At the moment t3=2780 ns, the FSM after the rising
edge of signal C passes from the state with code
T=610=001102 (state a9) to the state with code
D=510=001012 (state a10). The transformation of the state
code proceeds using the operation O3: 001102  000112 =
001012. Since this transition is unconditional, the opera-
tion code W(O3)=<10> is formed on the W bus immedi-
ately after the FSM transition to the state T=001102 (start-
ing from the moment t2) and does not change when the
values of signals x1 – x3 change. Also, microoperations y2,
y4, y5 are formed at time t4. This corresponds to state a10
in Fig. 3 and to transition h=15 in table 2.

Thus, it can be concluded that the developed VHDL
model of FSM with DT is correct and corresponds to the
given graph-scheme of algorithm G.

Let’s check the possibility of synthesizing the devel-
oped VHDL model in the FPGA basis. Experiments have
shown that stages of synthesis and implementation in the
FPGA chip xc7a12tcpg238-1 occur without errors. As a
result of the synthesis, the numerical values of the hard-
ware expenses for the implementation of the synthesiz-
able part of the VHDL model of the FSM with DT were
obtained, consisting of 16 LUT elements and 5 triggers.
Thus, the developed VHDL model can be used to evaluate
the efficiency of the FSM circuit according to the crite-
rion of hardware expenses.

6 DISCUSSION
The method of operational transformation of states

codes, which is the base of the structure of FSM with DT,
provides for special coding of states of the FSM. Values
of states codes, selected transitions operations and their
mapping to FSM transitions form a full picture, which is
called a formal solution to the problem of algebraic syn-
thesis of an FSM with DT. On the one hand, the special
coding of states makes it impossible to use the finite state
machine synthesis tools built into the XST AMD Vivado
CAD [9]. On the other hand, knowing the specific values
of states codes allows you to apply your own optimization
methods aimed at optimizing hardware expenses in vari-
ous structural blocks of an FSM with DT.

145

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-4-13

Thus, the application of structure of FSM with DT re-
quires the development of its own VHDL model, which
differs from the models recommended by AMD Vivado
CAD developers. The example considered in this paper
demonstrates the following features of the approach to
building such a model:

1. In the FSM with DT it is allow the use of any
arithmetic and logical operations. They can provide a dif-
ferent interpretation to the states codes of the FSM – sca-
lar (numeric) or vector (binary). Accordingly, the VHDL
model must also support different ways of interpreting the
states codes. In the considered example, the “unsigned”
data type is used to represent states codes, which allows
performing both arithmetic (scalar) and logical (vector)
operations on states codes. If necessary, it will allow the
use of other scalar types available in the VHDL language
libraries. For example, to work with signed numbers, the
“integer” data type can be used. In cases where the set of
TOs contains only vector operations, it is sufficient to use
only vector data type (such as “std_logic_vector”) for
states codes.

2. In the considered example, the combinational cir-
cuit C4 implements FSM transitions, which are imple-
mented in a canonical way according to the system of
Boolean equations. The necessity of using such a circuit is
due only to the results of the algebraic synthesis carried
out by the authors for a given GSA G. In general, situa-
tions are possible when all FSM transitions are imple-
mented using a given set of TOs. In this case, there will
be no need for a circuit like C4.

3. The number of combinational circuit reflects the
number of different transitions operations. In our case, it
is a number of lines of the “case” operator, which corre-
sponds to the multiplexer in Fig. 2. In general, the smaller
number of combinational circuit in the datapath (that is,
the smaller number of different TOs) corresponds to de-
crease in hardware expenses in the FSM with DT circuit.

4. Algebraic synthesis of FSM with DT demands the
formation of set of transitions operations. Such a forma-
tion can occur both at the beginning of algebraic synthesis
and during of its execution. When forming the set of OT,
it is necessary to ensure that these operations can be im-
plemented with the help of operators from the synthesiz-
able subset of the VHDL language. If there is a need to
implement a non-standard operation (scalar or vector),
you can use an approach similar to the development of the
C4 circuit in the above example.

