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ìîæëèâ³ñòü çàñòîñóâàííÿ ïîáóäîâàíî¿ òåîð³¿ äëÿ ðîç-
ðàõóíê³â ñïåêòð³â ôåðîìàãí³òíèõ íàíîäðîò³â.

ÂÈÑÍÎÂÊÈ

Â ðîáîò³ áóëà ïðåäñòàâëåíà îðèã³íàëüíà ìîäèô³êî-
âàíà åë³ïòè÷íà ñèñòåìà êîîðäèíàò, ðîçãëÿíóòî ¿¿ îñ-
íîâí³ âëàñòèâîñò³, çíàéäåíî ìàñøòàáí³ ìíîæíèêè
Ëàìå, ïîáóäîâàíî êîîðäèíàòí³ ïîâåðõí³, çàïèñàíî âè-
ðàçè äëÿ äèôåðåíö³àëüíèõ îïåðàòîð³â ãðàä³åíòà, ðî-
òîðà, äèâåðãåíö³¿ òà îïåðàòîðà Ëàïëàñà. Çàïðîïî-
íîâàíî âèêîðèñòîâóâàòè ìîäèô³êîâàíó åë³ïòè÷íó ñèñ-
òåìó êîîðäèíàò ïðè ðîçâ’ÿçàíí³ çàäà÷ ìàòåìàòè÷íî¿
ô³çèêè â ñèñòåìàõ ç ãåîìåòð³ºþ åë³ïòè÷íîãî öèë³íäðà
³ íàâåäåíî ïðèêëàäè óñï³øíîãî çàñòîñóâàííÿ.
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Ïðåäñòàâëåíà îðèãèíàëüíàÿ ìîäèôèöèðîâàííàÿ ýë-
ëèïòè÷åñêàÿ ñèñòåìà êîîðäèíàò, ðàññìîòðåíû åå ñâîé-
ñòâà, ïðèâåäåíû ïîëåçíûå ñîîòíîøåíèÿ. Ïðåäëîæåíî
èñïîëüçîâàòü ýòó ñèñòåìó êîîðäèíàò ïðè ðàññìîòðåíèè
çàäà÷ ìàòåìàòè÷åñêîé ôèçèêè ñ ñèììåòðèåé ýëëèïòè-
÷åñêîãî öèëèíäðà, â ÷àñòíîñòè, çàäà÷ ïðî íàõîæäåíèå
ñîáñòâåííûõ âîëí è êîëåáàíèé â âîëíîâîäàõ è ðåçîíàòî-
ðàõ ýëëèïòè÷åñêîãî ñå÷åíèÿ, ïðîäåìîíñòðèðîâàíû ïðèìå-
ðû åå ïðèìåíåíèÿ.

The original modified elliptical coordinate system is
submitted, its properties are considered, useful relation-
ships are given. It was suggested to use this coordinate
system for  mathematical physics problems with the sym-
metry of the elliptical cylinder, in particular for eigen-
waves and eigen oscillations problems in waveguides and
of elliptic cross-section resonators, the examples of applica-
tion were demonstrated.
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FEATURE OF MAGIC METAL NANOCLUSTERS IN MOLECULAR 
TRANSISTOR

Effects of the charging and single-electron tunneling in
a cluster structure are investigated theoretically. In the
framework of the particle-in-a-box model for the spherical
and disk-shaped gold clusters, the electron spectrum and
the temperature dependence of the electron chemical poten-
tial are calculated. Difference between the chemical poten-
tials of massive electrodes and island’s one leads to its
charging. We show that the effective residual charge is
equal to the non-integer value of elementary charge e and
depends on the cluster's shape. The equations for the anal-
ysis of the current-voltage characteristic are used under
restrictions associated with the Coulomb instability of a
cluster. For single-electron molecular transistors the non-
monotonic size dependences of current gap and its voltage

asymmetry are computed. We suggest that an overheating
of electron subsystem leads to the disappearance of a cur-
rent gap and gradual smoothing of current-voltage curves
that is observed experimentally.

1 INTRODUCTION

The nanodispersed systems are prospective object of
nanotechnology [1, 2, 3, 4, 5, 6]. Transport of electri-
cal charge across a nanoscale tunnel junction is accom-
panied by many effects, such as the Coulomb blockade
of the average current, transfer of energy between elec-
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trons and ions, and consequent heating of the junction
[7, 8, 9]. In nanometer scale devices, electron trans-
port can occur through well-resolved quantum states
(e. g. single-electron transistor based on CdSe quantum
rods [10]). If the temperature is increased, the Cou-
lomb and quantum staircases of current are gradually
smeared out by thermal fluctuations.

The tunneling current flowing through two massive
electrodes can be controlled, if a cluster is placed be-
tween them. At first sight, the probability of electron
tunneling (and consequently a value of the current)
should be much greater in the presence of a granule
between the reservoirs, than in the case of its absence.
However, an opposite behavior (see inset in Fig. 2(a)
of Ref. [11]) was observer in experiments for the
spherical-like [11, 12, 13] and disk-shaped [14, 15]
small clusters. Measured I–V characteristics have a
plateau of the zero current (a current gap). The metal-
dielectric transition for gold cluster can appears [16].

Simple tunnel construction can be schematically rep-
resented by the distinctive “sandwich” [11, 12, 13, 14]
(see Fig. 1). It consists of a thick gold film (emitter)
covered by a dielectric one (with dielectric constant

). Disc-shaped [14] or spherical-like [13] gold
clusters are self-organized on the dielectric layer (on
the detecting and manipulating single molecules with
STM see in Ref. [17]). Also, a tip of STM is used in
the capacity of the third electrode (collector).

