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ABSTRACT

Context. The early lines of code (LOC) estimation in software projects holds significant importance, as it directly influences the
prediction of development effort, covering a spectrum of different programming languages, and open-source Kotlin-based applica-
tions in particular. The object of the study is the process of early LOC estimation of open-source Kotlin-based apps. The subject of
the study is the nonlinear regression models for early LOC estimation of open-source Kotlin-based apps.

Objective. The goal of the work is to build the nonlinear regression model with three predictors for early LOC estimation of
open-source Kotlin-based apps based on the Box-Cox four-variate normalizing transformation to increase the confidence in early
LOC estimation of these apps.

Method. For early LOC estimation in open-source Kotlin-based apps, the model, confidence, and prediction intervals of nonlin-
ear regression were constructed using the Box-Cox four-variate normalizing transformation and specialized techniques. These tech-
niques, relying on multiple nonlinear regression analyses incorporating multivariate normalizing transformations, account for the
dependencies between variables in non-Gaussian data scenarios. As a result, this method tends to reduce the mean magnitude of rela-
tive error (MMRE) and narrow confidence and prediction intervals compared to models utilizing univariate normalizing transforma-
tions.

Results. An analysis has been carried out to compare the constructed model with nonlinear regression models employing decimal
logarithm and Box-Cox univariate transformation.

Conclusions. The nonlinear regression model with three predictors for early LOC estimation of open-source Kotlin-based apps is
constructed using the Box-Cox four-variate transformation. Compared to the other nonlinear regression models, this model demon-
strates a larger multiple coefficient of determination, a smaller value of the MMRE, and narrower confidence and prediction inter-
vals. The prospects for further research may include the application of other data sets to construct the nonlinear regression model for

early LOC estimation of open-source Kotlin-based apps for other restrictions on predictors.
KEYWORDS: estimation, lines of code, open-source app, Kotlin, nonlinear regression model, Box-Cox transformation, class,

weighted methods per class, depth of inheritance tree.

ABBREVIATIONS
DIT is a depth of inheritance tree;
KLOC is a thousand lines of code;
LB is a lower bound;
LCOM is a lack of cohesion of methods;
LOC are lines of code;
MMRE is a mean magnitude of relative error;
MRE is a magnitude of relative error;
PRED is a percentage of prediction;
RFC is a response for class;
SMD is a squared Mahalanobis distance;
UB is an upper bound;
WMC are weighted methods per class.

NOMENCLATURE
b is an estimator for a vector of linear regression
equation parameters;

A

b; is an estimator for the i-th parameter of linear re-

gression equation;
k is a number of predictors (independent variables);
N is a number of data points;
P is a non-Gaussian random vector;
R? is a multiple coefficient of determination;
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Sz is a sample covariance matrix for normalized data;

SMDy is a squared Mahalanobis distance for normal-
ized data;

T is a Gaussian random vector;

t, 2w is a quantile of the student’s t-distribution with

v degrees of freedom and a,/2 significance level,

X is a number of classes;

X, is a WMC metric at the app level (a WMC mean
value per class);

X is a DIT metric at the app level (a DIT mean value
per class);

Y is an actual software size in KLOC;

Zj is a j-th Gaussian variable that is obtained by

transforming the variable X ;

Zy is a Gaussian variable that is obtained by trans-
forming variable Y;
Z_Y is a sample mean of the Zy values;

ZY is a prediction result by linear regression equation

for normalized data;
o is a significance level;
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By is a multivariate skewness;
B, is a multivariate kurtosis;

¢ is a Gaussian random variable that defines residu-
als;
v is a number of degrees of freedom;

o, is a standard deviation of ¢
y is a vector of multivariate normalizing transforma-
tion.

INTRODUCTION

As we know [1], Lines of Code (LOC) is the number
of lines of code excluding comments. Early software size
estimation, including LOC, is one of the project manag-
ers’ significant problems in evaluating software develop-
ment efforts using mathematical models like COCOMO 11
[2].

The multi-platform nature of Kotlin language simpli-
fies the development of cross-platform apps, primarily
mobile ones. That is why, Kotlin Multiplatform Mobile
(KMM) already has a handful of successful apps on the
market [3].

Despite a large number of currently existing methods
and models for estimating the software size [4-9], re-
search in this direction does not stop [10—15]. This is pri-
marily due to the low accuracy of estimating the size of
the software in the early stages of its development. One
way to solve this problem is to develop appropriate mod-
els for estimating the size of the software developed in a
specific programming language. Today some LOC esti-
mation models based on the software metrics that can be
measured from the class diagram are known [4, 6, 8, 10—
12]. The above models are constructed for such languages
as Java [4, 6, 10, 11], C++ [8], PHP [4, 6, 12], and Visual
Basic [4, 6]. However, there are no models, both linear
and nonlinear ones, for early LOC estimation of open-
source Kotlin-based apps. This demands the construction
of the models for early LOC estimation of open-source
Kotlin-based apps.

The object of study is the process of early LOC esti-
mation of open-source Kotlin-based apps.

The subject of study is the regression models for
early LOC estimation of open-source Kotlin-based apps.

The purpose of the work is to increase confidence in
early LOC estimation of open-source Kotlin-based apps.

1 PROBLEM STATEMENT

Suppose given the original sample as the four-
dimensional non-Gaussian data set: actual software size in
the thousand lines of code (KLOC) Y, the total number of
classes X;, the WMC metric at the app level X,, the
DIT metric at the app level X5 from N open-source Kot-
lin-based apps. Suppose that there are four-variate nor-
malizing transformation of non-Gaussian random vector
P={Y,X;, X, X5}T  to

T= {ZY ,21,22,23}T is given by

Gaussian random  vector
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T=y(P) (1)
and the inverse transformation for (1)
P=y !(T). ()

It is required to build the nonlinear regression model
in the form Y = Y(Xl, X7, X3,a) based on the transforma-

tions (1) and (2).