5. FSM with DT belongs to the class of FSM with
“hardware” logic. It should be understood that, in general,
any change in the input data (the GSA, the set of TOs, the
bit depth of states codes, etc.) requires a complete re-
synthesis of the FSM and its VHDL model. This applies
to the circuits of any custom digital devices.

CONCLUSIONS
The paper proposes a solution to the scientific prob-

lem of developing a VHDL model of a finite state ma-
chine with datapath of transitions. The correctness of the
model was checked in AMD Vivado CAD.

The scientific novelty of the work lies in the fact that
all stages of development of a VHDL model are demon-
strated on a specific example, which allows you to under-
stand its peculiarities and differences from typical models
of finite state machines. The main feature of the proposed
model is that it is not focused on the use of finite state
machine synthesis tools built into CAD and can be used
in CADs of different FPGA manufacturers.

The practical use of the obtained results is possible in
the development of methods of synthesis, optimization
and evaluation of the efficiency of a finite state machines
with datapath of transitions, as well as other structures
and methods aimed at optimizing the characteristics of an
FSM circuit.

Prospects for further research consist in solving a
range of scientific and practical problems related to the
development, implementation and evaluation of the effec-
tiveness of the structures and methods of synthesis of fi-
nite state machines with optimized hardware expenses.

ACKNOWLEDGEMENTS
The paper is supported by the state budget scientific

research project of Vasyl’ Stus Donetsk National Univer-
sity “Methods, algorithms and tools of computer-aided
design of control units of computing systems” (state regis-
tration number 0122U200085).

REFERENCES
1. Bailliul J., Samad T. Encyclopedia of Systems and Control.

Springer, London, UK, 2015, 1554 p.
2. Sklyarov V., Sklyarova I., Barkalov A., Titarenko L. Synthesis

and Optimization of FPGA-Based Systems; Volume 294 of
Lecture Notes in Electrical Engineering. Springer, Berlin, Ger-
many, 2014, 432 p.

3. Baranov S. Logic and System Design of Digital Systems. Tallin,
TUTPress, 2008, 267 p.

4. Micheli G. D. Synthesis and Optimization of Digital Circuits.
McGraw-Hill, Cambridge, MA, USA, 1994, 579 p.

5. Minns P., Elliot I. FSM-Based Digital Design Using Verilog
HDL. JohnWiley and Sons, Hoboken, NJ, USA, 2008, 408 p.

6. Grout I. Digital Systems Design with FPGAs and CPLDs. El-
sevier Science, Amsterdam, The Netherlands, 2011, 784 p.

7. Baranov S. Logic Synthesis for Control Automata. Dordrecht,
Kluwer Academic Publishers, 1994, 312 p.

8. Barkalov A. A., Babakov R. M. Operational formation of state
codes in microprogram automata, Cybernetics and Systems
Analysis, 2011, Volume 47 (2), pp. 193–197.

9. Xilinx. XST UserGuide. V.11.3. Available online:
https://www.xilinx.com/support/documentation/sw_manuals/xili
nx11/xst.pdf (accessed on 12 April 2023).

10. Barkalov A. A., Titarenko L. A., Babakov R. M. Synthesis of
Finite State Machine with Datapath of Transitions According to
the Operational Table of Transitions, Radio Electronics, Com-
puter Science, Control, 2022, Volume 3 (62), pp. 109–119.

11. Barkalov A. A., Babakov R. M. Determining the Area of Effi-
cient Application of a Microprogrammed Finite-State Machine
with Datapath of Transitions, Cybernetics and Systems Analysis,
2019, Volume 54 (3), pp. 366–375.

12. Czerwinski R., Kania D. Finite State Machine Logic Synthesis
for Complex Programmable Logic Devices. Berlin, Springer,
2013, 172 p.

