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ABSTRACT

Context. Given the aggravation of environmental and water problems, there is a need to improve automated methods for extract-
ing and monitoring water bodies in urban ecosystems. The problem of efficient and automated extraction of water bodies is becoming
relevant given the large amount of data obtained from satellite systems. The object of study is water bodies that are automatically
extracted from Sentinel-2 optical satellite images using machine learning methods.

Objective. The goal of the work is to improve the efficiency of the process of extracting the boundaries of water bodies on digital
optical satellite images by using machine learning methods.

Method. The paper proposes an automated information technology for delineating the boundaries of water bodies on Sentinel-2
digital optical satellite images. The process includes eight stages, starting with data download and using topographic maps to obtain
basic information about the study area. Then, the process involved data pre-processing, which included calibrating the images, re-
moving atmospheric noise, and enhancing contrast. Next, the EfficientNet-B0 architecture is applied to identify water features, facili-
tating optimal network width scaling, depth, and image resolution. ResNet blocks compress and expand channels. It allows for opti-
mal connectivity of large-scale and multi-channel links across layers. After that, the Regional Proposal Network defines regions of
interest (ROI), and ROI alignment ensures data homogeneity. The Fully connected layer helps in segmenting the regions, and the
Fully connected network creates binary masks for accurate identification of water bodies. The final step of the method is to analyze
spatial and temporal changes in the images to identify differences, changes, and trends that may indicate specific phenomena or
events. This approach allows automating and accurately identifying water features on satellite images using machine learning.

Results. The implementation of the proposed technology is development through Python software development. An assessment
of the technology’s accuracy, conducted through a comparative analysis with existing methods, such as water indices and K-means,
confirms a high level of accuracy in the period from 2017 to 2023 (up to 98%). The Kappa coefficient, which considers the degree of
consistency between the actual and predicted classification, confirms the stability and reliability of our approach, reaching a value of
0.96.

Conclusions. The experiments confirm the effectiveness of the proposed automated information technology and allow us to rec-
ommend it for use in studies of changes in coastal areas, decision-making in the field of coastal resource management, and land use.
Prospects for further research may include new methods that seasonal changes and provide robustness in the selection and mapping
of water surfaces.

KEYWORDS: extraction, water bodies, optical satellite images, water spectral indices, machine learning, Kappa coefficient,
Pearson coefficient, confusion matrix.

ABBREVIATIONS
OLI is an Operational Land Imager;
ETM is an Enhanced Thematic Mapper Plus;
CNNs are Convolutional Neural Networks;
ResNet is a Residual neural network;
ReLU is a rectified linear unit;
ROI is a Region of Interest;
RPN is a Regional Proposal Network;
FCN is a fully connected network;
TP is a True Positive;
TN is a True Negatives;
FP is a False Positive;
FN is a False Negatives;
IR is the infrared channel;
RMSE is a Root Mean Square Error;
PDF is a Probability Density Function;

XGBoost is an eXtreme Gradient Boosting.

NOMENCLATURE

L, is an energy brightness for the spectral zone
[W/(s 22 nm)];

Dis an distance from the Earth to the Sun in astro-
nomical units for a particular period;

Egquny 1S an average solar extraterrestrial irradiance
[W/(m2 nm)];

0 is an angle of the Sun;

X’ is an input; X is the output;

y is an final output;

L is an length of the coastline;

W is an width of the coastline;

X, Y are average values of two variables X and Y, re-

OA is an Overall Accuracy;

NDSI is a Normalized Difference Snow Index;

NDWI is a Normalized Difference Water Index;

MNDWI is a Modified Normalized Difference Water
Index;
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spectively;
T is a total number of pixels in the Sentinel-2 image;
L is a length of the coastline;
W is a width of the coastline.
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INTRODUCTION

Water is an inexhaustible source of life and a critical
element for urbanized ecosystems. The impacts of human
exploitation, land use change, land disturbance, and cli-
mate change are hurting the hydrological cycle. These
factors lead to a restructuring of the distribution of surface
and groundwater on our planet [1].