2 REVIEW OF THE LITERATURE

In paper [6] the linear regression equations were pro-
posed for LOC estimation of software of open-source
PHP- and Java-based information systems. These equa-
tions are developed based on three metrics that can be
gained from a conceptual data model derived from a class
diagram: the total number of classes, the total number of
relationships, and the average number of attributes per
class. However, the application of linear regression mod-
els is grounded on four primary assumptions, one of
which relates to the normality of the error distribution.
Nevertheless, this assumption is applicable only in spe-
cific scenarios. Therefore, in paper [10], the nonlinear
regression model was constructed using the same above
metrics for LOC estimation of software of Java-based
information systems. However, the size of software apps
may depend on other metrics. That is why in [11] the
nonlinear regression model was constructed for early
LOC estimation of Java-based apps. This model depends
on four factors (predictors), namely the total number of
classes, the number of static methods, the LCOM metric,
and the RFC metric. However, the size of open-source
Kotlin-based apps may depend on other metrics too. This
leads to the need to build the nonlinear regression model
for early LOC estimation of open-source Kotlin-based
apps.

Although machine learning methods are becoming in-
creasingly popular for the estimation of various software
metrics [13, 15-22], including software size [13, 15],
methods and models based on regression analysis have
not yet reached their full potential [12, 23-28]. We sug-
gest using the nonlinear regression models for early LOC
estimation of open-source Kotlin-based apps because,
firstly, there are two random variables, both a dependent
variable (response) and an error term (residuals), in a re-
gression model, and, secondly, the error distribution is not
Gaussian.

One should note, that employing a normalizing trans-
formation is frequently an effective approach to construct
nonlinear regression models for early LOC estimation of
various software apps [10-12]. As commonly understood,
transformations serve essentially four purposes, with two
main aims: firstly, to attain an approximate normal distri-
bution for the error term in linear regression with normal-
ized data, and secondly, to modify the response and/or
predictor variables to enhance the linear relationship
strength between new variables (normalized variables)
compared to the original relationship between dependent
and independent variables.
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Commonly utilized methods for constructing nonlin-
ear regression models typically rely on univariate normal-
izing transformations, such as the decimal logarithm and
the Box-Cox transformation. However, these techniques
fail to consider the correlation between dependent and
independent variables. As a result, using such univariate
normalizing transformations in the construction of nonlin-
ear regression models does not consistently ensure opti-
mal normality and linear relationships between normal-
ized variables [12]. This emphasizes the necessity of em-
ploying multivariate normalizing transformations. Thus,
following the methodology outlined in [12], we employ
the technique for constructing nonlinear regression mod-
els based on multivariate normalizing transformations and
prediction intervals to develop a model with three predic-
tors for early estimation of lines of code (LOC) in open-
source Kotlin-based applications. In this approach, predic-
tion intervals from nonlinear regression models are ap-
plied to identify outliers during model construction. We
detect the outliers due to residuals according to [29].
Typically, this procedure is iterative as we rebuild the
model for new data after outlier removal. If there are no
outliers, the process of constructing the model ends.

3 MATERIALS AND METHODS

The technique to build nonlinear regression models
based on multivariate normalizing transformations and
prediction intervals is comprised of six steps. The first
step involves normalizing multivariate non-Gaussian data
through a dedicated transformation (1). To do this, as in
[12], we use the four-variate Box-Cox transformation
with components

Aj .
5 _ (}\‘ )_ (XJJ—IJ/XJ, if 7»]750;
j=xj)= 3)

Here Z; is a Gaussian variable; A j is a parameter of

the Box-Cox transformation, j=1,2,3. The variable Zy is

defined analogously (3) with the only difference that in-
stead of Zj, X, and A should be put respectively Zy ,

Y, and Ay .

In the second step, we determine whether one multi-
dimensional data point of a multivariate non-Gaussian
data set is a multidimensional outlier. If there is a multi-
dimensional outlier in a multivariate non-Gaussian data
set then we discard the one and go to step 1, else continue.

To determine whether one data point of a multivariate
non-Gaussian data set is a multidimensional outlier, we
apply the statistical technique based on the normalizing
transformations and the squared Mahalanobis distance
(SMD) as in [12].

In the third step, we build the linear regression model
for normalized data in the form
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ZY :ZY +8=60+6121+6222+63Z3+8, (4)

¢ is a Gaussian random variable that defines residuals,

~ N(O,Gg).

In the fourth step, we test the normality of the distri-
bution of residuals in the linear regression model for nor-
malized data. If the distribution of the residuals in the
linear regression model for the normalized data is not
Gaussian, then we discard the multivariate data point for
which the modulus of the residual in the model is the
maximum and go to step 1 otherwise continue.

The nonlinear regression model using the transforma-
tion (1) and (2) for the linear regression model for nor-
malized data as in [12] is constructed in the fifth step

Y =yy'(2y +e) . )

For the four-variate Box-Cox transformation with
components (3), the model has the form [12]

v =[iy Gy +e)e1] ™, ®)

where ¢ is a Gaussian random variable, g~ N(O, cg),
with the estimate &, ; ZY is a prediction result by the

linear regression equation ZY = 60 + 6121 + 6222 + 6323
for normalized data, which are transformed by the four-
variate Box-Cox transformation with components (3).

Finally, in the sixth step, we build the prediction in-
terval of nonlinear regression and determine whether one
or more values of the response (dependent random vari-
able) are outliers (its values are outside the prediction
interval). If there are outliers in the data for the nonlinear
regression model then we discard these and go to step 1,
otherwise we complete constructing the nonlinear regres-
sion model.

We define the prediction interval of nonlinear regres-
sion as in [12]

/
wy'| Zy £ty Sz, {1+%+(ZQ)TS?(Z;)}12 0

where t, v is a student’s t-distribution quantile with

>

0/2 significance level and v degrees of freedom;
v=N-k-1; k is the number of independent variables

(in our case, k is 3); z¥ is a vector with components
-Zy, ...,

Z;, -7, Z;, Zy, -Z, for i-row;
_ 1N _ I N 2
Zj :szll , j—l,z, , 5 SZY CZ(ZYl _ZYi) ,

i=1 i=1
v=N-k-1; S7 isa kxk matrix
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SZ1Z1 SZ122 Szlzk
Szlzk SZZZk SZka

N _ _
In(8) S7,7, = Z[zqi —quzri —zr], q.r=12,..k.
i=1

We constructed a nonlinear regression model for early
LOC estimation of open-source Kotlin-based apps by the
above technique from 54 apps hosted on GitHub
(https://github.com). We acquired the dataset utilizing the
CodeMR tool [30], focusing on the following variables:
the actual software size measured in thousand lines of
code (KLOCQ) Y, the total number of classes X, , the WMC

metric at the application level X, , and the DIT metric at
the same level Xj5. Table 1 contains that data set. We
chose the above predictors X;, X,, and X; for two rea-

sons. Firstly, these predictors can be obtained from the
class diagram, and, secondly, there is no multicollinearity
between these predictors since variance inflation factors
for predictors X;, X,, and Xj are equal to 1.06, 1.46,

and 1.40, respectively.

