- Brack, M. Thermal properties of the valence electrons in alkali metal clusters [Text] / M. Brack, O. Genzken, K. Hansen // Z. Phys. D. – 1991. – V. 21. – P. 65.
- Petrov, E. G. Kinetic rectification of charge transmission through a single molecule [Text] / E. G. Petrov, V. May, P. Hänggi // Phys. Rev. B. – 2006. – V. 73. – id.045408.
- Wang, J. Capacitance of atomic junctions [Text] / J. Wang, H. Guo, J.-L. Mozos et al. // Phys. Rev. Lett.-1998. - V. 80. - P. 4277.
- König, J. Strong tunneling in the single-electron box [Text] / J. König, H. Schoeller // Phys. Rev. Lett. – 1998. – V. 81. – P. 3511.
- Pogosov, V. V. Effect of deformation on surface characteristics of finite metallic crystals [Text] / V. V. Pogosov, O. M. Shtepa // Ukr. Phys. J. 2002. V. 47. № 11. P. 1065.
- Modinos, A. Field, Thermionic and Secondary Electron Emission Spectroscopy [Text] / A. Modinos.- New York : Plenum Press, 1984. - 375 p.
- Henum Press, 1984. 375 p.
 Smogunov, A. N. Electronic structure of simple metal whiskers [Text] / A. N. Smogunov, L. I. Kurkina, S. I. Kurganskii, O. V. Farberovich // Surf. Sci. 1997. V. 391. P. 245.
 Shklovskii, V. A. The role of electrons of conductivity in
- Shklovskii, V. A. The role of electrons of conductivity in forming of thermal resistance at border metal - dielectric [Text] / V. A. Shklovskii // Let. J. Exper. Theor. Phys. – 1977. – V. 26. – P. 679. Hanimuna 02 02 2009

Теоретически исследованы эффекты зарядки и одноэлектронного туннелирования в структуре на кластере. В рамках модели бесконечной потенциальной ямы для сферических и дискообразных золотых кластеров вычислены электронный спектр и температурная зависимость химического потенциала. Разница между химическими потенциалами массивных электродов и островков приводит к зарядке последних. Мы показываем, что

эффективный остаточный заряд не равен целому зна-

чению заряда электрона е и зависит от формы кластера. Уравнения для анализа вольт-амперной характеристики используются с учетом ограничений, связанных с кулоновской неустойчивостью кластера. Для одноэлектронных молекулярных транзисторов вычислены немонотонные размерные зависимости токовой щели и ее асимметрия по напряжению. Мы предполагаем, что перегрев электронной подсистемы приводит к исчезновению токовой щели и постепенному сглаживанию вольт-амперных характеристик, что наблюдается в экспериментах.

Теоретично досліджені ефекти зарядки й одноелектронного тунелювання в структурі на кластері. У рамках моделі нескінченної потенційної ями для сферичних і дискообразних золотих кластерів обчислені електронний спектр і температурна залежність хімічного потенціалу. Різниця між хімічними потенціалами масивних електродів і острівців приводить до зарядки останніх. Ми показуємо, що ефективний залишковий заряд не дорівнює цілому значенню заряду електрона е й залежить від форми кластера. Рівняння для аналізу вольт-амперної характеристики використовуються з урахуванням обмежень, пов'язаних з кулоновською нестійкістю кластера. Для одноелектронних молекулярних транзисторів обчислені немонотонні розмірні залежності струмової щілини і її асиметрія по напрузі. Ми припускаємо, що перегрів електронної підсистеми приводить до зникнення струмової щілини й поступового згладжування вольт-амперних характеристик, що спостерігається в експериментах.

УДК 537.874.6

Я. В. Чумаченко, В. П. Чумаченко

К ОБОСНОВАНИЮ ЧИСЛЕННОГО РЕШЕНИЯ ОДНОЙ ЗАДАЧИ Рассеяния волн для нагруженного излома прямоугольного волновода

Рассматривается полученное ранее решение задачи рассеяния волн в Н-плоскостном 90°-изломе прямоугольного волновода, нагруженном диэлектриком. Исследована бесконечная система линейных алгебраических уравнений задачи. Установлена возможность ее решения методом усечения.

ВВЕДЕНИЕ

В последние годы метод произведения областей (ПО) успешно использовался для анализа ряда устройств волноводной техники. Укажем в качестве примера работы [1–3], где исследовались структуры различные по геометрии и назначению. В работе [4] метод был применен для решения задачи рассеяния

© Чумаченко Я. В., Чумаченко В. П., 2009

волн в нагруженном Н-плоскостном 90°-изломе прямоугольного волновода. Бесконечная система линейных алгебраических уравнений (СЛАУ) задачи решалась численно путем ее замены конечным числом уравнений. В настоящей статье приводится формальное обоснование применимости использованного метода усечения. Такое обоснование представляется важным, так как сходные матричные операторы появляются при применении метода ПО к исследованию и других узлов, в которых граничные поверхности пересекаются под прямым углом (как, например, в Тсоединениях и крестообразных соединениях прямоугольных волноводов).

