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MOKJIUBICTD 3acTOCyBaHHSA MoGygoBaHoi Teopii A1 po3-
PaxyHKiB CIIeKTpiB (hepOMarHiTHUX HAHOJAPOTIB.

BHCHOBKH

B pobori Gyna npexacraBieHa opurinajgbHa Moanudiko-
BaHa eJIiNTHYHA CHCTeMa KOOPAUHAT, PO3IJISAHYTO ii oc-
HOBHI BJIACTUBOCTi, 3Hal/eHO MaciITaOHi MHOXKHUKH
Jlame, 1OGy/I0BAaHO KOOP/MHATHI MOBEPXHi, 3alMCAHO BU-
pasu a8 gudepeHLialbHUX OIepaTopiB rpafgieHTa, po-
Topa, AWBepreHmii Ta omepartopa Jlammaca. 3ampoto-
HOBAHO BUKOPHMCTOBYBATH MOJAM(DIKOBaHY €JINTUYHY CHC-
TEeMy KOOPJIMHAT NPU PO3B’SI3aHHI 3ajla4 MATEeMaTUIHOL
¢isuKu B cucTEeMax 3 TeOMETPI€l0 eJINTUYHOrO IMJiHAPA
i HaBefleHO MPHUKJIAAN YCHINTHOTO 3aCTOCYBAHHS.
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IIpedcmasaena opuzunanvias mooupuyupoeannds 3.-
JUNMUYECKAs cucmemda KOOpOUHAm, PAcCMOMPeHvl ee CEO0li-
cmea, npueedenv. nosesuvie coomuowenus. Ipednoxeno
UCNONL306AMb MY CUCMEMY KOOPOUHAM NPU PACCMOMPEHUU
3adau mamemamuueckol Puauxu ¢ cummempuell dALUNMU-
4eCcK020 YUAUNOPA, 6 UACMHOCMU, 3A0dY NPO HAX0KOeHue
cO6CmBennbIX 0AN U KOACOANUL 6 601H0B00AX U PE3OHAMO-
Pax 3NAUNMUYECKO20 Ceuenus, NPOOeMOHCMPUPOSAHDL NpUMe-
poL ee npumerenus.

The original modified elliptical coordinate system is
submitted, its properties are considered, useful relation-
ships are given. It was suggested to use this coordinate
system for mathematical physics problems with the sym-
metry of the elliptical cylinder, in particular for eigen-
waves and eigen oscillations problems in waveguides and
of elliptic cross-section resonators, the examples of applica-
tion were demonstrated.

V. V. Pogosov, E. V. Vasyutin, A. V. Babich

FEATURE OF MAGIC METAL NANOCLUSTERS IN MOLECULAR
TRANSISTOR

Effects of the charging and single-electron tunneling in
a cluster structure are investigated theoretically. In the
framework of the particle-in-a-box model for the spherical
and disk-shaped gold clusters, the electron spectrum and
the temperature dependence of the electron chemical poten-
tial are calculated. Difference between the chemical poten-
tials of massive electrodes and island’s one leads to its
charging. We show that the effective residual charge is
equal to the non-integer value of elementary charge e and
depends on the cluster's shape. The equations for the anal-
ysis of the current-voltage characteristic are used under
restrictions associated with the Coulomb instability of a
cluster. For single-electron molecular transistors the non-
monotonic size dependences of current gap and its voltage
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asymmetry are computed. We suggest that an overheating
of electron subsystem leads to the disappearance of a cur-
rent gap and gradual smoothing of current-voltage curves
that is observed experimentally.

1 INTRODUCTION

The nanodispersed systems are prospective object of
nanotechnology [1, 2, 3, 4, 5, 6]. Transport of electri-
cal charge across a nanoscale tunnel junction is accom-
panied by many effects, such as the Coulomb blockade
of the average current, transfer of energy between elec-
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Figure 1:

(a) The energy diagram at T = 0 for the structure Au/Au,,/Au before application of voltage.
In experiments [11, 12, 13, 14, 15] ¢; = ¢, €, = €3 =1;
(b) The energy spectrum for spherical magic cluster Aujgg

trons and ions, and consequent heating of the junction
[7, 8, 9]. In nanometer scale devices, electron trans-
port can occur through well-resolved quantum states
(e. g. single-electron transistor based on CdSe quantum
rods [10]). If the temperature is increased, the Cou-
lomb and quantum staircases of current are gradually
smeared out by thermal fluctuations.

The tunneling current flowing through two massive
electrodes can be controlled, if a cluster is placed be-
tween them. At first sight, the probability of electron
tunneling (and consequently a value of the current)
should be much greater in the presence of a granule
between the reservoirs, than in the case of its absence.
However, an opposite behavior (see inset in Fig. 2(a)
of Ref. [11]) was observer in experiments for the
spherical-like [11, 12, 13] and disk-shaped [14, 15]
small clusters. Measured I—V characteristics have a
plateau of the zero current (a current gap). The metal-
dielectric transition for gold cluster can appears [16].

Simple tunnel construction can be schematically rep-
resented by the distinctive “sandwich” [11, 12, 13, 14]
(see Fig. 1). It consists of a thick gold film (emitter)
covered by a dielectric one (with dielectric constant
€ =3). Disc-shaped [14] or spherical-like [13] gold
clusters are self-organized on the dielectric layer (on
the detecting and manipulating single molecules with
STM see in Ref. [17]). Also, a tip of STM is used in
the capacity of the third electrode (collector).

The experiments demonstrated the following features
of the I(V) behavior:

1. The gap width of the zero conductance is approx-
imately proportional to the inverse radius of the
spheres (Figs. 1(c) and 2(a) in Ref. [11]) and disks

(Fig. 4 in Ref. [14]). This does not allow one to es-
tablish unequivocally classical or quantum origin of
the gap. On the other hand, out of the current gap,
the steps of the staircase are clearly visible (Fig. 3 in
Ref. [14] and Fig. 1(b) in Ref. [15]).

2. For a disk, the gap width varies non-monotoni-
cally with alteration of the collector-cluster distance
under the fixed emitter-cluster one (Fig. 3 in Ref.
[15]).

