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ABSTRACT

Context. The article presents the results of a study of the effectiveness of using the Nelder-Mead method to optimize the parame-
ters of linear approximations of synthesized signals. Algorithms have been developed and tested that integrate spectral, temporal, and
statistical analyzes and provide reasonable optimization. The effectiveness of the application of the Nelder-Mead method was proven
by experiment. The obtained results substantiate the improvement of the properties of the mutual correlation of signals and the reduc-
tion of the maximum deviations of the side lobes, which opens up prospects for the further application of the method in complex
scenarios of signal synthesis.

Objective. The purpose of the work is to evaluate the effectiveness of the application of the Nelder-Mead method when adjusting
the parameters of linear approximations to optimize the mutual correlation and minimize side deviations of complex synthesized
signals.

Method. The main research method is the comparison of various optimization algorithms for the selection of the most effective
approaches in linear approximations of synthesized signals, taking into account such criteria as accuracy, speed and minimization of
deviations. Scientific works [1, 2, 4-6, 8, 9] present algorithms, including the Nelder-Mead method and differential evolution. The
effectiveness of these methods is achieved due to adaptive optimization procedures that improve the characteristics of signals.

It is worth noting that the methods have disadvantages associated with high requirements for computing resources, especially
when processing large data. This can be minimized using combined optimization methods that take into account the interaction of
signal parameters. Another important direction of improvement is the optimization of methods for adaptation to dynamic changes in
the characteristics of complex signals, which allows to achieve high adaptability and reliability of real-time systems.

Results. As a result of the experiment using the Nelder-Mead method, an increase in the similarity of spectral densities was
achieved from 0.52 in the first iteration to 0.90 in the fourth, with a significant decrease in the distance between the peaks of the
spectrum from 1.2 to 0.4, which indicates high adaptability and the accuracy of the method in adjusting the parameters of the synthe-
sized signals.

Conclusions. The effectiveness of the Nelder-Mead method for adjusting the specified parameters of the synthesized signals was
experimentally proven, which is confirmed by a significant improvement in the similarity of the spectra with each iteration. This
opens the way for additional optimizations and application of the method in various technological areas.

KEYWORDS: optimization method, synthesized signals, Nelder-Mead method, approximation by linear functions, spectral
characteristics, ensemble properties of signals, iteration algorithm, noise immunity, side lobe emissions.

NOMENCLATURE
J(x) is an objective function

xy, is the worst point of the simplex, the point with
the highest value of the objective function;

o, is a “reflection” coefficient;

x is a set of parameters for an ensemble of signals;

S, 1is a spectral density of an ensemble of signals

x(t) is a signal;

y(t) is a set value for deviation;

T is a duration;

E is an energy;

BW is a spectrum width;

C is a cross-correlation;

P(t) is a deviation of the signal at the moment of

with parameters x;
Sy 1s a given spectral density;
H, is a signal function with parameters x;
H\ is a given signal function;
time;
¢t 1s a time index;
A€, v is a parameters that regulate the weight be-

wyw, is a weighting factors that determine the impor-

tance of the similarity of the spectral densities and the

o o i level of blurring of the side lobes;
tween the deviation criterion and the side lobes;

x0

; 1s the initial value of the i-th variable;

x, 1s a displayed point;

x,. is a centroid, calculated as the arithmetic mean of

c
all points of the simplex, except for the worst one;
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Sim g semple — the similarity function, which takes into
account the similarity between the spectral characteristics
of the signals in the ensemble;

Blur, s tan ¢ 15 a blur function that takes into account

the blurring of the side lobes of the signal function;

OPEN a ACCESS




p-ISSN 1607-3274 Pagioenexrponika, iHpopmaTuka, ynpasiainss. 2024. Ne 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. Ne 3

o, is a weighting factors that regulate the impor-

tance of ensemble properties and immunity properties,
respectively;
S;(#),8;(#) 1is a functions of the spectral density of

two different distributions of signals (“true” distribution
and approximation of this distribution);

Si (1)
0
bution densities at each moment of time ¢, which reflects
the local difference between them;
o is a standard deviation or scale of uncertainty or
noise;
t is a time parameter;
S(#,0) is a signal or its spectral component depends on
certain parameters 03;
—o0 t 2
j exp[—z—z] is a Gaussian function that de-
c

log

dt is a logarithm of the ratio of the distri-

[>e}

creases on either side of the center.

