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ABSTRACT

Context. The prediction of the time until failure of corroding hinge-rod structures is a crucial component in risk management
across various industrial sectors. An accurate solution to the durability problem of corroding structures allows for the prevention of
undesired consequences that may arise in the event of an emergency situation. Alongside this, the question of the effectiveness of
existing methods for solving this problem and ways to enhance them arises.

Objective. The objective is to refine the method of solving the durability problem of a corroding structure using an artificial neu-
ral network and establish accuracy control.

Method. To refine the original method, alternative sets of input data for the artificial neural network which increase information
about the change in axial forces over time are considered. For each set of input data a set of models is trained. Based on target metric
values distribution among the obtained sets, a set is selected where the minimum value of the mathematical expectation of the target
metric is achieved. For the set of models corresponding to the identified best set, accuracy control of the method is determined by
establishing the relationship between the mathematical expectation of the target metric and the parameters of the numerical solution.

Results. The conditions under which a lower value of the mathematical expectation of the target metric is obtained compared to
the original method are determined. The results of numerical experiments, depending on the considered case, show, in average, an
improvement on 43.54% and 9.67% in the refined method compared to the original. Additionally, the proposed refinement reduces
the computational costs required to find a solution by omitting certain steps of the original method. An accuracy control rule of the
method is established, which allows to obtain on average a given error value without performing extra computations.

Conclusions. The obtained results indicate the feasibility of applying the proposed refinement. A higher accuracy in predicting
the time until failure of corroding hinge-rod structures allows to reduce the risks of an emergency situation. Additionally, accuracy
control enables finding a balance between computational costs and the accuracy of solving the problem.

KEYWORDS: artificial neural networks, accuracy control, distribution, mathematical expectation, approximation, numerical
methods, durability corroding structure.

ABBREVIATIONS NOMENCLATURE
AE is an aggressive environment; Ay is an initial area of the section;
ANN is an artificial neural network; A' is a cross-sectional area of the i-th structural ele-

ment;

a is a coefficient of a polynomial of degree 3 ap-
proximating the dependence of axial forces Q; in struc-
tural elements on time #;

CPU is a central process unit;
DE is a differential equation;
FEM is a finite elements method;

GPU is a graphical process unit; B is a bias unit;
MSE is a mean square error; b is a coefficient of a polynomial of degree 3 ap-
HRS is a hinge-rod structure; proximating the dependence of axial forces (; in struc-

tural elements on time #;

c is a coefficient of a polynomial of degree 3 ap-
proximating the dependence of axial forces Q; in struc-
tural elements on time #;

PDCS is the problem of durability of a corroding
structure;

RMSE is a root mean square error;

RPROP is a resilient propagation; D is a differentiation matrix;
SDE is a system of differential equations. d is a number of neurons in the ANN input layer;
E is an elasticity matrix;
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i is an index of HRS element;
ip is an index of HRS element that first fails;

J is a number of nodes of the finite-difference grid;

K is a stiffness matrix;

k is a coefficient of influence of stress on the rate of
the corrosion process;

N is a number of structural elements;

n is both training and test dataset size;

Niest 1S @ number of samples in the test dataset;

P, is an initial perimeter of the section;

Q' is a value of the axial force in the i-th structural
element;

Q; is values of axial forces at nodal points of the ap-
proximate solution 7 ;

R is a vector of nodal loads;

s is a number of neurons in the ANN hidden layer;

T; is a time values at j nodal points of the approximate
solution 7 ;

t 1s a time;

t* is a reference numerical solution of the PDCS, ob-
tained at a large number of nodal points;

7 is a approximate numerical solution of the PDCS,
obtained with lower computational costs than for the ref-
erence;

t;k is a reference solution of the PDCS for the i-th

sample;

ti* (u) is an approximate solutions of the PDCS for the
i-th sample;

u is vector of displacements;

Vo 1S a corrosion rate in the absence of stress;

Z is a number of weight coefficients;

o is a shape parameter of the two-parameter inverse
gamma distribution;

B is a scale parameter of the two-parameter inverse
gamma distribution;

F() is a gamma function.