The growing impact of global climate change and in-
tense human activity is leading to significant changes like
rivers: shrinking wetlands increased flooding, and other
changes in the spatial and temporal distribution of water
resources. Despite these transformations, the dynamics of
changes in surface water bodies remain poorly under-
stood, especially in the context of their seasonal and inter-
annual characteristics. The lack of information in this
context makes it difficult to fully understand the patterns
that govern the dynamics of water bodies [2].

Given the importance of this issue, real-time access to
information on the spatial distribution and changes over
time of wetlands, estuaries, and river floods appears to be
fundamental to understanding the interaction of regional
hydrology and climate change, as well as to the effective
management of surface water resources [3]. In this con-
text, remote sensing is coming to the forefront as an effec-
tive means of monitoring changes in surface water bodies
in real-time and providing dynamic access to information
about the earth’s surface [4].

The object of study is the water surfaces of urban
ecosystems that are automatically extracted from Senti-
nel-2 optical satellite images using machine learning
methods.

The subject of study is the extraction of water bodies
technology on digital optical satellite images using ma-
chine learning methods.

The purpose of the work is to enhance the efficiency
of detecting water body boundaries on digital optical sat-
ellite images using machine learning methods.

1 PROBLEM STATEMENT

Data obtained from space satellites such as Landsat,
Advanced Spaceborne Thermal Emission and Reflection
Radiometer, Satellite Pour 1’Observation de la Terre, and
Sentinel-1 and Sentinel-2 open up opportunities for a
wide range of applications. These data allow for flood
monitoring, water resource assessment [5], water quality
[6], and coastal monitoring [7]. These products play a
crucial role in contemporary approaches to monitoring
and managing water resources and the natural environ-
ment. Nevertheless, optical satellite images may include
clouds, as noted by [8], along with their shadows, posing
challenges in processing such data and identifying water
features. Special emphasis needs to be placed on investi-
gating coastal ecotone zones, distinctive regions where a
transitional zone emerges between land and water, fre-
quently characterized by aquatic vegetation. These eco-
tones significantly influence the precision of identifying
and classifying water bodies in satellite imagery.
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Thus, optical satellite images can provide information
for monitoring water bodies. On the other hand, given the
difficulties associated with cloud shadows and low-albedo
objects, it is necessary to continuously improve methods
for recognizing water features on satellite images.

2 REVIEW OF THE LITERATURE

Currently, there are developed methods for detecting,
mapping, and monitoring water bodies on satellite im-
ages. These methods can be divided into three main
groups: pixel-based statistical pattern recognition analy-
sis, which includes supervised [9] and unsupervised [10]
classification approaches; image analysis, taking into ac-
count parameters such as spectral characteristics, texture,
shape complexity [11] and sub-pixel analysis [12]. Water
spectral indices are widely used for monitoring water bod-
ies. The researchers compared the effectiveness of differ-
ent water indices in Landsat 7 ETM+, Landsat 8 OLI, and
Sentinel-2 MSI. The study [13] proposed a new water
index for Landsat Thematic Mapper /Enhanced Thematic
Mapper Plus (ETM+)/OLI satellites based on surface re-
flectance using a threshold value. This method is opti-
mized for processing large amounts of data and provides a
simple but effective approach for the automated classifi-
cation of large water bodies by area. Although existing
methods based on water spectral indices can provide high
accuracy in determining surface water areas, they are in-
effective when analyzing multispectral satellite images.

Classification methods that use feature extraction and
machine learning are advanced techniques for monitoring
surface water bodies, such as random forests [14], support
vector machines [15], and XGBoost [16]. On the other
hand, unsupervised classification methods do not require
training samples and are more suitable for developing
automated algorithms. CNNs are considered a popular
deep learning method and are commonly used for seman-
tic segmentation, cloud detection, water feature extrac-
tion, and other tasks [17]. A lot of new deep-learning
models have been developed for surface water body ex-
traction based on satellite data [18], for which multiscale
semantic information is important.

3 MATERIALS AND METHODS

The extraction of water bodies technology proposed in
this paper consists of eight stages, as shown in Figure 1.

The first stage consists of downloading images from
2017 to 2023 from the Sentinel-2 optical satellite in the
summer. Then use the topographic maps that contain ba-
sic information about the study area. To map the contours
of water bodies on topographic maps, we use geospatial
analysis to determine the coordinates of the coastline on
the map.

