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ABSTRACT

Context. The relevance of the article is determined by the need for further development of models for optimal restoration of the
connectivity of network objects that have undergone fragmentation due to emergency situations of various origins. The method
proposed in this article solves the problematic situation of minimizing the amount of restoration work (total financial costs) when
promptly restoring the connectivity of a selected subset of elements of a network object after its fragmentation.

The purpose of the study is to develop a method for creating a minimal spanning tree on an arbitrary subset of vertices of a
weighted undirected graph to minimize the amount of restoration work and/or total financial costs when promptly restoring the
connectivity of elements that have a higher level of importance in the structure of a fragmented network object.

Method. The developed method is based on the idea of searching for local minima in the structure of a model undirected graph
using graph vertices that are not included in the list of base vertices to be united by a minimal spanning tree. When searching for
local minima, the concept of an equilateral triangle and a radial structure in such a triangle is used. In this case, there are four types of
substructures that provide local minima: first, those with one common base vertex; second, those with two common base vertices;
third, those with three common base vertices; fourth, those without common base vertices, located in different parts of the model
graph. Those vertices that are not included in the list of basic ones, but through which local minima are ensured, are added to the
basic ones. Other vertices (non-basic) along with their incident edges are removed from the structure of the model graph. Then, using
one of the well-known methods of forming spanning trees, a minimal spanning tree is formed on the structure obtained in this way,
which combines the set of base vertices.

Results. 1) A method for creating a minimal spanning tree on an arbitrary subset of vertices of a weighted undirected graph has
been developed. 2) A set of criteria for determining local minima in the structure of the model graph is proposed. 3) The method has
been verified on test problems.

Conclusions. The theoretical studies and several experiments confirm the efficiency of the developed method. The solutions
developed using the developed method are accurate, which makes it possible to recommend it for practical use in determining
strategies for restoring the connectivity of fragmented network objects.

KEYWORDS: network object, weighted undirected graph, connectivity, transitive closure, minimum spanning tree, local
optimum, optimization criterion, method.

ABBREVIATIONS E'is a set of edges that make up the required graph
MST is a minimal spanning tree; G[K];

TC is a transitive closure. . .
W is a total weight of the constructed tree;

NOMENCLATURE w; is a weight of the TC between the corresponding

G is an undirected weighted graph modeling a  vertices of the model graph G ;

network object; v; 1is a vertex of the model graph G ;
V is a set of vertices of the model graph G ;
E is a set of edges of a model graph G ;
S 1s a set of edges of a model graph G ;

n is a number of graph vertices.

. . INTRODUCTION
Rg 1is a matrix of shortest paths of the model graph G ; Objects with a distributed structure, so-called network
(u,v) is the graph edge G ; objects, have long ago and forever entered the life of

mankind. Such facilities include transport networks (road,
rail, water transport, air transport); data transmission
K is an arbitrarily selected subset of vertices of the  petworks; power grids, water supply networks, gas supply
model graph G ; networks and others. A distinctive feature of such objects
Glk] is an MST, which is created on an arbitrarily s the presence in their composition of nodal elements
(passenger stations, communication nodes, distribution

w(u,v) is a weighting coefficient of some edge (u,v) ;

selected subset of vertices of the model graph G ;
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and pumping stations, producers of services and their
consumers, etc.) and communication lines between these
nodal elements (transport routes, cable facilities, power
lines, etc.).

The efficiency of such complex objects depends on
the performance of their individual elements, but this
dependence is more pronounced on communication lines,
since the latter have larger linear dimensions and,
therefore, are more often and more exposed to external
undesirable influences [1, 2, 3, 4]. The causes of external
influences include man-made and natural emergencies.
Network facilities undergo particularly significant
fragmentation (destruction) because of military (combat)
operations in the territories where such facilities are
located [5].

As a rule, after the situation in the crisis area is
normalized, and in many cases during the emergency
response, the issue of conducting restoration work on the
destroyed network facility arises to bring the structure of
the facility and all its functioning parameters to the design
parameters.