INTRODUCTION

Optimizing the parameters of synthesized signals us-
ing methods with constraints that use approximation by
linear and nonlinear functions is a promising and relevant
area of research [1-14]. These methods make it possible
to obtain signals with specified spectral, temporal, statis-
tical and other characteristics, including a high level of
immunity. They turn the problem of signal synthesis into
the problem of optimizing the chosen objective function,
which contains physical or technological limitations [2, 6,
8]. Various approaches are used to study the properties of
synthesized signals, in particular, the analysis of their
frequency, time characteristics and resistance to interfer-
ence. Solving this problem is important and necessary for
improving the efficiency of telecommunication systems,
because it ensures their stable and reliable operation in
conditions of various disturbances.

The object of study is the process of optimizing syn-
thesized signals according to given parameters.

The subjects of study are optimization algorithms
and methods, in particular the Nelder Mead method.

The purpose of this work is to evaluate the effec-
tiveness of the Nelder-Mead method for optimizing the
parameters of linear approximations of synthesized sig-
nals in order to improve their properties.

1 PROBLEM STATEMENT

Let us consider the most effective methods of ap-
proximating functions for solving optimization problems
in signal synthesis. Classical optimization methods with
constraints, which are based on the approximation of the
objective function by linear functions, are widely used for
the synthesis of signals with defined characteristics. Such
methods include the Nelder-Mead method, methods based
on gradients, Newton’s method, and others [1, 3, 5]. We
will analyze the effectiveness of the Nelder-Mead method
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for the synthesis of complex signal ensembles, in particu-
lar, focusing on improving the cross-correlation properties
and significantly reducing the maximum deviations of the
side lobes of the target function.

Methods based on linear approximation of the objec-
tive function systematize scientific optimization problems
using the universal algorithm presented in Fig. 1.

Choose the S
. : Evaluation of
;'J:E::::ln approximation Initial values Iterations ] results
el
method

Figure 1 — General optimization algorithm by linear ap-
proximation

These methods, in particular, make it possible to sim-
plify the optimization process through the linear represen-
tation of complex dependencies, which is the key to effec-
tively solving a wide range of current scientific problems.

Linear approximation provides ease of use and im-
plementation, especially when initial data or functional
dependencies are too complex for direct analysis. It al-
lows you to estimate the influence of various parameters
on the target function with high accuracy, without delving
into the excessive complexity of real processes. The main
stages of this algorithm include defining the problem,
choosing an approximation method, calculating parame-
ters, verifying the obtained results, and correcting the
model for the purpose of optimization.

2 REVIEW OF THE LITERATURE

Research in the field of optimizing the parameters of
synthesized signals using the Nelder-Mead method and
other evolutionary algorithms is actively considered in the
scientific works of various authors. The works [1, 4, 5, 6,
8, 9, 10, 12, 13] analyze various aspects of linear and
nonlinear signal approximations, demonstrating signifi-
cant progress in improving the spectral characteristics and
efficiency of signals. However, these studies also reveal
underexplored areas, such as the impact of algorithmic
constraints on system scalability and stability under di-
verse conditions. Special attention is drawn to the works
[2, 3, 11, 14], which investigate the use of Nelder-Mead
and other optimization methods for improving block dia-
grams of signal processing and their analytical models. It
was found that despite the effectiveness in specific sce-
narios, there are problems with the integration of these
approaches into wider systems, which requires further
research into the adaptation and scaling of the algorithms.
The comparative analysis of optimization methods pre-
sented in [7] indicates the differences in efficiency and
areas of application of various approaches, offering addi-
tional opportunities for improving interoperability and
interaction in complex scenarios. Also an important as-
pect is the development and optimization of automatic
control systems, as stated in [8], where the Nelder-Mead
algorithm is used to achieve higher accuracy and control
adaptability.