The second stage is data pre-processing, which in-
cludes calibration of satellite images, removal of atmos-
pheric noise, and contrast enhancement. The task of ra-
diometric calibration is to convert brightness values
(Digital Number) into spectral energy brightness values at
the upper atmosphere boundary.
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The transmission of electromagnetic radiation and the
atmosphere’s glow were taken into account for atmos-
pheric correction. At the same stage, pixel values were
converted from energy brightness to reflectance coeffi-
cients from 0 to 1 [19]:

nx L ><D2
P = (1)

Equm, Xc0s0

where L; is the energy brightness for the spectral zone
[W/(s 22 nm)]; Dis the distance from the Earth to the
Sun in astronomical units for a particular period; Egn; is
the average solar extraterrestrial irradiance [W/(m2 nm)];
0 is the angle of the Sun.

To use the EfficientNet-B0 architecture to identify wa-
ter bodies. The EfficientNet architecture defines an effi-

Y

Georeferencing and
data preprocessing

L |

cient approach to image processing developed using the
AutoML method [19]. The main idea behind this architec-
ture is to optimally scale the network width, network
depth, and image resolution.

EfficientNet consists of 8 variations, designated from
B0 to B7, each with its number of parameters and accu-
racy. This series of architectures is designed with limited
resources in mind, and BO is the lightest version suitable
for use in resource-constrained applications.

Depth convolution is performed independently for
each input channel, which is a spatial convolution [20]:

X’ = DepthwiseConv(x), 2)

where X' is the input; X is the output; DepthwiseConv
uses spatial convolution for each channel independently.
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Figure 1 — Algorithm of the proposed technology
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Figure 2 — EfficientNet-B0 architecture
Point convolution projects the channel output resulting
from depth convolution onto a new channel space using a
1x1 convolution [20]:

y= PointwiswConV(x/) 5 3)

where y is the final output.
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ResNet blocks consist of a layer that compresses the
channels and a layer that expands the channels. This al-
lows bandwidth-intensive connections to be linked to
channel-rich connections in layers. Linear activation is
used in the last layer of each block to prevent loss of in-
formation from the ReLU [21].

In the next stage, using the output data from Effi-
cientNet-BO, feature maps are created for further use.
These feature maps contain important information fea-
tures of the image that will be used in the analysis and
processing. The Regional Proposal Network is used to
determine the ROI. The RPN is responsible for identify-
ing potential locations where objects may be located. The
ROI alignment process is performed to ensure data homo-
geneity. It may include resampling or other operations to
bring all ROIs to the same standard size or format. A fully
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connected layer is used to segment the ROIs. This layer
helps to divide the image into different classes or areas
that are important for further analysis. A FCN is used to
create binary masks. These masks identify areas that have
water features.

The final stage of the algorithm is the analysis of spa-
tial and temporal changes in the images. It includes identi-
fying differences, changes, and trends in the images that
may indicate certain phenomena or events.

4 EXPERIMENTS

This paper tested the proposed information technology
on the example of the Molochnyi Lyman, located in the
south of Zaporizhzhia Oblast within the Melitopol district,
which is an arid region of southern Ukraine, where high
temperatures are observed, especially in recent years, due
to global warming. Such climatic conditions cause in-
creased evaporation from its water surface up to 155 mil-
lion m? per year, sometimes even up to 250 million m?.

Figure 3 — Study area

The Pearson’s r coefficient was used to analyze the
change in the area of the Molochny Lyman water mirror
[22]:

B 2(x=X)(Y-V)
r= 2 =2’
2(x=X)*(y-9)

4)

where X, y are the average values of two variables X and
y, respectively.

Two metrics were calculated to assess the effective-
ness of the water body monitoring technology proposed in
this paper: OA and Kappa coefficient. These metrics pro-
vide an objective assessment and compare the effective-
ness of the developed method with water indices and the
K-means method [22]:

TP+TN
OA= — 5)
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Tx(TP+TN)—(TP+TN)

Kappa = 5
PP TxT—(TP+TN) (6)

where T is the total number of pixels in the Sentinel-2
image; TP, TN are the categorized pixels by comparing
the extracted water pixels with the reference map: TP are
true positives, i.e., the number of correctly extracted pix-
els; TN is the number of correctly identified pixels that are
not water bodies and were correctly categorized into an-
other class.