We checked the four-dimensional data from Table 1
for multivariate outliers. Before analyzing the four-
dimensional data from Table 1 for multivariate outliers,
we assessed the normality of the multivariate data in Ta-
ble 1. This preliminary check was essential, as common
statistical methods, including multivariate outlier detec-
tion based on the squared Mahalanobis distance (SMD),
are designed to identify outliers assuming a Gaussian dis-
tribution. We applied a multivariate normality test pro-
posed by Mardia and based on measures of the multivari-
ate skewness B; and kurtosis B, [31]. According to this

test, the distribution of four-dimensional data from Table
I is not Gaussian since the test statistic for multivariate
skewness NP;/6 of this data exceeds 40.00, that is the

quantile of the Chi-Square distribution, applicable for 20

degrees of freedom and a for significance level of 0.005.
Similarly, the test statistic for multivariate kurtosis

B, , which equals 66.74, is greater than the value of the

Gaussian distribution quantile, which is 28.86 for 24
mean, 3.56 variance, and 0.005 significance level. Be-
cause, as in [17], to detect multivariate outliers in the
four-dimensional non-Gaussian data from Table I, we
used the statistical technique based on the multivariate
normalizing transformations and the SMD for normalized
data. To normalize the data from Table 1, the four-variate
Box-Cox transformation with components (3) was ap-
plied. The parameter estimates of the four-variate Box-
Cox transformation for the data from Table 1 are calcu-
lated by the maximum likelihood method and are
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Ay =—0.137228,

A

Ay =-1.067093 .

There are two multivariate outliers in four-
dimensional non-Gaussian data in Table 1 since the
SMD; values for rows 35 and 47 exceed 14.86, which is
the quantile of the Chi-Square distribution, applicable for
a significance level of 0.005. In Table 1, rows that should
be considered outliers are highlighted in bold. There are
two iterations in step 1, Next, we go to step 1 of the third
iteration.

In step 1 of the third iteration, we discard the outliers
(rows 35 and 47) and normalize 52 rows of data from
Table 1 (without rows 35 and 47). In this case, the pa-
rameter estimates of the four-variate Box-Cox transforma-
tion for the data from Table 1 (without rows 35 and 47)
are calculated by the maximum likelihood method and are

Ay =—0.136019, A, =-0.156183, A, =-0.210099,

A

Ay =—1.294445 .

A =—0.138740, A, =-0.220743,

Table 1 — The data set

No| Y X Xz X; [No Y X Xz X3

1 1.682] 73 5.37/ 095928 | 4.111] 157] 5.82| 1.408
2 1.256] 55 3.56| 1473129 | 12.248| 331| 6.12] 0.894
3 14.867| 546 5.40({ 0.987[30| 0.829 31] 5.71] 0.871
4 ]23.149[1033| 4.60| 3.206| 31 | 22.069| 623| 7.76| 0.681
5 |28.699]1090 5.33] 1.15632| 2.179 92| 5.78| 1.424
6 8.303| 266 7.25( 1.711{ 33| 11.800] 199 11.82| 1.472
7 5.508] 122| 9.66| 1.648|34| 1.425 77| 4.10| 1.429
8 122.078[1292] 4.71| 0.971|35| 2.220] 221| 3.67| 0.561
9 2.010] 47| 7.68] 0.851|36| 1.872| 101| 4.25] 1.198
10 | 11.629| 425] 4.95| 1.416|37| 2.097 91| 3.64| 0.934
11 1.728] 69| 6.22| 1.116/38 | 5.639] 313] 3.82| 1.125
12 1.538] 102| 2.17| 0.873{39| 1.933 80| 6.25| 1.125
13 | 38.101| 1151 6.85| 0.929140 | 17.575| 776/ 4.30| 0.932
14 | 7.655| 290 5.90( 1.062{41| 5437 167 7.59| 1.192
15 | 4.975| 354| 3.91]| 0.833|42| 2.357 83| 3.59| 1.145
16 | 24.324| 701 4.48| 1.126/43| 0.762 24| 6.71] 1.000
17 1.031] 19| 26.53| 1.053(44| 1.201 37] 8.00| 0.865
18 | 9.971| 150{ 13.02| 0.773|145| 1.591 42| 14.36| 1.095
19 | 12.001] 346] 6.17] 1.121|146| 4.682| 212| 4.46| 1.236
20 | 1.804] 41| 11.98| 1.049(47| 6.341 55| 30.80| 6.073
21 | 0.614] 23 6.48| 0.826(48 | 5.865| 207| 9.44| 1.048
22 1.704] 59| 7.51] 1.000/49 | 5.443| 179| 5.44| 0.849
23 1 16.979] 927| 3.59| 1.027|50 | 2.441| 136 3.71] 0.794
24 | 25.845| 405 8.92| 1.254|51| 4.672 66| 13.58]| 0.879
25 | 3.116] 123| 4.42| 1.016/52| 1.727 74] 3.41| 1.838
26 | 9.494| 254 12.48] 1.496|53 | 28.267| 595| 13.54] 1.183
27 | 8.599] 237| 7.32] 2.325/54| 0.861 44| 4.75| 0.773

There are no multivariate outliers among 52 rows of
data from Table 1 (without rows 35 and 47) since their
SMD; values do not exceed 14.86, which is the quantile
of the Chi-Square distribution, applicable for a signifi-
cance level of 0.005. That is why we go to the third step.