The experiments demonstrated the following features
of the I(V) behavior:

1. The gap width of the zero conductance is approx-
imately proportional to the inverse radius of the
spheres (Figs. 1(c) and 2(a) in Ref. [11]) and disks

(Fig. 4 in Ref. [14]). This does not allow one to es-
tablish unequivocally classical or quantum origin of
the gap. On the other hand, out of the current gap,
the steps of the staircase are clearly visible (Fig. 3 in
Ref. [14] and Fig. 1(b) in Ref. [15]).

2. For a disk, the gap width varies non-monotoni-
cally with alteration of the collector-cluster distance
under the fixed emitter-cluster one (Fig. 3 in Ref.
[15]).

3. The observed current gap decreases significantly
as temperature increases from 5 K to 300 K in struc-
ture based on disk-shaped cluster of A (Fig. 2
in Ref. [14]).

Some of the experimental features of the I–V curves
were investigated in Ref. [18], however, the fact of
smoothing of staircases for granule-molecule at low
temperatures is still not understood. Such a smoothing
is typical for molecular transistors [19].

Using the measured I(V) dependence, the capaci-
tances and resistances of the tunnel junctions and the
“residual” (fractional) charge Q0 of a grain were fitted
in Ref. [12] according to the circuit approach proposed
in “orthodox” theory [1]. We propose another way: to
use the self-capacitance and to fit the temperature of
granule.

The aim of this work is the computation of the cur-
rent-voltage characteristic of the molecular transistor
based on metal clusters. For this purpose, we use some
results of physics for charged metal clusters [20]. The
temperature features of the I–V curves are explained
by overheating of electron subsystem.

The structure of a granule (or cluster) changes as
more and more atoms condense together. A fundamental

(a) (b)

Figure 1: 

(a) The energy diagram at T = 0 for the structure Au/Au40/Au before application of voltage. 
In experiments [11, 12, 13, 14, 15] º1 = º, º2 = º3 =1; 

(b) The energy spectrum for spherical magic cluster Au196

º 3≈

2R 40≈
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characteristic of metal clusters, that researchers must
explain, is why certain sizes occur preferentially. The
elements of the periodic table have heightened stability
because those atoms possess a special number of elec-
trons (magic numbers). The tendency for clusters to
form in exactly magic sizes arises from the rules of
quantum mechanics, which dictate that bound electrons
can have only certain energies. So the existence of
magic numbers for metal clusters makes sense: they
correspond to the number of valence electrons which
completely fill one or more shells in a cluster and
make it especially stable, by analogy with filled proton
and neutron energy shells in atomic nuclei [21]. The
calculated magic numbers depend from the shape of
cluster (i. e. on the configuration of the ions).

2 FORMULATION OF THE PROBLEM

We consider spherical gold clusters whose radii vary
in the  range  ,  

 where N0 is the number of atoms, r0 is
the atom density parameter, (  for gold, a0

is the Bohr radius). Similarly for disks of monatomic
thickness: 

The characteristic Coulomb energy of charging is
 where C is self-capacitance of single gran-

ule in a vacuum (in the case of a disc, the capacitance
can be estimated as for the oblate spheroids of equal
volume [20]). The calculations of Ref. [18] demon-
strated that these C are too small for the width of the
current gap to be explained. The most obvious example
is the case of a disc, since almost half of the disc sur-
face contacts to the dielectric film. Therefore, for these
granules we change  Then, for discs
and spheres  we have  and

eV, respectively. We note that the value
of the capacitance is sensitive to the shape of the gran-
ule surface, and even small deviation from the spheri-
cal shape can change significantly the capacitance.
Temperature of structures (thermostat) is K.
This enhances the importance of quantum mechanical
effects.

Let’s determine the electron spectrum in spherical
and cylindrical wells (see Appendix A). The calcula-
tion of the electron spectrum in the cylindrical and
spherical wells of the mentioned sizes with finite deep-
ness yields different values for the spectrum discrete-
ness in magic clusters  (see Fig. 2). In
the nonmagic clusters the levels of lowest unoccupied
states coincide with those of highest occupied ones,

 at T = 0.
Thus, for the whole range of R in experiments [11,

12, 13, 14] we have to deal with a set of open 0D sys-
tems (quantum dots). The resulting inequality,

(1)

corresponds, apparently, to two coexisting structures at

I–V curves: effects of the spectrum quantization and
the Coulomb blockade. However, detailed measure-
ments in Refs. [2, 11, 12, 13, 22] performed to date
do not yield an unequivocal conclusion about the ef-
fect of electron quantization levels upon the I(V). In
our opinion, the discreteness of the spectrum actually
determines the zero conductance gap of the I–V curves
observed in Refs. [11, 12, 13, 14, 15].

3 SEMICONDUCTOR-LIKE BEHAVIOR 
OF MAGIC METAL CLUSTER

The left and right electrodes (emitter and collector)
represent the electron reservoirs. Each reservoir is tak-
en to be in thermal equilibrium. A continuum of states
is assumed in reservoirs, occupied according to the Fer-
mi-Dirac distribution

(2)

where  is the electron chemical potential for a
semi-infinite metal,  W0 is the electron
work function ( eV for Au). In all cases en-
ergy  is counted off from the vacuum level,

 is the position of conductivity band of a semi-
infinite metal [20].