Confusion Matrix (Fig. 4) is an important tool for
evaluating the effectiveness of classification models in
machine learning and computer vision tasks. This tool
allows you to visualize the classification results and de-
termine the accuracy level of the model. The matrix de-
termines the number of objects that were correctly or in-
correctly classified in each category: TP is the number of
correctly identified positive classes. TN is the number of
correctly identified negative classes. FP is the number of
false positive classes. FN is the number of false negatives
identified. It is a useful tool for understanding the types of
errors that can occur during classification [22].

FP

Actual Negatives

Actual Values

FN P

Actunl Positives

Predicted Negatives Predicted Postrves

Predicted Values

Figure 4 — Graphical presentation of Confusion Matrix

5 RESULTS

The Pearson correlation coefficient was used to assess
changes in water bodies and the coastline, which can have
a value ranging from -1 to 1. A value close to 1 indicates
a strong positive relationship between the masks, a value
close to -1 indicates a strong negative relationship and a
value close to 0 indicates no relationship. The results of
the Pearson’s coefficient values are shown in the form of
a graph in Fig. 5.

Pearson cofrelation between binary masks by year

”
I |
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Figure 5 — Graph of Pearson’s coefficient values by year
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The resulting water body contours were analyzed in
detail using geographic information technologies and the
Python programming language (Fig. 6). The analysis of
water body contours made it possible to determine the
nature of changes, their intensity, and distribution along
the coastal zone of the Molochny Lyman.

The next step is to analyze the average annual rate of
change in the area of water bodies of the Molochny
Lyman between 2017 and 2023. At this stage, the water

d

Legend:

\}”x\

- land; HM- water bodies; .~/ - boundaries of water bodies

mirror area was calculated, as well as the nature of the
changes, their intensity, and distribution along the coastal
zone of the Molochny Lyman for 6 years:

S=LxW, 7

where L is the length of the coastline; W is the width of

the coastline.
C
f

)/

Figure 6 — The result of the proposed technology: a — Satellite image of 2017; b — selection of water bodies after segmentation in
2017; ¢ — automated selection of water bodies on the satellite image of 2017; d — Satellite image of 2023; e — selection of water bod-
ies after segmentation in 2023; f — automated selection of water bodies on the satellite image of 2023

Figure 7 shows a graph of changes in the water sur-
face area of the Molochny Lyman from 2017 to 2023
years.

Dynamics of water area over time
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Figure 7 — Graph of changes in the area of the water mirror
of the Molochny Lyman

In this study, a graph of the values of the coastal zone
reflection coefficients in the IR channel for the period
2017-2023 was constructed and analyzed (Fig. 8). Chang-
es in the values of the reflection coefficients in the IR
channel indicate differences in the temperature and heat
transfer of the coastal zone. It may be due to climate
change, expansion or contraction of water bodies, or other
natural and anthropogenic impacts.

In 2019, we took large-scale measures to restore the
relationship between the Molochnyi Lyman and the Sea
of Azov during the information verification. In particular,
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on December 27, 2019, the estuary began to be filled with
seawater, which led to a rise in water level and a decrease
in water salinity in some places to 25 ppm. These actions
have become a significant factor that may affect the water
area in the estuary and its ecosystem in the future.

Graph of coastal zone reflectance values
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—— Profile of the coastal zane in the infrared channel 2073
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Figure 8 — Graph of coastal zone reflection coefficients in
the infrared channel

