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ABSTRACT

Context. Analysis of data uncertainties in modeling and forecasting of actuarial processes is very important issue because it
allows actuaries to efficiently construct mathematical models and minimize insurance risks considering different situations.

Objective. The goal of the following research is to develop an approach that allows for predicting future insurance payments
with prior minimization of possible statistical data uncertainty.

Method. The proposed method allows for the implementation of algorithms for estimating the parameters of generalized linear
models with the preliminary application to data of the optimal Kalman filter. The results demonstrated better forecast results and
more adequate model structures. This approach was applied successfully to the simulation procedure of insurance data. For generat-
ing insurance dataset the next features of clients were used: age; sex; body mass index (applying normal distribution); number of
children (between 0 and 5); smoker status; region (north, east, south, west, center); charges. For creating the last feature normal dis-
tribution with known variance and a logarithmic function, exponential distribution with the identity link function and Pareto distribu-
tion with a known scale parameter and a negative linear function were used.

Results. The proposed approach was implemented in the form of information processing system for solving the problem of pre-
dicting insurance payments based on insurance data and with taking into account the noise of the data.

Conclusions. The conducted experiments confirmed that the proposed approach allows for more adequate model constructing
and accurate forecasting of insurance payments, which is important point in the analysis of actuarial risks. The prospects for further
research may include the use of this approach proposed in other fields of insurance related to availability of actuarial risk. A special-
ized intellectual decision support system should be designed and implemented to solve the problem by using actual insurance data

from real world in online mode as well as modern information technologies and intellectual data analysis.
KEYWORDS: actuarial risk, generalized linear models, optimal Kalman filter, exponential family of distributions, simulation,
iterative-recursive weighted least squares method, Adam method, Monte Carlo for Markov chains.

ABBREVIATIONS
NPV is a net present value;
MEBN is a multi-entity Bayesian networks;
EVT is an extreme value theory;
GLM is a generalized linear models;
GLMC is a generalized linear models with credibility;
MCMC is a Markov chain Monte Carlo method;
IRWLS is an iterative-recursive weighted least
squares.
MSE is a mean squared error.
RMSE is a root mean squared error.
MAE is a mean absolute error,
Adam is an adaptive moment estimation.

NOMENCLATURE
A is a system dynamic matrix;
X(n) is a vector of states at time step N>0;
X(n) is a vector estimate of states at time step N >0 ;

B is a matrix of control coefficients;
u(n) is a vector of controls at time step n>0;

w(n) is a noise vector at time step n >0, which has a

normal distribution with mean vector with all zero values
and covariance matrix Q ;

Q is a covariance matrix of state disturbances;
z(n) is a vector of measurements of output variables

at time step N>0;
H is a matrix of observation coefficients;
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v(n) is a vector of random measurement noise values

at time step n >0, which has a normal distribution with
mean zero vector and covariance matrix R ;

R is a matrix of measurement errors;

P(n) is a covariance matrix of errors of state vector

estimates at time step n>0;

K(n) is a filter’s matrix optimum coefficient at time
step n>0;

| is an identity matrix;

a(e),b(e),c(e,e) are functions that are defined at the

outset in exponential family of distributions;
0 is a parameter associated with mean values;
@ is a scale parameter associated with variance;

y is a target variable for insurance charges and set of

financial processes;
1 is a linear predictor;

X is a matrix of covariates;
B is a estimated parameter of GLM;

g is a link function

E is an expected value;
Xm 1s a scale parameter for Pareto distribution;

o is a standard deviation for normal distribution.

INTRODUCTION
The existence of factors that prevent possibilities from
having deterministic outcomes is implied by uncertainty,
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and it is unknown to what extent these factors may have
an impact on the outcomes.

Either a practical or abstract theoretical study of the
circumstances for the presence of uncertainty can be car-
ried out, depending on the decision-making perspective
that is applied to a particular case. For instance, several
mathematical models are employed at the abstract theo-
retical level, while an evaluation of the quantity of infor-
mation needed for decision selection is done at the practi-
cal level. Selection of these models considers the likeli-
hood of their development in particular scenarios. Infor-
mation entropy may be used to estimate the quantity of
information needed to characterize the uncertainty of the
selection scenario.