The electron chemical potential  of a granule in a
quantum case can be defined by the normalization con-
dition

(3)

2R 14 28,{ }A°≅ R N0
1 3⁄ r0 N0 ≅⇒=

100 600,{ },≅
r0 3.01a0=

2R 10 98,{ }A° N0 14 103,{ }.≅⇒≅

ẼC e2 C⁄=

C 1 º+( )C 2.⁄⇒
ẼC 1.60 0.21,{ }≅

1.82 1.06,{ }

T 30≅

Δεp εLU εHO–=

εLU εHO=

ẼC Δεp kBT,»≈

Figure 2 – Calculated specific difference between energies 

of lowest unoccupied electron state εLU and highest occu-

pied one εHO in neutral discs and spheres (inset)  

at T = 0
AuN0

f εe c, μ0
e c,–( ) 1 exp εe c, μ0

e c,–( ) kBT⁄[ ]+{ }
1–
,=

μ0 0<
μ0– W0,=

W0 5.13=

U0 ε 0< <
U0 0<

μg

f εp μg–( ) 1 exp εp μg–( ) kBT⁄[ ]+{ }
1–

p 1=

∞

∑≡
p 1=

∞
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where sum runs over all one-electron states, N0 is the
total number of thermalized electrons in a cluster,

 If the electron spectrum is known, from
Eq. (3) it is possible to calculate  of cluster 
(gold is univalent).

Fig. 3 depicts the chemical potential of some spheri-
cal clusters as a function of temperature. Predictably,
the dependence is slack and is completely determined
by the level hierarchy in dots, and also by the number
of electrons.

For the magic clusters as for an intrinsic semicon-
ductor, which has equal numbers of electrons in the
conduction band and holes in the valence band, the
chemical potential lie halfway between the lowest un-
occupied level εLU and highest occupied one εHO, re-
gardless of the temperature, because each electron
promoted to the lowest unoccupied level leaves a hole
in the highest occupied term. The Fermi level of non-
magic clusters coincides with a real level in a cluster.
Calculations show, that the temperature gradient of
chemical potential can be both the positive and the
negative, and at some temperatures it can change a
sign. Similar behavior  for magic clusters

 have been reported in Ref. [23].
A contact potential difference appears between a

cluster and electrodes is

(4)

An equilibrium is reached by the charging of a cluster
since it capacitance is finite. If  a cluster is
charged positively by a charge 
where N′ is determined by the solution of the Eq. (3)
with replacement  for the same spectrum {εp}
shifted on  according to the Koopmans’ theorem
[20]. Thus, in thermodynamic limit we have

(5)

The existence of  has to do with the transparency
of the tunnel barriers before application of voltage. A
quasi-classical approximation [24, 25] gives for a me-
tallic sphere of radius R:  
eV   In a quantum case, filling lev-
els by electrons we find a highest occupied state,

 and lowest unoccupied state,  counted
off from the vacuum level (Fig. 1). Then it is neces-
sary to make a replacement 

In accordance with our previous results [24],
 therefore the cluster is charged positively be-

fore the application of voltage. The size dependence of
a charge  for referred gold clusters is demon-
strated on Fig. 4. For the above mentioned sizes of
spherical clusters,  However,  can accept a
values larger then e for the disks of monatomic thick-
ness. Additional charging of the cluster can lead to the
Coulomb instability, because the quantity  is close
to a critical charge [20]. Moreover, cluster's anomalous
electrostriction is possible as a result of the charging
[26].

Otherwise, in the case  (e. g. Pb/ /
Pb) the cluster is charged negatively and it is neces-
sary to make a replacement  Residual effec-
tive charge is equal to non-integer elementary charge
e, which is analogous to the charge of cluster in
“chemisorption regime”.

The possibility of a fractional charge at tunneling
structures was discussed in Ref. [27]. Perhaps, this
problem is related to the fractional quantization (or
fractional statistics), when the decoupling of the spin
and the electron quantum numbers of a charge is im-
portant. In the percolation systems it is supposed that
the charge at the each granule has a soliton origin.
The value of this charge was calculated numerically in
Ref. [28].

We consider a central electrode-granule in an exter-
nal electric field. Between the emitter  and the

Figure 3 – Temperature dependence 
of chemical potentials of the neutral 

spherical gold non-magic (Au39) 
and magic (Au40, Au196) clusters
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Figure 4 – The calculated size dependence of the residual 
effective charge  (5) for the structure Au/ /Au 

based on the clusters of various shape: sphere 
(dotted line) and disk (solid line). For illustration, 

 of magic sphere Au912 is marked as ×
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collector the positive voltage V is applied. In a weak
electric field approach we assume, that the ionic sub-
system of a granule is not deformed, and the electronic
“cloud”, generated by the own valence electrons, is de-
formed only.

4 GRANULE UNDER VOLTAGE V

The total energy of a granule is the functional of
nonhomogeneous electron concentration,  The
functional contains a contribution responsible for the
interaction of electrons and ions with an external field,

(6)

For simplicity, we suppose that the charge distribution
 of the ion subsystem is spherically symmetric.