& is a vector of values of the depth of corrosion dam-
age of each structural element;

5(¢) is a value of the depth of corrosion damage in the
i-th structural element (damage parameter);

€ is a vector of deformations;

€; is a value of the target function for the i-th sample;

g;(u) is an output value of the model from M, for the
i-th sample;

o' is a current stress in the i-th structural element;

G is an initial stress;

G is a vector of stresses;

[o] is an yield stress.

INTRODUCTION
In many strategic industrial sectors including nuclear
and thermal energy, chemical and petrochemical indus-
tries, the use of metal structures in aggressive environ-
ments leading to corrosion is involved. Corrosion is a

primary factor contributing to the catastrophic failure of
© Brychkovskyi O. D., 2024
DOI 10.15588/1607-3274-2024-1-9

equipment, which can be accompanied by significant fi-
nancial losses and severe environmental consequences
[1]. Ensuring the ability to respond promptly to the men-
tioned risks raises the relevant issue of determining the
duration during which a structure will perform its func-
tions — the durability of the structure. This matter is typi-
cally addressed through computer modeling. Moreover,
the latter is complicated by the fact that the rate of the
corrosion process is influenced by mechanical stresses in
the structural elements. Existing models of corrosion-
induced deformation consist of systems of differential
equations and systems of mechanics equations, the solu-
tion of which requires significant computational costs. To
solve the problem of reducing computing costs in 2021,
Zelenstov D.G., Korotka L.I. and Denysiuk O.R. pro-
posed (see [2]) a method for solving the PDCS using
ANN (hereinafter Method). However, the authors do not
consider the problem of establishing accuracy control of
Method. Also, in [2] and related approaches (see, for ex-
ample, [3, 4]), the dependence of the output of the neural
network model on the set of initial values of the weight
coefficients of the neural network is not taken into ac-
count. These coefficients represent the realization of a
certain random variable, meaning that depending on a
particular realization, the output of the neural network, in
general, will be different. Therefore, it is appropriate to
consider not just the individual result in the form of the
output of the neural network, but rather certain character-
istics of the distribution of the results, such as mathemati-
cal expectation.

The paper investigates the refinement of the method
proposed in [2] and establishes accuracy control. At the
same time, the presence of the aforementioned depend-
ence of the ANN’s output on a set of random initial val-
ues of weight coefficients is taken into account.

The object of the study is the problem of accuracy-
controlled numerical analysis of the problem of solving
PDCS.

The subject of the study is artificial neural networks
as a means of enhancing the efficiency of numerical
methods while simultaneously ensuring a specified level
of result accuracy.

The purpose of the study is to refine the method of
solving PDCS using ANN and establish accuracy control
rule.

1 PROBLEM STATEMENT
Let’s consider the model of corrosive deformation of
HRS operating in aggressive environments based on the
FEM (for more details, see [2, 5]):

%=vo-(1+k.ci(Ai(si(t))’Qi(g)))’ .

§i (r)‘ 0=0; i=LN.
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Assuming Q = const, by knowing the solutions §; ()
of the differential equations (1) and the limit values of the

corrosion damage depths 8? one can find the time values
t :t;-k , at which the 6? values are reached. The value
t;:) = min t: ,i=(1,N) is referred to as the durability of
the structure. To calculate o ; in the right-hand side of (1)

deformable solid mechanics equation are utilized, which
in the form of the FEM system of equations are repre-
sented as:

R=Kk'.7,

=D @
=E.

al <l
ol =

As the cross-sectional areas of elements change during
the process of corrosive wear, the elements of the struc-
tural stiffness matrix K , as well as the stresses o; in the

elements, vary over time. Thus, in the numerical solution
of (1), it is necessary to compute (2) at each node of the
finite difference grid. This significantly increases compu-
tational costs.

Methods that address the issue of reducing computa-
tional costs may require both the absence of accuracy loss
and the ability to control this accuracy. Therefore, follow-
ing the Method in [2], we will explore the problem of its
refinement and accuracy control. By accuracy of the
method, will mean the value of the mathematical expecta-
tion of the target metric — E(RMSE); by refinement of the
method — identification of conditions that allow reducing
the value of E(RMSE) compared to the corresponding
value of the inherited method without, at least, increasing
computational costs; and by accuracy control — determi-
nation of the dependence between the values of E(RMSE)
and the parameters of the approximate solution.