In conditions of limited funding or limited time for
restoration work, the network facility is usually restored
to the spanning structure first [6] as the first stage of res-
toration work. In such a structure, each nodal element is
connected to any other nodal element, although not al-
ways by optimal routes. The facility continues to operate,
although with some loss of quality of service to end users
(subscribers). At the second stage, based on the spanning
structure, the network object is restored to its original
structure, and even improved, to make it more efficient.

If the nodal elements differ in their degree of
importance, the first stage of restoration work involves
restoring the connectivity of not all elements of the
network object, but the more significant ones selected
according to a certain rule (criterion). It should be noted
here that when determining the set of such elements, the
current situation at the facility due to its fragmentation
and the functional purpose of the facility itself are also
considered.

Using well-known methods for constructing minimal
spanning trees (MSTs) on graphs, such as Prima [7],
Kruskala [8], Boravki-Solina [9], and others [10, 11, 12],
it is generally possible to construct a spanning tree on an
arbitrary subset of the vertices of the initial undirected
graph, but in most cases such a tree will not be optimal in
terms of the minimum total weight of the weighted edges
it is composed of. On network objects with a significant
number of node elements and a significant density of
communication lines, such an error can be significant and
decisive in matters of choosing a strategy for restoring the
connectivity of a fragmented network object.

Thus, the article is aimed at minimizing the amount of
restoration work (financial costs for such work) aimed at
promptly restoring the connectivity of a certain (pre-
scribed) set of node elements of a fragmented network
object.
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The object of the study is the process of restoring
connectivity between an arbitrary subset of node elements
of a fragmented network object.

The subject of the study is the method for creating a
minimal spanning tree on an arbitrary subset of vertices of
a weighted undirected graph.

The purpose of the study is to develop a method for
creating a minimal spanning tree on an arbitrary subset of
vertices of a weighted undirected graph to minimize the
amount of restoration work and/or total financial costs
when promptly restoring the connectivity of elements that
have a higher level of importance in the structure of a
fragmented network object.

1 PROBLEM STATEMENT

The tasks of determining the optimal structures of
network objects are, for the most part, formalized and
solved using graph theory models and methods [13]. That
is why we will model the structure of the network object
with some weighted undirected graph G=(V,E), where
V' is a set containing the vertices of a graph that model
the node elements of a network object; £ is the set
containing the edges of a graph that model the
communication lines of a network object.

For each edge (u,v)eE, its weight is known
w(u,v) . In the plural V' the vertices of the initial graph
are an arbitrarily selected subset of vertices K, so that
K<V, [K|<[V|. Vertices that make up a subset K will

be called basic. The task is to create MST
G['K] = (K,E' c E), connecting a selected subset of base

vertices K , namely:

w(E'") = ZW(u,v)—>min, (1)
(u,v)ekE’
under the conditions:
TC
V<x,y>eKIx——y, )

where <x,y> — an arbitrary pair of vertices from the

set K ; xT—C>y

arbitrary pair of vertices <x,y > .

— transitive closure between an

2 REVIEW OF THE LITERATURE

Currently, the theoretical basis for restoring the
connectivity of fragmented (broken) network objects is
the graph theory.

A well-known and studied problem of graph theory
with numerical practical applications is the problem of
creating an initial undirected MST graph on the structure,
that is, an acyclic subgraph in which all vertices of the
initial graph are transitively closed (there is a path
connecting any pair of vertices), and the total weight of
the edges of this acyclic subgraph is minimal.
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Currently under creating MST G[ +]s where “+” — the

entire nodal basis of the graph G, as it was mentioned
above, the well-known methods of Prim, Kruskal, Boru-
vka-Solin are used. These methods can also be used to
search for minimal covering trees G[K], by checking at

each step whether the tree being built has connectivity
between all vertices v; e K .

Thus, a connected undirected graph is applied to the
input of Prim’s algorithm [7]. For each edge, its cost is set.
First, an arbitrary vertex is taken and the edge incident to
this vertices, which has the lowest cost, is found. The found
edge and two vertices connected by it form a tree. Then the
edges of the graph are considered, one end of which is a
vertex that already belongs to the tree, and the other is not;
from these edges, the edge of the lowest cost is selected.
The edge selected at each step is joined to the tree. The tree
grows until all the vertices of the initial graph are explored.
The result of the algorithm is the MST.

If the initial graph is given by the adjacency matrix,
the computational complexity of this algorithm is
estimated O(n?).