Let’s write down an electron distribution of a gran-
ule as

(7)

Here,  is the electron density of neutral cluster in
the absence of the external field,

 is the perturbation arising from the charging of
granule,

(8)

where  and  correspond to negatively and
positively charged granule, respectively 

 is the next perturbation arising from the exter-
nal field which responses for the polarization of a neu-
tral granule,

(9)

We assume, that functions  and  are spheri-
cally symmetrical, and  is axially symmetrical.
Then one can expand the  in the functional
Taylor series down to the second order of smallness
with respect to  and 

(10)

Here the functional derivatives are taken at 
 and indexes j and k runs 1 and 2 according

to the definition (7). The zeroth-order expression
 is a total energy of a cluster before the

charging  and in the absence of the external
field  The functional derivative

(11)

In the absence of charging and external field 
as 

Finally, in the semiclassical approximation (see Ap-
pendix B), we get

(12)

Solving separately the electrostatic problem for the
same structure with fraction of the voltage 
(Fig. 1), we obtain

(13)

Here,  for a sphere of radius R and a disk of
thickness H, respectively. We describe the situation for

  Under Eq. (13) one can find the

values  and  in experiments [11, 12,

13, 14, 15] for the spherical-like and disk-shaped clus-
ters, respectively.

Now we examine the problem of critical surplus
charges of a cluster in the presence of an external volt-
age. For convenience, further we write 

5 COULOMB INSTABILITY OF A CLUSTER 
IN ELECTRIC FIELD

It is necessary to note, that even the vanishing ex-
ternal electric field leads to the instability of a cluster
because of the possibility of electron tunneling. We as-
sume, that a cluster relaxed in a metastable state over
a period of time which is much smaller, than that be-
tween acts of tunneling. As a result of the charging,
the intrinsic mechanical stress leads to the Coulomb
explosion. This problem was described in Ref. [20] for
the solitary spherical cluster in absence of an external
electric field. Extending these results, one can write
the following expression

(14)

for the critical electronic or ionic charge in quasi-clas-
sical approximation. Here  is the size-dependent
electron (ion) chemical potential. For the range

 we have:
1)  Transitions of electrons between the emit-

ter and the cluster occur more often, than between the
cluster and the collector, therefore the electrons are ac-
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δn r( )
--------------δnj r( )d3r +∫

j
∑+=

1
4
--- δ2Ẽ
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cumulated on the cluster. In this case their maximal
number is

 

where  and   for
whole range of sizes {R}.

2)  Transitions of electrons between the cluster
and the collector occur more often, than between the
cluster and the emitter, therefore on the cluster the de-
ficiency of electrons is observed. Using the definition
of ion chemical potential (see Refs. [20, 25]), this
number determines as

and 

Similarly, for  we have:

1)   

2)  

Below, the whole numbers  and  bound the
summation in (26). The effect of spectrum quantization
can change these numbers no more than in  accord-
ing to (1) (see Ref. [20]).

Effective collision frequency of excited electrons in
a cluster is defined as [31]

 (15)

where τ is a relaxation time in the bulk of the metal,
caused by electron-electron collisions ( s
for Au at  [32]), and vF is the electron ve-
locity at the Fermi surface in the bulk. The estimation
performed in Ref. [33] gives a preferred electron colli-
sion on walls of a dot, therefore τε;  It leads to

  i. e. to a broadening of levels.
We assume that the electron thermalization occurs
much faster than acts of tunneling. “New” electrons
fill up a number of own electrons, changing their dis-
tribution and, accordingly, the chemical potential. This
state of the cluster will be a starting state for the next
act of tunneling.

6 BASIC ENERGY AND KINETIC 
RELATIONS

We assume, that the total energy of all three elec-
trodes  does not change during the tunneling. In the
case of transition of  electrons from the emitter to
the granule (containing n “surplus” electrons), using
Eq. (12) we have

(16)

In this expression we take into account that the 

electrons are ionized from the level  on the emitter
(whose capacitance is equal to infinity) and then fill
up the level εp in a granule with finite capacitance C.

By analogy with Ref. [34], using Eq. (12) and Eq.
(16) for  and then taking into account a con-
tact potential difference (4), for emitter-granule transi-
tion we have

(17)

where  The arrow on the top indicates the
energies which are determined by transfers according to
Fig. 1. We suppose, that  and  at

 However, the granule is charged by the charge
 before voltage applied. Therefore, we assume that

n is the result of the applied voltage only.

For granule-emitter transition we have

(18)

Similarly, for the granule-collector and collectorgranule
transitions we have

(19)

Here the upper/under arrows at the left correspond to
the following signs on the right. Independently of n
the relation

takes place. It agrees with well-known quasi-classical
relation for the ionization potential and electron affini-
ty,

(see, e. g. Ref. [20]). Thus, Eqs. (17)–(19) represent
a golden rule approximation.

The tunneling of a single electron through barriers
is determined by the tunnel rates  which depend
on the junction geometry and the voltage fraction η.
In general, their evaluation is far from a trivial prob-
lem [2, 27]. We assume that  are small and the
temperature is not too low, i. e. 
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By analogy with the theory of Ref. [29], we intro-
duce the partial tunneling streams from electrodes to a
granule

(20)

(21)

and from a granule to the electrodes

(22)

(23)

where the factor 2 takes into account the spin degener-
ation of levels in electrodes. In view of the applied
voltage (and charging of a granule) the spectrums (see
Eqs. (17)–(19)) and the chemical potentials are shift-
ed in distributions (2) and (3),

 

 

As the first approximation of the perturbation theory
[20], for small V,  is determined not only by the
formal shift of the well depth, but also by the number
of conduction electrons in the granule (

). The use of the chemical potentials
is correct in a quasi-equilibrium state, i. e. when the
intervals between acts of tunneling are much longer
than the relaxation time. It is also supposed, that the
external electric field and the Coulomb blockade do
not remove degeneration of levels.