Table 1 shows the results of the OA and Kappa met-
rics for the proposed technology and the NDWI, MNDWI
[23], and K-means indices. In 2017 and 2023, the pro-
posed technology identifies water bodies with an accuracy
of 98% and a Kappa coefficient of 0.96. Compared to
this, other methods, such as NDWI, MNDWI, and K-
means have lower performance.
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Table 1 — Results of the water body contouring accuracy

assessment The histogram in Fig. 10 of the probability density
Methods 2017 year 2023 year function of the coastal zone, with the highlighting of land,
OA | Kappa OA Kappa water, and Otsu threshold pixels, provides information
NDWI 77% 0.64 77% 0.51 . . . .
NMNDWI 00% 082 03% 0.86 about the distribution of areas in the image.
K-means 95% 0.88 94% 0.86
Proposed tech- 98% 0.96 98% 0.96 200 Graph of coastal zone pixel values
nology & Otsu threshold (2023)
Root Mean Square Error is used to evaluate the accu- ws{ M """'!"M"*ﬂlll izl
racy of a technology by comparing its predicted values to 150 4 B -ﬁ
the actual values [24, 25]. A low RMSE value indicates
. . . 125
the technology has high accuracy, while a high value may g
indicate low accuracy. To summarize the information B0
according to Fig. 9, the low RMSE value for the proposed g o
method indicates its high accuracy compared to other )
methods, and the high value for the NDSI method indi-
cates a significant difference between predicted and actual =
values and the need for further optimization and refine- 0
ment of the technology. 0 200 400 600 800 1000 1200
Pixels in width
RMSE range for different methods (2017-2023) - Figure 10— Histogram of the PDF
} ¥ 2017
200 = The Confusion matrix (Fig. 11) displays the results of
the classification models, showing the number of cor-
150 rectly and incorrectly classified objects in each category.
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Figure 11 — Confusion matrix result for: a — proposed method; b — NDWI; ¢ — NDSI; d - MNDWI; e — K-means
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6 DISCUSSION

Analyzing the data in Fig. 7 on the area of the Mo-
lochny Lyman during the years 2017-2023, it is possible
to make several conclusions. Firstly, the water area tends
to in-crease during the analyzed years, especially from
2019 to 2020. Secondly, from 2017 to 2018, the relative
change in water is positive, which may indicate an in-
crease in water area in 2018. From 2018 to 2019, there is
a decrease in the water area (negative relative change),
and from 2019 to 2020 year there is a sharp increase in
the water area (positive relative change); from 2020 to
2021, there is a decrease in the water area again. Various
factors, including climatic conditions, anthropogenic ac-
tivities, and hydrological changes, can influence changes
in the area of a water body. Analyzing the dynamics of
the water area of the Molochny Lyman, a significant in-
crease was observed in 2020. This effect may be due to
special climatic conditions, changes in the water supply
regime, or other natural factors.

During the information verification, it was found that
in 2019, large-scale measures were taken to restore the
relationship between the Molochnyi Lyman and the Sea
of Azov. In particular, on December 27, 2019, the estuary
began to be filled with seawater, which led to a rise in
water level and a decrease in water salinity in some places
to 25 ppm. These actions have become a significant factor
that may affect the water area in the estuary and its eco-
system in the future.

The results of Table 1 demonstrate the high accuracy
of the proposed information technology compared to ex-
isting methods, emphasizing its effectiveness for recog-
nizing and monitoring water bodies based on satellite
images.

In 2023, the obtained RMSE results for different
methods indicate the accuracy and differences in their
effectiveness. The low RMSE value (11.35) indicates the
high accuracy of the proposed method compared to the
actual data for 2023. The RMSE value for the NDSI
method (202.80) indicates a difference between the pre-
dicted and actual values. This indicates the low accuracy
of this method.

The resulting PDF highlights that the pixel values cor-
responding to the 'land' class are concentrated around pos-
itive values. The pixels representing the 'water' class have
negative values. The Otsu algorithm is used to determine
the threshold between the 'land' and 'water' classes. This
algorithm maximizes the inter-class variance between the
'land' and 'water' distributions by pre-excluding pixels that
belong to the 'water' and 'other land features' classes. This
approach helps to effectively determine the threshold for
classifying the coastal zone in the image.