In Kruskal’s algorithm [8], the current set of edges is
initially set to be empty. All the edges of the graph are
ordered as the weight increases and are presented in a
separate list. An edge of minimum weight is selected from
the list and added to the already existing set (the tree
being created). A cycle check is performed immediately.
If there is no cycle, then the next edge is taken and added
to the set. If there is a cycle, the edge that created it is
discarded. The process is iteratively repeated until all
vertices of the initial graph are included into the required
tree. The tree found in this way is the minimum spanning
tree of the initial graph.

The computational complexity of this algorithm will
be evaluated O(Elog(E)), and is mainly determined by

the complexity of the process of sorting the edges of the
graph.

The Boruvka-Solin algorithm [9] is practically no
different from Kruskal’s algorithm.

The conducted analysis of the literature shows that the
problem in the formal statement (1)-(2) has not been
posed or solved by anyone. Our article is dedicated to
solving this problem.

3 MATERIALS AND METHODS
The analysis of the Prim, Kruskal, Boruvka-Solin
methods on various structures proved that their use for
creating trees G[K], may give some error in the final

result, because in the structure of the initial graph G
spanning trees may exist G[K] with less weight. The fact

is that at each step of these methods, vertices are needed
for transitive linking v; € K , an edge of minimum weight

is added to the structure of the required tree, followed by
a check for the presence of a cycle. The total weight of
the added edges may exceed the weight of some edge, the
weight of which is greater than each of the added ones,
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but through which the optimal (by the minimum weight
criterion) transitive closure of the vertices is carried out
1ZS] K.

For example, there is some communication network
modeled by an undirected weighted graph G, Fig. 1, a.
Minimal spanning tree G[l, 4,5, 6] built according to the

Kruskal’s method, provided by Fig. 1, b bolder lines.

Figure 1 — Building a minimal spanning tree on an arbitrarily
subset of vertices of the initial graph G :
a — the initial undirected graph G ;
b — a minimal spanning tree Gfl, 4,5,6] Of the initial undirected

graph G, built according to Kruskal’s method

At the same time, the total weight of five edges

O1v2)s (2ov), (vs), (v.vs5), (v396), which are
part of the spanning tree Gfj456], is equal to

(i7j)€Gfl,4,5,6]

But it can be seen that in fact MST Gf1,4,5,6] consists

of four edges (vl,vz), (vz,v4), (vz,vs), (vs,v6).
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Herewith W = ZWU =16, sce Flg 2. The absolute will ensure the minimization of the total Welght of the
(i./)eGha.5.6] required spanning tree. The theorem is proved.
Let us note an important consequence of the theorem.
Consequence. The weight of transitive closure of
vertices v; € K, can be reduced through some vertices

v; & K, starting from |K|=3.

difference in the weights of these two trees is 2 units.

Let’s explain the mentioned consequence graphically.
For example, there are two connected networks with
lengths L, and L,, see Fig. 3.

a L1=2a

a
Figure 2 — A minimal spanning tree G[,l,4,5,6] 1 @
of the initial undirected graph G

Considering the above, we will formulate and prove the

following theorem.

Theorem. Let G=(V,E) be an arbitrary weighted @
undirected graph. Minimal spanning tree Gfg] = (K ,E ')
on a subset of selected vertices v; € K of the graph G,
where K <V, can be created by adding a subset to the
composition K of some vertex v, ¢ K, if the optimal (of c /@\ c
minimal weight) transitive closure (TC) of some vertices - ~

-~ ~
is carried out through it v, e K . @/ @

Proof: It is obvious that is a minimal spanning tree on b
a subset of vertices K , in case |[K|=2 is a shortest path
connecting these two vertices. If |[K|>2 , there can be

several such paths. Thus, to obtain the connectivity of
some vertices s, d, t to the structure of the required
Gls.a.1] can be added

(5.c1), (d1,d) oo (1ol ), () and
(S,tl), (tl,tz),..., (tn_l,tn),(tn,t) edge. Suppose that in the
structure of the initial graph G some vertices is present
t, 2 K and edge (tn,d ) for which the following condition