These works formed the basis for further research de-
voted to the evaluation of the effectiveness of optimiza-
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tion methods for linear approximations of synthesized
signals, namely the Nelder-Mead method for complex
signal ensembles, where high accuracy and adaptability to
variable conditions are critical. The use of such methods
will allow not only to improve the characteristics of sig-
nals, in particular their spectral efficiency and mutual
correlation, but also to ensure a high level of immunity
and performance in complex and dynamic telecommuni-
cations systems that require high reliability and adaptation
to environmental changes.

3 MATERIALS AND METHODS

Let us consider in more detail the stages of the general
optimization algorithm by linear approximation.

Preliminary Stage. An optimization problem is deter-
mined with the formalization of the objective function and
constraints. For demonstration, consider the problem of
signal synthesis. [3].

Let the signal be the specified value for the deviation,
and the objective function is defined as the sum of the
squares of the deviations of the side lobes from the speci-
fied value [5] by the formula (1):

J(x)= x(0) = (1) (1)

Limitations determine such parameters of the ensem-
ble of signals as their duration, energy, spectral width,
mutual correlation, etc. This approach is essential to
minimize the discrepancies between the side lobes and the
desired signal profile, ensuring optimal signal quality and
performance. By focusing on the deviations of the side
lobes, we can effectively control and optimize the overall
signal structure.

Suppose there are restrictions on the duration of the
signal duration, energy, spectrum width, cross-correlation,
then the mathematical system of restrictions will look like
this in the sample:

21(¥)=T T <0,

max =
g2(X)=E—Ep,i <0,
g3(x)=BW — BW 55 <05 (2)

84 =C—Cppx <0

The cross-correlation determined by the formula (3)
[7, 6]:

z,x(ti)y(fi) 3
S )Y, (6 @

The discrete approximation for sequences is calculated
by the formula (4):

ny (‘C) =

Colnl=>"_ slm]-y[m+n]. )
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In this case, it is also necessary to consider the pa-
rameter of the signal energy, which is determined as the
square of its amplitudes. For the signal x(?) it is calculated

2
using the mathematical formula: E = J._Oooo|x(t)| dt . In the

case of a discrete signal or sequence x[n], it takes the
form of the mathematical expression [2, 4, 11]:

E= Z;o:_oo|x[n]2 . (%)

The side lobes of the signal reflect the deviation of the
signal  amplitude  from its  average  value
P(t) =x(¢) — x,,0 - This indicator is an important parame-
ter for evaluating signal quality and stability. To quantify
these deviations, the sum of the squares of the deviations
is used, which is determined by the following formula (6)

[5]:
Jside = 2, P2(0). (6)

To consider the objective function in the optimization
problem along with the cross-correlation and constraints,
the general optimization problem will look like this for-
mula (7):

MInJ()+A- C+ - (T =T + V- (E— Epa) +&- BW=BWoa.  (7)

1 Stage. Determination of initial values of variables.
At this stage, the initial values of the variables to be opti-
mized are determined. These values can be chosen arbi-
trarily or with the help of expert judgments. The choice of
initial values is important because they can affect the rate
of convergence of the optimization algorithm and whether
it reaches a global or only a local optimum. Initial values
obtained from previous experiments or simulations can be
used for the task of optimizing signal parameters. If the
initial values of the variables are chosen arbitrarily or
with the help of expert estimates, they can be specified by
a formula [10,13]:

K =[x .00 ®)

2 Stage. Iterative method for finding optimal values of
variables. This stage involves the use of an iterative
method to find new values of variables that are closer to
the optimal ones. At each iteration, the method updates
the values of the variables, trying to decrease (or increase)
the objective function. Examples of such methods are
Nelder Mead, gradient descent, Newton, or heuristic op-
timization algorithms such as genetic algorithms [6, 13].

3 Stage. Evaluation of the optimization result and
checking for compliance with constraints. To evaluate the
optimization result, it is necessary to check whether the
obtained variable values satisfy the constraints of the
problem. If not, then it is necessary to continue the execu-
tion of the optimization method.
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4 At the final stage, the model is corrected and further
optimized (if necessary).

Let us consider in more detail the solution of the op-
timization problem using the Nelder-Mead method. The
Nelder-Mead method is one of the most popular con-
strained optimization methods. It provides an effective
search for the optimum within the permissible values of
the variables, as it works by successive refinement of the
estimate of the global minimum of the function [6, 9].