The uncertainty category is defined by few variable
characteristics that characterize many kinds of uncertain-
ties, such as situational, political, social in nature global,
and so on. Determining the degree of analysis and the
kinds of uncertainties being taken into account is essential
to solving the challenges associated with decision-making
in the face of uncertainty.

It should be highlighted that uncertainty is frequently
limited to the absence of comprehensive knowledge about
a particular object. Indeed, uncertainty is not limited to
inadequate understanding about object states. In addition,
it is occasionally feasible to take into account the ambigu-
ity of the decision-selection criteria and the objectives.

The amount of alternative possibilities and the variety
and quantity of criteria used to evaluate these options de-
fine the degree of decision-making complexity in many
real-world situations.

Since genuine risks and uncertainty are a part of the
past, present, and future of analyzed process development,
they must be considered in all actions that have an impact
on the goals of the organization. Risk and uncertainty are
present in all economic activity in varying amounts, but
no matter how thorough the risk management, uncertainty
cannot be totally removed. Unexpected circumstances and
interdependencies might arise at any time. Such unantici-
pated occurrences may result in deviations that radically
alter the data arrangement. As a result, uncertainty can
become a risk factor when it results from incomplete in-
formation or from using sources that are frequently at
odds with the real circumstances of a company or the
competitive market [1].

It should be highlighted that a variety of uncertainties,
taken together to produce a specific complex of uncertain-
ties known as systemic uncertainty, are frequently present
in actual practical situations involving decision-making.

The object of study is the process of search the best
approach which allows to analyze actuarial risk more effi-
ciently. It is proposed to generate insurance indicators and
target variables randomly with adding noise to simulate
real-world data, because they are not always publicly
available. Therefore, it is proposed to implement ap-
proach, which allows to forecast insurance indicators
more efficiently by reducing uncertainty.
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The subject of study are methods for forecasting in-
surance data.

The purpose of the work is to implement approach,
which allows to reduce uncertainty during the solving task
of forecasting the insurance indicators.

1 PROBLEM STATEMENT
For the class of financial processes {y(e)} with a gen-

eralized form of the probability distribution:

0 —-b(0
f(y,e,cp)=exp{ya—“

© +C(Y,9),

where a(e),b(e),c(e,e) are functions, that correspond to a
certain distribution law; Y is a dependent variable; 6 is a

canonical parameter or function of some parameter of a
certain distribution; ¢ is the variance parameter. The fol-

lowing distribution laws are allowed: normal, Poisson,
binomial, inverse Gaussian, gamma, exponential.
The function b(e) assumes special significance in

generalized linear models, because it describes the rela-
tionship between the mean value of ny and the variance

of the process {V} : 63, . If ¢ is known, then it is an expo-

nential model with the canonical parameter 0. Also, the
exponential distribution can be two-parameter, if ¢ is

unknown.
It is proposed to determine and minimize the impact
of statistical data regarding the dependent variable {y},

which lead to deterioration of the results of estimation of
the structure and parameters of mathematical models and
estimates of forecast calculated on the basis of these mod-
els. In this case, the following types of models
{Mi},i =1,2,3,... are possible: linear regression, variance
and covariance analysis, Log-linear models for the analy-
sis of random tables, probit/logit models, Poisson regres-
sion.

2 REVIEW OF THE LITERATURE

As of right now, there are no widely applicable meth-
ods for accounting for the uncertainties of the majority of
types that are now in use that can be effectively used to
solve the aforementioned real-world issues. Generally
speaking, the current techniques for handling uncertain-
ties allow for the consideration of certain particular kinds
of uncertainties to enhance the quality of the outcome.
Thus, for instance, optimal Kalman filter allows for opti-
mum estimates of the process’s state to be obtained
against the backdrop of negative random effects by ac-
counting for and minimizing the influence of state distur-
bances and measurement noise.

The author of [2] provided evidence that determining
the measurement uncertainty of every approved analytical
test process should be viewed as a valuable completion
that adds value rather than as an extra burden. Evaluation
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and comparison of a result with other outcomes are made
possible by measurement uncertainty. Communicating the
positive meaning of “measurement uncertainty” to clients
and the head of authority is crucial. Declaring an exces-
sive amount of uncertainty based just on conjecture is
illogical.