18 true: Wi, .d > Wsd, » Wi, .d > W, dy > Wt, .d > Wd, .d
and W d <(Wg g totWa v Wa ). So, c

considering the edge (t,,,d) it is possible to reduce the

total weight of the required spanning tree G[s,d,t] ' Figure 3 — Geometric comparison of the total weight of TC in

. . networks with ‘K ‘ =3 and different organization of the
Therefore, the adjacent edges whose weight

coefficients are in parentheses can increase the total
weight of Gf; 4 ,]- Thus, the problem should be solved

structure:
a — without using an additional vertices — a linear substructure.

b — using an additional vertices (v, ) — a radial substructure.
taking into account the possible addition to the structure ¢ — geometric interpretation of TC weight based on an
of the required tree G[K] of additional vertices v, ¢ K, equilateral triangle

the total weight of the transitive closure through which
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The size of an edge ¢ in an equilateral triangle, see

Fig. 3, c is determined as follows:

Cos 30° = al2 —¢=-% . Thus, in an equilateral
c 3

triangle (or close to it), the inequality L; > L, will always

be valid.

Based on the above, the main idea of the method is to
check the structure of the initial graph G on the
possibility of reducing the weight of TC between threes
v, € K in their various combinations (sets) due to the

addition of some vertices v, € K (see Fig. 3, b). If such a
possibility exists, we will speak of the existence of a local
minimum, which is ensured by this v; ¢ K. Vertices
v; ¢ K, which do not provide local minima will be

removed from the structure of the initial graph G
together with the edges, incidental to them, and they will
not be considered in the further creating of the MST.

If several radial substructures that provide local minima
are found in the graph G structure, they should be analyzed
for the extent to which the base vertices v; € K are used to-

gether. The following options are possible here, see Fig. 4:

Figure 4 — Degree of compatible use by radial substruc-

tures of base vertices v, € K (such vertices are marked in

solid red):
a — first; b — second; ¢ — third; d — null (no compatible use
of base vertices)

Thus, when detected in the structure of the model
graph G several radial substructures with the first degree
of their joint use of basic vertices (see Fig. 4, a), all
vertices v; ¢ K, through which such substructures are
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formed, remain in the structure of the graph G, providing
corresponding local minima in it. The same situation
occurs with radial substructures with zero degree of use of
base vertices (see Fig. 4, d), because substructures are at
some distance from each other. In this case, all vertices
v; ¢ K, due to which such substructures are formed,
remain in the structure of the graph G, providing
corresponding local minima in it.

The situation will be different in the presence of the
second and third degrees of base vertex usage. In such a
situation (see Fig. 4, b and Fig. 4, c¢) you need to find out
which of the vertices v; € K (in this case v, or v,) will

ensure a lower weight of the TC of the base vertices
v; €K . In the case of the third degree of use of base

vertices, competition between vertices v; € K occurs on
several parallel radial substructures that connect some
triplet of base vertices v; € K , see Fig. 4, c. The result of
such competition is the selection of a single vertex
v; ¢ K, which ensures the smallest weight of the TC of
this trio of vertices. At the same time, the local minimum
remains within the three analyzed vertices. In the case of
the second degree of using base vertices (see Fig. 4, b),
vertices v; ¢ K are the roots of adjacent radial
substructures that connect different sets of basic vertices
triples v; € K. In this case, the result of competition
between the corresponding vertices v; € K is the choice
of the radial substructure that provides the smallest weight
of the TC of the corresponding triple of vertices (within
the example shown in Fig. 4, b, the local minimum is
provided on the triple of vertices, the root of which is the
vertex vy ). Both in the first and in the second cases, the
vertices v; € K, that lost the competition are removed
from the structure of the modeling graph G along with
the edges, incident to them.

Having considered the general theoretical provisions,
we will present the developed method in the form of the
following six steps:

Step 1. Based on the modeling weighted undirected
graph G, creating its adjacency matrix S . According to
the matrix S, creating a matrix of the shortest paths R
between all pairs of the vertices of graph G. For this
purpose, we can use the Warshall-Floyd algorithm [14,
15] or Shimbel [16] and some others.