3. The observed current gap decreases significantly
as temperature increases from 5 K to 300 K in struc-
ture based on disk-shaped cluster of 2R =40 A (Fig. 2
in Ref. [14]).

Some of the experimental features of the I-V curves
were investigated in Ref. [18], however, the fact of
smoothing of staircases for granule-molecule at low
temperatures is still not understood. Such a smoothing
is typical for molecular transistors [19].

Using the measured I(V) dependence, the capaci-
tances and resistances of the tunnel junctions and the
“residual” (fractional) charge Q, of a grain were fitted
in Ref. [12] according to the circuit approach proposed
in “orthodox” theory [1]. We propose another way: to
use the self-capacitance and to fit the temperature of
granule.

The aim of this work is the computation of the cur-
rent-voltage characteristic of the molecular transistor
based on metal clusters. For this purpose, we use some
results of physics for charged metal clusters [20]. The
temperature features of the I—V curves are explained
by overheating of electron subsystem.

The structure of a granule (or cluster) changes as
more and more atoms condense together. A fundamental
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characteristic of metal clusters, that researchers must
explain, is why certain sizes occur preferentially. The
elements of the periodic table have heightened stability
because those atoms possess a special number of elec-
trons (magic numbers). The tendency for clusters to
form in exactly magic sizes arises from the rules of
quantum mechanics, which dictate that bound electrons
can have only certain energies. So the existence of
magic numbers for metal clusters makes sense: they
correspond to the number of valence electrons which
completely fill one or more shells in a cluster and
make it especially stable, by analogy with filled proton
and neutron energy shells in atomic nuclei [21]. The
calculated magic numbers depend from the shape of
cluster (i. e. on the configuration of the ions).

2 FORMULATION OF THE PROBLEM

We consider spherical gold clusters whose radii vary

in the range 2R={14,28}A, R = N, ’ry=N,=
={100,600}, where N, is the number of atoms, r, is
the atom density parameter, (r, = 3.01¢, for gold, «,
is the Bohr radius). Similarly for disks of monatomic
thickness: 2R = {10, 98}A= N,={14, 10°}.
_ The characteristic Coulomb energy of charging is
Ec = ¢°/C where C is self-capacitance of single gran-
ule in a vacuum (in the case of a disc, the capacitance
can be estimated as for the oblate spheroids of equal
volume [20]). The calculations of Ref. [18] demon-
strated that these C are too small for the width of the
current gap to be explained. The most obvious example
is the case of a disc, since almost half of the disc sur-
face contacts to the dielectric film. Therefore, for these
granules we change C = (1 +¢€)C/2. Then, for discs
and spheres we have E;={1.60,0.21} and
{1.82,1.06} eV, respectively. We note that the value
of the capacitance is sensitive to the shape of the gran-
ule surface, and even small deviation from the spheri-
cal shape can change significantly the capacitance.
Temperature of structures (thermostat) is T=30 K.
This enhances the importance of quantum mechanical
effects.

Let’s determine the electron spectrum in spherical
and cylindrical wells (see Appendix A). The calcula-
tion of the electron spectrum in the cylindrical and
spherical wells of the mentioned sizes with finite deep-
ness yields different values for the spectrum discrete-
ness in magic clusters Ae, = eV =" (see Fig. 2). In
the nonmagic clusters the levels of lowest unoccupied
states coincide with those of highest occupied ones,
eV =" at T=0.

Thus, for the whole range of R in experiments [11,
12, 13, 14] we have to deal with a set of open 0D sys-
tems (quantum dots). The resulting inequality,

Ec=Ag,»kgT, (1
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Figure 2 — Calculated specific difference between energies

of lowest unoccupied electron state €'V and highest occu-

HO

pied one €"C in neutral discs and spheres (inset) Auy,

at T=0

corresponds, apparently, to two coexisting structures at
I-V curves: effects of the spectrum quantization and
the Coulomb blockade. However, detailed measure-
ments in Refs. [2, 11, 12, 13, 22] performed to date
do not yield an unequivocal conclusion about the ef-
fect of electron quantization levels upon the I(V). In
our opinion, the discreteness of the spectrum actually
determines the zero conductance gap of the I-V curves
observed in Refs. [11, 12, 13, 14, 15].

3 SEMICONDUCTOR-LIKE BEHAVIOR
OF MAGIC METAL CLUSTER

The left and right electrodes (emitter and collector)
represent the electron reservoirs. Each reservoir is tak-
en to be in thermal equilibrium. A continuum of states
is assumed in reservoirs, occupied according to the Fer-
mi-Dirac distribution

fe" =G) = {1+ expl(e” =i ) /R T1}, (2)

where Py,<0 is the electron chemical potential for a
semi-infinite metal, -4, = W,, W, is the electron
work function (W, = 5.13 eV for Au). In all cases en-
ergy Uy<e<0 is counted off from the vacuum level,
U,<0 is the position of conductivity band of a semi-
infinite metal [20].

The electron chemical potential p? of a granule in a
quantum case can be defined by the normalization con-
dition

> f(e, =)= 3 {1+ expl(e,~u')/ksT1} = Ny, (3)
p=1 p=1
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Figure 3 — Temperature dependence
of chemical potentials of the neutral
spherical gold non-magic (Ausg)
and magic (Auyy, Auygg) clusters

where sum runs over all one-electron states, N is the
total number of thermalized electrons in a cluster,
W =p/(R). If the electron spectrum is known, from
Eq. (3) it is possible to calculate u’ of cluster Auy,
(gold is univalent).

Fig. 3 depicts the chemical potential of some spheri-
cal clusters as a function of temperature. Predictably,
the dependence is slack and is completely determined
by the level hierarchy in dots, and also by the number
of electrons.