2 REVIEW OF THE LITERATURE

The use of Artificial Neural Networks (ANNSs) in the
algorithm for controlling the accuracy of numerical solu-
tion of the differential equation of the form (1) was pro-
posed in [3]. The authors considered a trained ANN,
which determined the parameter of numerical integration
to achieve the specified solution error. This method was
further developed in [4], where instead of training sepa-
rate ANNs for different error values, a unified ANN with
the error value as an input parameter was suggested. A
common feature of these algorithms is the ignoring of
changes in axial forces in elements of corroding structures
during the formation of training samples for ANNs. As a
result, the predicted error value did not always meet the
specified level.

In [2], a method of correction functions was proposed,
in which the solution of the PDCS was approximated with
minimal computational costs and refined using a correc-
tion function. The corrective function included an ANN
that approximated the dependency between the error of
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the approximate solution and certain input parameters of
the PDCS, including the coefficients of a polynomial used
to describe the variation in time of axial forces in the HRS
elements. The coefficients of this polynomial were deter-
mined at the stage of finding the approximate solution of
the PDCS. This approach reduced computational costs
and solved the problem of taking into account changes in
axial forces over time, but the problem of accuracy con-
trol of the algorithm remained open.

3 MATERIALS AND METHODS
First, let’s outline the general scheme of refining the
Method, after which we will proceed to a more detailed
exposition. The general refinement scheme of the Method
consists of the following steps:

1) by varying the input parameters sets of the ANN, the
Method will be using to solve the PDCS. In other words,
models will be training according to the Method on dif-
ferent input parameters sets, including the proposed
Method set;

2) let’s create a set V, which includes L different sets of

initial values of weight coefficients {wp}gzl,wp € [O, l],

where P — the number of weight coefficients. The proce-
dure from the previous step for each input parameters set
and for each element of set V will performed. As a result,
for each input parameters set, we will have a distribution
of target metric values; the distribution parameters will be
estimated using the maximum likelihood method [6];

3) for each distribution calculate the mathematical ex-
pectation and compare the obtained values;

4) the input parameters set on which the smallest value
of the mathematical expectation is achieved is the sought-
after condition that refines the Method, if at least it does
not increase computational costs at the stage of applying
the obtained refinement. Remark: we ignore changes in
computational costs arising from a certain increase in the
number of input parameters of the ANN, because the ap-
plication stage of the Method requires the existence of a
previously trained ANN.

Let’s now consider in more detail the outlined
scheme, using also [2].

Dataset forming. A sample of volume » with training
samples is generated, containing construction parameters
Ay, Fy,[o], environmental parameters (v, k), value ¢* of
the reference solution of the PDCS, time values and axial
forces (T}, O)) atj = 4 nodal points T; = {#, &, ..., t;} and
0= {q1, ¢»» ..., q;}, Where ;= 1 , coefficients (a, b, c) of
a polynomial of degree 3 that approximates the depend-
ence Q(?) at points (7}, ;). The target function is defined

%

t .
as the error ¢ =— between the reference and approxi-
t

mate solutions of the PDCS.

Models training. To refine the Method, we will con-
sider sets of input parameters that enhance the informa-
tion about the variation of axial forces over time com-
pared to those proposed in the Method. Let’s define the
set 7 and on the next sets of input parameters for the
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ANN: ua,b,c Z(Ao,Po,Go,a,b,C),
ua’b’c,Tj Z(Ao,Po,Go,a,b,C,Tj), qu Z(Ao,Po,Go,Qj),
ug.1, Z(Ao,Po,Go,Qj,Tj) will be trained L models ac-

cordingly. These sets of L models will be denoted as
M, b, ¢y Ma, b, ., 1> M(0) M(o,n), or simply M,,, when refer-
ring to the set of models corresponding to a specific u as
defined above. Note that u,;, . is the set which is used in
the Method itself; hence, this set will be referred to as the
base set, and the set of models M, — will be called the

set of base models. As the metric to be minimized during
the training of the ANN, we will consider

1 Mest

MSE = > (e; —&:(u))* . The refined solution of the
Mest =1

PDCS will have the form t*(u)=7~8(u), which means

£~ t*(u) .