Data mining algorithms such as neural networks, evo-
lutionary methods, informed search and space exploration
targeted at solving optimization problems, mathematical
logic, decision trees, and some others are very helpful in
the fighting against uncertainties. With the option to in-
clude expert estimates, Bayesian networks — probabilistic
models in the form of directed acyclic graphs with the
variables of the processes under investigation at their ver-
tices—are an incredibly powerful tool for data analysis.

Multi-Entity Bayesian Networks (MEBN) were pre-
sented by the authors in [3]. Given any consistent collec-
tion of finitely many first-order phrases, its logic may
assign a conditional probability distribution and, con-
versely, assign probabilities to any set of sentences in
first-order logic in a logically coherent manner. That is,
MEBN logic can assign a probability to everything that
can be represented in first-order reasoning. It is not easy
to obtain complete first-order expressive capability in the
Bayesian logic. Representing an unlimited or potentially
infinite number of random variables is necessary for this,
some of which could have an unbounded or potentially
infinite number of possible values. Furthermore, we must
be able to express random variables with potentially infi-
nite or unbounded parents as well as recursive definitions.
More challenges arise from possible random variables
that take values in uncountable sets, like the real numbers.

According to MEBN logic, the environment is made
up of entities with qualities and relationships to other enti-
ties. The features of entities and the connections between
them are represented by random variables. MEBN theo-
ries are collections of MEBN fragments arranged to rep-
resent knowledge about qualities and connections. Given
their parents in the fragment network and the context
nodes, a MEBN fragment provides the conditional prob-
ability distribution for instances of its resident random
variables. Any collection of MEBN pieces that together
satisfy consistency conditions guaranteeing the presence
of a distinct joint probability distribution over instances of
the random variables each MEBN fragment in the collec-
tion represents is referred to as a MEBN theory [3].

In [4], the assessment of risky investment choices is
predicted on techniques that have developed over time to
account for both project risk and flexibility. The first steps
in project evaluation were calculating the project’s net
present value (NPV) using the proper discount rate. In
recent times, managers have been able to ascertain the
proper modifications in project value estimations that
represent flexibility, or the chance to respond to unfore-
seen circumstances and surprises, thanks to the instru-
ments of decision trees and actual alternatives. These
techniques offer a sophisticated manner of appraising the
value of this flexibility.
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The authors of [5] examined the reliability and preci-
sion of forecasts in a wide range of topics in the scientific
and social sciences. Because they are subject to human
biases and limitations, judgmental predictions are no more
reliable than statistical ones. As long as forecasts are in-
dependent and gathered from a variety of sources, com-
bining them appears to increase accuracy. This is espe-
cially true for judgmental forecasts, where averaging of
several forecasts typically yields forecasts that are more
accurate than the best individual forecasts while simulta-
neously lowering the variation of predicting errors. On the
other hand, both statistical models and subjective fore-
casters often grossly underestimate uncertainty. The au-
thors outlined two main categories of forecasting scenar-
ios that call for various methodologies and models. Pre-
dicting normal conditions in a steady, stable context with
known patterns and linkages is referred to as the first. The
second occurs in peculiar circumstances with ephemeral,
shifting patterns. It should be underlined that booms in
business and economic recessions and crises cannot be
viewed as anomalies; instead, they need to be forecasted
using a different acceptable methodology and adequate
model [6].

Explorers face many challenges and issues as a result
of the significant variation in prediction accuracy and
uncertainty over different time horizons. Additionally, the
degree of ambiguity and precision differs across different
fields. Normal-condition forecasting errors are thin-tailed,
but unusual-condition forecasting errors exhibit radically
different behavior, with fat tails. Extreme Value Theory
(EVT) has shown to be a useful tool for scientists in esti-
mating uncertainty and producing realistic risk assess-
ments that account for fat tail errors while avoiding the
pitfall of average assessments, which drastically underes-
timate risk and uncertainty. Their results have a lot of
promise today and in the future and can be used in differ-
ent forecasting contexts [5].