ИСХОДНЫЕ СООТНОШЕНИЯ

Структура, рассмотренная в [4], представляет собой волноводный уголок с разной шириной плеч cи d. Прямоугольная соединительная полость нагружена диэлектриком с проницаемостью $\varepsilon \varepsilon_0$. Волна H_{10} набегает со стороны волновода шириной d.

Задача сведена к решению бесконечной системы линейных алгебраических уравнений относительно коэффициентов разложения $B_m^{(1)}$ и $B_m^{(2)}$, связанных с соединительной полостью. Система имеет вид:

$$B_m^{(1)} + \frac{1}{\Delta_m^{(x)}} \sum_{n=1}^{\infty} d_{mn}^{(x)} B_n^{(2)} = \frac{2\delta_{1m} \gamma_1^{(1)}}{\Delta_1^{(x)}},$$
 (1)

$$\frac{1}{\Delta_m^{(y)}} \sum_{n=1}^{\infty} d_{mn}^{(y)} B_n^{(1)} + B_m^{(2)} = 0, \quad m = 1, 2, \dots,$$
(2)

где

$$d_{mn}^{(x)} = (-1)^{m+n} \frac{2mn\pi^2}{cd^2} \frac{e^{-2\gamma_n^{(y)}d} - 1}{(\gamma_n^{(y)})^2 + (m\pi/d)^2},$$
 (3)

$$\Delta_m^{(x)} = \gamma_m^{(1)} (1 - e^{-2\gamma_m^{(x)}c}) + \gamma_m^{(x)} (1 + e^{-2\gamma_m^{(x)}c}), \qquad (4)$$

$$\gamma_m^{(x)} = \left[\left(\frac{m\pi}{d} \right)^2 - \chi^2 \right]^{\frac{1}{2}}, \quad \gamma_m^{(1)} = \left[\left(\frac{m\pi}{d} \right)^2 - k_0^2 \right]^{\frac{1}{2}}, \quad (5)$$

$$\chi = \sqrt{\varepsilon} k_0, \quad k_0 = \frac{2\pi}{\lambda}, \tag{6}$$

λ – длина волны в свободном пространстве.

Значения $\gamma_m^{(y)}$, $\gamma_m^{(2)}$, $d_{mn}^{(y)}$, $\Delta_m^{(y)}$ могут быть найдены из (3)–(5) путем замены $(x) \leftrightarrow (y)$, $c \leftrightarrow d$ и $(1) \rightarrow (2)$.

АНАЛИЗ МАТРИЧНЫХ КОЭФФИЦИЕНТОВ СЛАУ

Введем новые искомые величины

$$\tilde{B}_m^{(1)} = B_m^{(1)}m, \quad \tilde{B}_m^{(2)} = B_m^{(2)}m.$$
 (7)

Тогда из (1), (2) получим:

$$\tilde{B}_{m}^{(1)} + \frac{1}{\Delta_{m}^{(x)}} \sum_{n=1}^{\infty} \tilde{d}_{mn}^{(x)} \tilde{B}_{n}^{(2)} = \frac{2\delta_{1m} \gamma_{1}^{(1)} m}{\Delta_{1}^{(x)}},$$
(8)

$$\frac{1}{\Delta_m^{(y)}} \sum_{n=1}^{\infty} \tilde{d}_{mn}^{(y)} \tilde{B}_n^{(1)} + \tilde{B}_m^{(2)} = 0, \quad m = 1, \ 2, \ \dots,$$
(9)

где

$$\tilde{d}_{mn}^{(x)} = (-1)^{m+n} \frac{2m^2 \pi^2}{cd^2} \frac{e^{-2\gamma_n^{(y)}d} - 1}{(\gamma_n^{(y)})^2 + (m\pi/d)^2}.$$
 (10)

Последнее соотношение легко преобразуется к виду

$$\tilde{d}_{mn}^{(x)} = (-1)^{m+n} \, \frac{2m^2c}{d^2} \frac{e^{-2\gamma_n^{(y)}} - 1}{n^2 + (\gamma_m^{(x)}c/\pi)^2}.$$
 (11)

При

$$\frac{m\pi}{d} > \chi \tag{12}$$

 $\gamma_m^{(x)}, \gamma_m^{(1)}$ являются действительными величинами и $\gamma_m^{(x)} < \gamma_m^{(1)},$ что обеспечивает

$$\Delta_m^{(x)} > 2\gamma_m^{(x)}.$$
 (13)