For the magic clusters as for an intrinsic semicon-
ductor, which has equal numbers of electrons in the
conduction band and holes in the valence band, the
chemical potential lie halfway between the lowest un-
occupied level €Y and highest occupied one eM©, re-
gardless of the temperature, because each electron
promoted to the lowest unoccupied level leaves a hole
in the highest occupied term. The Fermi level of non-
magic clusters coincides with a real level in a cluster.
Calculations show, that the temperature gradient of
chemical potential can be both the positive and the
negative, and at some temperatures it can change a
sign. Similar behavior pu/(Ny, T) for magic clusters
Nay, have been reported in Ref. [23].

A contact potential difference appears between a
cluster and electrodes is

3¢ = (W —pg)/e. (4)

An equilibrium is reached by the charging of a cluster
since it capacitance is finite. If |p.g| <|Wg|, a cluster is
charged positively by a charge ngf = —e(N'=Ny) >0,
where N’ is determined by the solution of the Eq. (3)
with replacement pY — —W, for the same spectrum {e,}
shifted on —ed¢, according to the Koopmans’ theorem
[20]. Thus, in thermodynamic limit we have
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Figure 4 — The calculated size dependence of the residual
effective charge Qeff (5) for the structure Au/ Auy /Au
based on the clusters of various shape: sphere
(dotted line) and disk (solid line). For illustration,
ngf of magic sphere Aug;, is marked as X

The existence of ngf has to do with the transparency
of the tunnel barriers before application of voltage. A
quasi-classical approximation [24, 25] gives for a me-
tallic sphere of radius R: /-y, = /R, wy; = 1.9
eVxa,, ngf = 4+0.07e. In a quantum case, filling lev-
els by electrons we find a highest occupied state,
SHO<O, and lowest unoccupied state, 81‘U<0, counted
off from the vacuum level (Fig. 1). Then it is neces-
sary to make a replacement pu’ — e

In accordance with our previous results [24],
|p.g| <|uo|, therefore the cluster is charged positively be-
fore the application of voltage. The size dependence of
a charge ngf(NO) for referred gold clusters is demon-
strated on Fig. 4. For the above mentioned sizes of
spherical clusters, Q% <e. However, QY% can accept a
values larger then e for the disks of monatomic thick-
ness. Additional charging of the cluster can lead to the
Coulomb instability, because the quantity QY is close
to a critical charge [20]. Moreover, cluster's anomalous
electrostriction is possible as a result of the charging
[26].

Otherwise, in the case ‘p.g‘ > || (e. g. Pb/Auy /
Pb) the cluster is charged negatively and it is neces-
" Residual effec-
tive charge is equal to non-integer elementary charge
e, which is analogous to the charge of cluster in
“chemisorption regime”.

sary to make a replacement pu’ —e

The possibility of a fractional charge at tunneling
Perhaps, this
problem is related to the fractional quantization (or
fractional statistics), when the decoupling of the spin
and the electron quantum numbers of a charge is im-
portant. In the percolation systems it is supposed that
the charge at the each granule has a soliton origin.
The value of this charge was calculated numerically in
Ref. [28].

We consider a central electrode-granule in an exter-
nal electric field. Between the emitter (V =0) and the

structures was discussed in Ref. [27].
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collector the positive voltage V is applied. In a weak
electric field approach we assume, that the ionic sub-
system of a granule is not deformed, and the electronic
“cloud”, generated by the own valence electrons, is de-
formed only.

4 GRANULE UNDER VOLTAGE V

The total energy of a granule is the functional of
nonhomogeneous electron concentration, E[n(r)]. The
functional contains a contribution responsible for the
interaction of electrons and ions with an external field,

eI[n(r)—ni(r)](E~r)d37. (6)

For simplicity, we suppose that the charge distribution
n;(r) of the ion subsystem is spherically symmetric.
Let’s write down an electron distribution of a gran-
ule as
n(r) = ny(r) +3n(r) + dny(r). (7

Here, ny(7) is the electron density of neutral cluster in
the absence of the external field,

[nord’r = Ny,

on, is the perturbation arising from the charging of
granule,

I8n1(r)d3r = AN, €))

where AN >0 and AN <0 correspond to negatively and
positively charged granule, respectively (JAN| = Ny).
dn,(r) is the next perturbation arising from the exter-
nal field which responses for the polarization of a neu-
tral granule,

Iﬁnz(r)d?’r =0. 9

We assume, that functions ny(r) and n,(r) are spheri-
cally symmetrical, and n,(r) is axially symmetrical.
Then one can expand the E[n(r)] in the functional
Taylor series down to the second order of smallness
with respect to dn; and dn,,

OE

E[”(r)] = E[”o(l’)] +Z-[Sn(r)6nf(r)d3r+
i
! 3'E Ny
+Z%”W5jn(f)5nk(r Yd'rd’ v’ + ... (10)
i

Here the functional derivatives are taken at n(r) =
= ny(r), and indexes j and k runs 1 and 2 according
to the definition (7). The zeroth-order expression
E[ny(r)]=Eo is a total energy of a cluster before the

charging (AN =0) and in the absence of the external
field (E = 0). The functional derivative

SE/8n(r) = p’ +e(E - r). an

In the absence of charging and external field —u’ — W,
as R — oo,

Finally, in the semiclassical approximation (see Ap-
pendix B), we get

E = Eqo+WAN —eANNV +(AN)Ec/2 —0E*/2. (12)

Solving separately the electrostatic problem for the
same structure with fraction of the voltage nV >0
(Fig. 1), we obtain

d.+e/L/2
€,€3(d. + €4 €,) 1”|+- (13)

€€,d.+eesL +ey€3d,

Here, L =2R, H for a sphere of radius R and a disk of
thickness H, respectively. We describe the situation for

€, =€, €y = ¢5 = 1. Under Eq. (13) one can find the

values n+<0.65 and n+<0.55 in experiments [11, 12,
13, 14, 15] for the spherical-like and disk-shaped clus-
ters, respectively.

Now we examine the problem of critical surplus
charges of a cluster in the presence of an external volt-
age. For convenience, further we write n=AN.