3 MATERIALS AND METHODS

In particular, the adaptive Kalman filter is a pretty
useful tool for assessing and accounting for statistical
uncertainty and allows one to assess and anticipate the
status of dynamic processes [7] in real time. In this in-
stance, real-time computed estimates of the covariance
matrices of the designated random processes are used to
adapt the model to the features of always available ran-
dom disturbances and measurement noise. The capacity to
explicitly consider the statistical properties of measure-
ment noises and state disturbances, the ability to calculate
optimal estimates of state variables and their forecasts, the
possibility to perform effectively data fusion, the ability
to estimate unmeasured components of the state vector,
and the capacity to estimate states and some model pa-
rameters simultaneously are some of the benefits of avail-
able optimal filtering procedures.

In state space format, Kalman filters are used to esti-
mate states based on linear or nonlinear dynamical sys-
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tems. The evolution of the state from time n—1 to time
N is defined by the process model as follows [8]:

Xx(n)=Ax(n-1)+Bu(n-1)+w(n-1).

The process model is paired with the measurement model
that describes the relationship between the state and the
measurement at the current time step n as:

z(n) = Hx(n)+v(n).

Given the initial estimate of X(0), the series of meas-
urements, Z(1),z(2),...,z(n), and the details of the system
model defined by A,B,H,Q, and R, the task of the Kal-
man filter is to generate an optimal estimate of Xx(n) at
time n.

In many real-world applications, the true statistics of
the noises are either unknown or not Gaussian, despite the
fact that the covariance matrices are meant to represent
their statistics. As a result, Q and R are typically em-
ployed as tuning parameters, which the user can modify to
get the intended filter performance.

The covariance matrix of errors of state vector esti-
mates, which is connected to the state estimate, is also
used in this technique. It is denoted as P(n) .

Algorithm of Kalman filter consists of the next steps.

1. For the state vector and the covariance matrix of es-
timate errors P(0), set the initial conditions x(0) . Assign
values to measurement errors R and state disturbances of
covariance matrices Q .

2. Determine the filter’s matrix optimum coefficient as
follows:

KM)=P(-DHT[HP(h-DH " +R]™".

3. To get the state vector’s current estimate, use the
new measurements:

X(n) = AX(n — 1) + K()[z(k) — HAX(n = 1)].

4. For updated estimations, compute the posterior co-
variance matrix of errors:

P(n)=[1 — K(n)H]P(n).

5. Determine the a priori covariance matrix of estimate
errors (for the subsequent state vector estimation):

P(n+1)=AP(n)AT .

then proceed to step 2 (the filter equations subsequent
calculation).
The authors of [9] introduced KalmanNet, a hybrid

system that combines the traditional model-based ex-
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tended Kalman filter with deep learning techniques. Their
method learns to overcome model mismatches and non-
linearities while enabling real-time state estimation in the
same way as model-based Kalman filtering.

The drawbacks of low filtering accuracy and the di-
vergence of conventional nonlinear algorithms in situa-
tions when the system noise is unknown can be success-
fully addressed by the suggested technique in [10]. Addi-
tionally, the filter’s stability and flexibility are enhanced
by the suggested algorithm.

The uncertainty of a financial loss that insurers assess
using statistical and mathematical techniques is known as
actuarial risk. Actuaries assist insurance firms in correctly
setting premiums and reserves by analyzing previous data
to estimate future risks. Policyholder protection and fi-
nancial stability are guaranteed by this delicate balance.

With Generalized Linear Models (GLM), assumptions
on the characteristics of the insurance data and how they
relate to the anticipated variables can be made explicitly.
Moreover, GLM offer statistical diagnostics that support
the process of identifying just important variables and
validating model hypotheses. This methodology is com-
monly acknowledged as a conventional approach to in-
surance pricing across many markets and nations.

As a particular instance among the many models that
make up the GLM, there is the linear and nonlinear re-
gression model. Rejecting assumptions for the latter in-
clude additive nature of effects, constant variance, and a
normal distribution. One possible source for the target
variable is an exponential family of distributions [11].

The general form of the exponential family of distri-
butions is as follows:

um&@=wmﬁ§ﬂﬂ

@ +C(Y, 0} -

Both the variance and the distribution mean may fluc-
tuate. It is expected that explanatory variables have an
additive effect on a different scale. For GLM, the follow-
ing presumptions are made:

1. Stochastic component: every element that makes up
y is independent and comes from the same exponential
family distribution.