Оценим теперь сумму ряда $\sum_{n=1}^{\infty} \left| \frac{\tilde{d}_{mn}^{(x)}}{\Delta_m^{(x)}} \right|$:

$$\sum_{n=1}^{\infty} \left| \frac{\tilde{d}_{mn}^{(x)}}{\Delta_m^{(x)}} \right| < \sum_{n=1}^{\infty} \frac{\left| \tilde{d}_{mn}^{(x)} \right|}{2\gamma_m^{(x)}} \le \sum_{n=1}^{\infty} \frac{m^2 c}{d^2 \gamma_m^{(x)}} \frac{1}{n^2 + \left(\gamma_m^{(x)} \frac{c}{\pi} \right)^2} = A.(14)$$

Учитывая известные [5] соотношения

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + a^2} = \frac{\pi}{2a} \left(ctha\pi - \frac{1}{a\pi} \right),$$
 (15)

$$cthz - \frac{1}{z} \le 1, \quad 0 \le z < \infty, \tag{16}$$

получим (при $a = \gamma_m^{(x)} \frac{c}{\pi}$)

$$A \le \frac{\pi^2 m^2}{2d^2 \gamma_m^{(x)2}} = \frac{1}{2} \frac{1}{1 - \left(\frac{\chi d}{m\pi}\right)^2}.$$
 (17)

Из (14), (17) следует, что при

$$m > \sqrt{2} \, \frac{\chi d}{\pi} \tag{18}$$

выполняется неравенство

$$\sum_{n=1}^{\infty} \left| \frac{\tilde{d}_{mn}^{(x)}}{\Delta_m^{(x)}} \right| < 1.$$
(19)

Аналогично можно показать, что при

$$m > \sqrt{2} \, \frac{\chi c}{\pi} \tag{20}$$

справедливо неравенство

$$\sum_{n=1}^{\infty} \left| \frac{\tilde{d}_{mn}^{(y)}}{\Delta_m^{(y)}} \right| < 1.$$
(21)

33

Переномеруем формально неизвестные как $A_1 = \tilde{B}_1^{(1)}$, $A_2 = \tilde{B}_1^{(2)}, A_3 = \tilde{B}_2^{(1)}, A_4 = \tilde{B}_2^{(2)}, \dots$ и перепишем в соответствующем порядке уравнения системы (8), (9). В силу (19) и (21) эта система является квазирегулярной [6] и ее решение известным образом сводится к решению конечной системы алгебраических уравнений.

ЗАКЛЮЧЕНИЕ

Выполнен анализ матричных коэффициентов СЛАУ, возникающей при применении метода ПО к задаче рассеяния волн в Н-плоскостном волноводном изломе с соединительной полостью, заполненной диэлектриком. Показано, что для решения системы применим метод усечения. Полученные результаты могут быть также использованы при исследовании нагруженных Т-соединений и крестообразных соединений прямоугольных волноводов.

ПЕРЕЧЕНЬ ССЫЛОК

Chumachenko V. P. Simple full-wave model of E-plane wa-1. veguide star junction // V. P. Chumachenko Journal of Electromagnetic Waves and Application. – Vol. 16. – Sept. 2002. – P. 1223–1232.

- Petrusenko I. V. Scattering by inductive post in uniformly curved rectangular waveguide // I. V. Petrusen-2. ko, V. P. Chumachenko. - IEE Proceedings. Microwaves, Antennas and Propagation. -Vol. 150. - Dec. 2003. - P. 498-504.
- 3. Ващенко В. В. Решение методом произведения областей Н-плоскостной задачи дифракции волн на нак-
- Аастеи Н-плоскостнои задачи дифракции волн на нак-лонной границе раздела диэлектрических сред в прямоугольном волноводе // В. В. Ващенко, В. П. Чу-маченко. Радіоелектроніка. Інформатика. Управ-ління. № 1. 2007. С. 5–9. *Chumachenko V. P.* Accurate analysis of waveguide junctions with rectangular coupling cavity // V. P. Chu-machenko, E. Karacuha, I. V. Petrusenko. Microwave and Optical Technology Letters. Vol. 31. Nov. 2001. P. 305–308. 4. 2001. – Р. 305–308. Партон В. З. Методы математической теории упругос-
- 5. ти / В. З. Партон, П. И. Перлин – М. : Наука, 1981. 688 с.
- Канторович Л. В. Приближенные методы высшего анализа / Л. В. Канторович, В. И. Крылов. М. : 6. Физматгиз, 1962. - 708 с.

Надійшла 27.04.2009 Після доробки 14.05.2009

Розглядається отриманий раніше розв'язок задачі розсіювання хвиль в Н-площинному 90° зламі прямокутного хвилеводу, навантаженого діелектриком. Досліджена нескінченна система лінійних алгебраїчних рівнянь задачі. Встановлена можливість знаходження її розв'язку методом зрізання.

Solution of the H-plane scattering problem for a dielectric-loaded 90° bend of a rectangular waveguide is considered. A previously derived infinite system of algebraic equations has been analyzed. It has been found that the system can be solved using a truncation procedure.