Distributions constructing. To each model from M,

will assign the value of the target metric
1 Miest % % . .
RMSE = > (ti —t; (u))2 . As mentioned earlier,
Mest =1

the value of the MSE metric depends, among other things,
on the set of initial weight coefficients of the ANN

{wz}le,wz e[O, 1], which is an realization of a random

variable W, (in practice, it can be, for example,
w~U ([O,l])). Thus, under the defined conditions, MSE,

and consequently RMSE, are functions of the random
variable W. Having obtained the set M, comprising L
models, where the latter differ only in the initial sets

{WZI}, z :I,_Z, / :1,_L , can be constructed the distribution

of the target metric RMSE for each set M, find estimates
of its parameters, and calculate the mathematical expecta-
tion E(RMSE).

Refinement of the Method. The set u,, which corre-
sponds to the smallest value of mathematical expectation
(or the best set), is the sought-after condition that refines
the Method.

Accuracy control rule. Let J=1{23,..;}. For the

identified best set, will be constructed several sets
M, ( J) each of size L, where j € J. For each of these

sets, values of E(RMSE(j)) will be calculated. By ap-
proximating the points (j, E(RMSE()))), j € J, will be
built the dependency y = g(x), x€[2, «), y € (0, «). The
function h(y) =[g"'()]", h(y) € {2, 3, ..., /', ...}, where
[-]” denotes rounding to the nearest integer value, repre-
sents the sought dependence between the values of
E(RMSE) and the number of required nodes j, which are
parameters of the approximate solution.

4 EXPERIMENTS
For further research, two cases were considered based
on the nature of the variation of axial forces O over time ¢
in the elements of the corroding structure, differing in the
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number of monotonicity intervals. The number of
monotonicity intervals in this case affects the quality of
approximation of these dependencies by a polynomial of
degree 3. In case A there is one monotonicity interval,
while in case B there are two monotonicity intervals. The
graphs illustrating the variation of axial forces over time
and their approximation by a polynomial of degree 3 at 4
nodes are presented in Fig. 1 and Fig. 2 for case A and
case B, respectively.

Time, t

Figure 2 — Case B. Two interval of monotonicity

For numerical experiments, two datasets were gener-
ated for case A and case B, each containing n = 20,000
samples. An I-beam profile was chosen as the type of the
leading element of the HRS. Initial geometric parameters
of the I-beam profile for each sample were randomly se-
lected from the set of standard sizes defined for this type
of profile. The datasets were divided into training and
testing sets in a ratio of 70% to 30%, meaning the training
set consisted of 14,000 samples and the testing set of
6,000 samples.

The architecture of the ANN takes the form of a multi-
layer perceptron (see Fig. 3) with dimensions dxsx1,
where d equal to the number of features in the input set,
s=2-d+1 calculating according to the Hecht-Nielsen
theorem [7]. The activation function for the hidden and
output layers is Sigmoid [8]. Each model was trained for
1000 epochs using the RPROP learning algorithm [9] in
batch mode.

The number of models L for refining the method is
equal to 100. The number of models L  for determining
the accuracy control is equal to 500. According to the
values of L and L, sets ¥ and V' of random seed values
are generated from a discrete uniform distribution, which
is equivalent to creating sets of initial weight coefficient
values.
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Figure 3 — ANN architecture for the base model
To obtain distributions of RMSE values for models
from the sets M, Muo (),jeJ=12,3,4,6,8, 12, 16},

a two-parameter inverse gamma distribution [10] is con-
sidered as a hypothetical distribution, and its probability

function is

B(x 1 o+l _ B

f(x,oc,B)z—- — -exp| — |, x > 0. The distribu-
F(a) X X

tion parameters o and 3 are estimated using the maximum

likelihood method, and the mathematical expectation of

density given by

the distribution is calculated as for o > 1.

a—1

The implementation of this approach was carried out
in the PyCharm and Jupyter Notebook environments us-
ing the Python programming language and the following
modules and libraries: Numpy, Pandas, scikit-learn for
data preprocessing and manipulation; module stats from
SciPy for working with probability distributions; Plotly
for data visualization. The PyTorch machine learning
framework [11] was chosen for working with ANNS.
Computations were performed on a CPU 3.7 GHz AMD
Ryzen 9 5900X, a GeForce RTX 3060 GPU, and 32GB of
RAM.