In the third step, we build the linear regression model
(4) for 52 rows of normalized data from Table 1 (without

rows 35 and 47). The estimates 50 s 61 s 52 , and 53 equal
—6.2999, 1.8251, 0.86530, and 0.003968, respectively.
The estimate &, of a standard deviation of ¢ is 0.1548.
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In the fourth step, we test the normality of the distri-
bution of residuals in the linear regression model (4) for
52 rows of normalized data from Table 1 (without rows
35 and 47). To achieve this, we employ the Pearson Chi-
Squared test. We accepted the null hypothesis Hy, affirm-
ing that the observed frequency distribution of the ¢ val-
ues in (4) closely resembles the normal distribution (indi-
cating no significant difference between the distributions).
This decision was reached because the test > statistic,

measuring 6.98 does not exceed 9.49, that is the quantile
of the Chi-Square distribution, applicable for 4 degrees of
freedom and a significance level of 0.05. Therefore, we
g0 to step 5.

In the fifth step, the nonlinear regression model (6)
was constructed. Then, in the sixth step, the prediction
interval of nonlinear regression by (7) was built and it was
determined whether one or more values of the response
(dependent random variable) were outliers.

In this case, the inverse matrix of (8) is

0.0807  0.0278 -0.0316
521: 0.0278  0.2101 —-0.0138 .
-0.0316 -0.0138 0.4056

The values of averages (sample means) Z_l s Zz, and

23 are 3.459, 1.502, and 0.060, respectively. The SZY

value equals 0.1596. The t value equals 2,0106 for a

a/2,v
0.05 significance level and 48 degrees of freedom.

There is one outlier in the data for the nonlinear re-
gression model (6) since the Y value for row 51 is outside
the prediction interval. Therefore, we discard row 51 and
go to step 1 of the fourth iteration.

In step 1 of the fourth iteration, we normalize the data
of 51 rows from Table 1 (without rows 35, 47, and 51). In
this case, the parameter estimates of the four-variate Box-
Cox transformation for the data from Table 1 (without
rows 35, 47, and 51) are calculated by the maximum like-

lihood method and are Ay =—0.161328, A, =—0.159392,

Ay =—0.239815, Ay =—1.253682.

There are no multivariate outliers among data of 51
rows from Table 1 (without rows 35, 47, and 51) since
their SMD; values do not exceed 14.86, which is the
quantile of the Chi-Square distribution, applicable for a
significance level of 0.005. That is why we go to the third
step.

In the third step, we build the linear regression model
(4) for 51 rows of normalized data from Table 1 (without

rows 35, 47, and 51). The estimates 60, 61, 62, and @
equal —6.1084, 1.7898, 0.84037, and 0.04182, respec-

tively. The estimate &, is 0.1421.

In the fourth step, we test the normality of the distri-
bution of residuals in the linear regression model (4) for
51 rows of normalized data from Table 1 (without rows
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35, 47, and 51). To achieve this, we employ the Pearson
Chi-Squared test. We accepted the null hypothesis Hy,
affirming that the observed frequency distribution of the
€ values in (4) closely resembles the normal distribution
(indicating no significant difference between the distribu-

tions). This decision was reached because the test 2

statistic, measuring 5.57 does not exceed 9.49, that is the
quantile of the Chi-Square distribution, applicable for 4
degrees of freedom and a significance level of 0.05.
Therefore, we go to step 5.

In the fifth step, we construct the nonlinear regression
model (6). Then, in the sixth step, we build the prediction
interval of nonlinear regression by (7) and determine
whether one or more values of the response are outliers.

In our case the inverse matrix of (8) is

0.0834  0.0284 -0.0313
Szl = 0.0284 0.2468 -0.0232]. O]
-0.0313 -0.0232 0.4084

The values of averages Z;, Z,, and Z; are 3.441,

1.454, and 0.065, respectively. The SZY value equals
0.1466. The tyay value equals 2,0117 for a 0.05 signifi-

cance level and 47 degrees of freedom.

No outliers are present in the data for the nonlinear re-
gression model (6) since all Y values for 51 rows of the
data from Table 1 (without rows 35, 47, and 51) are inside
the prediction interval. Therefore, we complete construct-
ing the nonlinear regression model (6).

The nonlinear regression model (6) has the parameter

estimates iy, 711, 712, 713, 60, 61, 62, and 63, which

equal —-0,161328, -0,159392, -0,239815, —1,253682,
—6.1084, 1.7898, 0.84037, and 0.04182, respectively. The

estimate 6, of a standard deviation & is 0.1421. The

nonlinear regression model (6) is limited to estimating
LOC of open-source Kotlin-based apps with the following
restrictions on predictors: the interval for X; is from 19 to
1292, the interval for X, is from 2.167 to 26.526, and the
interval for X; is from 0.681 to 3.206.

To assess the predictive accuracy of the nonlinear re-
gression model (6), we utilized standard metrics namely
R’>, MMRE, and PRED(0.25). The acceptable values of
MMRE and PRED(0.25) are not more than 0.25 and not
less than 0.75 respectively. For model (6) with the above
parameter estimates, predicated upon the four-variate
Box-Cox transformation applied to the dataset of the 51
apps from Table 1 (excluding entries from rows 35, 47,
and 51), the computed values for R?, MMRE, and
PRED(0.25) are 0.9235, 0.1458, and 0.8235, respectively.

These values indicate good model quality. However,
the data from the table 1 is the training set. To avoid the
problem of overfitting the model [32], the predictive ac-
curacy of the model (6) should be checked on the test set,
the data of which were not used to build the model. That
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we do next. In addition, we compare the built model (6)
with two other models that are obtained based on the uni-
variate transformations.

4 EXPERIMENTS

The test dataset was obtained using the CodeMR tool
[30] around the variables and for the training set from
Table 1. Table 2 contains the test dataset.

For comparison of the model (6) with other nonlinear
regression models with three predictors, two nonlinear
regression models are built based on normalizing the data
of 51 rows from Table 1 (without rows 35, 47, and 51)
using the univariate transformation.