13. Mano M. Digital design (4th Edition). New Jersey, Prentice
Hall, 2006, 624 p.

14. Zwolinski M. Digital System Design with VHDL. Boston, Ad-
dison-Wesley Longman Publishing Co., Inc. 2000, 416 p.

Received 04.10.2023.
Accepted 30.11.2023.

146

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2023. № 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2023. № 4

© Barkalov A. A., Titarenko L. A., Babakov R. M., 2023
DOI 10.15588/1607-3274-2023-4-13

УДК 004.94 : 004.2

СИНТЕЗ VHDL-МОДЕЛІ МІКРОПРОГРАМНОГО АВТОМАТА З ОПЕРАЦІЙНИМ АВТОМАТОМ ПЕРЕХОДІВ

Баркалов О. О. – д-р техн. наук, професор, професор Інституту комп’ютерних наук та електроніки університету Зеле-
ногурського, м. Зельона Гура, Польща.

Тітаренко Л. О. – д-р техн. наук, професор, професор Інституту комп’ютерних наук та електроніки університету Зеле-
ногурського, м. Зельона Гура, Польща.

Бабаков Р. М. – д-р техн. наук, доцент, професор кафедри інформаційних технологій Донецького національного універ-
ситету імені Василя Стуса, м. Вінниця, Україна.

AНОТАЦІЯ
Актуальність. Розглянуто задачу побудови програмної моделі мікропрограмного автомата з операційним автоматом переходів

мовою VHDL. Процес синтезу моделі ототожнюється із синтезом даного типу автомата, оскільки побудована модель може бути
використана як для аналізу поведінки пристрою, так і для синтезу логічної схеми в базисі FPGA. Об’єктом дослідження є автомати-
зований синтез логічної схеми мікропрограмного автомата з операційним автоматом переходів, за результатами якого можуть бути
отримані чисельні характеристики апаратурних витрат на реалізацію схеми автомата. Це дозволяє оцінити ефективність викорис-
тання даної структури мікропрограмного автомата при реалізації заданого алгоритму керування.

Мета. Розробка і дослідження VHDL-моделі мікропрограмного автомата з операційним автоматом переходів для аналізу пове-
дінки автомата та кількісної оцінки апаратурних витрат в його логічній схемі.

Метод. В основу дослідження покладено структурну схему мікропрограмного автомата з операційним автоматом переходів.
Синтез окремих блоків структури автомата здійснюється за певною процедурою відповідно до заданої граф-схеми алгоритму керу-
вання. Результат синтезу запропоновано представляти у вигляді VHDL-опису, що оснований на фіксованих значеннях кодів станів
автомата. Продемонстрований процес синтезу операційного автомата переходів, блоку формування кодів операцій переходів та
блоку формування мікрооперацій. VHDL-опис даних блоків здійснюється у синтезованому стилі, що дозволяє провести синтез
логічної схеми автомата в базисі FPGA за допомогою сучасних САПР та отримати числові характеристики схеми, зокрема значення
апаратурних витрат. Для аналізу коректності роботи синтезованої схеми розглянуто процес розробки поведінкової складової
VHDL-моделі, функцією якої є генерація вхідних сигналів автомата. Класичне поєднання синтезованої та поведінкової частин мо-
делі дозволяє представити результати синтезу мікропрограмного автомата з операційним автоматом переходів як окремий проєкт,
що може бути використаний в якості структурної складової проєктованої цифрової системи.

Результати. На прикладі абстрактної граф-схеми алгоритму керування розроблено VHDL-модель мікропрограмного автомата з
операційним автоматом переходів. За допомогою САПР AMD Vivado проведено синтез розробленої моделі та проведене поведін-
кове моделювання роботи схеми автомата. Результати синтезу схеми дозволили отримати значення апаратурних витрат при реалі-
зації схеми в базисі FPGA. За результатами поведінкового моделювання отримані диаграми часу, які свідчать про коректність реа-
лізації функцій переходів та виходів синтезованого автомата.