5 RESULTS
For each set M,, L models were trained with different
initial values of weight coefficients. Based on the results
of these models, distributions for RMSE values were con-
structed. Table 1 presents the mean RMSE values and
mathematical expectations E(RMSE) for the sets of ob-
tained models.

Table 1 — Results of models training

Mo M) Mpen Mape
Case A, mean(RMSE) | 1.20626-10° | 1.47549-10° | 1.91016-10° | 2.13634-10"
Case A, E(RMSE) 1.20624 - 107 | 1.47031-10° | 1.91096-10° | 2.13673-107°

Case B, mean(RMSE

4311255107

4376519 - 1072

4730537 - 1072

4762757 - 1072

Case B, E(RMSE)

4311258 - 107

4376514 - 1072

4730537 - 1072

4772759 - 1072

Thus, in comparison with the baseline set, for case A,
the mathematical expectation value corresponding to the
best set is less by

(0.0021364-107 ~0.00120626-1073)
0.0021364-107°

and for case B, it is

(0.04772759- 1072 - 0.04311258- 10‘2)
0.04772759-1072

The constructed distributions for case A and case B
are shown in Fig. 4 and Fig. 5, respectively.

-100% =~ 43.54% ;
less by

-100% ~ 9.67%.

RMSE

Figure 4 — RMSE distributions of trained models for case A
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100

probabiiity density

RMSE

Figure 5 — RMSE distributions of trained models for case B

For the best set qu’Tj L models were built for each

number of nodes j from J. For each set of obtained mod-
els, distributions were constructed, and the mathematical
expectations E(RMSE) were calculated. Fig. 6 shows the
correspondence between E(RMSE) values and number of
nodes j, their approximation by the function y = g(x) =
a-(x+c)’, which obtained based on points j € {2, 3, 4, 6},
and the mean values of RMSE before refining the solution
using artificial neural network (the mean value of RMSE
at the point j =2 is equal to 0.10217255).
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Figure 6 — Graph of the approximate dependence of
E(RMSE) on the number of nodes

Table 2 provides consolidated information about de-
pendence between E(RMSE) and number of nodes j based
on approximation by points j € {2, 3, 4, 6}. Accordingly,
at points j < 6, the behavior of the obtained approximation
is demonstrated on the data to which the approximating
function was fitted, and at j > 6 on new data.

Table 2 — Dependence of E(RMSE) on the number of nodes j
based on approximation

J E(RMSE) 2()

2 0.0048214 0.0048209
3 0.0018037 0.0018175
4 0.0012030 0.0011706
6 0.0006873 0.0007089
8 0.0006061 0.0005188
12 0.0003082 0.0003457
16 0.0002238 0.0002631

Using the function g '(y) a function was constructed:

W)=l 0] = (fjll’ —cl|, (3)

where a=0.00249686, b=-0.84226492,
¢=-1.54206767, which is the sought accuracy control
rule for the Method. The graph of the obtained accuracy
control rule is shown in Fig. 7.

E{RMSE)

Figure 7 — Graph A(y)
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6 DISCUSSION

The smallest value of the mathematical expectation of
the target metric E(RMSE) for both case A and case B
corresponds to the set upr. At the same time, the
E(RMSE) value of the base set u,, is the largest for both
cases. This allows us to conclude that all proposed sets
refine the results of the Method. Note that the set u,,
contains the least information about the variation of axial
forces over time compared to other sets Additionally, the
models from the set My do not require a separate ap-
proximation of the dependence of axial forces when ob-
taining input data for ANN. This reduces computational
costs in solving PDCS.