The Nelder-Mead method, also known as the de-
formed simplex method, is one of the direct optimization
methods that does not require the calculation of function
gradients. It is especially useful in problems where it is
difficult or impossible to calculate the gradient, or where
the function has numerous local extrema [14].

The general view of the optimization algorithm ac-
cording to the Nelder-Mead method is presented in Fig. 2.

Starting point
0 0.0 0

X = l.\! ..\:..\_-.'....‘\SJ

Initialization with n+1 based on x°

:

N
Calculation of f (x) at each point of
the simplex
J

y

No .
Simplex
transformation

Yes

Checking the stop criterion

n+l

max 'f(.\',)—f(.\" ‘ <€

Figure 2 — Optimization algorithm based on the Nelder-Mead
method

The main stages of calculation by the Nelder-Mead
method are the following.

1. Initialization. Selection of initial simplex consist-
ing of n +1 points in n — dimensional space. These points
need not lie on the same hyperplane to form a dimen-
sional simplex. Each point of the simplex is initialized so
that they are located close enough to each other, but at the
same time form a structure sufficient to start the optimiza-
tion process.

2. Evaluation of the function. Calculation of the value
of the objective function at each of n +1 points of the sim-
plex. Ranking points by function value from best (lowest
value) to worst (highest value).

3. Simplex transformation. It consists of a step — re-
flection — that is, the calculation of the mapped point rela-

© Lysechko V. P., Komar O. M., Bershov V. S., Veklych O. K., 2024
DOI 10.15588/1607-3274-2024-3-4

38

tive to the worst point to investigate whether a better
value can be found outside it, and extension — that is, if
the mapped point shows an improvement, the method will
try to “stretch” the simplex in that direction to investigate
further. The formula for this step of the algorithm looks
like this formula (10) [2]:

Xp =X + O‘(Xc - Xh)~ 9

This formula allows you to calculate a new point x

r o

which is a “mirror” of the worst point x, relative to the
centroid x_, directing the search in a direction that can

improve the value of the objective function. If no im-
provement can be found, the simplex is compressed to-
wards the best point. If compression also fails, reduction
is performed, where the simplex is reduced in size around
the best point.

4. Checking the stop criterion. To check the stopping
criterion in the Nelder-Mead method, the concept of stan-
dard deviation or another indicator of the dispersion of the
function values among the points of the simplex is used.
One approach is to check whether the maximum differ-
ence between the function values at the simplex vertices

f (x;) and the function value at the best point f(x") does

not exceed a given threshold <. If the condition is ful-
filled, the optimization process ends, there is no need for
further iterations [8], formula (10):

fx)- 1] < <

For practical testing, consider the application of the
optimization algorithm based on the Nelder-Mead method
for the synthesis of signals with specified ensemble prop-
erties and noise immunity. This method is optimal for
application in the case of minimizing the difference be-
tween the spectral characteristics of the generated signals
and the given target spectral density, as well as for con-
trolling the blurring of the sidelobe deviation level.
Mathematically, the function for the task of creating an
ensemble of signals with a given similarity of spectral
densities and a defined level of blurring of the side lobes
is defined as [6] formula (11):

n+l1

max
i=1

(10)

F00 =W [y =So|* +wy-[Hy —Ho[. (D)

This function defines the main minimization criterion
for solving the problem of synthesis of signals with de-
fined properties. The goal is to find such a set of parame-
ters X that minimizes the function. The general form of the
functional for optimization using the Nelder-Mead
method for the synthesis of signals with given ensemble
properties and immunity properties can be formulated as
formula (12) [3]:

f(8) = o~ Simgpgemple(S) + P - Blulesistan s (S(0)).
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This approach allows the signal parameters to be pre-
cisely tailored to optimally meet the given criteria and
ensure efficiency in a wide range of applications, from
telecommunications to radar.