The nonlinear regression model based on the linear
regression model (4) for the normalized data and the
decimal logarithm univariate transformation has the form

Y = 10500 X Prx P x B (10)

where the estimators for parameters are: 60 =-2.11196,
by =1.02339, b, =0.652935, by =0.047833. The esti-
mate 6, is 0.08605.

Table 2 — The test dataset

No App name Y Xi X, X3

1 |moko-resources 3.996] 173] 3.908| 1.145
2 |Loritta 79.295|2815| 5.304| 1.497
3 |kable 1.818] 56| 4.393| 1.054
4 |binary-compatibility-validator 1.149] 46 5.37| 1.022
5 |contacts-android 27.109| 1149] 5.148| 1.55
6 |strikt 2418| 74| 8.676| 1.203
7 |kotlin-power-assert 1.017] 29| 6.172| 1.172
8 |kroto-plus 10.909| 153| 17.353] 1.007
9 |Hexagon 6.65| 212| 7.943 1
10 |beagle 11.132] 636] 5.634| 1.06
11 |[MoshiX 8.35| 154 8.26/ 0.721
12 |BleGattCoroutines 1.834] 46| 5.261| 1.457
13 |kotlin-spark-api 13.344| 216| 23.685] 1.167
14 |data2viz 1.573] 51| 6.137] 1.078
15 |Confetti 14.425| 313] 6.042] 1.201
16 |locus-android 0.842| 25 5.8 1.64
17 |actions-on-google-java 4.542] 149] 4.604| 0.872
18 |aws-sdk-kotlin 6.556| 300| 3.467| 1.107
19 |moko-kswift 1.023] 41| 5.366| 1.195
20 |EzXHelper 1.557] 49| 9.939| 1.082
21 |ktgbotapi 0.539| 24| 3.292| 1.042
22 |detekt-intellij-plugin 0.934] 42| 4.81]| 1.595
23 |swiftpoet 2.883| 84| 9.881| 0.893
24 |Fuck-Storage-Access-Framework | 2.821| 56| 12.411] 1.036
25 |kowasm 4.629] 389| 2.956| 0.817

The nonlinear regression model based on the Box-Cox
univariate transformation is analogously (6) with the only
difference being that the data for variables are normalized
by the Box-Cox univariate transformation using the maxi-
mum likelihood method. The estimators for parameters of
the Box-Cox univariate transformation for each from vari-

Y, X, X, and X; are iy =-0.067289,
A, =—0.034850 , A, =—0.459658, A; =—1.289541. The
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parameter estimators of the linear regression model for
normalized data by the Box-Cox univariate transforma-

tion are by=-533943, b =1.09177, b,=1.38983,

63 =0.069187 . The estimate &, is 0.17507.

To carry out experiments, a computer program was
developed to implement the constructed models (6) and
(10). The program was coded using sci-language com-
patible with the Scilab system. Scilab, accessible at
http://www.scilab.org, stands as a cost-free, open-source
software option.

S RESULTS

The values of R? , MMRE and PRED(0.25) equal re-
spectively 0.9138, 0.1538, and 0.8431 for the model (6)
based on the Box-Cox univariate transformation, and
equal respectively 0.9166, 0.1548, and 0.8039 for the
model (10) for the decimal logarithm univariate transfor-
mation for the training dataset. In this case, the MMRE

and R? values are better for the model (6) based on the
Box-Cox four-variate transformation. The PRED(0.25)
value is better for model (6) based on the Box-Cox uni-
variate transformation (0.8431 against 0.8235).

For model (6) with the parameter estimates, calculated
upon the four-variate Box-Cox transformation for the
training dataset of the 51 apps from Table 1 (excluding
entries from rows 35, 47, and 51) applied to the test data-
set of the 25 apps from Table 2, the computed values for
R’, MMRE, and PRED(0.25) are 0.9818, 0.1871, and
0.7600, respectively. For model (10) applied to the test
dataset of the 25 apps from Table 2, the computed values
for R?, MMRE, and PRED(0.25) are 0.9811, 0.1925, and
0.7600, respectively. For model (6) with the parameter
estimates, calculated upon the univariate Box-Cox trans-
formation for the dataset of the 51 apps from Table 1 (ex-
cluding entries from rows 35, 47, and 51) applied to the
test dataset of the 25 apps from Table 2, the computed
values for R, MMRE, and PRED(0.25) are 0.9619,
0.1943, and 0.7200, respectively. In the case of the test

dataset, the MMRE and R? values are better for the
model (6) based on the Box-Cox four-variate transforma-
tion too.

The prediction results Y of models (6) and (10) for
values of predictors from Table 2 and values of MRE are
presented in Table 3. Prediction results obtained from
model (6) and the corresponding MRE values are pre-
sented in Table 3, showcasing two cases: utilizing uni-
variate and four-variate Box-Cox transformations. The
MRE values for model (6) based on the Box-Cox four-
variate transformation exhibit a reduction compared to
those of model (6) based on the Box-Cox univariate trans-
formation for 15 from 25 rows of data (rows 1-6, 8, 10,
11, 17, 1922, 25). Also, the MRE values for model (6)
based on the Box-Cox four-variate transformation are less
than for model (10) based on the decimal logarithm uni-
variate transformation for 16 from 25 rows of data (rows
3,5-8,10-12, 14-17, 20, 21, 23, 25).
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Table 3 — The prediction results and confidence intervals of nonlinear regressions

The four-variate Box-Cox The univariate transformations
No Y transformation the decimal logarithm the Box-Cox
YA MRE LB UB YA MRE LB UB YA MRE LB UB