Let’s denote the total electron streams from/to
leads into/out the cluster, as

 

In the limit of weak tunneling, the probability Pn

of the finding of n above mentioned electrons at cen-
tral electrode is defined by the master equation in the
stationary limit

(24)

The requirement of the stationarity gives the recurrent
relation

(25)

The dc current flowing through a metallic quantum
dot (with restriction on its instability (14)), is deter-
mined as

(26)

Let’s consider the case of “strong quantization” for
electron spectrum:

This regime is hypothetically reached by a significant
increase of the cluster capacitance (the cluster shape
must be changed to the needle-like or disk-like one un-
der the condition that its volume is fixed (see, e.g.
Ref. [20]). Thus the charge  in (5), which pro-
vides a contact potential difference, is proportional to
the capacitance and can have large magnitude. When
the voltage is applied, the charge, which is caused by
the transferring surplus electrons, is much less than

 Therefore it insignificantly have influence on the
cluster energetics. In reality, the inequality  is
not possible even for the long atomic chain [20]. Nev-
ertheless, this case is useful from the methodical point
of view to analyze the current gap of  characteris-
tics.

As an assumption, we use the fixed tunnel rates at
the Fermi level in the emitter. It is correct for the
small voltages,  Neglecting in (17)–(19)
terms  it is easy to obtain the result, similar to
Ref. [29]:

(27)

where 

The expressions in this section are written down for
 In the case  the I(V) can be easily re-

ceived, if we set  on a collector and  on
the emitter, and use 

In the general case, for calculation of  (26) it
is necessary to know probabilities Pn. Their statistical
determination is a complicated problem [35, 36]. In
the experiments, the size of the cluster and its location
are known only approximately, therefore detailed cal-
culations of Pn are not suitable. Using the recurrent
relations we can find the ratios 
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7 APPLICATION AND DISCUSSION

7.1 Thermal equilibrium

Setting the collector-granule distance dc, parameter
 and using the recurrent relation (25) for

Eq. (26), it is possible to calculate the reduced dc cur-
rent  We do not evaluate separately the
threshold voltages, in our scheme it appears automati-
cally.

The results of calculations of the  characteris-
tics for the structures Au/ /Au, based on spheri-

cal clusters, are presented in Fig. 5. For completeness
of analysis, the voltage behavior of the reduced proba-

bilities  and the difference of electron

streams  are given also.

The current jumps are stipulated by the jumps of
 and  because the current is formed by

their product. As one can surmise, the jump of proba-
bility  causes the current jump in the threshold
voltage 

Making use of the equality  in accord-

ance with Eq. (26) one can fix also the “threshold”
values of n. As is seen from Fig. 5 (b), the role of

partial current components  (with ) grow with
increasing N0. The charging leads to energy shift of

spectrum according to Eqs. (17)–(19). Thus the differ-
ent parts of a spectrum are involved during tunneling.

The current gap width  for all structures is de-
termined by values  The probability  pre-
vails over P+1, because the “granule-collector” electron
stream is more than a “emitter-granule” one and the
granule is charged positively (i. e. ). For low tem-
peratures ( ), the current gap width

 is determined analytically by the
conductance gap boundaries  and V0+. For exam-
ple, V0+ is defined from the condition of absence of

collector current of the direct  curve branch
( ), and finally we have:

(28)

where  at  Calculated values of
 are in a good agreement with the experimental

values based both on spherical and disc-shape clusters.
For large granules  as 

Within the applied voltage the  characteristics
versus  are shifted to the right and the gap width
decreases a little. The calculated  curves of the
structure Au/Au600/Au for fixed   and
different β are shown in Fig. 6. The current gap is
practically independent on β, however, the current
jumps are strongly dependent on the value of β,
which, in its turn, has no influence on threshold volt-
ages.

(a) (b)

Figure 5 – The current-voltage curves (solid lines) and its components, calculated from Eq. (26) 
(    K).  is given in  units:

(a) Au/Au40/Au; (b) Au/Au100/Au

β 1,= η+ 0.1,= T 30= Δωn V( ) Γe

β Γe Γc⁄=
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In order to illustrate our results, in Fig. 7, we com-
pare the size dependences  calculated from
Eqs. (26) and (27) for spheres and disks. The largest
quantities  correspond to the magic granules, for
which  For the case of “strong quantization” the
size of current gap for non-magic clusters is equal to
zero explicitly, because the emitter Fermi level is in
line to the closed levels in cluster. Calculations dem-
onstrate the non-monotonic dependence  These
results shows also, that a charging leads to the growth
of a gap.

The actual forms of dependence  for the

structure based on magic disk Au178 ( ) are

plotted in Fig. 8. In experiments [14, 15] the gap var-
ied as V for the cyclic variation of

. The reasons of such numerical dis-
tinction of our results, apparently consists in neglect-
ing the role of nonlinearities in the strong electric
field and in energy dependence of tunneling rates. At
high rates the capacitance ceases to be classical and

can strongly grow  [37, 38], showing non-mo-

notonic dependence from  It means, that in a reality
we deal with the intermediate cases (between limiting
estimations from Eqs. (26) and (27) in Fig. 8).

Let’s discuss other features of the tunnel structure.
In spite of the fact that the emitter and a collector are
made of one material, the chemical potentials of elec-
trons are not equal to each other: the emitter is repre-
sented by a thick film of Au (111), and a collector is
a polycrystal of Au. Their work functions are different
[39]. Except for it the emitter is covered with a die-
lectric film, that also influences a electron work func-
tion. We can estimate this contribution.