5 COULOMB INSTABILITY OF A CLUSTER
IN ELECTRIC FIELD

It is necessary to note, that even the vanishing ex-
ternal electric field leads to the instability of a cluster
because of the possibility of electron tunneling. We as-
sume, that a cluster relaxed in a metastable state over
a period of time which is much smaller, than that be-
tween acts of tunneling. As a result of the charging,
the intrinsic mechanical stress leads to the Coulomb
explosion. This problem was described in Ref. [20] for
the solitary spherical cluster in absence of an external
electric field. Extending these results, one can write
the following expression

M (= Wion + leNVIR/ e + e/2} (14)

for the critical electronic or ionic charge in quasi-clas-
sical approximation. Here W%, is the size-dependent
electron (ion) chemical potential. For the range
V = (0,2 V) we have:

1) m = 1. Transitions of electrons between the emit-
ter and the cluster occur more often, than between the
cluster and the collector, therefore the electrons are ac-
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cumulated on the cluster. In this case their maximal
number is

Npaxs —WER/€+1/2,

max’

where p& = po+u,/R=p® and n
whole range of sizes {R}.

maxs $12.5,+6.5} for

2) m = 1. Transitions of electrons between the cluster
and the collector occur more often, than between the
cluster and the emitter, therefore on the cluster the de-
ficiency of electrons is observed. Using the definition
of ion chemical potential (see Refs. [20, 25]), this
number determines as

nmin = (M§o11_‘enV|)R/82—1/2

and n,;, ~{-4,-11}.
Similarly, for V = (=2,0 V) we have:

1) nmin; “?011R/62_1/2; {_387_106}

2) Ny = (—G +lenVR/e* +1/2; {+3,+8}.
Below, the whole numbers [n,,,] and [n,,;,] bound the
summation in (26). The effect of spectrum quantization
can change these numbers no more than in +1 accord-
ing to (1) (see Ref. [20]).

Effective collision frequency of excited electrons in
a cluster is defined as [31]

max

1
TE

NI T N . LT

mro\ 4

+

a |—
S

where 7T is a relaxation time in the bulk of the metal,
caused by electron-electron collisions (tx 10" = 6.23 s
for Au at T = 75 K [32]), and oy is the electron ve-
locity at the Fermi surface in the bulk. The estimation
performed in Ref. [33] gives a preferred electron colli-
sion on walls of a dot, therefore 1,; R/v,. It leads to
‘CEAEP/h; {0.52,0.17}, i. e. to a broadening of levels.
We assume that the electron thermalization occurs
much faster than acts of tunneling. “New” electrons
fill up a number of own electrons, changing their dis-
tribution and, accordingly, the chemical potential. This
state of the cluster will be a starting state for the next
act of tunneling.

6 BASIC ENERGY AND KINETIC
RELATIONS

We assume, that the total energy of all three elec-
trodes E does not change during the tunneling. In the
case of transition of 8N electrons from the emitter to
the granule (containing n “surplus” electrons), using
Eq. (12) we have

(=)’
2C
—edNN'V = 0. 16)

~ - . .
8E = —3Ne' +8Ne, + 54 [(n+3N)* —n’] -

In this expression we take into account that the ON
-
electrons are ionized from the level €° on the emitter

(whose capacitance is equal to infinity) and then fill
up the level g, in a granule with finite capacitance C.

By analogy with Ref. [34], using Eq. (12) and Eq.
(16) for 8N = 1, and then taking into account a con-
tact potential difference (4), for emitter-granule transi-
tion we have

-

e =e +Ec(n+1/2)—en’V, (17)

where €) =¢,—e8¢. The arrow on the top indicates the
energies which are determined by transfers according to
Fig. 1. We suppose, that n=n(V) and n = 0 at
V = 0. However, the granule is charged by the charge
ngf before voltage applied. Therefore, we assume that
n is the result of the applied voltage only.

For granule-emitter transition we have

9 ~
e =g, +Ec(n—1/2)—en’V. (18)

Similarly, for the granule-collector and collectorgranule
transitions we have

& =¢ +E-nF12)+ed-MV.
+Ec(nF12)+e(l-1") (19)

Here the upper /under arrows at the left correspond to
the following signs on the right. Independently of n
the relation

— —  —

86_8€=EC=E('_EC

takes place. It agrees with well-known quasi-classical
relation for the ionization potential and electron affini-
ty,

IP—EA = Ec

(see, e. g. Ref. [20]). Thus, Egs. (17)—(19) represent
a golden rule approximation.

The tunneling of a single electron through barriers
is determined by the tunnel rates T, which depend
on the junction geometry and the voltage fraction n.
In general, their evaluation is far from a trivial prob-
lem [2, 27]. We assume that T'®° are small and the
temperature is not too low, i.e. kT >h(I"+T°) =
= min{Ag,, Ec}.
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By analogy with the theory of Ref. [29], we intro-
duce the partial tunneling streams from electrodes to a
granule

—

o) =23 TE @ —pi)I - [ —uD)], (20)
P

—

o, =23 TENE -l - fE -], @D
P

and from a granule to the electrodes

—

0 =23 TEN - f& ~p)IfE —p),  (22)
P

0, =23 TE - & ~pDIfE ~pe),  (23)
P

where the factor 2 takes into account the spin degener-
ation of levels in electrodes. In view of the applied
voltage (and charging of a granule) the spectrums (see
Egs. (17)-(19)) and the chemical potentials are shift-
ed in distributions (2) and (3),

—

—Uy=Wi, us=pf—edp+ E-(nF1/2)—en'V,

Ue = —edo+ Ec(nt1/2) —e(1—=n")V,
uy = pg—eV.

As the first approximation of the perturbation theory
[20], for small V, p® is determined not only by the
formal shift of the well depth, but also by the number
of conduction electrons in the granule (N = Nj+n,,
ng=n+ [ngf]/e). The use of the chemical potentials
is correct in a quasi-equilibrium state, i. e. when the
intervals between acts of tunneling are much longer
than the relaxation time. It is also supposed, that the
external electric field and the Coulomb blockade do
not remove degeneration of levels.

Let’s denote the total electron streams from /to
leads into/out the cluster, as

_— — —

in _ _,.C C out __ ,.e C
0, =0, +0,, ©®, =0, + ,.

