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ABSTRACT 
Context. The relevance of the article is determined by the need for further development of models for optimal restoration of the 

connectivity of network objects that have undergone fragmentation due to emergency situations of various origins. The method 
proposed in this article solves the problematic situation of minimizing the amount of restoration work (total financial costs) when 
promptly restoring the connectivity of a selected subset of elements of a network object after its fragmentation. 

The purpose of the study is to develop a method for creating a minimal spanning tree on an arbitrary subset of vertices of a 
weighted undirected graph to minimize the amount of restoration work and/or total financial costs when promptly restoring the 
connectivity of elements that have a higher level of importance in the structure of a fragmented network object.   

Method. The developed method is based on the idea of searching for local minima in the structure of a model undirected graph 
using graph vertices that are not included in the list of base vertices to be united by a minimal spanning tree. When searching for 
local minima, the concept of an equilateral triangle and a radial structure in such a triangle is used. In this case, there are four types of 
substructures that provide local minima: first, those with one common base vertex; second, those with two common base vertices; 
third, those with three common base vertices; fourth, those without common base vertices, located in different parts of the model 
graph. Those vertices that are not included in the list of basic ones, but through which local minima are ensured, are added to the 
basic ones. Other vertices (non-basic) along with their incident edges are removed from the structure of the model graph. Then, using 
one of the well-known methods of forming spanning trees, a minimal spanning tree is formed on the structure obtained in this way, 
which combines the set of base vertices. 

Results. 1) A method for creating a minimal spanning tree on an arbitrary subset of vertices of a weighted undirected graph has 
been developed. 2) A set of criteria for determining local minima in the structure of the model graph is proposed. 3) The method has 
been verified on test problems. 

Conclusions. The theoretical studies and several experiments confirm the efficiency of the developed method. The solutions 
developed using the developed method are accurate, which makes it possible to recommend it for practical use in determining 
strategies for restoring the connectivity of fragmented network objects. 

KEYWORDS: network object, weighted undirected graph, connectivity, transitive closure, minimum spanning tree, local 
optimum, optimization criterion, method. 

 
ABBREVIATIONS 

MST is a minimal spanning tree; 
ТС is a transitive closure. 

 
NOMENCLATURE 

G  is an undirected weighted graph modeling a 
network object; 

V
 
is a set of vertices of the model graph G ; 

E
 
is a set of edges of a model graph G ; 

GS  is a set of edges of a model graph G ;
 

GR  is a matrix of shortest paths of the model graph G ;
 

),( vu  is the graph edge G ; 
),( vuw is a weighting coefficient of some edge

 
),( vu ; 

K  is an arbitrarily selected subset of vertices of the 
model graph G ; 

 KG
 
is an MST, which is created on an arbitrarily 

selected subset of vertices of the model graph G ; 

E  is a set of edges that make up the required graph 

 KG ; 

W is a total weight of the constructed tree; 

ijw  is a weight of the TC between the corresponding 

vertices of the model graph G ; 

iv  is a vertex of the model graph G ; 

n is a number of graph vertices. 
 

INTRODUCTION 
Objects with a distributed structure, so-called network 

objects, have long ago and forever entered the life of 
mankind. Such facilities include transport networks (road, 
rail, water transport, air transport); data transmission 
networks; power grids, water supply networks, gas supply 
networks and others. A distinctive feature of such objects 
is the presence in their composition of nodal elements 
(passenger stations, communication nodes, distribution 
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and pumping stations, producers of services and their 
consumers, etc.) and communication lines between these 
nodal elements (transport routes, cable facilities, power 
lines, etc.).  

The efficiency of such complex objects depends on 
the performance of their individual elements, but this 
dependence is more pronounced on communication lines, 
since the latter have larger linear dimensions and, 
therefore, are more often and more exposed to external 
undesirable influences [1, 2, 3, 4]. The causes of external 
influences include man-made and natural emergencies. 
Network facilities undergo particularly significant 
fragmentation (destruction) because of military (combat) 
operations in the territories where such facilities are 
located [5].   

As a rule, after the situation in the crisis area is 
normalized, and in many cases during the emergency 
response, the issue of conducting restoration work on the 
destroyed network facility arises to bring the structure of 
the facility and all its functioning parameters to the design 
parameters.  