2. Systematic component: the linear predictor n is

formed of p covariates, or explanatory variables:

n=Xp.

3. Link function: a differentiable, monotonic link
function establishes the linkage between the random and
systematic components.

E[yl=p=9""(n).

Forward stepwise regression produced very good re-
sults for the identification of risk variables in [12]. When
the technique for selecting risk factors was not used prior
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to inclusion in GLM, it has discovered a number of risk
variables for both the frequency and severity of claims,
improving the predictive performance of the GLM in
comparison to the traditional approach.

It was discovered in [13] that iterative algorithm for
generalized linear models with credibility (GLMC) works
best when combined with exhaustive variable selection
techniques. Its computational efficiency and simplicity
enable a rapid estimation of model parameters.

The estimate of GLM parameters is a major issue that
has to be given enough consideration in the process of
model constructing. The following methods were used
successfully to evaluate the parameters: Markov chain
Monte Carlo method (MCMC), Adaptive moment estima-
tion (Adam) optimization algorithm, and Weighted least
squares iterative-recursive approach (IRWLS).

These algorithms are fully described in the following
works [14—16].

4 EXPERIMENTS

Since insurance data is not always accessible to the
general public, it was chosen to create target variables and
insurance indicators at random using simulation approach.
The data structure consists of the next features:

— Age is a numerical variable, which was generated in
range from 18 to 64;

— Sex is a categorical string variable;

— Body mass index is numerical variable, which was
generated by using normal distribution;

— Number of children is a numerical variable, which
was generated in range from 0 to 5;

— Smoker is a categorical string variable;

— Region is a categorical string variable, which was
generated from sample: “east”, “south”, “west”, “center”,
“north”;

— Charges is a numerical variable.

The target is the final variable, and the distribution
laws and matching link functions listed below were ap-
plied to it:

— a normal distribution with a logarithmic link func-
tion and a known variance G ;

— an exponential distribution using the link function of
identity;

— Pareto distribution with a link function of the fol-
lowing type f(X)=-1-Xx and a given scale parameter,

Xm -

The predicted variable was supplemented with Gaus-
sian noise with varying variance, which is a linear func-
tion.

5 RESULTS
After applying Kalman filter original insurance
charges were compared with original values.
Results of applying Kalman filter on charges for dif-
ferent distributions is shown on Figures 1, 2, 3.
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Figure 1 — Results of applying Kalman filter on charges with
exponential distribution using the link function of identity

Kalman filter estimate for pareto distribution

Figure 2 — Results of applying Kalman filter on charges with
Pareto distribution with a link function of the negative linear
function and a given scale parameter, Xy,

Kalman filter estimate for normal distribution
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Figure 3 — Results of applying Kalman filter on charges with
a normal distribution with a logarithmic link function and a
known standard devaition &

The models’ quality was assessed by using next fore-
casting metrics: Mean squared error (MSE), Root mean
squared error (RMSE) and mean absolute error (MAE).

Tables 1-6 exhibit the findings of the estimate of
GLM parameters using the three approaches (IRWSL,
ADAM and MCMC) with and without the Kalman filter
for three proposed distribution laws with specialized link
functions.

Table 1 — Results of GLM construction for charges with Gaus-
sian distribution with known variance and a logarithmic link
function without Kalman filter

Metric | MCMC | ADAM | IRWLS
MSE 4408.68 | 684.63 | 2457.11
RMSE | 64.35 25.10 48.4
MAE 48.76 23.76 48.1
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Table 2 — Results of GLM construction for charges with Gaus-
sian distribution with known variance and a logarithmic link
function with Kalman filter
Metric | MCMC | ADAM | IRWLS
MSE 165.33 74.5 218.68
RMSE | 12.85 8.63 14.79
MAE 3.957 5.65 11.77

Table 3 — Results of GLM construction for charges with Pareto
distribution with known scale parameter and a negative linear
link function without Kalman filter

Metric | MCMCr | ADAM IRWLS
MSE 52724.54 | 88185.03 | 6381154
RMSE | 228.51 286.65 797.61
MAE 153.03 205.31 771.25

Table 4 — Results of GLM construction for charges with Pareto
distribution with known scale parameter and a negative linear
link function with Kalman filter