Analyzing the results confusion matrix for the pro-
posed method and comparing it with the others, it is no-
ticeable that the proposed method and K-means are more
effective, having fewer false classifications and a signifi-
cant number of correctly classified pixels as water or land.
It indicates the high accuracy and reliability of the pro-
posed method in identifying water and land regions in
images.
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CONCLUSIONS

The developed technology for automatic delineation
of water bodies effectively addresses the challenges of
precise and timely determination of the dynamics of water
surfaces in digital optical satellite imagery. Compared to
traditional methods requiring substantial effort and time
for processing and analyzing large datasets, the proposed
technology employs machine learning and image analysis
methods to automatically extraction water bodies. It ac-
celerates and enhances the accuracy of the monitoring
process, reducing resource expenditures for data process-
ing and interpretation.

The scientific novelty of the developed technology is
to improve the methods of identifying and monitoring
water bodies based on digital optical satellite images us-
ing machine learning. To use of modern algorithms and
deep learning models allows for achieving high accuracy
and sub-pixel resolution in the classification of surface
water bodies. The developed approach demonstrates effi-
ciency in comparison with traditional methods such as
water indices and K-means, ensuring the stability of re-
sults even under variable research conditions. The ob-
tained high accuracy and stability indicators, as a high
Kappa coefficient, confirm the advantages and prospects
of the developed method for application in the area of
urban ecosystems and water management. This approach
opens up new opportunities for more accurate and auto-
mated analysis of water bodies, contributing to the further
development of research in the area of urban geographic
information systems and environmental monitoring.

The proposed technology holds practical significance
as it enables systematic monitoring of water resources and
their changes in urban ecosystems. It makes it possible to
accurately determine the volume of water bodies, monitor
their changes over time, and predict possible environ-
mental challenges.

Prospects for further research involve exploring
seasonality and enhancing robustness in the water surface

mapping.
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AHOTAULIA

AKTyaJIbHicTh. BpaxoBy[04H 3arocTpeHHs €KOJIOTTYHUX Ta BOIHHUX Mpo0iieM, BUHUKAE HEOOXiAHICTh Yy BAOCKOHAJICHHI aBTOMa-
THU30BaHUX METOJIB BH3HAYECHHS Ta MOHITOPHHTY BOJHHX O0’€KTIB y MICBKMX €KOCHCTEMax. 3 BpaxXyBaHHSIM BEIHUKOTo oOcCsiTy na-
HUX, OTPUMAHHUX BiJl CYITyTHUKOBUX CHUCTEM, MPpobieMa e(peKTHBHOTO Ta aBTOMAaTH30BAHOTO BIIYUYCHHS BOJHHUX 00 €KTIB CTAE aKTy-
anbH0r0. O0’€KTOM JIOCIHIKEHHS € BOAHI 00 €KTH, SKi aBTOMAaTUYHO BUIUISIOTHCS 3 ONTHYHUX KOCMIYHMX 3HIMKIB Sentinel-2 3a
JIOTIOMOTOI0 METO/IiB MAIlTMHHOTO HABYaHHSI.

MeTta po60oTH — mifBHIIEHHS epEeKTUBHOCTI IIPOLeCcy BUIIJICHHS IPaHUIb BOJHUX 00’ €KTiB HAa U(POBUX ONTHYHUX KOCMIUHHX
3HIMKaXx 3a JIONIOMOT'0I0 BUKOPHCTaHHsI METO/IB MAIIMHHOTO HAaBYaHHS.