In conditions of limited funding or limited time for 
restoration work, the network facility is usually restored 
to the spanning structure first [6] as the first stage of res-
toration work. In such a structure, each nodal element is 
connected to any other nodal element, although not al-
ways by optimal routes. The facility continues to operate, 
although with some loss of quality of service to end users 
(subscribers). At the second stage, based on the spanning 
structure, the network object is restored to its original 
structure, and even improved, to make it more efficient. 

If the nodal elements differ in their degree of 
importance, the first stage of restoration work involves 
restoring the connectivity of not all elements of the 
network object, but the more significant ones selected 
according to a certain rule (criterion). It should be noted 
here that when determining the set of such elements, the 
current situation at the facility due to its fragmentation 
and the functional purpose of the facility itself are also 
considered. 

Using well-known methods for constructing minimal 
spanning trees (MSTs) on graphs, such as Prima [7], 
Kruskala [8], Boravki-Solina [9], and others [10, 11, 12], 
it is generally possible to construct a spanning tree on an 
arbitrary subset of the vertices of the initial undirected 
graph, but in most cases such a tree will not be optimal in 
terms of the minimum total weight of the weighted edges 
it is composed of. On network objects with a significant 
number of node elements and a significant density of 
communication lines, such an error can be significant and 
decisive in matters of choosing a strategy for restoring the 
connectivity of a fragmented network object.   

Thus, the article is aimed at minimizing the amount of 
restoration work (financial costs for such work) aimed at 
promptly restoring the connectivity of a certain (pre-
scribed) set of node elements of a fragmented network 
object. 

The object of the study is the process of restoring 
connectivity between an arbitrary subset of node elements 
of a fragmented network object. 

The subject of the study is the method for creating a 
minimal spanning tree on an arbitrary subset of vertices of 
a weighted undirected graph.   

The purpose of the study is to develop a method for 
creating a minimal spanning tree on an arbitrary subset of 
vertices of a weighted undirected graph to minimize the 
amount of restoration work and/or total financial costs 
when promptly restoring the connectivity of elements that 
have a higher level of importance in the structure of a 
fragmented network object.   

 
1 PROBLEM STATEMENT 

The tasks of determining the optimal structures of 
network objects are, for the most part, formalized and 
solved using graph theory models and methods [13]. That 
is why we will model the structure of the network object 
with some weighted undirected graph ),( EVG  , where 

V
 
is a set containing the vertices of a graph that model 

the node elements of a network object; E
 

is the set 
containing the edges of a graph that model the 
communication lines of a network object. 

For each edge Evu ),( , its weight is known 

),( vuw . In the plural V  the vertices of the initial graph 

are an arbitrarily selected subset of vertices K , so that 
VK  , VK  . Vertices that make up a subset K , will 

be called basic. The task is to create МST 
 EEKG K  ,][ , connecting a selected subset of base 

vertices K , namely:  
 

min),()(
),(

 
Evu

vuwEw ,               (1) 

 
under the conditions: 
 

yxKyx  TC, ,                 (2) 

 
where  yx, – an arbitrary pair of vertices from the 

set K ; yx TC
 – transitive closure between an 

arbitrary pair of vertices  yx, . 

 
2 REVIEW OF THE LITERATURE 

Currently, the theoretical basis for restoring the 
connectivity of fragmented (broken) network objects is 
the graph theory. 

A well-known and studied problem of graph theory 
with numerical practical applications is the problem of 
creating an initial undirected MST graph on the structure, 
that is, an acyclic subgraph in which all vertices of the 
initial graph are transitively closed (there is a path 
connecting any pair of vertices), and the total weight of 
the edges of this acyclic subgraph is minimal. 
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Currently under creating МST  G , where “+” – the 

entire nodal basis of the graph G , as it was mentioned 
above, the well-known methods of Prim, Kruskal, Boru-
vka-Solin are used. These methods can also be used to 
search for minimal covering trees  KG , by checking at 

each step whether the tree being built has connectivity 
between all vertices Kvi  . 

Thus, a connected undirected graph is applied to the 
input of Prim’s algorithm [7]. For each edge, its cost is set. 
First, an arbitrary vertex is taken and the edge incident to 
this vertices, which has the lowest cost, is found. The found 
edge and two vertices connected by it form a tree. Then the 
edges of the graph are considered, one end of which is a 
vertex that already belongs to the tree, and the other is not; 
from these edges, the edge of the lowest cost is selected. 
The edge selected at each step is joined to the tree. The tree 
grows until all the vertices of the initial graph are explored. 
The result of the algorithm is the MST. 