For a given objective function, different measures can
be chosen to evaluate the similarity and blurring of sig-
nals. The choice of a specific measure depends on the
specifics of the task and the desired characteristics of the
signal. For similarity function can be selected:

— Kullback-Leibler similarity measure. It is especially
valuable in scenarios where complex signal ensembles
need to be analyzed, such as those used in telecommuni-
cations, cryptography, or radar. This measure not only
allows us to measure the distance between two probability
distributions, but also provides insights into the effective-
ness of representing one distribution by another. For
complex signal ensembles, the Kullback-Leibler measure
provides a deeper understanding of how effectively a par-
ticular modulation or coding scheme can reproduce the
properties of the original signal [7].

This is important in situations where highly complex
signals need to be accurately reconstructed, such as in
satellite communication systems, where every lost or dis-
torted bit can lead to serious errors in data transmission. A
measure is used to measure the distance or difference be-
tween two probability distributions, allowing us to esti-
mate how much one signal distribution deviates from a
reference distribution. The mathematical expression that
describes the Kullback-Leibler similarity measure can
take the form [9, 10]:

MeasureKL( S;, j) IS (t)log (()) dt. (13)

The integral is calculated over all possible values of ¢,
which makes it possible to estimate the total difference
between the distributions over the entire range of their
definition.

— Gaussian similarity measure. This measure is based
on considering the spectral density of signals as Gaussian
processes, which allows us to estimate the differences
between them through the parameters of their distribu-
tions. Unlike the Kullback-Leibler similarity measure, it
does not evaluate the difference between probability dis-
tributions, but focuses on the analysis of deviations be-
tween two signals taking into account noise or uncer-
tainty:

154 ]

MeasureG(S S ) ex (_E_F(MJ dr). (14)
o

oo}

The exponential function transforms the result into a
range from 0 to 1, where a value closer to 1 means a
smaller total deviation between NORGE i.e. a higher
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similarity. Function blurring By

- un, May include the
following measures [5, 8]:

— Gaussian blur measure: used to estimate the fuzzi-
ness of the side lobes of a signal by modeling them as a
Gaussian process. This helps determine the level of

smoothing of unwanted spectral components:
-0 12
Measure G Blur(S(1;0)) = |~ exp| - — [S@0)dr. (15)
* 2c

Gaussian function that decreases on either side of the
center. The integral of this function along ¢ gives a gen-
eral estimate of the effect of Gaussian blur on the signal.

— Riemann-Lebesgue blur measure: takes into account
the integral sum of deviations from the “reference”
(“ideal”) level of the side lobes, which allows for a more
accurate assessment of their impact on the overall signal

purity:

|<p[S<r 9>]<w>| .

Measurep; Blur(S(t;0)) = j (16)

Differentiated application of various measures allows
for the adaptation of the optimization algorithm to solve
specialized tasks in the field of signal synthesis and
analysis. The use of the Kullback-Leibler similarity
measure provides a deep understanding of the efficiency
of reproducing complex signals, which is critically impor-
tant for telecommunications and cryptography. The Gaus-
sian similarity measure accounts for deviations between
signals considering noise, enhancing the accuracy of
evaluation. The Gaussian blur measure and the Riemann-
Lebesgue blur measure help assess the level of smoothing
of unwanted spectral components, improving signal clar-
ity in radar systems and wireless cognitive systems. This
approach enables precise tuning of signal parameters,
ensuring high efficiency in various applications.

4 EXPERIMENTS

To demonstrate the effectiveness of the Nelder-Mead
optimization method in the synthesis of an ensemble of
signals with given properties, a Matlab code was devel-
oped. The results of the program execution are presented
in Figures 3 (a,d.c), which illustrate the process (dynam-
ics) of the current spectral density (blue region) compared
to the target spectral density (red region) at each iteration.

The closer the blue line (area) is to the red, the better
the optimization result (Table 1).