Step 2. For each v; ¢ K according to the R; to find the

weight of the TC with three base vertices v; € K, for which

n
the condition z w;; — min is valid.
j=1
The result of the operation: the column indices
(vertices v; € K) are idx1, idx2, idx3; the total weight of

the TC connecting the given trio of base vertices v; € K
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1 1 1 Vidx1>Vidx2 »Vidx €K
with v; ¢ K , that is analyzed is ZW\[ﬂiélé 452 Vide3 ] To

save the results of the operation.

Step 3. For each v; € K by the column index sets
defined in step 2 (idx1, idx2, idx3) according to the matrix
R, to find the weight of the corresponding vertices. The
result of the operation: the weight of the TC connecting
the base vertices v; € K with three base vertices v; € K

with numbers idx1, idx2, idx3 is Zw[vi“"l’vid"z’v"d”]EK )
v,ek

To save the results of the operation.
Step 4. To remove vertices v; ¢ K for which the

condition is valid:

W[Vidxl Vig2 Vi JEK

Ui > vz W[vidxl Vidv2 Vidv3 ]GK’ i=Ln,(3)

v;ekK

from the structure of the model graph G together with
the edges, incident to it. Appropriate changes to the
matrix S, should be made.

Step 5. To carry out a pairwise check of the vertices
v; ¢ K remaining after the previous steps for the degree
of compatible use by the radial substructures of the base
vertices v; € K :

a) if because of such a check zero or first degree was
found (without a match by indices or a match by one
index), then such vertices should be left in the structure of
the model graph G ;

b) in the case of detection of the second or third
degree (a match according to two or three indices,
respectively), determine the vertices v; ¢ K through
which the minimum TC of the corresponding trio of base
vertices is ensured v; € K. To remove the vertices that
lost the competition from the structure of the model graph
G together with the edges, incident to it. An appropriate
changes to the matrix S should be made.

Step 6. On the modified in this way graph G, by one
of the well-known algorithms for creating the MST the
required minimum tree Gy = (K,E'C E) is created.

4 EXPERIMENTS
Let us illustrate the application of the method on the
example of the graph provided by Fig. 1, a. As before, the
MST Gfj, 4,5, 6] is to be found.

Step 1. A calculated matrix of shortest paths R

between all pairs of graph vertices has the following
form:
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(v o3 4]5]38]9]13]

w30 7f2]5]|11]10

v |47 of9f4]s5]16

R, = :
Clv 512 9fof7]10]8] @)

(v |85 4[7]o0f6]15]

(ve [9 |11 5]10] 6 11]

v, |13 {10 16| 8 |[15][11] 0

In expression (4), vertices v; € K are marked in red.
Step 2. define

Z WETZx[é’vide Vi3 JeK

For each v & K we

— min . For the vertex v, ¢ K it

. [v RURY ] _ .

is Zwvzl #%1=10. For the vertex v,e¢k it is

Zwl[)vl’v“vs] =13. For the vertex v, gk it
3

is Tkl 237,

Step 3. The results of calculations for this step are
presented in Table 1.

Table 1 — The weight of TC of the basic vertices v; € K with

triples of base vertices v; € K, having the indices defined in
step 2 of the method

wek | ksl gkl s b
1 2 3 4
v 13 17 14
V4 12 22 15
Vs 15 14 21
Vg 25 15 25

Step 4. According to inequality (3), we compare the

received  sums  of  weights ) wlvasl Z 1o ,
V2

Zw[v‘ wsvel 13 , ZW[VI v%6] Z 35 with sums of weights
V3 V1

on the corresponding indices for v; €K, which are
presented in Table 1. The inequality is valid only for the

i [VI’V4’V(»]_ i
vertex V7, since wa =32 is greater than any

value in column 4, see Table 1. So, the vertex v; is

removed from the structure of the model graph G with
all the edges incident to it. Corresponding changes are
also to be made to the matrix Sg .

Step 5. Let us perform a pairwise check of the vertices
v; ¢ K remaining after the previous steps for the degree

of compatible use by the corresponding radial
substructures of the base vertices v; € K. Such vertices

are v, and v;3 for which respectively Zw‘[}vzl’v“’VS]:lO
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and 2w£§1’v5’v6]:13. As we can see, the radial

substructures, the roots of which are these vertices, jointly
use the base vertices v; and vs. Therefore, we got the

second degree of joint use of basic vertices by radial
substructures v; € K (match by two indices). Since the
weight of the transitive closure over the vertex vy is
greater than through the vertex v, (13>10), the vertex v

is also removed with all its incident edges from the
structure of the model graph G . Corresponding changes
are also to be made to the matrix Sg .