If the initial graph is given by the adjacency matrix, 
the computational complexity of this algorithm is 
estimated O(n2). 

In Kruskal’s algorithm [8], the current set of edges is 
initially set to be empty. All the edges of the graph are 
ordered as the weight increases and are presented in a 
separate list. An edge of minimum weight is selected from 
the list and added to the already existing set (the tree 
being created). A cycle check is performed immediately. 
If there is no cycle, then the next edge is taken and added 
to the set. If there is a cycle, the edge that created it is 
discarded. The process is iteratively repeated until all 
vertices of the initial graph are included into the required 
tree. The tree found in this way is the minimum spanning 
tree of the initial graph. 

The computational complexity of this algorithm will 
be evaluated ))log(( EEO , and is mainly determined by 

the complexity of the process of sorting the edges of the 
graph.   

The Boruvka-Solin algorithm [9] is practically no 
different from Kruskal’s algorithm. 

The conducted analysis of the literature shows that the 
problem in the formal statement (1)-(2) has not been 
posed or solved by anyone. Our article is dedicated to 
solving this problem. 

 
3 MATERIALS AND METHODS 

The analysis of the Prim, Kruskal, Boruvka-Solin 
methods on various structures proved that their use for 
creating trees  KG , may give some error in the final 

result, because in the structure of the initial graph G  
spanning trees may exist  KG

 
with less weight. The fact 

is that at each step of these methods, vertices are needed 
for transitive linking Kvi  , an edge of minimum weight 

is added to the structure of the required tree, followed by 
a check for the presence of a cycle. The total weight of 
the added edges may exceed the weight of some edge, the 
weight of which is greater than each of the added ones, 

but through which the optimal (by the minimum weight 
criterion) transitive closure of the vertices is carried out 

Kvi  .  

For example, there is some communication network 
modeled by an undirected weighted graph G , Fig. 1, а. 

Minimal spanning tree  6,5,4,1G , built according to the 

Kruskal’s method, provided by Fig. 1, b bolder lines. 
 

 
 
At the same time, the total weight of five edges 

 21,vv ,  42,vv ,  31,vv ,  53,vv ,  63,vv , which are 

part of the spanning tree  6,5,4,1G , is equal to 

   

18
6,5,4,1,

 
Gji

ijwW . 

But it can be seen that in fact MST  6,5,4,1G   consists 

of four edges  21,vv ,  42,vv ,  52,vv ,  65,vv . 
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Figure 1 – Building a minimal spanning tree on an arbitrarily 
subset of vertices of the initial graph G : 

a – the initial undirected graph G ; 

b – a minimal spanning tree  6,5,4,1G  of the initial undirected 

graph G , built according to Kruskal’s method 
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Herewith 
   

16
6,5,4,1,

 
Gji

ijwW , see Fig. 2. The absolute 

difference in the weights of these two trees is 2 units. 
 

 
Figure 2 – A minimal spanning tree

  6,5,4,1G   

of the initial undirected graph G  
 
Considering the above, we will formulate and prove the 

following theorem. 
Theorem. Let  EVG ,  be an arbitrary weighted 

undirected graph. Minimal spanning tree
    EKG K  ,  

on a subset of selected vertices Kvi   of the graph G , 

where VK  , can be created by adding a subset to the 

composition K  of some vertex Kvi  , if the optimal (of 

minimal weight) transitive closure (TC) of some vertices 
is carried out through it Kvi  . 

Proof: It is obvious that is a minimal spanning tree on 
a subset of vertices K , in case 2K  is a shortest path 

connecting these two vertices. If 2K  , there can be 

several such paths. Thus, to obtain the connectivity of 
some vertices s , d , t  to the structure of the required 

 tdsG ,,  can be added 

 1,ds ,  21,dd ,...,  nn dd ,1 ,  ddn ,  and 

 1,ts ,  21,tt ,...,  nn tt ,1 ,  ttn ,  edge. Suppose that in the 

structure of the initial graph G  some vertices is present 
Ktn   and edge  dtn,  for which the following condition 

is true: 
1,, dsdt ww

n
 , 

21,, dddt ww
n

 ,..., dddt nn
ww ,,   

and dtn
w , (

1,dsw +...+
nn ddw ,1

+ ddn
w , ). So, 

considering the edge  dtn,  it is possible to reduce the 

total weight of the required spanning tree  tdsG ,, .  