In the limit of weak tunneling, the probability P,
of the finding of n above mentioned electrons at cen-
tral electrode is defined by the master equation in the
stationary limit

S out in
Pn - wn+1pn+1+wn—1pn—1_

—(0"+oP, = 0. (24)

The requirement of the stationarity gives the recurrent
relation
(Din
P,., = P,—. (25)

n_ out
n+1

The dc current flowing through a metallic quantum
dot (with restriction on its instability (14)), is deter-
mined as

yax >0 — — Nyax >0 —_—  —
_ e cy _ C C 26
I=-e E P (o) — ) =-e¢ E Po - ). (26)
Npin <O Npin <O
Let’s consider the case of “strong quantization” for
electron spectrum:

Aep »Ec.

This regime is hypothetically reached by a significant
increase of the cluster capacitance (the cluster shape
must be changed to the needle-like or disk-like one un-
der the condition that its volume is fixed (see, e.g.
Ref. [20]). Thus the charge QY% in (5), which pro-
vides a contact potential difference, is proportional to
the capacitance and can have large magnitude. When
the voltage is applied, the charge, which is caused by
the transferring surplus electrons, is much less than
QY. Therefore it insignificantly have influence on the
cluster energetics. In reality, the inequality Ae,» Ec is
not possible even for the long atomic chain [20]. Nev-
ertheless, this case is useful from the methodical point
of view to analyze the current gap of I —V characteris-
tics.

As an assumption, we use the fixed tunnel rates at
the Fermi level in the emitter. It is correct for the
small voltages, eV = W,. Neglecting in (17)-(19)
terms ~Ec, it is easy to obtain the result, similar to
Ref. [29]:

I = 1o [f(e" —up) — (e =my)], (27)
P

where I, = 2eT°T“/(I'° + ).

The expressions in this section are written down for
V>0. In the case V<0, the I(V) can be easily re-
ceived, if we set V = 0 on a collector and V>0 on
the emitter, and use 1~ = 1-7".

In the general case, for calculation of I—V (26) it
is necessary to know probabilities P,. Their statistical
determination is a complicated problem [35, 36]. In
the experiments, the size of the cluster and its location
are known only approximately, therefore detailed cal-
culations of P, are not suitable. Using the recurrent
relations we can find the ratios P, .,/Py.
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20

0o 1
V(V)
(b)

2

Figure 5 — The current-voltage curves (solid lines) and its components, calculated from Eq. (26)
(B=1,1 =0.1, T =30 K). Aw, (V) is given in T units:
(a) Au/Auyy/Au; (b) Au/Auyyy/Au

7 APPLICATION AND DISCUSSION
7.1 Thermal equilibrium

Setting the collector-granule distance d,, parameter
B = T°/T° and using the recurrent relation (25) for
Eq. (26), it is possible to calculate the reduced dc cur-
rent I=1/(ePy,I'°). We do not evaluate separately the
threshold voltages, in our scheme it appears automati-
cally.

The results of calculations of the I —V characteris-
tics for the structures Au/AuNO/Au, based on spheri-

cal clusters, are presented in Fig. 5. For completeness
of analysis, the voltage behavior of the reduced proba-

bilities P,(V)=P,/P, and the difference of electron

streams A®, = @, — o, are given also.

_ The current jumps are stipulated by the jumps of
P,(V) and Aw,(V), because the current is formed by
their product. As one can surmise, the jump of proba-
bility P-1(V) causes the current jump in the threshold
voltage V..

Making use of the equality IEZHIH(V) in accord-
ance with Eq. (26) one can fix also the “threshold”
values of n. As is seen from Fig. 5 (b), the role of
partial current components I, (with |n|>1) grow with
increasing N,. The charging leads to energy shift of
spectrum according to Eqs. (17)—(19). Thus the differ-
ent parts of a spectrum are involved during tunneling.

The current gap width AV, for all structures is de-
termined by values n = 0,—1. The probability P_; pre-
vails over P,,, because the “granule-collector” electron
stream is more than a “emitter-granule” one and the
granule is charged positively (i. e. n<0). For low tem-
peratures (kgT% = Agp), the current gap width
AV, = Vo, +|V,_| is determined analytically by the
conductance gap boundaries V,_ and V.. For exam-
ple, Vi, is defined from the condition of absence of

8004 d =2A
p=0.11
400 - Iop=1
I~ - i AN
4007 | -
E..:
| |".=j
-8004/" Au/Au,, /Au
T T T T

Figure 6 — Calculated I =V curves at T = 30 K
for structure based on spherical clusters.
For presentation the curves are shifted slightly
on a vertical

collector current of the direct I—V curve branch
(V'>0), and finally we have:

AV, = ifEc+1A£ N , (28)
8 2e e 2_n+ 2-1"

where Ae=p®—¢"°>0 at T = 0. Calculated values of
AV, are in a good agreement with the experimental

values based both on spherical and disc-shape clusters.
For large granules AV,— 0 as R — co.

Within the applied voltage the 1-V characteristics
versus 1 are shifted to the right and the gap width
decreases a little. The calculated I -V curves of the
structure Au/Aug,,/Au for fixed n+ (d,=2 li) and
different B are shown in Fig. 6. The current gap is
practically independent on B, however, the current
jumps are strongly dependent on the value of j,
which, in its turn, has no influence on threshold volt-
ages.
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Figure 7 — The current gaps vs N, calculated from Eq. (26) (d, = 2 A and B=10).
Solid lines show the gaps calculated from Eq. (27) for the case of “strong quantization”.
For presentation the gaps are placed on a vertical

In order to illustrate our results, in Fig. 7, we com-
pare the size dependences AV (Ny) calculated from
Egs. (26) and (27) for spheres and disks. The largest
quantities AV, correspond to the magic granules, for
which Ae#0. For the case of “strong quantization” the
size of current gap for non-magic clusters is equal to
zero explicitly, because the emitter Fermi level is in
line to the closed levels in cluster. Calculations dem-
onstrate the non-monotonic dependence AV (Ny). These
results shows also, that a charging leads to the growth
of a gap.