Step 6. On the modeling graph G modified in this way
(Fig. 5) using the Kruskal method, we will create the
MST G[1,4’5’6] . It will be identical to the MST presented

at Fig. 2.

P
O‘ .0
: s
:

s Vil

., O
Yuus?®

Figure 5 — Modified model graph G and the MST on the se-
lected subset of vertices

5 RESULTS

When applying the developed method to the initial
undirected graph G (see Fig. 1), three radial substructures
were successively considered, the roots of which were
vertices v, , v3, vy, not included in the set K . During
the verification, it was found that the vertex of v; does
not provide a minimum TC between the specified three
base vertices v; € K . This fact made it possible to modify
the initial graph G by removing this vertices and all
edges incident to it from its structure. The vertices v, and

v3 have provided the minimum TC. At the same time, the
radial structures (triplets of vertices), of whose roots they
are, intersect along two vertices and have the second
degree of joint use of the base vertices v, € K . This fact
led to the need to compare the vertices v,, v3, and
choose the one that provides the local minimum of TC.
This vertex appeared to be the vertex v,. Consequently,
vertex v3 was also removed from the original graph G

structure.
Therefore, the internal tools of the proposed method
allow testing the structure for the presence of local
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minima in the TC of the base vertices v; € K through the
vertices v; € K , and modifying the structure of the initial
graph G to further find MST G{ K] in this structure.

6 DISCUSSION
The combination of the approaches proposed in the
article allowed us to develop a method by which it is
possible to build a MST on an arbitrary subset of vertices
of the initial undirected graph. This became possible due
to the analysis of radial substructures whose roots are
vertices v; ¢ K , in terms of the weight of the TC of these

substructures, and the search for local minima among
them. At the same time, this became possible due to the
use of the shortest paths matrix ( R ) between all pairs of

vertices of the model graph G . Due to the fact that such a
matrix contains information not only about the presence
of TC between any pair of vertices, but also quantitatively
characterizes this relationship, it became possible to
analyze different sets of three basic vertices v; € K, from

different locations of the model graph relative to the root
of the current radial substructure. The above allows us to
launch a mechanism for revealing local minima in the
structure of the model graph G and selecting vertices

v; ¢ K that provide this minimum. On the other hand,
those vertices v; ¢ K , which do not provide local minima

are removed from the structure of the model graph G,
thereby not increasing the weight of the required MST
Glk]-

Several dozen full-scale experiments on various
network objects of low density have shown the efficiency
of the developed method, and the solutions obtained were
optimal. At the same time, the behavior of the method on
dense network objects of high dimensionality remains a
challenge (7 >30). Thus, the method could be considered
quasi-optimal at the moment.

The computational complexity of the combinatorial
algorithm that implements the developed method will be
determined by the computational complexity of its “basic
elements” — the algorithm for finding the shortest paths
between all pairs of vertices of the model graph and the
algorithm for creating the MST. If the Warshall-Floyd
algorithm and the Kruskal algorithm are taken as the basic
algorithms, respectively, the overall computational
complexity of the combinatorial algorithm will be

estimated O(n3 + Elog(F)) .
The obtained polynomial estimate of the computa-

tional complexity is suitable for using such an algorithm
in solving relevant management problems in real life.

CONCLUSIONS
The article solves the actual scientific and applied
problem of creating the MST G[K] on an arbitrarily

chosen subset of vertices of the initial undirected
weighted graph, where K is an arbitrarily chosen subset
of vertices of the initial graph G .
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The scientific novelty of the developed method is as
follows:

1) in the formulation of the consequence that to
reduce the weight of the transitive closure of the base
vertices v; € K, through some vertices v; ¢ K, starting

from |K|=3;
2) in the proposed approach to vertices selection
v; 2K . The essence of the approach is to compare the

weights of transitive closures of different radial
substructures whose roots are vertices v; ¢ K , combining

different sets of three basic vertices v; € K ;

3) in the proposed approach to determining the local
minimum of the weight of radial substructures, among
substructures that are in competition. The core of the
approach is to analyze the degree of joint use of base
vertices v, €K by different radial substructures.