Therefore, the adjacent edges whose weight 
coefficients are in parentheses can increase the total 
weight of  tdsG ,, . Thus, the problem should be solved 

taking into account the possible addition to the structure 
of the required tree  KG   of additional vertices Kvi  , 

the total weight of the transitive closure through which 

will ensure the minimization of the total weight of the 
required spanning tree. The theorem is proved. 

Let us note an important consequence of the theorem. 
Consequence. The weight of transitive closure of 

vertices Kvi  , can be reduced through some vertices 

Kvi  , starting from 3K . 

Let’s explain the mentioned consequence graphically. 
For example, there are two connected networks with 
lengths L1 and L2, see Fig. 3. 

 

 
 
 

 
 
 

 
 

Figure 3 – Geometric comparison of the total weight of TC in 

networks with 3K  and different organization of the  

structure: 
a – without using an additional vertices – a linear substructure. 

b – using an additional vertices ( 4v ) – a radial substructure. 

c – geometric interpretation of TC weight based on an 
equilateral triangle 
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The size of an edge c in an equilateral triangle, see 
Fig. 3, c is determined as follows: 

c

a 2/
30Cos 0  

3

a
c  . Thus, in an equilateral 

triangle (or close to it), the inequality 21 LL   will always 

be valid. 
Based on the above, the main idea of the method is to 

check the structure of the initial graph G  on the 
possibility of reducing the weight of TC between threes 

Kvi   in their various combinations (sets) due to the 

addition of some vertices Kvi   (see Fig. 3, b). If such a 

possibility exists, we will speak of the existence of a local 
minimum, which is ensured by this Kvi  . Vertices 

Kvi  , which do not provide local minima will be 

removed from the structure of the initial graph G  
together with the edges, incidental to them, and they will 
not be considered in the further creating of the MST.  

If several radial substructures that provide local minima 
are found in the graph G structure, they should be analyzed 
for the extent to which the base vertices Kvi  are used to-

gether. The following options are possible here, see Fig. 4: 
 

 
 

Thus, when detected in the structure of the model 
graph G  several radial substructures with the first degree 
of their joint use of basic vertices (see Fig. 4, a), all 
vertices Kvi  , through which such substructures are 

formed, remain in the structure of the graph G , providing 
corresponding local minima in it. The same situation 
occurs with radial substructures with zero degree of use of 
base vertices (see Fig. 4, d), because substructures are at 
some distance from each other. In this case, all vertices 

Kvi  , due to which such substructures are formed, 

remain in the structure of the graph G , providing 
corresponding local minima in it.  

The situation will be different in the presence of the 
second and third degrees of base vertex usage. In such a 
situation (see Fig. 4, b and Fig. 4, c) you need to find out 
which of the vertices Kvi   (in this case 1v  or 2v ) will 

ensure a lower weight of the TC of the base vertices 
Kvi  . In the case of the third degree of use of base 

vertices, competition between vertices Kvi   occurs on 

several parallel radial substructures that connect some 
triplet of base vertices Kvi  , see Fig. 4, c. The result of 

such competition is the selection of a single vertex 
Kvi  , which ensures the smallest weight of the TC of 

this trio of vertices. At the same time, the local minimum 
remains within the three analyzed vertices. In the case of 
the second degree of using base vertices (see Fig. 4, b), 
vertices Kvi   are the roots of adjacent radial 

substructures that connect different sets of basic vertices 
triples Kvi  . In this case, the result of competition 

between the corresponding vertices Kvi   is the choice 

of the radial substructure that provides the smallest weight 
of the TC of the corresponding triple of vertices (within 
the example shown in Fig. 4, b, the local minimum is 
provided on the triple of vertices, the root of which is the 
vertex 1v ). Both in the first and in the second cases, the 

vertices Kvi  , that lost the competition are removed 

from the structure of the modeling graph G  along with 
the edges, incident to them.    

Having considered the general theoretical provisions, 
we will present the developed method in the form of the 
following six steps: 

Step 1. Based on the modeling weighted undirected 
graph G , creating its adjacency matrix GS . According to 

the matrix GS  creating a matrix of the shortest paths GR  
between all pairs of the vertices of graph G . For this 
purpose, we can use the Warshall-Floyd algorithm [14, 
15] or Shimbel [16] and some others. 