The actual forms of dependence AV (d,) for the

structure based on magic disk Au,,q (R=35 A) are

plotted in Fig. 8. In experiments [14, 15] the gap var-
ied as 0.8 50.4—0.7V for the cyclic variation of

d,=1-52->1 A. The reasons of such numerical dis-
tinction of our results, apparently consists in neglect-
ing the role of nonlinearities in the strong electric
field and in energy dependence of tunneling rates. At
high rates the capacitance ceases to be classical and

can strongly grow (Ec— 0) [37, 38], showing non-mo-
notonic dependence from T'. It means, that in a reality

we deal with the intermediate cases (between limiting
estimations from Egs. (26) and (27) in Fig. 8).

Let’s discuss other features of the tunnel structure.
In spite of the fact that the emitter and a collector are
made of one material, the chemical potentials of elec-
trons are not equal to each other: the emitter is repre-
sented by a thick film of Au (111), and a collector is
a polycrystal of Au. Their work functions are different
[39]. Except for it the emitter is covered with a die-
lectric film, that also influences a electron work func-
tion. We can estimate this contribution.

Proceeding from indirect measurements [40], the
work function decreases with growth dielectric con-
stant € of coating. The calculations of the electron
work function Wy for cylindrical nanowires in a die-
lectric confinement are done in Ref. [41]: W, decreases
approximately on 20 % at magnitude as € rise from 1

1004

-0.3 0 03
(V)

Figure 8 — The current gap vs d, calculated
from Egqs. (26) and (27) for magic disk Au, g B = 10

to 4. The basic contribution thus can be related to the
change of electrostatic dipole barrier which contribu-
tion to a work function of system gold-vacuum makes
up to 30 % [39]. Hence, this contribution also makes a
upper limit of the change of W, for metal-dielectric-
vacuum system. Owing to Wy < W, the inequality
|p.g‘ > W, is possible, that can lead to negative charging
of the cluster before the application of voltage.

7.2 A role of hot electrons

The consequence of the phonon spectrum deforma-
tion of granules is the weakening of the electron-pho-
non interaction within them: vz/R » @p, where op is
the electron velocity at the Fermi surface in the bulk,
and wp, is the Debye frequency. This interaction can be
so suppressed that the electron-electron interaction be-
comes the main mechanism for the dissipation of the
energy, which is injected to the particle. This addition-
al energy results in the overheating of the electron
subsystem, which is described by the Fermi statistics
with some effective (enhanced) temperature T%;, and
the temperature of the ion subsystem only slightly
changes [42, 7, 8, 9]. With the increase of the bias
voltage V, the number of electrons, relaxing in the
granule, increases significantly.
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Among them are all the electrons with energies in
the interval enV below the Fermi level of the granule
(nV is the fraction of the bias voltage on the granule),
since the “flow” of tunneling electrons increases from
below lying levels, thereby, involving large num-ber of
conductivity electrons to the relaxation process. At the
same time, channels of losses appear, which are related
to the generation of holes on the occupied levels and
their subsequent recombination. The granule does not
fragmentize at the significant overheating of the electron
subsystem, because the I —V curves are reproduced at
the cyclic changes of the bias voltage [14, 13].

The estimate of the energy, which is pumped by the
conductivity electrons to the granules of discontinuous
films, is given in Ref. [7] (~0.2,0.3 ¢V). This means
that the experiments [14, 13] correspond to the Cou-
lomb blockade regime in the region of current gap at
the whole diapason of R and reasonable values of T%;.
Also, the quantum ladder can be smeared out by the
thermal fluctuations,

Ec>Aep> kT8,

where Agy is the difference between discrete levels in
the vicinity of the granule Fermi level, and Agp = Ag,
for magic clusters at T = 0 (see Fig. 2). We represent
the emitter and the collector as the electron reservoirs
with continuum spectrums and temperatures T°° equal
to the thermostat one. The spectrum of states is calcu-
lated in advance and, therefore, the chemical poten-
tial of neutral Auy —granules and its temperature de-
pendence can be found from equation (3) at a given
temperature T%;.

For the comparison with the results of Refs. [14,
13], the calculations are done for three temperatures of
the collector and emitter 7° = T° = 5, 30,300 K, and
also T%; = T°, 2000 K. The values T =T° = 1 and n =
= 1/2 are used for all cases.

Fig. 9 shows calculated I -V curves for disc of ra-
dius R = 20 A (magic cluster Auy,) and sphere of ra-
dius R = 10 A (magic cluster Auyss). The calculation
of the I—V curves and current gap can be done only
numerically at kyT%; > Aeg, when the larger part of the
spectrum, compared to Agg, is responsible for the
charge transfer. Our calculations show an evident de-
pendence of I—V curves flatness on the electron sub-
system temperature.

However, it order to obtain an agreement with ob-
served I —V curves it is necessary to suggest that elec-
trons in the emitter and collector are also heated up to
some effective temperature, which is higher than the
thermostat one. It is possible, because electrons (the
current I = 1 pA is provided by I/e~ 10° number of
electrons per second) relax in generally on the free
path length in the last electrodes.

200

100

-100

(IR o (N NN IS (NS NN SN Y GO A TN SN Tl TN (N SN (el |
-1.2 -0.6 0 0.6 1.2
V(V)

Figure 9 — Calculated 1-V curves of structure based
on magic clusters: disc Au,y, and sphere Au,s;

1 = Auyy,: dotted curve — T8 = 5K,
solid = T9¢ = 5 and T9“® = 300 K
2 — Auygy,: dotted curve — T8 = 300 K,
solid = T%° = 300 and T%; = 2000 K
3 = Alysg dotted curve — T7° = 30 K and T§ff = 2000 K,
solid = Tg = 300 and T%; = 2000 K

For the illustration, we present our result at Fig. 9
for the sphere at 7%° = 300 K and T%; = 2000 K. Only
by such a way, we can explain the flattening of the
I -V curves for the metallic cluster structures at low
thermostat temperatures. With the increase of the bias
voltage, the current flow is accompanied by the in-
crease of the electron gas temperature.