Proceeding from indirect measurements [40], the
work function decreases with growth dielectric con-
stant º of coating. The calculations of the electron
work function Wd for cylindrical nanowires in a die-
lectric confinement are done in Ref. [41]: Wd decreases
approximately on 20 % at magnitude as º rise from 1

to 4. The basic contribution thus can be related to the
change of electrostatic dipole barrier which contribu-
tion to a work function of system gold-vacuum makes
up to 30 % [39]. Hence, this contribution also makes a
upper limit of the change of Wd for metal-dielectric-
vacuum system. Owing to  the inequality

 is possible, that can lead to negative charging
of the cluster before the application of voltage.

7.2 A role of hot electrons

The consequence of the phonon spectrum deforma-
tion of granules is the weakening of the electron-pho-
non interaction within them:  where vF is
the electron velocity at the Fermi surface in the bulk,
and ωD is the Debye frequency. This interaction can be
so suppressed that the electron-electron interaction be-
comes the main mechanism for the dissipation of the
energy, which is injected to the particle. This addition-
al energy results in the overheating of the electron
subsystem, which is described by the Fermi statistics
with some effective (enhanced) temperature  and
the temperature of the ion subsystem only slightly
changes [42, 7, 8, 9]. With the increase of the bias
voltage V, the number of electrons, relaxing in the
granule, increases significantly.

Figure 7 – The current gaps vs N0 calculated from Eq. (26) (  and β = 10). 
Solid lines show the gaps calculated from Eq. (27) for the case of “strong quantization”. 

For presentation the gaps are placed on a vertical
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Among them are all the electrons with energies in
the interval  below the Fermi level of the granule
(  is the fraction of the bias voltage on the granule),
since the “flow” of tunneling electrons increases from
below lying levels, thereby, involving large num-ber of
conductivity electrons to the relaxation process. At the
same time, channels of losses appear, which are related
to the generation of holes on the occupied levels and
their subsequent recombination. The granule does not
fragmentize at the significant overheating of the electron
subsystem, because the  curves are reproduced at
the cyclic changes of the bias voltage [14, 13].

The estimate of the energy, which is pumped by the
conductivity electrons to the granules of discontinuous
films, is given in Ref. [7] ( eV). This means
that the experiments [14, 13] correspond to the Cou-
lomb blockade regime in the region of current gap at
the whole diapason of R and reasonable values of 
Also, the quantum ladder can be smeared out by the
thermal fluctuations,

where  is the difference between discrete levels in
the vicinity of the granule Fermi level, and 
for magic clusters at  (see Fig. 2). We represent
the emitter and the collector as the electron reservoirs
with continuum spectrums and temperatures  equal
to the thermostat one. The spectrum of states is calcu-
lated in advance and, therefore, the chemical poten-
tial of neutral  granules and its temperature de-
pendence can be found from equation (3) at a given
temperature 

For the comparison with the results of Refs. [14,
13], the calculations are done for three temperatures of
the collector and emitter  K, and
also  K. The values  and 

 are used for all cases.

Fig. 9 shows calculated  curves for disc of ra-
dius  (magic cluster Au230) and sphere of ra-
dius  (magic cluster Au256). The calculation
of the  curves and current gap can be done only
numerically at  when the larger part of the
spectrum, compared to  is responsible for the
charge transfer. Our calculations show an evident de-
pendence of  curves flatness on the electron sub-
system temperature.

However, it order to obtain an agreement with ob-
served  curves it is necessary to suggest that elec-
trons in the emitter and collector are also heated up to
some effective temperature, which is higher than the
thermostat one. It is possible, because electrons (the
current  pA is provided by  number of
electrons per second) relax in generally on the free
path length in the last electrodes.

For the illustration, we present our result at Fig. 9
for the sphere at  K and  K. Only
by such a way, we can explain the flattening of the

 curves for the metallic cluster structures at low
thermostat temperatures. With the increase of the bias
voltage, the current flow is accompanied by the in-
crease of the electron gas temperature.

8 SUMMARY

In the framework of the particle-in-a-box model for
the spherical and disk-shaped gold clusters, the elec-
tron spectrum was computed. In this model, the work
function of clusters is smaller that of semi-infinite gold
electrodes. It resulted in the appearance of a contact
potential difference between a cluster and electrodes.
Residual effective charge is equal to non-integer ele-
mentary charge e, which is analogous to the charge of
cluster in “chemisorption regime”. For the small
spherical clusters, positive charge is less than e. How-
ever, this charge can accept a values larger than e for
the disks of monatomic thickness. Additional charging
of the clusters can lead to the Coulomb instability,
because it is close to a critical charge. The charging
results in the energy shift of the spectrum.
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Ĩ V–
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Figure 9 – Calculated  curves of structure based 
on magic clusters: disc Au230 and sphere Au256 

1 – Au230: dotted curve –  K, 
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The current-voltage characteristics were analyzed
taking into account the contact potential difference.
For single-electron molecular transistors based on the
small gold clusters the current gap and its voltage
asymmetry were computed. The largest gaps correspond
to the magic granules. For the case of “strong quanti-
zation”, the size of a current gap for non-magic clus-
ters is equal to zero explicitly, because the emitter
Fermi level is in line to the closed levels in cluster.
We derive the simple expression for the size depend-
ence of the current gap width, which taking into ac-
count the Coulomb blockade and discreteness of the
energy levels. The results shows, that a charging leads
to the growth of a gap.