Step 2. For each Kvi   according to the GR  to find the 

weight of the TC with three base vertices Kvi  , for which 

the condition min
1




n

j
ijw

 

is valid. 

The result of the operation: the column indices 
(vertices Kvi  ) are idx1, idx2, idx3; the total weight of 

the TC connecting the given trio of base vertices Kvi   

min 

min 

a  

b  

1 

min 

2 

min 

min 

G 

d  

c  

min 
1 2 

Figure 4 – Degree of compatible use by radial substruc-
tures of base vertices Kvi   (such vertices are marked in 

solid red): 
a – first; b – second; c – third; d – null (no compatible use 

of base vertices)  
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with Kvi  , that is analyzed is   


Kvvv
Kv

idxidxidx

i
w 321 ,, . To 

save the results of the operation.  
Step 3. For each Kvi   by the column index sets 

defined in step 2 (idx1, idx2, idx3) according to the matrix 

GR  to find the weight of the corresponding vertices. The 

result of the operation: the weight of the TC connecting 
the base vertices Kvi   with three base vertices Kvi   

with numbers idx1, idx2, idx3 is   


Kvvv
Kv

idxidxidx

i
w 321 ,, . 

To save the results of the operation. 
Step 4. To remove vertices Kvi   for which the 

condition is valid:  
 

 

    niww Kvvv
Kv

Kvvv
Kv

idxidxidx

i

idxidxidx

i
,1,321321 ,,,,   




 , (3) 

 
from the structure of the model graph G  together with 
the edges, incident to it. Appropriate changes to the 
matrix GS should be made. 

Step 5. To carry out a pairwise check of the vertices 
Kvi   remaining after the previous steps for the degree 

of compatible use by the radial substructures of the base 
vertices Kvi  : 

а) if because of such a check zero or first degree was 
found (without a match by indices or a match by one 
index), then such vertices should be left in the structure of 
the model graph G ; 

b) in the case of detection of the second or third 
degree (a match according to two or three indices, 
respectively), determine the vertices Kvi   through 

which the minimum TC of the corresponding trio of base 
vertices is ensured Kvi  . To remove the vertices that 

lost the competition from the structure of the model graph 
G  together with the edges, incident to it. An appropriate 
changes to the matrix GS should be made. 

Step 6. On the modified in this way graph G , by one 
of the well-known algorithms for creating the MST the 
required minimum tree  EEKG K  ,][  is created. 

 
4 EXPERIMENTS 

Let us illustrate the application of the method on the 
example of the graph provided by Fig. 1, a. As before, the 
МST  6,5,4,1G  is to be found.  

Step 1. A calculated matrix of shortest paths GR  

between all pairs of graph vertices has the following 
form: 

 
 
 
 
 
 
 

 
 

 

(4) 

 

 
In expression (4), vertices Kvi   are marked in red.  

Step 2. For each Kvi   we define 
  
 min321 ,, Kvvv

Kv
idxidxidx

i
w . For the vertex Kv 2  it 

is   10541

2

,, vvv
vw . For the vertex Kv 3  it is 

  13651

3

,, vvv
vw . For the vertex Kv 7  it 

is    32641

7

,, vvv
vw . 

Step 3. The results of calculations for this step are 
presented in Table 1. 

 
Table 1 – The weight of TC of the basic vertices Kvi   

with 

triples of base vertices Kvi  ,  having the indices defined in 

step 2 of the method 

Kvi    
541 ,, vvv

Kvi
w    

651 ,, vvv
Kvi

w    
641 ,, vvv

Kvi
w  

1 2 3 4 

1v  13 17 14 

4v  12 22 15 

5v  15 14 21 

6v
 

25 15 25 

 
Step 4. According to inequality (3), we compare the 

received sums of weights   10541

2

,, vvv
vw , 

  13651

3

,, vvv
vw ,

 

   32641

7

,, vvv
vw

 
with sums of weights 

on the corresponding indices for Kvi , which are 

presented in Table 1. The inequality is valid only for the 

vertex 7v , since    32641

7

,, vvv
vw

 
is greater than any 

value in column 4, see Table 1. So, the vertex 7v  is 

removed from the structure of the model graph G  with 
all the edges incident to it. Corresponding changes are 
also to be made to the matrix GS .     