Parameters: similarity, distance between peaks, error
of spectral densities, step size, objective function value,
smoothing factor, computation time, sample size, and
significance level — show the evolution of the optimiza-
tion process with each iteration of the Nelder Mead
method, and the gradual approximation of the current
spectral density to target An additionally introduced
smoothing factor is used to eliminate noise and stabilize
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the spectral analysis data, while the computation time
reflects the time required for each iteration of data proc-
essing, which is important when evaluating the algo-
rithm’s performance. Sample size refers to the number of

data points used in the spectral analysis and is important
5 ; ; ; :
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to ensure the reliability of the results. Finally, the level of
significance was used to statistically check the dynamics
of changes between iterations, confirming their signifi-
cance or insignificance in the course of the experiment.
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Figure 3 — Iterative optimization process of approximation of the current spectral density value to the target value:
a — First iteration, b — The second iteration, ¢ — The third iteration, d — The fourth iteration, i — The fifth iteration

Table 1 — Dynamics of signal spectral density parameters by optimization iterations

Distance Error of Objective Smoothin; Calculation Level of
Iteration Similarity between spectral Step size function & . Sample size | . .
. factor time (sec) significance
peaks densities value
1 0.52 1.2 0.5 1.2 0.02 0.1 15 1000 0.05
2 0.68 0.9 0.3 0.9 0.01 0.1 12 1000 0.05
3 0.82 0.6 0.2 0.6 0.005 0.1 10 1000 0.05
4 0.90 0.4 0.1 0.4 0.002 0.1 8 1000 0.05
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Table 1 shows how the similarity process of spectral
densities between signal parameters and the target spec-
trum changes with each iteration of the Nelder-Mead al-
gorithm. This confirms the effectiveness of the method in
adapting the signal parameters to achieve optimal values
according to the relevant criteria.

5 RESULTS

As can be seen from Table 1 and Fig. 3-7, the similar-
ity of spectral densities increases with each iteration. At
the first iteration, the similarity is 0.52, that is, the initial
parameters of the signal are very different from the speci-
fied spectral density. And on the fourth iteration, the simi-
larity already reaches 0.90, which means that the synthe-
sized signals become more similar to a signal with a given
spectral density.

In the fourth iteration, the similarity increased by 78%
compared to the first iteration. The distance between the
peaks of the spectral densities also decreases with each
iteration. In the first iteration, the distance is 1.2, and in
the fourth iteration — 0.4. This means that the signal spec-
tra are becoming more and more similar.

The error of the spectral densities also decreases with
each iteration.

From the point of view of ensemble properties, the
synthesized signals with each iteration become more and
more similar to a signal with a given spectral density.
This means that they will have similar statistical charac-
teristics such as mean, variance, autocorrelation function.

Fig. 3 (a—-i) and table 1 demonstrate that in this ex-
periment, the speed, accuracy and stability of conver-
gence of the Nelder-Mead method is also high. For 4 it-
erations, it increases the similarity of spectral densities
from 0.52 to 0.90, that is, by 90%, which is equal to an
increase of 1.7 times.

The Nelder-Mead method used in this experiment
proves its high convergence speed and ability to precisely
tune signal parameters, which is critical for applications
where high accuracy of spectral characteristics is re-
quired, such as in communication, radar, and acoustics
systems. Optimization that allows for greater similarity of
spectra can significantly improve the quality of signal
transmission, reducing errors and interference.

The further development of the direction of this re-
search is that the Nelder-Mead method can provide higher
efficiency in optimizing the parameters of complex signal
ensembles when it is integrated with other technological
approaches to further improve the results. In particular,
the use of machine learning can help in the selection of
initial parameters for an algorithm based on previously
analyzed data, which can potentially reduce the number of
iterations required and improve the convergence of the
algorithm.

Training models on existing data sets can help deter-
mine optimal initial parameters for the Nelder-Mead algo-
rithm, reducing the time to reach the optimal configura-
tion. Also, machine learning models can adaptively adjust
optimization parameters based on changing environ-
mental conditions or real-time input, thus providing more
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stable and efficient results. This extension of the Nelder-
Mead method can significantly improve its versatility and
open up new opportunities for its application in diverse
and demanding technological areas.

6 DISCUSSION

The closest analogue to the proposed Nelder-Mead
method for optimizing ensembles of complex signals is
the method proposed in the work [12]. Unlike the ap-
proaches suggested in this paper, the authors of the refer-
enced article applied the differential evolution method for
optimizing the parameters of synthesized signals. How-
ever, the disadvantage of their methods lies in the low
speed due to the need to calculate the distances between
instances and the necessity and ambiguity of integrating
the indicator into the complex measures of the informa-
tiveness of the instances.