In conclusion, we have calculated the  charac-
teristics of structure based on magic clusters: disc
Au230 and sphere Au256. We have suggested that the
overheating of electron subsystem leads to the disap-
pearance of current gap and significant flattening of
current-voltage curves. Our results are in a good quali-
tative agreement with experiment of Ref. [14, 13].

APPENDIX A.
ELECTRON SPECTRUM IN CYLINDRICAL-
LIKE CLUSTERS

As an approximation, the profile of the one-elec-
tron effective potential in the cluster can be represent-
ed as a potential well of the depth  The three-
dimensional Schrödinger equation for a quantum box
can be separated to the one-dimensional equations. The
spectrum of wave numbers in a spherical and cylindri-
cal potential wells are determined from the continuity
condition of a logarithmic derivative of the wave func-
tion on the boundaries. For a disk of radius R and
thickness H it is necessary to solve numerically the
equation:

(A.1)

Here Im is the Bessel function, Km is the McDonald

function, the stroke denotes a derivative over an argu-

ment,   h

and  is the electron mass. The  num-
ber the roots of the Eq. (29) for the fixed m =

Quantization of the wave vector ks along the cylin-

der axis is determined by the solution of the equation:

where s is the integer number. Neglecting the area near
cylinder edges, the energy spectrum is calculated by a
simple way as follows

In addition to the spin degeneration, there is a double
degeneration with respect to the sign of index m, since

 Further, the spectrum of cluster is denot-
ed as εp,  is the number of one-electron
state. All levels are numbered in order to increase en-
ergies.

APPENDIX B.
ENERGY OF CLUSTER IN EXTERNAL 
ELECTRICAL FIELD

Using spherical coordinates, we remove the center
point  from emitter in a center of a granule, and
we direct a z axis from a collector to the emitter un-
der the conservation of the potential difference be-
tween them. Then an electric field  where z
is a unit vector along an z axis.

As the surplus charge is effectively distributed over
a surface, it is quite reasonable for estimation to use
the form

(B.1)

Using condition (8), we obtain the following expres-
sion for surface concentration

where  and  is the small parame-
ter.

Then, we use the linear response approach (see,
e. g. Ref. [30])

(B.2)

The spherically symmetric function Y(r) in (31) are
determined from the normalization condition (9) and a
global minimum of the functional, 

One of the terms, interesting for us, is

where  is an external electrostatic potential. In the
case of  and vacuum collector-emitter space

 where  Af-
ter the integration in spherical coordinates, the term,
which is proportional to z, vanishes, and, as a result,
we have  η is a fraction of a voltage.
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Other three terms

(B.3)

give a basic contribution to the second order of expan-
sion (10). The first integral in Eq. (32) for the func-
tions (30) and (31) vanishes after the integration on
corners and second one equals

The third integral was calculated earlier for de-
f in i t i on o f  the polarizability of a cluster α =

 [30]. Finally, using

 we obtain Eq. (12).
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Òåîðåòè÷åñêè èññëåäîâàíû ýôôåêòû çàðÿäêè è îäíî-
ýëåêòðîííîãî òóííåëèðîâàíèÿ â ñòðóêòóðå íà êëàñòåðå.
Â ðàìêàõ ìîäåëè áåñêîíå÷íîé ïîòåíöèàëüíîé ÿìû äëÿ
ñôåðè÷åñêèõ è äèñêîîáðàçíûõ çîëîòûõ êëàñòåðîâ âû-
÷èñëåíû ýëåêòðîííûé ñïåêòð è òåìïåðàòóðíàÿ çàâè-
ñèìîñòü õèìè÷åñêîãî ïîòåíöèàëà. Ðàçíèöà ìåæäó õèìè-
÷åñêèìè ïîòåíöèàëàìè ìàññèâíûõ ýëåêòðîäîâ è îñòðîâ-
êîâ ïðèâîäèò ê çàðÿäêå ïîñëåäíèõ. Ìû ïîêàçûâàåì, ÷òî
ýôôåêòèâíûé îñòàòî÷íûé çàðÿä íå ðàâåí öåëîìó çíà-

÷åíèþ çàðÿäà ýëåêòðîíà e è çàâèñèò îò ôîðìû êëàñ-
òåðà. Óðàâíåíèÿ äëÿ àíàëèçà âîëüò-àìïåðíîé õàðàê-
òåðèñòèêè èñïîëüçóþòñÿ ñ ó÷åòîì îãðàíè÷åíèé, ñâÿ-
çàííûõ ñ êóëîíîâñêîé íåóñòîé÷èâîñòüþ êëàñòåðà. Äëÿ
îäíîýëåêòðîííûõ ìîëåêóëÿðíûõ òðàíçèñòîðîâ âû÷èñ-
ëåíû íåìîíîòîííûå ðàçìåðíûå çàâèñèìîñòè òîêîâîé
ùåëè è åå àñèììåòðèÿ ïî íàïðÿæåíèþ. Ìû ïðåäïîëà-
ãàåì, ÷òî ïåðåãðåâ ýëåêòðîííîé ïîäñèñòåìû ïðèâîäèò
ê èñ÷åçíîâåíèþ òîêîâîé ùåëè è ïîñòåïåííîìó ñãëàæèâà-
íèþ âîëüò-àìïåðíûõ õàðàêòåðèñòèê, ÷òî íàáëþäàåòñÿ
â ýêñïåðèìåíòàõ.