The obtained accuracy control rule for the method (3)
takes the form of a piecewise-linear function. It allows for
determining the necessary number of nodes in a finite-
difference grid immediately for a desired value of the
mathematical expectation of RMSE. Subsequently, using
the obtained value of the number of nodes j as a parame-
ter in the search for an approximate solution 7 , it is pos-
sible to construct a set M u, (J) 1o which the model corre-

sponding to the desired RMSE value belongs.

Analyzing the graph in Figure 6, it can be observed
that with an increase in the number of nodes j the distance
between the mean value of RMSE before refining the
solution 7 and the corresponding value of E(RMSE)
after refinement decreases. This can be interpreted as fol-
lows: the more nodal points we use to find the approxi-
mate solution, the closer it becomes to the reference solu-
tion. Consequently, there is a reduction in the error value
remaining for the refinement of the ANN.

Depending on the accuracy requirements of the
method, instead of the mathematical expectation, other
distribution characteristics, such as quintile values, etc.,
may be considered. Additionally, it may be relevant to
introduce a penalty for errors leading to an overestimation
of the structure’s durability in the metric being optimized.

CONCLUSIONS

The scientific novelty: Developed an approach for
solving PDCS using ANN. The existing method was re-
fined by revising the input parameters to the ANN and, as
a result, abandoned the approach of preliminary approxi-
mation of the dependence of axial forces on time. The
dependency of the target metric mathematical expectation
on the numerical solution parameters was identified, mak-
ing the method accuracy-controllable. The evaluation of
the models took into account the dependence of the ANN
output on random initial values of weight coefficients.

The practical significance: According to the results
of numerical studies, it was established that, depending on
the case under consideration, the refinement allows a re-
duction in the error by an average on 9.54% and 43.54%
compared to the original method. The potential impact of
implementing the proposed model lies is to more accu-
rately predict the durability of corroding hinge-rod struc-
tures in terms of mathematical expectation, thereby reduc-
ing the risk of emergency situations and associated finan-
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YTOYHEHH:I I KEPOBAHICTbD 3A TOYHICTIO METOAY PO3B’SI3AHHSI 3AJAYI JOBI'OBIMHOCTI
KOPOIYIOYOi KOHCTPYKIIII I3 BUKOPUCTAHHSAM HEHPOHHOI MEPEXKI

BpuuxoBcwsknii O. /I, — acnipant kadeapu iHpopManiitHuX cUCTeM YKpPaTHCHKOTO Jep>KaBHOTO XiMiKO-TEXHOJIOTIYHOTO yHiBep-
curety, J{uinpo, YkpaiHa.

AHOTANLIA

AKTyanbHicTb. I[IpOrHO3yBaHHS 4acy BUXOAY 3 JiaJy KOPOAYIOUHX IIAPHIPHO-CTPMKHEBHX KOHCTPYKIII € BaXJIMBOIO CKIIAJI0-
BOIO YIPaBIiHHS pH3UKaMH 0aratbox cgep npomMucioBocTi. TOUHMIA po3B’I30K 3a/1adi JOBrOBIYHOCTI KOPOIYIOUOi KOHCTPYKIT 10-
3BOJISIE TTOTICPETUTH s HeOaKaHUX HACHIJKIB, [0 BUHUKAIOTH y pa3i HACTAaHHS aBapiifHOi cutyarii. PazoM 3 nuM mocrae muTaHHS
e(eKTHBHOCTI iCHYIOUHMX MCTOJIIB PO3B’sI3aHHS JIaHOI 3a/1a4i Ta CIIOCO0IB X MOKpAIICHHS.

MeTa po0OTH IOJNArac B yTOYHEHHI METOAY PO3B’sI3aHHS 3aadi JOBIOBIYHOCTI KOPOIYI04Oi KOHCTPYKLII i3 BUKOPUCTAHHSIM
LITYYHOI HEHPOHHOT MEPEXi i BCTAHOBJICHHS! KEPOBAHOCTI 32 TOYHICTIO.