Mertop. 3anponoHOBaHO aBTOMAaTH30BaHy iH(GOpMaLiiiHy TEXHOJIOTiI0 BUIIICHHS TPaHUIb BOJHUX 00’ €KTIB HA HU(PPOBHX OMNTH-
YHUX CYNMYyTHHKOBUX 3HiMKax Sentinel-2. ITporec Bkitoyae BiciM eTamiB, MOYMHAIOYM 3 3aBAHTAKCHHS IaHUX Ta BUKOPHCTAHHS TO-
norpadivHUX KapT A OTpUMaHHS 0a30Boi iH(opMalii npo npeametrHy obaacts. [licisa mporo BinOyBaeThes momepeqHs oOpoOka
JAHWX, BKIFOUAIOUW KaliOpyBaHHs 300pa’keHb, BUAAICHHS aTMOC(HEpPHOro IIyMy Ta MiJBUIIEHHS KOHTPACTHOCTI. Jlami 3acTOCOBY-
eTbest apxitekrypa EfficientNet-BO ms inentudikarii Bogaux 00’€KTiB, CIPUSIOUN ONTHMAIBHOMY MAacIITaOyBaHHIO IIMPHUHH Me-
pexi, TIIMOHHYN Ta PO3ALIEHOT 31aTHOCTI 300paxeHHs. Bukopucrani ResNet 6710ku U1t CTHCHEHHS Ta PO3MINPEHHS KaHAIIB, IO J0-
3BOJISIE ONTHMAJbHE 3 €JHAHHS BEJIMKOMAacIITaOHMX Ta OaraTokaHaJ bHHX 3B’s3kiB y mapax. Ilicias mporo Regional Proposal
Network Buznavae o6nacti intepecy (ROI), a ROI alignment 3a6e3nedye onHopiaHicts nanux. 3acrocyBanHs Fully connected layer
Joromarae B cermMeHraii oonacreid, a Fully connected network cTBoproe GiHapHi MacKku IJisl TOYHOI iAeHTU]IKALIT BOGHUX 00’ €KTIB.
3aKJII0OYHUM €TaroM METOIY € aHalli3 MPOCTOPOBUX Ta YACOBHX 3MiH Ha 300pa)KCHHSX JUIS BUSBICHHS PI3HHILb, 3MiH Ta TEHICHLIIH,
10 MOXYTh CBITYHTH MPO KOHKPETHI sBUIIA 4K moii. Takuii miaxin Z03BOJs€ aBTOMATH3YBaTH Ta TOYHO BH3HAYATH BOJHI 00’ €KTH
Ha CYNyTHUKOBHX 3HIMKaX 3 BUKOPHCTAHHSIM MallIHHHOTO HABYaHHS.

Pe3yasTaTn. Po3poGiieHo nmporpamue 3abe3nedenns MoBoto Python, mo peanisye 3anpononoBanmii miaxix. OmiHka TOYHOCTI Te-
XHOJIOT1i, MPOBeJeHa IUISXOM HOPIBHSIBHOTO aHali3y 3 ICHYIOUHMMH METOJIaMH, TAKUMH SIK BOAHI iHIekcH Ta K-means, miaTBeppkye
BUCOKHH piBeHb TouHOCTI B mepiof 3 2017 mo 2023 poxu (nocsirae 98%). Koedinient Kanma, sikuii BpaxoBy€e CTyMiHb y3T0PKEHOCTI
MDK peanbHOI0 Ta nepenbadyBaHOIO KiacHQikami€elo, MiATBEpUKYE CTaOLIBHICTh Ta JOCTOBIPHICTH HAIIOTO IiJXOMAY, JOCSTAIOUYH
3HaueHHs 0.96.

BucHoBku. [IpoBeneHi ekceprUMEHTH MMiATBEPDKYIOTh €()EKTHBHICTh 3alIPOIIOHOBAHOI aBTOMATH30BaHOI iHpOpMAIIHHOI Tex-
HOJIOTI{ Ta JO3BOJIAIOTH PEKOMEHIYBATH i1 JUII BUKOPHCTAHHS B JOCTIDKEHHSIX 3MiH Ha MPHOCPEKHUX TEPUTOPISAX, MPHUHATTA Pi-
mieHsb y cdepi yrnpaBiaiHHS NPHOSPEKHUMH PECypcaMi Ta 3eMENIbHIM BHKOPHCTaHHSAM. [lepCrieKTHBH MOJaNbIINX JOCTIKEHb MO-
XKYTh BKJIIOYAaTH CTBOPSHHS HOBHX METO/IIB, SIKi BpaXOBYIOTh CE30HHI 3MiHM Ta 3a0e3NedyIoTh poOacTHICTh IPH BUAIIEHHI Ta KapTo-
rpadyBaHHI BOTHUX ITOBEPXOHb.

KJIFOYOBI CJOBA: BuniiieHHs, BOIHI 00’€KTH, ONTUYHI CYITyTHUKOBI 3HIMKH, BOJIHI 1HJCKCH, MAIllMHHE HaBYaHHs, Koedilli-
et Kanmna, koediuient [lipcona, MaTpHIs TOMUIIOK.
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