8 SUMMARY

In the framework of the particle-in-a-box model for
the spherical and disk-shaped gold clusters, the elec-
tron spectrum was computed. In this model, the work
function of clusters is smaller that of semi-infinite gold
electrodes. It resulted in the appearance of a contact
potential difference between a cluster and electrodes.
Residual effective charge is equal to non-integer ele-
mentary charge e, which is analogous to the charge of
cluster in “chemisorption regime”. For the small
spherical clusters, positive charge is less than e. How-
ever, this charge can accept a values larger than e for
the disks of monatomic thickness. Additional charging
of the clusters can lead to the Coulomb instability,
because it is close to a critical charge. The charging
results in the energy shift of the spectrum.
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The current-voltage characteristics were analyzed
taking into account the contact potential difference.
For single-electron molecular transistors based on the
small gold clusters the current gap and its voltage
asymmetry were computed. The largest gaps correspond
to the magic granules. For the case of “strong quanti-
zation”, the size of a current gap for non-magic clus-
ters is equal to zero explicitly, because the emitter
Fermi level is in line to the closed levels in cluster.
We derive the simple expression for the size depend-
ence of the current gap width, which taking into ac-
count the Coulomb blockade and discreteness of the
energy levels. The results shows, that a charging leads
to the growth of a gap.

In conclusion, we have calculated the I —V charac-
teristics of structure based on magic clusters: disc
Au,,, and sphere Au,s5s. We have suggested that the
overheating of electron subsystem leads to the disap-
pearance of current gap and significant flattening of
current-voltage curves. Our results are in a good quali-
tative agreement with experiment of Ref. [14, 13].

APPENDIX A.
ELECTRON SPECTRUM IN CYLINDRICAL-
LIKE CLUSTERS

As an approximation, the profile of the one-elec-
tron effective potential in the cluster can be represent-
ed as a potential well of the depth U,<0. The three-
dimensional Schrodinger equation for a quantum box
can be separated to the one-dimensional equations. The
spectrum of wave numbers in a spherical and cylindri-
cal potential wells are determined from the continuity
condition of a logarithmic derivative of the wave func-
tion on the boundaries. For a disk of radius R and
thickness H it is necessary to solve numerically the
equation:

Ir:z (knmR) _
"I (R R)

K;ﬂ (KI’lTNR)

k SR (Ko R)”

(A1)

nm nm

Here I,, is the Bessel function, K,, is the McDonald
function, the stroke denotes a derivative over an argu-

ment, R, = JRo =Ko Rum = ko =K, Tiko = 2m,[Uq|,
and m, is the electron mass. The n = 1,2, 3, ... num-
ber the roots of the Eq. (29) for the fixed m =
= 0,%1,£2, ...

Quantization of the wave vector k, along the cylin-
der axis is determined by the solution of the equation:

kH = sm—2arcsin(k,/ k),
where s is the integer number. Neglecting the area near

cylinder edges, the energy spectrum is calculated by a
simple way as follows

2
nm

2 -
Eune = Uo+ (el + ).

In addition to the spin degeneration, there is a double
degeneration with respect to the sign of index m, since
Rym =R

ed as €, P = 1,2,3... is the number of one-electron

Further, the spectrum of cluster is denot-

n,m n,—m:-

state. All levels are numbered in order to increase en-
ergies.

APPENDIX B.
ENERGY OF CLUSTER IN EXTERNAL
ELECTRICAL FIELD

Using spherical coordinates, we remove the center
point z = 0 from emitter in a center of a granule, and
we direct a z axis from a collector to the emitter un-
der the conservation of the potential difference be-
tween them. Then an electric field E = |E|z, where z
is a unit vector along an z axis.

As the surplus charge is effectively distributed over
a surface, it is quite reasonable for estimation to use

the form
0, 0<r<R-b,
dn((r) =<{n, R-b<r<R, (B.1)
0, R>0.

Using condition (8), we obtain the following expres-
sion for surface concentration

~ _ AN
= g2 g3y
Q(38-387+8)
where Q = 4nR’/3, and & = b/R is the small parame-
ter.

Then, we use the linear response approach (see,
e. g. Ref. [30])

dn,(7,0) = Y(r)|E|cos8. (B.2)
The spherically symmetric function Y(r) in (31) are
determined from the normalization condition (9) and a
global minimum of the functional, 8E[n(7)] — 0.

One of the terms, interesting for us, is

—eme(r)(p(z)dsr,

where ¢ is an external electrostatic potential. In the
case of V>0 and vacuum collector-emitter space
o(z) = V(z—d,—L/2)/d, where d =d,+L+d,. Af-
ter the integration in spherical coordinates, the term,
which is proportional to z, vanishes, and, as a result,
we have —eANNV, n is a fraction of a voltage.
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I8”1(I’)5”2(1") +3n,(r)0n, (1) + 01, (r)dn,(r")

Other three terms

rd’r .
(B.3)

’

r—r

give a basic contribution to the second order of expan-
sion (10). The first integral in Eq. (32) for the func-
tions (30) and (31) vanishes after the integration on
corners and second one equals

2Ec

aNyE(1+de+ 0@)).