Òåîðåòè÷íî äîñë³äæåí³ åôåêòè çàðÿäêè é îäíîåëåê-
òðîííîãî òóíåëþâàííÿ â ñòðóêòóð³ íà êëàñòåð³. Ó ðàì-
êàõ ìîäåë³ íåñê³í÷åííî¿ ïîòåíö³éíî¿ ÿìè äëÿ ñôåðè÷íèõ
³ äèñêîîáðàçíèõ çîëîòèõ êëàñòåð³â îá÷èñëåí³ åëåêò-
ðîííèé ñïåêòð ³ òåìïåðàòóðíà çàëåæí³ñòü õ³ì³÷íîãî
ïîòåíö³àëó. Ð³çíèöÿ ì³æ õ³ì³÷íèìè ïîòåíö³àëàìè ìà-
ñèâíèõ åëåêòðîä³â ³ îñòð³âö³â ïðèâîäèòü äî çàðÿäêè
îñòàíí³õ. Ìè ïîêàçóºìî, ùî åôåêòèâíèé çàëèøêîâèé
çàðÿä íå äîð³âíþº ö³ëîìó çíà÷åííþ çàðÿäó åëåêòðîíà e
é çàëåæèòü â³ä ôîðìè êëàñòåðà. Ð³âíÿííÿ äëÿ àíàë³çó
âîëüò-àìïåðíî¿ õàðàêòåðèñòèêè âèêîðèñòîâóþòüñÿ ç óðà-
õóâàííÿì îáìåæåíü, ïîâ'ÿçàíèõ ç êóëîíîâñüêîþ íåñò³é-
ê³ñòþ êëàñòåðà. Äëÿ îäíîåëåêòðîííèõ ìîëåêóëÿðíèõ
òðàíçèñòîð³â îá÷èñëåí³ íåìîíîòîíí³ ðîçì³ðí³ çàëåæ-
íîñò³ ñòðóìîâî¿ ù³ëèíè ³ ¿¿ àñèìåòð³ÿ ïî íàïðóç³. Ìè
ïðèïóñêàºìî, ùî ïåðåãð³â åëåêòðîííî¿ ï³äñèñòåìè ïðè-
âîäèòü äî çíèêíåííÿ ñòðóìîâî¿ ù³ëèíè é ïîñòóïîâîãî
çãëàäæóâàííÿ âîëüò-àìïåðíèõ õàðàêòåðèñòèê, ùî ñïî-
ñòåð³ãàºòüñÿ â åêñïåðèìåíòàõ.
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Ðàññìàòðèâàåòñÿ ïîëó÷åííîå ðàíåå ðåøåíèå çàäà÷è
ðàññåÿíèÿ âîëí â H-ïëîñêîñòíîì 90°-èçëîìå ïðÿìîóãîëü-
íîãî âîëíîâîäà, íàãðóæåííîì äèýëåêòðèêîì. Èññëåäîâà-
íà áåñêîíå÷íàÿ ñèñòåìà ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâ-
íåíèé çàäà÷è. Óñòàíîâëåíà âîçìîæíîñòü åå ðåøåíèÿ ìå-
òîäîì óñå÷åíèÿ.

ÂÂÅÄÅÍÈÅ

Â ïîñëåäíèå ãîäû ìåòîä ïðîèçâåäåíèÿ îáëàñòåé
(ÏÎ) óñïåøíî èñïîëüçîâàëñÿ äëÿ àíàëèçà ðÿäà óñ-
òðîéñòâ âîëíîâîäíîé òåõíèêè. Óêàæåì â êà÷åñòâå
ïðèìåðà ðàáîòû [1–3], ãäå èññëåäîâàëèñü ñòðóêòóðû
ðàçëè÷íûå ïî ãåîìåòðèè è íàçíà÷åíèþ. Â ðàáîòå [4]
ìåòîä áûë ïðèìåíåí äëÿ ðåøåíèÿ çàäà÷è ðàññåÿíèÿ

âîëí â íàãðóæåííîì H-ïëîñêîñòíîì 90°-èçëîìå ïðÿ-
ìîóãîëüíîãî âîëíîâîäà. Áåñêîíå÷íàÿ ñèñòåìà ëèíåé-
íûõ àëãåáðàè÷åñêèõ  óðàâíåíèé (ÑËÀÓ) çàäà÷è ðå-
øàëàñü ÷èñëåííî ïóòåì åå çàìåíû êîíå÷íûì ÷èñëîì
óðàâíåíèé. Â íàñòîÿùåé ñòàòüå ïðèâîäèòñÿ ôîðìàëü-
íîå îáîñíîâàíèå ïðèìåíèìîñòè èñïîëüçîâàííîãî ìåòî-
äà óñå÷åíèÿ. Òàêîå îáîñíîâàíèå ïðåäñòàâëÿåòñÿ âàæ-
íûì, òàê êàê ñõîäíûå ìàòðè÷íûå îïåðàòîðû ïîÿâëÿ-
þòñÿ ïðè ïðèìåíåíèè ìåòîäà ÏÎ ê èññëåäîâàíèþ è
äðóãèõ óçëîâ, â êîòîðûõ ãðàíè÷íûå ïîâåðõíîñòè ïå-
ðåñåêàþòñÿ ïîä ïðÿìûì óãëîì (êàê, íàïðèìåð, â Ò-
ñîåäèíåíèÿõ è êðåñòîîáðàçíûõ ñîåäèíåíèÿõ ïðÿìî-
óãîëüíûõ âîëíîâîäîâ).
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