The practical value of the method is when it is
applied to large and dense network objects that have
undergone fragmentation (destruction due to external
influences), it is possible to significantly reduce the
amount of restoration work and/or total financial costs
while quickly restoring the connectivity of elements that
are of higher importance in the structure of such an
object.

A promising direction for further research is the
final verification of the developed method to determine its
optimality class.
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METO/ TOBYJIOBA MIHIMAJILHOT' O KICTSIKOBOT'O IEPEBA HA JIOBLJIBHIM IIJIMHOKAHI BEPIIIAH
3BAKEHOI'O HEOPIEHTOBAHOI'O T'PA®A
BbaumamyTt B. M. — 1-p Bilicbk. HayK, mHpodecop, 3aCTYyMHHK HadalbHHKAa HAayKOBO-IOCTIJHOTO IIEHTPY CIyk00B0-00i10BOT
nisuteHOCTI HamionaneHoi rBapaii Ykpaian HanionansHoi akanemii HamionansHoi rBapaii Ykpaiau, Xapkis, YkpaiHa.
TopneBcnknii C. O. — HaykoBHil CHIBPOOITHMK HAYKOBO-IOCTIJHOTO LEHTPY Ciryxk00B0-00HoBoi misimbHOCcTI HamionambHOl
rBapnii Yxpainun Hanionansaoi akanemii Hanionansaoi rBapaii Ykpainu, Xapkis, YkpaiHa.
Ba6kos IO. II. — kaHn. TexH. HayK, IoueHT, npodecop Kadenpu aepxkaBHOi Oesneku HarionanpHol akagemii HarioHanbHOT

rBapnii Ykpainu, XapkiB, Ykpaina.
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Mopxsin 1. A. — 1-p dinocod., HauaTBPHUK HAYKOBO-JOCIIIHOI JIabopaTopii HayKOBO-JOCIIIHOTO LEHTPY CIIy>kK00B0-0010BOT
nisutbHOCTI Haionanphoi reapaii Ykpaiuu HanionansHoi akanemii HamionaneHol reapaii Ykpainu, XapkiB, YkpaiHa.

AHOTAULIA

AKTYyaJIbHiCTb. AKTYaJbHICTh CTAaTTI OOYMOBIIOETBCS TOTPEOOI0 y TMONAIBIIOMY PO3BHTKY MOJENICHl ONTUMAaIbHOTO
BiJTHOBJICHHSI 3B’SI3HOCTI MEPE)KHUX 00’ €KTIB, IO 3a3HAIM (pparMeHTaIlil BHACIIIOK HAJ3BHYAHUX CHTYaIlill PI3HOTO XapakTepy
TIOXOJDKEHHS. 3alpONOHOBAHUM y CTAaTTI METOA yCyBae MpOOJIEMHY CHTyamilo, IIO IMOJATae y HeoOXiTHOCTI MiHiMizamii obcary
BiZIHOBJIIOBAIBHUX POOIT (3aranbHuX (DiHAHCOBMX BHTpAT) IPH ONEPATUBHOMY BiJHOBICHHI 3B’S3HOCTI OOpaHOi IiAMHOXHHU
€JIEMEHTIB MEpEeXXeBOro 00’ €KTy micist Horo ¢pparMeHTarii.

Meta po6oTH moJjsirae y po3po0seHHi MeTo Iy mo0yA0BH MiHIMaJIbHOTO KiCTSIKOBOTO JepeBa Ha AOBLUIbHII MiAMHOKHHI BEpPIIMH
3Ba)KEHOTO HeopieHTOBaHOTO rpady uist MiHiMi3alil oOCsry BiIHOBIIOBaJIbHUX pOOIT i/a00 3arajgbHUX (iHAHCOBUX BHTpPAT MPHU
ONEPAaTUBHOMY BiTHOBJIEHHI 3B’S3HOCTI €NEMEHTIB, SKi MAalOTh BHIIMHA pPIBEHb BAXJIMBOCTI B CTPYKTYpi (parMeHTOBaHOTO
MEPEXKHOTO 00’ €KTY.