Another relevant article [2], which proposes an ap-
proach for optimizing signal processing block diagrams
using the Nelder-Mead method. The difference in this
work is the focus on optimizing the block diagrams of
signal processing, whereas our paper addresses the opti-
mization of parameters of synthesized signals. The disad-
vantage of the method proposed by the authors is the need
for numerous iterations to achieve acceptable results,
which can lead to significant computational costs.

The advantage of the Nelder-Mead method proposed
in this paper lies in its ability to provide an efficient
search for the optimum within the permissible values of
the variables without requiring the calculation of function
gradients, significantly reducing calculation time and in-
creasing convergence speed. However, this drawback can
be seen as an advantage in the case of large samples: if we
use a computationally simple distribution (e.g., a regular
grid) and know the minimum and maximum values of
each parameter, the computational cost of the proposed
metrics will be lower than using a set of matched filter.

CONCLUSIONS

Optimization of synthesized signal parameters using
methods with constraints based on linear and nonlinear
function approximations is a promising and relevant area
of scientific and practical research. These methods allow
obtaining signals with specified spectral, temporal, statis-
tical, and other characteristics, including a high level of
noise immunity. They transform the signal synthesis task
into an optimization problem of the chosen objective
function, which includes physical or technological con-
straints. Solving this problem is necessary to improve the
efficiency of cognitive telecommunication systems, as it
ensures their stable and reliable operation under various
interference conditions.

The scientific novelty of the article lies in the im-
provement of the Nelder-Mead method for optimizing
ensembles of synthesized signals by developing algo-
rithms that integrate spectral, temporal, and statistical
analyses and provide comprehensive justified optimiza-

tion.
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AHOTAULIA
AKTyaabHicTb. B cTaTTi pecTaBieHo pe3ynbTaTh JOCIiKeHHs e)eKTUBHOCTI BUKOpUCTaHHs MeTony Hennepa-Mina s on-
THMi3amii mapaMeTpiB JHIHHNX ampOKCHMamiii CHHTE30BaHHMX CHUTHANiB. Po3poOieHo Ta ampoOOBaHO aNTOpPHTMH, IO IHTETPYIOTh
CHEKTPAIbHUH, YaCOBUI Ta CTATUCTUYHHI aHAIII3N Ta 3a0e3NevyloTh 00IpyHTOBaHy onThMi3anito. EQeKkTHBHICTE 3aCTOCYBaHHS Me-
tony Hennepa-Mina moBeneHO 3a JOIOMOror ekcrepuMeHTy. OTpuMaHi pe3yibTaTd OOIpyHTOBYIOTH IONIIIICHHS BIACTHBOCTEH
B3a€EMHOI KOpeJIsllii CUTHAJIB Ta 3MEHIIICHHSI MAaKCUMaJIbHUX BiIXHJICHb OIYHUX MENIOCTOK, IO BiIKPUBA€E MEPCIEKTHBU VIS MOJA-
JIBLIIOTO 3aCTOCYBAHHS METOJY B KOMIUICKCHHX CLEHAPiAX CHHTE3y CHTHAIIB.
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Meta. MeToto po0OTH € OIiHKa Pe3yIbTaTUBHOCTI 3acTocyBaHHS MeTony Hennepa-Mina mpy HanamTyBaHHI apaMeTpiB JIiHIN-
HUX anpOKCUMAIli JUTS ONITHMI3aIlil B3aEMHOT KOPEJISIii Ta MiHiMi3allii MOOIYHUX BIIXUICHD CKIIAHAX CHHTE30BaHMX CUTHAIB.

Metoa. OCHOBHMM METOJOM JOCIIDKEHHS € IMOPIBHSAHHS Pi3HUX aJTOPHTMIB ONTHMI3aLil Uil BUOOPY HAMOUIBII MEpCIIeKTHB-
HUX HiOXOJIB Y JIHIHUX ampoKCHMALisfX CHHTE30BAHMX CHIHANIB. ICHYIOTH Pi3HI NOKa3HUKH /IS MOPIBHSIHHS, Taki SK TOYHICTh
onTHMi3alii, IBUAKICTh BAKOHAHHS aJTOPUTMIB, Ta MiHIMIi3aLlisl BIIXHUJICHb.