1 3.996 3.631| 0.0914 3.373 3912 3.696/ 0.0750 3.407 4.009 3.598| 0.0996 3.317 3.905
2 79.295| 77.070| 0.0281| 62.905| 95.076] 79.378| 0.0010| 67.528| 93.307| 89.295| 0.1261| 73.915| 108.140
3 1.818 1.302| 0.2839 1.213 1.399 1.253] 0.3109 1.139 1.378 1.296| 0.2873 1.191 1411
4 1.149 1.206| 0.0493 1.127 1.291 1.166] 0.0149 1.064 1.278 1.226) 0.0671 1.132 1.329
5 27.109] 30.183| 0.1134] 25.990| 35.183| 31.167| 0.1497| 27.473| 35.358| 32.565| 0.2013| 28.256| 37.583
6 2418 2.613| 0.0808 2.435 2.807 2.615| 0.0815 2.409 2.838 2.638| 0.0911 2431 2.864
7 1.017 0.822| 0.1918 0.757 0.893 0.802( 0.2117 0.718 0.895 0.864| 0.1504 0.783 0.954
8 10.909 8.639| 0.2081 7.505 9.976 8.574] 0.2140 7.396 9.940 7.706| 0.2936 6.752 8.805
9 6.65 74121 0.1146 6.877 7.997 7.185| 0.0804 6.668 7.741 7.233| 0.0876 6.704 7.807
10 11.132| 17.686| 0.5887| 15.972| 19.617| 17.722| 0.5920| 16.131] 19.470| 18.146/ 0.6301| 16.450| 20.030
11 8.35 5.318| 0.3631 4.646 6.105 5.232| 0.3734 4.664 5.869 5.163| 0.3817 4.475 5.964
12 1.834 1.206| 0.3425 1.105 1.317 1.170| 0.3619 1.044 1.312 1.234| 0.3274 1.112 1.369
13 13.344] 15.695| 0.1762| 13.006| 19.052| 15.057| 0.1284| 12.498| 18.141| 12.753] 0.0443| 10.858| 15.005
14 1.573 1.448| 0.0792 1.359 1.545 1.418| 0.0987 1.304 1.541 1.481| 0.0586 1.373 1.598
15 14.425 9.154| 0.3654 8.509 9.855 9.033] 0.3738 8.443 9.663 9.164| 0.3647 8.523 9.857
16 0.842 0.691| 0.1794 0.622 0.769 0.672| 0.2018 0.578 0.781 0.733] 0.1295 0.644 0.835
17 4.542 3.486| 0.2324 3.233 3.763 3.485| 0.2327 3.204 3.791 3.451] 0.2402 3.179 3.749
18 6.556 5.601| 0.1457 5.109 6.148 5.995| 0.0856 5.458 6.584 5.626| 0.1419 5.096 6.215
19 1.023 1.080| 0.0560 1.001 1.166 1.044| 0.0204 0.944 1.154 1.107| 0.0822 1.012 1.212
20 1.557 1.816] 0.1666 1.680 1.966 1.865| 0.1976 1.690 2.057 1.865| 0.1981 1.701 2.047
21 0.539 0.483| 0.1046 0.435 0.536 0.436/ 0.1915 0.375 0.507 0.469| 0.1301 0411 0.535
22 0.934 1.048| 0.1217 0.950 1.157 1.010| 0.0814 0.884 1.154 1.068| 0.1435 0.950 1.202
23 2.883 3.179| 0.1027 2.920 3.466 3.195| 0.1083 2.901 3.520 3.147| 0.0914 2.860 3.463
24 2.821 2.353| 0.1658 2.148 2.581 2.466| 0.1258 2.202 2.762 2.367| 0.1611 2.134 2.626
25 4.629 6.135| 0.3253 5.359 7.044 6.946| 0.5004 6.093 7.918 6.150[ 0.3285 5.315 7.126

Note, that a more significant advantage of the model
(6) constructed by the four-variate Box-Cox transforma-
tion compared with the two above models relying on uni-
variate transformations, is the reduced widths of the con-
fidence and prediction intervals. These intervals are de-
fined by data from Table 2. Table 3 contains the lower
(LB) and upper (UB) bounds of the confidence intervals
of nonlinear regressions utilizing both univariate and
four-variate transformations, with a significance level of

0.05. We defined the confidence intervals for Y using (7)
with the sole distinction being the absence of 1 in the
summation within curly brackets. Also, we used the in-
verse matrix (9) in this case. The widths of the confidence
interval of nonlinear regression based on the Box-Cox
four-variate transformation are less than for nonlinear
regression based on the Box-Cox univariate transforma-
tion for 20 from 25 rows of data (except rows 8-10, 13,
and 15).

Additionally, for 18 of the 25 data rows (excluding
rows 2, 5, 9-11, 13, and 15), the confidence intervals’
widths for nonlinear regression, based on the Box-Cox
four-variate transformation, are less than those based on
the decimal logarithm univariate transformation. Similar
results are observed in the prediction intervals of nonlin-
ear regressions using the test dataset from Table 2.

The lower (LB) and upper (UB) bounds of prediction
intervals for nonlinear regressions, based on univariate
and four-variate transformations respectively, are pre-
sented in Table 4 at a significance level of 0.05. It’s worth
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noting that the width of the confidence interval for
nonlinear regression for the four-variate Box-Cox trans-
formation is less than after the univariate Box-Cox trans-
formation for 20 (with the difference up to 23%) from 25
data rows (except rows 8, 9, 10, 13, and 15 with the dif-
ference of 20.3, 1.5, 1.8, 45.8, and 0.9%, respectively)
and less than after decimal logarithm univariate transfor-
mation for 18 from (with the difference up to 27%) from
25 data rows (except rows 2, 5,9, 10, 11, 13, and 15 with
the difference of 24.8, 16.6, 1.8, 4.4, 9.1, 21.1, and 7.1%,
respectively). It’s also worth noting that the width of the
confidence interval for nonlinear regression for four-
variate Box-Cox transformation is less than after the uni-
variate Box-Cox transformation for 18 (with the differ-
ence up to 26.4%) from 25 data rows (except rows 2, 5, 8,
9, 10, 13, and 15 with the difference of 7.8, 5.4, 14.3, 1.4,
5.2, 35.8, and 0.8%, respectively) and less than after
decimal logarithm univariate transformation for 18 from
(with the difference up to 30.7%) from 25 data rows (ex-
cept rows 2, 5, 8,9, 10, 13, and 15 with the difference of
48.1,25.1, 3.6, 3.8, 16.9, 18.9, and 5.9%, respectively).