Metric | MCMCr | ADAM IRWLS
MSE 7858.747 | 16808.82 | 22900.647
RMSE | 88.65 129.65 151.33
MAE 63.513 112.12 128.532

Table 5 — Results of GLM construction for charges with an ex-
ponential distribution and a an identity link function without
Kalman filter
Metric | MCMC | ADAM | IRWLS
MSE 211.38 147.9 288.51
RMSE | 1447 12.18 16.7
MAE 11.05 3.63 13.7

Table 6 — Results of GLM construction for charges with an ex-
ponential distribution and a an identity link function with
Kalman filter

Metric | MCMC | ADAM | IRWLS

MSE | 7821 | 54723 | 107478

RMSE | 8.84 7.397 10.367

MAE | 4.1 2.34 7.147
6 DISCUSSION

Uncertainties for statistical data are factors that have a
negative impact on the results of calculations performed at
all stages of the data processing process. In this work three
approaches were implemented for estimating parameters of
GLM with and without the preliminary use of the Kalman
filter. It is evident from the GLM building results for the
three scenarios mentioned that, for the most part, the Adam
technique produced quite decent outcomes. In the case of
the Pareto distribution, the MCMC approach also produced
positive outcomes. It can be seen that applying Kalman
filter for preliminary data processing and fitting model pro-
vides for better results of the quality metrics used.

CONCLUSIONS

The problem of minimizing influence of uncertainties
in the process of analysis of actuarial risks regarding fore-
casting charges is solved in this work.

The scientific novelty of obtained results shows that
combination of generalized linear models and optimal
Kalman filter can be used for building efficient and ade-
quate high quality forecasting models.

The practical significance of current work and its re-
sults is that future prospects for further research may in-
clude the use of this approach in other fields of insurance
related to analysis of actuarial risk.
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Prospects for further research are to study the other

approaches that can be used to reduce negative influence
of possible data and expert estimates uncertainties related
to the analysis of actuarial risks. A specialized decision
support system should be designed and implemented to
solve the problem.

ACKNOWLEDGEMENTS
The author of the presented research results wants to

appreciate his scientific advisor, Petro I. Bidyuk — Dr.
Tech. Sc., Professor at the Department of Mathematical
Methods of System Analysis, Institute for Applied Sys-
tems Analysis at the National Technical University of
Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv,
Ukraine.

10.

11.

12.

REFERENCES
Toma S. V. Chiritd M., Sarpe D. Risk and uncertainty, Procedia
Economics and Finance, Vol. 3, pp. 975-980. DOI:
https://doi.org/10.1016/S2212-5671(12)00260-2.
Meyer V. R. Measurement uncertainty, Journal of Chromatog-
raphy A, 2007, Vol. 1158, Ne 1-2, pp. 15-24. DOLI:
https://doi.org/10.1016/j.chroma.2007.02.082.
Laskey K. B., da Costa P. C. G., Tolk A., Jain L. C. (eds) Un-
certainty Representation and Reasoning in Complex Systems,
Complex Systems in Knowledge based Environments: Theory,
Models and Applications. New York. Springer, 2009, Ch. 2,
pp. 7-40. DOL: https://doi.org/10.1007/978-3-540-88075-2 2.
Dyer J. S., McDaniel R. R., Driebe D. J. 15 The Fundamental
Uncertainty of Business: Real Options, Uncertainty and Sur-
prise in Complex Systems: : questions on working with the un-
expected. Berlin, Springer-Verlag, 2005, pp. 153-164. DOL:
https://doi.org/10.1007/10948637 15.
Makridakis S., Bakas N. Forecasting and uncertainty: A survey,
Risk and Decision Analysis, 2016, Vol. 6, Ne 1, pp. 37-64. DOL:
http://dx.doi.org/10.3233/RDA-150114.
Buchanan M. Forecast: what physics, meteorology, and the
natural sciences can teach us about economics. USA, Blooms-
bury Publishing, 2013, 272 p.
Wu X., Kumar V., Ross Quinlan J. et al. Top 10 algorithms in
data mining, Knowledge and Information Systems, 2008,
Vol. 14, pp. 1-37. DOI: https://doi.org/10.1007/s10115-007-
0114-2.
Urrea C., Agramonte R. Kalman filter: historical overview and
review of its use in robotics 60 years after its creation, Journal
of Sensors, 2021, Vol. 2021, pp. 1-21. DOL
https://doi.org/10.1155/2021/9674015.
Revach G., Shlezinger N., Xiaoyong N. et al. KalmanNet: Neu-
ral network aided Kalman filtering for partially known dynam-
ics, IEEE Transactions on Signal Processing, 2022, Vol. 70, pp.
1532-1547. DOL: https://doi.org/10.48550/arXiv.2107.10043.
Xu D., Wang B., Zhang L. et al. A New Adaptive High-Degree
Unscented Kalman Filter with Unknown Process Noise, Elec-
tronics, 2022, Vol. 11, Ne 12, pp. 1863-1874. DOL
https://doi.org/10.3390/electronics11121863.
Anderson D., Feldblum S., Modlin C. et al. A practitioner’s
guide to generalized linear models, Casualty Actuarial Society
Discussion Paper Program, 2004, Vol. 11, Issue 3, pp. 1-116.
OmeraSevi¢ A., Selimovi¢ J. Risk factors selection with data
mining methods for insurance premium ratemaking, Zbornik
Radova Ekonomski Fakultet u Rijeka, 2020, Vol. 38, Ne 2,
pp. 667—-696. DOL: https://doi.org/10.18045/zbefri.2020.2.667.