Metoa. Po3poOnenuii MeTon 3acHOBaHMII Ha ifgei MOIIYKy B CTPYKTYpi MOJEIBHOTO HEOPI€HTOBAHOTO rpada JIOKaIbHHX
MIHIMYMIB 3 BUKOPUCTaHHSIM BEpLIMH Tpady, 0 He BXOAATH JI0 MepertiKy 0a30BHX BEpIINH, SKi MOTPIOHO 00’ €IHATH MiHIMAIBHUM
KicTSIKOBMM JepeBoM. Ilin yac momryky JIOKQJIBHHX MIiHIMyMiB BHKOPHCTOBYETHCS IOHSATTS PIBHOCTOPOHHBOTO TPHKYTHHKA Ta
paniajabHOi CTPYKTYPU B TAaKOMY TPUKYTHHUKY. IIpy IbOMY pO3pi3HSIIOTHCS YOTHPH THUIIN HiICTPYKTYP, SIKi 3a0€31e4yr0Th JIOKaIbHI
MiHIMYMH: TepIii, Ti 110 MalOTh OJHY CHiIbHY 0a30BYy BEpIIMHY; APYTi, Ti 10 MAalOTh IBi CIiJIbHI 0a30Bi BEpIUHHU; TPETi, Ti L0
MarOTh TPH CIHiJbHI 0a30Bi BEPILIMHM; YETBEPTi, Ti 110 HE MAIOTh CIIIBHUX 0a30BHX BEPIIMH — 3HAXOMATHCS B PI3HUX YaCTHHAX
MoznensHoro rpada. Ti BepmmHH, IO HE BXOIATH 0 TEpeliKy 0a3oBHX, aje depe3 sKi 3a0e3MeuyroThCsl JOKAIbHI MiHIMyMH,
JIONArOThCS 0 Cckiamy OazoBux. [Hmi BepmmHM (HeOa30Bi) pa3oM 3 IHOUASHTHUMH iM peOpaMH BHIANSIOTECA 3 CTPYKTYpU
MozenbHoro rpada. Jlami, Ha OTpHMaHili TaKMM YMHOM CTPYKTYpi, OJHHUM i3 BiJOMHX METOHIB NOOYIOBH KICTSIKOBHX IEpEB,
OyyeTbest MiHIMaIbHE KiCTSIKOBE AEPEBO, SIKE MOETHYE HaOip 0a30BHX BEPIIHH.

PesyabTarn. 1) Po3po6ieHo MeTo o0y J0BH MiHIMAITBHOTO KiCTSKOBOTO JIepeBa Ha TOBUIbHIN i IMHOKHHI BEPIIHH 3Ba)KEHOTO
HEOpieHTOBaHOTO rpada. 2) 3anpornoHoBaHa CyKyNHICTh KPUTEPIIB JUIsl BU3HAUYCHHS JIOKAIFHUX MIiHIMYMIB B CTPYKTYpi MOJEIBHOTO
rpada. 3) Bukonano Bepuikaliito METoay Ha TECTOBHX 3a/1a4ax.

BucHoBku. IIpoBeneHi TeopeTHyYHi MOCIIKEHHS Ta HHU3KAa EKCIIEPUMEHTIB MiATBEP/KYIOTh Mpale3AaTHICTh pPO3poOIICHOrO
MeTtoay. PilieHHs, 10 BUPOOIISIOTHCS 13 BUKOPHCTAHHAM PO3POOIICHOr0 METOAY, € TOUHUMH, 110 JO3BOJISIE PEKOMEHIyBaTH Oro 10
MPaKTUYHOTO BUKOPHUCTAHHS NP BU3HAYCHHI CTPATETiH BiTHOBJICHHS 3B’ I3HOCTI (PparMeHTOBaHMX MEPEKEBHUX 00’ €KTIB.

KJIIOYOBI CJIOBA: mepexeBnii 00’€KT, 3BayKCHUH HEOPiEHTOBaHUH rpad, 3B’ SI3HICTh, TPAH3UTHBHE 3aMKHEHHSI, MiHIMaJIbHE
KICTSIKOBE I€PEBO, JTOKAJILHUM ONTUMYM, KPUTEPiil ONTHMI3aIil, METO.
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