The largest deviation between the widths of the inter-
vals we obtained for the data of app 2 is from Table 2.
That result can be explained by the fact that the value
2815 of the predictor X; exceeds the upper bound of the
corresponding restriction (X; is from 19 to 1292 according
to the training dataset from Table 1), for which model (6)
was built, by more than two times.
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Table 4 — The bounds of the prediction interval

univariate four-variate
No Y decimal logarithm Box-Cox Box-Cox
LB UB LB UB LB UB
1 3.996| 2431] 5.620] 2.415] 5421 2.533] 5.320
2 79.295| 51.031| 123.471| 53.201| 152.706| 42.332| 149.615
3 1.818] 0.821 1911 0.891 1.903] 0.957| 1.800
4 1.149] 0.765] 1.777| 0.845] 1.796/ 0.890| 1.659
5 27.109| 20.273| 47.915| 20.288| 53.093| 18.104| 52.688
6 2418 1.720] 3.977| 1.784] 3.943| 1.857| 3.753
7 1.017] 0.524| 1.227| 0.598| 1.261] 0.615| 1.115
8 10.909| 5.539| 13.272| 5.007] 12.012| 5.642| 13.651
9 6.65| 4731 10912 4.771| 11.097] 4.964| 11.380
10 | 11.132] 11.624] 27.020{ 11.622| 28.727| 11.141| 29.140
11 8.35| 3414 8.018] 3.378] 7990 3.577| 8.123
12 1.834] 0.764] 1.793] 0.845 1.818] 0.886| 1.668
13 | 13.344] 9.588| 23.647| 8.104| 20.359| 9.724| 26.369
14 1.573] 0932 2.157| 1.017] 2.178] 1.061] 2.011
15 | 14.425| 5955| 13.701| 6.010] 14.147| 6.053| 14.259
16 0.842| 0.434] 1.041] 0.504] 1.075| 0.517| 0.937
17 4.542] 2291 5302 2318] 5.195] 2.437| 5.098
18 6.556| 3.932| 9.139] 3.718] 8.614] 3.801| 8.470
19 1.023]  0.684] 1.594] 0.763 1.621| 0.800{ 1.482
20 1.557| 1.222| 2.846] 1269 2.770] 1.312] 2.561
21 0.539| 0.281] 0.675] 0.325] 0.682] 0.366] 0.644
22 0.934] 0.656] 1.556] 0.732| 1.575| 0.772| 1.444
23 2.883] 2.095| 4.875 2.112] 4.739] 2.229] 4.633
24 2.821 1.610] 3.778] 1.597| 3.545| 1.673] 3.376
25 4.629] 4.511] 10.693] 4.002] 9.572| 4.094] 9.457
6 DISCUSSION

Utilizing appropriate techniques, we employ four-
variate normalizing transformations to construct the
nonlinear regression model for early estimation of LOC in
open-source Kotlin-based applications, as in [13]. This
approach is chosen due to the non-Gaussian distribution
of errors in the linear regression model, as the chi-squared
test result indicated. Moreover, the four-variate distribu-
tion of the data from Table 1 is not Gaussian what the
Mardia multivariate normality test based on measures of
the multivariate skewness and kurtosis indicates. We util-
ize the statistical technique based on the multivariate
normalizing transformations and the SMD for normalized
data to detect four-variate outliers in the non-Gaussian
data from Table 1. Note, that we have more four-variate
outliers for the data from Table 1 without applying nor-
malization.

For a larger number of data rows, the widths of both
confidence and prediction intervals in multiple nonlinear
regression, utilizing the Box-Cox four-variate transforma-
tion, are smaller compared to nonlinear regressions mod-
els employing univariate transformations, including both
the decimal logarithm and the Box-Cox. Moreover, model
(6) utilizing the Box-Cox four-variate transformation
demonstrates a smaller MMRE value compared with all
other nonlinear models employing univariate transforma-
tions. This may prove the Box-Cox four-variate transfor-
mation to be the best four-variate normalization transfor-
mation for non-Gaussian data from Table 1.

The advantages of the proposed model (6) include the
possibility of early LOC estimation of open-source Kot-
lin-based apps using the values of three metrics at the app
level (the total number of classes, WMC, and DIT), that
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can be measured from the class diagram. The disadvan-
tages of the proposed model (6) include, first of all, the
fact that the early LOC estimation can be performed only
for a part of the open-source Kotlin-based apps. The pro-
posed model (6) is limited to the early LOC estimation of
open-source Kotlin-based apps for which there are the
following restrictions on predictors: the interval for X; is
from 19 to 1292, the interval for X, is from 2.167 to
26.526, and the interval for X; is from 0.681 to 3.206.

The obtained results indicate that a constructed model
with three predictors for early LOC estimation of open-
source Kotlin-based apps improves confidence in estimat-
ing the LOC metric of the above apps.

CONCLUSIONS

The task of improving confidence in early LOC esti-
mation for open-source Kotlin-based applications has
been accomplished.

The scientific novelty of the obtained results is that
the three-factor nonlinear regression model for early LOC
estimation of open-source Kotlin-based apps is firstly
constructed based on the Box-Cox four-variate transfor-
mation. Compared to the other nonlinear regression mod-
els, this model demonstrates a smaller mean magnitude of
relative error and narrower confidence and prediction
intervals with three predictors for more cases.

The practical significance of the obtained results is
that the computer program to implement the constructed
model using sci-language for Scilab was developed. With
the experimental results at hand, we are confident in rec-
ommending the developed model for practical use.

Prospects for further research may include the ap-
plication of other multivariate normalizing transforma-
tions and data sets to construct multiple nonlinear regres-
sion models for early LOC estimation of open-source
Kotlin-based apps for other restrictions on predictors.
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HEJIIHIHA PET'PECIMHA MOJIEJIb JJIS1 PAHHBOI'O OLIHIOBAHHSA METPUKHU LOC 3ACTOCYHKIB 3
BIIKPUTHUM KOAOM HA KOTLIN

Mpuxonpko C. B. — 1-p TexH. Hayk, nmpodecop, 3aBigyBay kadeapy nporpaMHOro 3abe3neyeHHs: aBTOMAaTH30BaHUX cucteM Ha-
LiOHAJIBHOTO yHIBEepCHUTETY KopabiebynyBaHHs iMeHi agmipana MakapoBa, Mukounais, YkpaiHa.