YV naykoBux pobotax [1, 2, 4, 5, 6, 8, 9], mpencrasieHi pi3Hi METOAH Ta aJrOPUTMHU ONTHMI3allii, BKIIOYaroun MeToa Hemnepa-
Mina ta nqudepenniansay eBomroniro. Haitbinpm epekTHBHI 3 HIX OCHOBaHI HAa BUKOPHCTaHHI aJaliTUBHUX METOIB ONTUMI3amii Ta
ITeparifHuX MpoLexyp A HOJMIIIIEHHS XapaKTePUCTHK CUTHAIIB.

Bapro Bim3HauwuTH, M0 3aIPONIOHOBaHI METOAN MAIOTh HEJONIKH, ITOB’s[3aHi 31 CKIIaJHICTIO i BUMOTaMH 10 OOYHCITIOBAIBHUX pe-
CypCiB, 0COOJIMBO NPH BEJIMKHUX 00CATaX JaHUX a00 BUCOKHX BUMOTax 10 TOYHOCTI. Lli HEJOMiKM MOXKHA CYTTE€BO 3MEHILIHUTH HIIIXOM
3aCTOCYBaHHs KOMOIHOBaHHMX METOMIB ONTHMI3aii, sSKi BpaXOBYIOTh Pi3HI aCIIEKTH MOZIETIOBAHHS, TaKi sIK B3a€MO3B’SI3KM MK Iapa-
METpaMH CHUTHAJIy Ta iX BIUIMB Ha 3arajbHi BJIACTUBOCTI CUCTEMH. |HIIMM Ba)XIMBHUM HANPSMKOM BJIOCKOHAJICHHS € ONTHMi3allis
METOJIB AJIs aJanTamil 10 AMHaMIYHUX 3MiH y XapaKTEePUCTHKAX CKJIAJHUX CHUTHAJIB, IO JO3BOJISIE JOCSATTH BHCOKOI aJalTUBHOCTI
Ta HaJIHOCTI CHCTEM.

PesyabTaTn. B pesynpTari eKCliepUMEHTY 3 BHKOpUCTaHHAIM Metony Henmepa-Mima Oyio HOCSTHYTO 30i7BIICHHS CXO0XKOCTI
CIEeKTpaJbHUX IUIbHOCTeH 3 0,52 y meprmiit itepanii xo 0,90 y weTBepriii, 31 3HAYHNM 3MEHIIEHHSIM BiJICTaHI MK ITIKaMH CHEKTPY 3
1,2 no 0,4, 0 CBIAYNTH PO BHCOKY aJANTHBHICTH TA TOYHICTH METO/Y B HAJIAIITYBaHHI TapaMeTPiB CHHTE30BAHMX CUTHAIIB.

BucnoBkn. ExcriepiMeHTanbHIM IIIIXOM J0BeAEHO edeKTHBHICTH MeTtony Hennmepa-Mina s HamamTyBaHHS 33/laHHX Tapa-
METpPiB CHHTE30BaHHUX CUTHAIB, IO IiATBEPAKYETHCS 3HAYHUM HMOKPAIIECHHSIM CXO0XKOCTI CIIEKTPIB 3 KOXKHOIO iTepatieto. Lle Binkpu-
Ba€ IIUISIX JUTS I0JaTKOBOI ONTUMI3aLil Ta 3aCTOCYBaHHS METOY B Pi3HOMAHITHUX TEXHOJIOTTYHUX OOTACTSX.

KJIIOYOBI CJIOBA: MeTon ontuMmisaliii, CHHTe30BaHi curHanu, Meron Hennepa-Mina, anpokcumanist TiHiHHUME (QYHKIISIMH,
CIIEKTpaJIbHI XapaKTePUCTUKHU, aHCAMOJIEBi BIACTHBOCTI CUTHAMIB, ITEpAlliiHINA aJrOPUTM, 3aBaIOCTIMKICTh, BUKHIU OIYHHUX TEIFOC-
TKIB.
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