Step 5. Let us perform a pairwise check of the vertices 
Kvi   remaining after the previous steps for the degree 

of compatible use by the corresponding radial 
substructures of the base vertices Kvi  . Such vertices 

are 2v  and 3v  for which respectively   10541

2

,, vvv
vw

 

.

011158161013

1106105119

15607458

81070925

16549074

101152703

13985430

7

6

5

4

3

2

1

7654321

v

v

v

v

v

v

v

vvvvvvv

RG 
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and   13651

3

,, vvv
vw . As we can see, the radial 

substructures, the roots of which are these vertices, jointly 
use the base vertices 1v  and 5v . Therefore, we got the 

second degree of joint use of basic vertices by radial 
substructures Kvi   (match by two indices). Since the 

weight of the transitive closure over the vertex 3v  is 

greater than through the vertex 2v  (13>10), the vertex 3v  
is also removed with all its incident edges from the 
structure of the model graph G . Corresponding changes 
are also to be made to the matrix GS .  

Step 6. On the modeling graph G modified in this way 
(Fig. 5) using the Kruskal method, we will create the 
MST  6,5,4,1G  . It will be identical to the MST presented 

at Fig. 2. 
 

 
Figure 5 – Modified model graph G  and the MST on the se-

lected subset of vertices 
 

5 RESULTS 
When applying the developed method to the initial 

undirected graph G  (see Fig. 1), three radial substructures 
were successively considered, the roots of which were 
vertices 2v  , 3v , 7v , not included in the set K . During 

the verification, it was found that the vertex of 7v  does 

not provide a minimum TC between the specified three 
base vertices Kvi  . This fact made it possible to modify 

the initial graph G  by removing this vertices and all 
edges incident to it from its structure. The vertices 2v  and 

3v have provided the minimum TC. At the same time, the 

radial structures (triplets of vertices), of whose roots they 
are, intersect along two vertices and have the second 
degree of joint use of the base vertices Kvi  . This fact 

led to the need to compare the vertices 2v , 3v , and 

choose the one that provides the local minimum of TC. 
This vertex appeared to be the vertex 2v . Consequently, 

vertex 3v  was also removed from the original graph G  

structure. 
Therefore, the internal tools of the proposed method 

allow testing the structure for the presence of local 

minima in the TC of the base vertices Kvi   through the 

vertices Kvi  , and modifying the structure of the initial 

graph G  to further find MST  KG  in this structure. 

 
6 DISCUSSION 

The combination of the approaches proposed in the 
article allowed us to develop a method by which it is 
possible to build a MST on an arbitrary subset of vertices 
of the initial undirected graph. This became possible due 
to the analysis of radial substructures whose roots are 
vertices Kvi  , in terms of the weight of the TC of these 

substructures, and the search for local minima among 
them. At the same time, this became possible due to the 
use of the shortest paths matrix ( GR ) between all pairs of 

vertices of the model graph G . Due to the fact that such a 
matrix contains information not only about the presence 
of TC between any pair of vertices, but also quantitatively 
characterizes this relationship, it became possible to 
analyze different sets of three basic vertices Kvi  , from 

different locations of the model graph relative to the root 
of the current radial substructure. The above allows us to 
launch a mechanism for revealing local minima in the 
structure of the model graph G  and selecting vertices 

Kvi   that provide this minimum. On the other hand, 

those vertices Kvi  , which do not provide local minima 

are removed from the structure of the model graph G , 
thereby not increasing the weight of the required MST 

 KG . 

Several dozen full-scale experiments on various 
network objects of low density have shown the efficiency 
of the developed method, and the solutions obtained were 
optimal. At the same time, the behavior of the method on 
dense network objects of high dimensionality remains a 
challenge ( 30n ). Thus, the method could be considered 
quasi-optimal at the moment. 

The computational complexity of the combinatorial 
algorithm that implements the developed method will be 
determined by the computational complexity of its “basic 
elements” – the algorithm for finding the shortest paths 
between all pairs of vertices of the model graph and the 
algorithm for creating the MST. If the Warshall-Floyd 
algorithm and the Kruskal algorithm are taken as the basic 
algorithms, respectively, the overall computational 
complexity of the combinatorial algorithm will be 

estimated ))log(( 3 EEnO  . 