IMpuxoabko H. B. — xana. exoH. HayK, OOLEHT, AoueHT Kadeapu dinancie HaumionampHOro yHiBepcutery kKopabieOymayBaHHsS
iMeHi aaMipanza MakapoBa, MukomnaiB, YkpaiHa.

KoasuoB A. B. — acmipanT xadeapu mporpaMHOTro 3a0e3MeYeHHs] aBTOMaTH30BaHUX cHcTeM HalioHanbHOTO YHIBEPCHTETY KO-
pabneOynyBanHs iMeHi anmipana MakapoBa, MukonaiB, YkpaiHa.

AHOTAIIA

AxTyanbHicTh. Panne oninroBanus pskiB koay (LOC) y npoekrax nporpaMHoro 3abe3nedeHHs: Ma€ BaXJIMBE 3HAYCHHs, OCKi-
JBKHM 116 Oe3rocepeIbHO BIUIMBAE Ha MTPOTHO3YBAHHS 3YCHIIb 3 PO3POOKH MPOrpaMHOro 3a0e3MeueHH s Ayl LIIOro CIEKTPY MOB MpO-
rpaMyaHHs1, BKJIIOYAIOUH 3aCTOCYHKH 3 BikputuM kogoM Ha Kotlin. O6’€KToM IOCHIIKEHHS € MPOoLEeC paHHbOTO OLIHIOBAHHS MET-
puku LOC 3acrocyHkiB 3 BinkputuMm kogom Ha Kotlin. IIpeamerom nociimkeHHs € HeiHiAHI perpeciitHi Mozeni s paHHbOTO OLli-
HioBaHHA MeTpuku LOC 3acTocyHKiB 3 Bimkputum koxom Ha Kotlin.

Meta. MeToto poboTn € moOyAoBa HETIHIHHOI perpeciitHol MoelNi 3 TphoMa MPEIUKTOPaMH sl PAHHBOTO OLIHIOBAaHHS METPH-
ku LOC 3acTocyHKIB 3 BigkputuM kojoM Ha Kotlin Ha OCHOBI YOTHPHOXBHMIPHOTO HOpMai3yodoro rneperBopenHs bokca-Kokca
JUTSL T IBUILICHHS JIOCTOBIPHOCTI paHHBOTO omiHioBaHHA LOC 11X 3aCTOCYHKIB.

Meton. [{nst pannboro ouintoBanHs LOC y 3acrocyHkax i3 Binkputum kozxoM Ha Kotlin Mozens, 1OBipdi Ta MpOrHO3Hi iHTEpBa-
JIM HeNiHIHHOI perpecii Oy noOyJoBaHi 3a TONOMOIOI0 HOpMallizylodoro rneperBopeHHs bokca-Kokca 3 wornpma 3MiHHMMHE Ta 32
JOMIOMOTOI0 BiAmoBigHUX MeToAiB. L{i MeToan 6a3yroThCsi HA MHOXXKMHHOMY HENiHIHHOMY perpeciiiHoMy aHaii3i 3 BUKOPHCTaHHSIM
6araTOBUMIPHMX HOPMai3yIOUHX NEPETBOPEHb Ta BPAXOBYIOTh KOPEALII0 MiX 3aI€KHUMHU Ta HE3AJICKHUMH 3MIHHUMHU y BUIIAJIKY
HETayCOBHX JaHMX. SIK HACNIZOK, TAKUH MiIXiJ Ma€ TEHACHIIIO O 3MEIIHEHS CEPEHBOI BEIMIUHH BiTHOCHOT HOXUOKH, 3MEHIIICHHS
[IMPUHYU JOBIPYMX IHTPBANIB Ta IHTEPBANIiB MPOrHO3YBAaHHA MOPIBHIHO 3 MOACISMH, [0 BUKOPUCTOBYIOTh OJHO(DAKTOPHI HOpMAaTi-
3YI04i IEPETBOPEHHS.

Pe3yasTaTn. [IpoBeieHo mopiBHAHHS MOOYZOBAHOI MOJIEI 3 MOJEIISIMU HEJIIHIMHOT perpecii 3 BUKOPUCTAHHSIM JECSATKOBOTO JIO-
rapu¢my Ta ogHOBHMIpHOTrO neperBopeHHs bokca-Koxca.

BucnoBkn. Mozens HeniHiMHOT perpecii 3 TpboMa NPEeAUKTOpaMH JUTsl paHHBOT OLiHKK MeTpuku LOC 3aCTOCYHKIB i3 BiIKpHTUM
BuxigHuM kogom Ha Kotlin mo6ymoBaHo Ha OCHOBI epeTBOPEHHS YOTHPHOX 3MiHHUX bokca-Kokca. [TopiBHSHO 3 iHIIUMU MOJEIISIMU
HeJiHIHHOT perpecii, 1s1 MO/IeNIb IEMOHCTPY€ OLTBIINI MHOXUHHUI KOe(ilieHT neTepMiHallii, MEHIIIe 3HaYCHHS CepeIHbOT BETUMUHHI
BiJHOCHOT MOXMOKHM Ta MEHIII IIUPUHH JOBIPYUX iHTEPBATIB Ta iHTEPBAJiB MPOTHO3yBaHH:. [lepCcrieKTHBH MOAANBIINX AOCIiIKECHb
MOXYTh BKIIFOUATH 3aCTOCYBAaHHS IHIIMX 0araTOBUMIPHHX HOPMAJIi3yIOUHX MEPETBOPEHb 1 HaOOpiB JaHHWX IS MOOYJOBH MOIEIi
HenliHiiHOoI perpecii it paHHbOI omiHKN MeTpuku LOC 3acTOCYHKIB 13 BiIKpHTHM BUXiTHUM KozxoM Ha Kotlin 1uis iHmmx oOmexeHb
Ha IPEAUKTOPH.

KJIFOYOBI CJIOBA: orinka, psakd KOy, 3aCTOCYHOK 3 BIIKpHUTUM BuxigHuM kojaom, Kotlin, HemiHiliHa perpeciiina Mojesb,
neperBopeHHs bokca-Kokca, kiac, 3BakeHi METOAN Ha KJiac, IIIMOMHA epeBa yCHa KyBaHH:.
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