. Campo B. D. C., Antonio K. Insurance pricing with hierarchi-

cally structured data an illustration with a workers’ compensa-
tion insurance portfolio, Scandinavian Actuarial Journal, 2023,
Vol. 2023, Issue 9, Pp- 853-884. DOLI:
https://doi.org/10.1080/03461238.2022.2161413.

OPEN a ACCESS




p-ISSN 1607-3274 PagioenexrpoHika, iHpopMaTuka, ynpasainss. 2024. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. Ne 2

14. McCullagh P., Nelder J. Generalized Linear Models. Second 16. Roy V. MCMC for GLMMs, 2022. [Electronic resource]. Ac-

edition. London, Chapman & Hall, 1989, 532 p. cess mode: https:/arxiv.org/pdf/2204.01866.pdf.

15. Akrout M., Tweed D. On a Conjecture Regarding the Adam Received 23.01.2024.
Optimizer, 2022. [Electronic resource]. Access mode: Accepted 20.04.2024.
https://arxiv.org/pdf/2111.08162.pdf.

V]IK 004.852

AHAJII3 HEBUSHAYEHOCTEM JAHUX Y MOJIEJTIOBAHHI TA IPOTHO3YBAHHI AKTYAPHUX ITPOIIECIB

IaniépaTos P. C. — acmipaHT IHCTHTYTY IPUKIaJAHOTO CHCTEMHOTr0 aHani3y HanionamsHOTO TeXHIiYHOrO yHiBepcuTeTy Ykpainu «Kuis-
ChKUil moJiTexHiuHMiA iHCTUTYT iMeHi Iropst Cikopeskoroy, Kuis, Ykpaina.

AHOTANIA

AKTyanbHicTh. PO3NIIHYTO 3amady aHai3y HEBHU3HA4YCHOCTEl NaHMX y MOJCIIOBaHHI Ta IPOTHO3YBAaHHI aKTyapHHX IPOLECIB.
O06’€eKTOM JOCII/DKEHHS € 3ajjada IPOTHO3YBAaHHS CTPAXOBUX BUILIAT HA OCHOBI JaHHX PO CTPAXOBUX KIII€HTIB 3 BPaXyBaHHIM MOMUIIUBUX
CHUTYyalliil HeBU3HAYEHOCTI.

MeTta po6oTH — po3po0OKa MiAX0/ay, IO T03BOJISE CIIPOTHO3YBATH MaiOYTHI CTPaXOBi BUILIATH 3 MOMEPEIHBOI0 MIHIMI3aI[IEF0 MOXKITHUBOT
HEBU3HAYCHOCT] CTATHCTUYHUX JAHUX.