The third integral was calculated earlier for de-

finition of the polarizability of a cluster o =

- —(4n/3)fY(r)r3drER§HzR3 [30]. Finally, using
0

& — 0, we obtain Eq. (12).
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Hapiitra 02.02.2009

Teopemuuecxku uccaredosanvt sppexmo. 3apadku u 00HO-
INEKMPONHOZO MYHHEIUPOBANUS 8 CIMPYKMYpPe Ha Kaacmepe.
B pamnxax modeau 6Geckoneunoii nomenuyudaionol amvl OJ4s
chepuneckux u OucK00OPAIHBLIX 30J0MBIX KAACMEPOE Bbi-
YUCNEHBL INEKMPOHHBII CREKMP U MeMNepamypnas 3a6u-
CUMOCTNL XUMUYECK020 nomenyudrd. Pasnuya mexdy xumu-
4eCKUMU NOMENUUANAMU MACCUGHBLX ILEKMPOI08 U OCMPOG-
K06 npugodum K 3apsioxe nociednux. Mol noxazvieaem, 4mo
apexmusnoviii ocmamounvili 3apsd ne pasen yeiomy 3ud-

YAK 537.874.6

Yenuto 3apada d31eKmpoHd e u 3deucum om Gopmuv. Kidc-
mepa. Ypasuenus 0as andaiusa 601bm-amnepuot xapax-
MEPUCNUKU UCNOLLIYIOMCA C YUemom 0zpaHuuenull, Ces-
3AHHBIX C KYJLOHOBCKOU Heycmouuugocmvio xiacmepd. /[is
00HOINEKMPOHHBIX MONCKYIAPHBIX MPAHIUCTNOPOE GbLUUC-
JeHbl HEeMOHOMONNbBLE PA3MepHble 3A6UCUMOCMU MOKOGOU
weau u ee acummempus no manpsxenuio. Mo npednona-
zaem, umo nepezpes 3NEKMPOHHOU NOOCUCMEMb. NPUSOOUM
K UCUE3NOBEHUIO MOKOBOU We/u U NOCMENEeHHOMY CZAAKUEI-
HUIO 60NLM-AMNEPHLIY XAPAKMEPUCTIUK, 4MO HAOAI00aemcs.
8 IKCNepuMeHmax.

Teopemuuno docaidxeni epexmu 3apsaoxu i odHnoenex-
MpPOHHO20 MYHENI08ANHS 6 CMPYKMYPL Ha Kiacmepi. Y pam-
Kax Moodeni HecKinuennoi nomenuyitinoi amu 0as chepuunux
i duckoobpasnux 3040Mux Kiacmepise obuucieni erexm-
POHHUL CneKmp 1 meMnepamypHa 3dleKHICMb XIMIUHOZ0
nomenuyiany. Piznuuys Mix XimMiynumu nomenuidiamu md-
cusnux eaexmpodie i ocmpicyie npusodumsv 00 3apAdKu
ocmannix. Mu nokazyemo, wo epexmueHuil 3AdLUWKOBUL
3apsd ne 00PIBHIOE YIAOMY 3HAUEHHIO 3APA0Y eleKmpoHd e
i 3anexumv 610 gopmu xaacmepa. Pienanns oas anairizy
601bM-AMNEPHOT XAPAKMEPUCTNUKU BUKOPUCNOBYIOMBCA 3 YPa-
Xyeanuam obmexenv, NO6'N3ANUX 3 KYJLOHOBCLKOIO HeCMill-
kicmio xaacmepd. /s 00HOENEKMPOHHUX MOAEKYIAPHUX
mpan3ucmopie o6uucieni HeMOHOMOHHI POIMIPHI 3dLeX-
HOCMI CmMpymo60i wiiunu i il acumempia no nanpysi. Mu
NPUNYCKAEMO, WO nepezpis eaekmponnoi nidcucmemu npu-
6800umMb 00 3HUKHEHHS CMPYMOGOT WiAuNU U NOCMYN0BOZO
3271A0KY6ANHA 60NbM-AMNEPHUX XAPAKMEPUCTMUK, U0 CNO-
cmepizaemocs 6 excnepumMenHmax.

A. B. YymadeHko, B. 1. YymaueHko

K OGOCHOBAHHIO YMCJIEHHOTO PELUEHWA ORHOH 3AJAYHM
PACCEAHWUA BOJIH ANA HATPYHEHHOIO H3JIOMA
NMPAMOYIOJIbHOI0O BOJIHOBOIA

Paccmampusaemcs noayuennoe pamee peurenue 3adaiu
paccesnus eoan ¢ H-naocxocmmnom 90°-uziome npsamoyzono-
1020 60110600d, HazpyKennom dusdiexmpurom. Hccaedosa-
na Gecxoneunas cucmemd JNUHEUHBIY dAAze6paAULecKUX Ypas-
nenuil 3adauu. Ycmanogienda 603MOKHOCML ee peuenus Mme-
modom yceuenus.

BBEJIEHHE

B mocnennuwe ronabr mMertoj mpousBefenust obacTeit
(ITO) ycneniHo MCMOJAb30BAJCI IS aHAIU3a PSAAa yc-
TPOMCTB BOJHOBOJHOW TEXHUKHU. YKa)XeM B KayecTBe
npuMepa pabotol [1-3], rae uccreaoBasuch CTPYKTYPBI
pasJiMuHble [0 FeOMETPUH M HasHadeHuio. B paGore [4]
MeTo/i OblJI NPUMEHEH JIJIsl PelIeHus 3a/lauil PAcCesiHUsI

© Yymauenko . B. , Uymauenko B. II., 2009

BoiH B HarpykennoMm H-mimockoctnom 90°-mssiome 1ps-
MOYTOJIbHOTO BOJIHOBOJla. Beckoneunas cucrema JinHeii-
ubix anre6pandeckux ypasuenuit (CJIAY) sagauu pe-
HIaJ1ach YUCJAEHHO IIyTEM €€ 3aMEeHbl KOHEYHBIM YHCJIOM
ypaBHeHuii. B Hacrosiieit cratbe npuBOAUTCS (HOpMalib-
HOe 060CHOBAaHUE IPUMEHUMOCTH MCIOJIb30BAHHOTO METO-
na ycedenus. Takoe 060CHOBaHME IIPEICTABJSCTCS BaXK-
HBIM, TaK KakK CXO/HbIC MaTPUYHbIC OIEPATOPHI MOSBJIA-
10Tcsl npu npuMeHenun meroga IIO kx ucciepmoBaHuio u
JIPYTUX Y3JI0B, B KOTOPbIX I'DAaHUYHbIE IIOBEPXHOCTH II€-
pecekawTest o npsambiM yriaom (kak, Hanpumep, B T-
COEJIMHEHUSIX U KPecTOOOPA3HBIX COEIMHEHUSIX IIPIMO-
YTOJIbHBIX BOJIHOBO/IOB).
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