Висновки. У традицйних VHDL-моделях кінцевих автоматів стани не містять конкретних кодів і ідентифікуються за допомо-
гою літералів. Це дозволяє САПР проводити кодування станів на власний розсуд. Однак такий підхід не підходить для опису мік-
ропрограмного автомата з операційним автоматом переходів. Перетворення кодів станів за допомогою множини арифметико-
логічних операцій вимагає використання фіксованих значень кодів станів, що визначає специфіку VHDL-моделі, запропонованої в
даній роботі. Дана і подібні моделі можуть бути використані, зокрема, при дослідженні ефективності мікропрграмного автомата за
критерієм апаратурних витрат в схемі пристрою.

КЛЮЧОВІ СЛОВА: мікропрограмний автомат, операційний автомат переходів, VHDL-модель, апаратурні витрати, САПР
AMD Vivado.

ЛІТЕРАТУРА
1. Bailliul J. Encyclopedia of Systems and Control / J. Bailliul, T.

Samad. – Springer : London, UK, 2015. – 1554 p.
2. Sklyarov V. Synthesis and Optimization of FPGA-Based Sys-

tems; Volume 294 of Lecture Notes in Electrical Engineering /
V. Sklyarov, I. Sklyarova, A. Barkalov, L. Titarenko. –
Springer: Berlin, Germany, 2014. – 432 p.

3. Baranov S. Logic and System Design of Digital Systems / S.
Baranov. – Tallin : TUTPress, 2008. – 267 p.

4. Micheli G. D. Synthesis and Optimization of Digital Circuits /
G. D. Micheli. – McGraw-Hill : Cambridge, MA, USA, 1994. –
579 p.

5. Minns, P. FSM-Based Digital Design Using Verilog HDL / P.
Minns, I. Elliot. – JohnWiley and Sons : Hoboken, NJ, USA,
2008. – 408 p.

6. Grout, I. Digital Systems Design with FPGAs and CPLDs /
I. Grout. – Elsevier Science : Amsterdam, The Netherlands,
2011. – 784 p.

7. Baranov, S. Logic Synthesis for Control Automata /
S. Baranov. – Dordrecht : Kluwer Academic Publishers, 1994. –
312 p.

8. Barkalov A.A. Operational formation of state codes in micro-
program automata / A. A. Barkalov, R. M. Babakov // Cyber-

netics and Systems Analysis. – 2011. – Volume 47 (2). –
P. 193–197.

9. Xilinx. XST UserGuide. V.11.3. Available online:
https://www.xilinx.com/support/documentation/sw_manuals/xili
nx11/xst.pdf (accessed on 12 April 2023).

10. Barkalov A. A. Synthesis of Finite State Machine with Datapath
of Transitions According to the Operational Table of Transi-
tions / A. A. Barkalov, L. A. Titarenko, R. M. Babakov // Radio
Electronics, Computer Science, Control. – 2022. – Volume 3
(62). – P. 109–119.

11. Barkalov A.A. Determining the Area of Efficient Application of
a Microprogrammed Finite-State Machine with Datapath of
Transitions / A. A. Barkalov, R. M. Babakov // Cybernetics and
Systems Analysis. – 2019. –
Volume 54 (3). – P. 366–375.

12. Czerwinski R. Finite State Machine Logic Synthesis for Com-
plex Programmable Logic Devices / R. Czerwinski, D. Kania. –
Berlin : Springer, 2013. – 172 p.

13. Mano M. Digital design (4th Edition) / M. Mano. – New Jersey
: Prentice Hall, 2006. – 624 p.

14. Zwolinski M. Digital System Design with VHDL /
M. Zwolinski. – Boston : Addison-Wesley Longman Publishing
Co., Inc, 2000. – 416 p.

147