Mertop. /Iyt yTOUHEHHSI OPUTIHAIBHOTO METOLY PO3IVISIAI0THCS alIbTEPHATHBHI HAOOPH BXIAHUX JAHUX JUIS IUTYYHOT HEHPOHHOT
MEpexKi, IO JT03BOJIAIOTH 30UTBIIMTH iH(POPMAIIIO PO 3MiHY OCBOBHX 3YCHJIb Y 4aci. [y KO)KHOro Habopy BXiTHHX JaHUX HaBYa-
€TBCS MHOXKMHA Mojieneil. Ha ocHOBI po3moniiiB 3HaYECHB IIOBOT METPHKH MOJIEINICH 13 OTpUMaHUX MHOXHH 0OUpaeTbes HaOip, Ha
SIKOMY JOCATA€THCSI HaiMEHIIe 3HAUYeHHS] MaTeMAaTHYHOTO CHOAIBaHHS IUILOBOI METPHKH. [IJI1 MHOKHHHU MOZENeH, 1o BifmoBinae
3HaHEHOMY HaKpamoMy Habopy, BU3HAYAETHCS KEPOBAHICTh 38 TOYHICTIO METOAY IIUITXOM BCTAHOBJICHHS 3aJI€XKHOCTI MiX MaTe-
MaTHYHHUM CIOJiBaHHSIM LITOBOI METPHKH i ITApaMeTpaMH YHUCEIIBHOTO PO3B’ I3aHHS.

Pe3yabTaTn. Bu3HaueHo yMOBH, 32 SKHX OTPHMAHO MEHIIIE 3HAUSHHS] MaTeMaTHYHOTO CHOAIBAaHHS LTbOBOI METPUKH IIOPIBHSIHO
3 OpUriHAJIEHUM METOAOM. Pe3ysbTaTH YHCeNbHUX eKCIIEPUMEHTIB, B 3aJISKHOCTI BiJl PO3IIISAYyBaHOTO BHIAJKY, IIOKa3ylOTh B cepe-
IHbOMY Ha 43.54% 1 9.67% xpariui pe3yJIbTaTH yTOYHEHOTO METO/Y IOPIiBHSIHO 3 OpUriHambHUM. OKpIM IbOTO, 3aIIpOIIOHOBAHE YTO-
YHEHHS 3MEHIy€ HeOOXiIHI JUTs 3HAXOKEHHS PO3B’sI3Ky OOUYHCITIOBAIIBHI BUTPATH 32 PaXyHOK BiIMOBH BiJI JACSIKHX KPOKIB OpUTiHA-
JabpHOro Metoay. OTpUMaHO 3aKOH KEPOBAHOCTI METOJY 3a TOYHICTIO, KM JO3BOJISIE B CEPEHHOMY OTPHMYBATH 3aJaHE 3HAUCHHS
noxnOky 6e3 BUKOHAHHS 3aiiBUX OOUYHCIICHB.

BucnoBku. OTpuMmaHi pe3ysbTaTH CBiIYaTh MPO JOLUIBHICTH 3aCTOCYBAHHS 3aIIPOIIOHOBAHOTO YTOYHEHHs. Bimbmn Bucoka ToU-
HICTh IPOTHO3YBAHHS Yacy BUXOIY 3 JIady KOPOJIYIOUNX MIApPHIPHO-CTPHKHEBUX KOHCTPYKIIiH 103BOJIsIE 3MEHIINTH PU3UKY HACTaH-
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HS aBapiHHUX CHTyalill, a KepOBaHICTh 3a TOUYHICTIO — 3HAXOAWUTH OajaHC MiX OOYHMCIIIOBAJBHHUMHU BUTpPAaTaMH 1 TOYHICTIO
PO3B’sI3aHHS 33/1a4i.

KJIFOYOBI CJIOBA: HeitpoHHa Mepexa, KEPOBaHICTh 338 TOUHICTIO, PO3IMO/IiJI, MATEMATHYHE CIIOIiBAHHS, allPOKCHMAIis, YH-
CeJIbHI METO/IH, TOBIOBIUHICTh KOPOIYI040T KOHCTPYKIIIi.
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