MeTtoa. 3anpomnoHOBaHO METOJ, IO JO3BOJISE Pealli3yBaTH AITOPUTMH OLIHIOBAHHS MapaMeTpiB y3aralbHEHUX JHIHHUX MOJENeH 3
MOTIEPe/IHIM BUKOPHCTaHHAM oNnTUMajibHOro ¢ineTpy Kanmana. PesynbTaTé mpoIeMOHCTpyBanu OUIbLI SKICHI pe3ysbTaTd MPOTHO3Y Ta
OLIbII aleKBaTHI CTPYKTypu Mojeni. JaHuil minxin OyB ycCHIIIHO 3aCTOCOBaHMH Ha MpOLEAypi ITYYHO 3rEHEPOBAHUX CTPAXOBHX JAHHX.
JU1s TeHepyBaHHS CTPaXOBOTO HaOOpY JAaHMX KII€HTiB OyJI BUKOPHCTAaHI HACTYIHI OKA3HHUKH: BiK; CTaTh; iHIEKC MACH Tina (BUKOPHUCTBY-
FOYM HOPMAJIbHHI 3aKOH PO3MOiNY); KiTbKICTh aiTed (Big 0 10 5); cTatyc Kypiist; perioH (miBHIY, CXif, TBACHb, 3aXi, HEHTp); BUILIaTH. J{s
CTBOPEHHS OCTaHHBOI BEJIMYMHU BHKOPHUCTOBYBABCS HOPMAJbHUN PO3IOJLI 3 BIZIOMOKO JMCHEPCI€r0 1 JorapumMiuHO0 (QYHKIE 3B’S3KY,
eKCIIOHEHLIHHNI po3noain 3 ofuHUYHOI (yHKIi€0 3B’s13Ky Ta posnoxun Ilapero 3 BinoMuM napameTpoM MaciuTaOyBaHHS 1 Bill’€MHOIO
JHIHHOIO (YHKIIEI0 3B’ A3KY.

Pe3yabraTi. 3ampornoHOBaHUI MiAXiI peani3oBaHUil MPOrpaMHO Y BUIJIAAI CUCTeMH 0OpoOku iHpopMalii 1uis po3B’s3yBaHHS 3aaadi
IIPOTHO3YBaHHS CTPaXOBUX BUILIAT 32 CTPAXOBUMHM JaHHMH Ta 3 ypaxXyBaHHAM 3aIIyMICHOCTI JaHUX.

BucHOBKH. 3anporOHOBaHUH MiAXiA peani3oBaHUil IPOrpaMHO Ul MO0y TyBaHHS OLIBII aJeKBATHUX MOJeNeil Ta po3B’i3yBaHHS 3a1adi
TOYHOTO IPOTHO3YBAHHA CTPAXOBUX BHILIAT 33 CTPAXOBMMHU JAHHMH Ta BPaXyBaHHSAM 3alllyMIICHOCT] JaHHX. IlepcrieKTHBH MOAAbIINX JO-
CJII/UKEHh MOXKYTh BKIIFOYATH BUKOPHCTAHHS JIAHOT'O MiJXO/Y B HIIMX 00JacTsIX 3aCTOCYBaHHsI, LIO IOB’s3aHi 3 aKyTapHUM pu3ukoMm. Heob-
Xi1THO PO3pOOUTH CIIeliaNi3oBaHy IHTENEKTYallbHy CUCTEMY IIATPUMKU MPUHHATTS pillleHb ISl pO3B’sI3yBaHHS 3aJad 3 BUKOPUCTAHHIM
CTPaXOBHX JJAHHX PEAbHOTO CBIiTY B PEKHMi OHJIAMH, a TAKOXK Cy4acHHX iH(GOpMaNiifHUX TEXHOIOTIH Ta IHTEIEKTYalbHOTO aHaJli3y JaHUX.

KJIFOUYOBI CJIOBA: aktyapHuii pu3uK, y3araibHeHi JTiHIHHI Moaelni, onTuManbauil ¢ineTp Kanmana, ekcrioHeHIiHa MHOXHHA PO3-
MOJIUJTIB, MOZIEJTIOBaHHS, ITEpaTHBHO-PEKYPEHTHO 3Ba)KyBaHUI METOJ| HAliMEHIINX KBajapatiB, Meron Adam, metox Monre-Kapio mis map-
KiBCHKHX JIQHIIIOTIB.
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