The obtained polynomial estimate of the computa-
tional complexity is suitable for using such an algorithm 
in solving relevant management problems in real life. 

 

CONCLUSIONS 
The article solves the actual scientific and applied 

problem of creating the MST  KG
 

on an arbitrarily 

chosen subset of vertices of the initial undirected 
weighted graph, where K  is an arbitrarily chosen subset 
of vertices of the initial graph G . 

10

202 6 

3 

5 

v6 v4 

v2 
v5 

v1 
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The scientific novelty of the developed method is as 
follows: 

1) in the formulation of the consequence that to 
reduce the weight of the transitive closure of the base 
vertices Kvi  , through some vertices Kvi  , starting 

from 3K ; 

2) in the proposed approach to vertices selection 
Kvi . The essence of the approach is to compare the 

weights of transitive closures of different radial 
substructures whose roots are vertices Kvi  , combining 

different sets of three basic vertices Kvi  ; 

3) in the proposed approach to determining the local 
minimum of the weight of radial substructures, among 
substructures that are in competition. The core of the 
approach is to analyze the degree of joint use of base 
vertices Kvi   by different radial substructures. 

The practical value of the method is when it is 
applied to large and dense network objects that have 
undergone fragmentation (destruction due to external 
influences), it is possible to significantly reduce the 
amount of restoration work and/or total financial costs 
while quickly restoring the connectivity of elements that 
are of higher importance in the structure of such an 
object. 

A promising direction for further research is the 
final verification of the developed method to determine its 
optimality class. 
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AНОТАЦІЯ 
Актуальність. Актуальність статті обумовлюється потребою у подальшому розвитку моделей оптимального 

відновлення зв’язності мережних об’єктів, що зазнали фрагментації внаслідок надзвичайних ситуацій різного характеру 
походження. Запропонований у статті метод усуває проблемну ситуацію, що полягає у необхідності мінімізації обсягу 
відновлювальних робіт (загальних фінансових витрат) при оперативному відновленні зв’язності обраної підмножини 
елементів мережевого об’єкту після його фрагментації. 

Мета роботи полягає у розробленні методу побудови мінімального кістякового дерева на довільній підмножині вершин 
зваженого неорієнтованого графу для мінімізації обсягу відновлювальних робіт і/або загальних фінансових витрат при 
оперативному відновленні зв’язності елементів, які мають вищий рівень важливості в структурі фрагментованого 
мережного об’єкту.   

Метод. Розроблений метод заснований на ідеї пошуку в структурі модельного неорієнтованого графа локальних 
мінімумів з використанням вершин графу, що не входять до переліку базових вершин, які потрібно об’єднати мінімальним 
кістяковим деревом. Під час пошуку локальних мінімумів використовується поняття рівностороннього трикутника та 
радіальної структури в такому трикутнику. При цьому розрізняються чотири типи підструктур, які забезпечують  локальні 
мінімуми: перші, ті що мають одну спільну базову вершину; другі, ті що мають дві спільні базові вершини; треті, ті що 
мають три спільні базові вершини; четверті, ті що не мають спільних базових вершин – знаходяться в різних частинах 
модельного графа. Ті вершини, що не входять до переліку базових, але через які забезпечуються локальні мінімуми, 
додаються до складу базових. Інші вершини (небазові) разом з інцидентними їм ребрами видаляються з структури 
модельного графа. Далі, на отриманій таким чином структурі, одним із відомих методів побудови кістякових дерев, 
будується мінімальне кістякове дерево, яке поєднує набір базових вершин.    

Результати. 1) Розроблено метод побудови мінімального кістякового дерева на довільній підмножині вершин зваженого 
неорієнтованого графа. 2) Запропонована сукупність критеріїв для визначення локальних мінімумів в структурі модельного 
графа. 3) Виконано верифікацію методу на тестових задачах. 

Висновки. Проведені теоретичні дослідження та низка експериментів підтверджують працездатність розробленого 
методу. Рішення, що виробляються із використанням розробленого методу, є точними, що дозволяє рекомендувати його до 
практичного використання при визначенні стратегій відновлення зв’язності фрагментованих мережевих об’єктів. 

КЛЮЧОВІ СЛОВА: мережевий об’єкт, зважений неорієнтований граф, зв’язність, транзитивне замкнення, мінімальне 
кістякове дерево, локальний оптимум, критерій оптимізації, метод. 
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