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ABSTRACT 
Context. The relevance of the work is to the demand for UAV technologies with the integration of artificial intelligence in 

today’s conditions.  
Objective. The goal of the work is to develop a minimum working version of the UAV explorer and software for controlling the 

UAV data. 
Method. The proposed mathematical description, which calculates the coordinates of the object, based on the dimensions of the 

original image from the camera, the dimensions of the image with which the neural network works, the angle of the field of view of 
the camera, the position of the UAV and the angles of roll, pitch and yaw, allows you to transfer the coordinates of the object, of the 
found NN, in the image to the geographical coordinates, thereby moving away from the rigid reference to the coordinates of the 
UAV. 

Results. The problem of systematization of objects detected during the mission on the surface of water bodies was solved by 
creating a flight log, organizing interaction with a neural network, applying post-processing of recognized objects, mathematically 
transforming the coordinates of objects for display and visualization into geographic coordinates, thereby move away from the rigid 
reference to the coordinates of the UAV. 

Conclusions. A workable logbook generation and storage system has been created, which takes into account the peculiarities of 
information presentation in the logbook, and ensures effective interaction of the components of the created information system within 
the proposed hardware and software complex, which allows organizing the process of researching water bodies using the SITL 
environment from the flight controller developers. 

KEYWORDS: UAV, flight controller, mission log, neural network, geographic coordinates, recognized images, forecast 
accuracy, image post-processing. 

 
ABBREVIATIONS 

AI stands for artificial Intelligence; 
FC is a flight controller; 
DDPG is a deep deterministic policy gradient; 
CTD is a conductivity temperature depth; 
MPS  is a multi-parameter sensor; 
LiDAR is a light detection and ranging; 
DEM is a digital elevation model; 
GPS is a global positioning system; 
RS is a remote sensing; 
RPAS is a Remotely Piloted Aircraft Systems; 
SfM is the Structure from Motion; 
IAS is a image alignment settings; 
KPL is a key point limit; 
PID control is a proportional-integral-derivative con-

trol; 
YOLO is the You Only Look Once; 
COCO is a Common Objects in Context; 
SPI is a serial peripheral interface; 
NIOT is the National Institute of Ocean Technology; 
MOES is the Ministry of Earth Sciences; 
PFC is a compared, including fixed parameters; 
PFC_FL is a parameters tuned using fuzzy logic, 
ІС is a information system; 
UAV is a unmanned aerial vehicle; 
BVLOS is a Beyond Visual Line of Sight; 
DCNN is a deep convolution neural network; 
DB is a database; 
EMA is a Efficient Multi-Scale Attention; 

GUI is a graphical user interface; 
CycleGAN is a Cycle-Consistent Generative Adver-

sarial Networks; 
COTS is the Commercial Off-The-Shelf; 
MIoU is the Mean Intersection over Union; 
NMPC is a nonlinear model predictive control; 
NN is a neural network. 

 
NOMENCLATURE 

Ap is a coordinates of the center of the rectangle in 
which the network detected the object; 

ws , hs is a dimensions of the original image from the 
camera; 

wp , hp is a dimensions of the image with which the 
neural network works; 

FOV  is a diagonal camera angle; 
Fx, Fy is a viewing angles of the camera along the 

horizontal and vertical axes; 
P is a yaw angle; 
R is a pitch angle; 
Y is a rotation of the resulting vector to the roll angle; 
Alt is a UAV altitude (height); 
N is a UAV latitude; 
E is a UAV longitude; 
-  is a binary operation that takes in two matrices of 

the same dimensions and returns a matrix of the multi-
plied corresponding elements. This operation can be 
thought as a “naive matrix multiplication” and is different 
from the matrix product; 
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-  the dot product or scalar product. 
 

INTRODUCTION 
The relevance of the project is due to the demand for 

UAV technologies with the integration of artificial 
intelligence in today’s conditions. 

The object of study is an information system for 
managing one UAV to perform geographic reconnais-
sance tasks and take biological or chemical water 
samples. 

The process of forming and downloading the flight log 
from detected AI images for further processing of mission 
results and linking to geographic coordinates was 
investigated. 

The subject of study is the implementation of AI 
technologies in the work of UAVs for the analysis of the 
state of water bodies, by organizing the interaction of 
UAVs with external (self-created) modules of the built 
information system. 

The purpose of the work is to develop a minimum 
working version of the UAV-researcher and software for 
managing UAV data. 

 
1 PROBLEM STATEMENT 

Due to the war, limited material and personnel 
resources, extraordinary security requirements, it is 
necessary for this type of UAV to solve the problem of 
taking water from reservoirs near cities, mountainous 
regions, where it is difficult to send expeditions, and 
together with the proposed information system, perform 
tasks patrols using trained AI to detect poaching boats, 
areas with high concentrations of garbage or fishing net 
buoys on the surface of water bodies. 

Given the coordinates of the drone (N, E, Alt), (P, R, 
Y) angles of the drone, the camera FOV expressed in 
degrees, (ws, hs), (wp, hp) and the Ap. 

The task of finding the (N, E, Alt) of the detected 
object with an accuracy of the found coordinates 
optimization criterion with the following constraints on 
the input and output variables: 

In asynchronous mode, after finding a certain image, 
the neural network of the RaspberryPi microcomputer 
calculates the corresponding geographical coordinates of 
the found object using the proposed mathematical trans-
formations and forms a flight log. 

The output variables are considered to be (N, E,, Alt), 
assuming the drone is moving over a flat water surface. E 
is limited to values between –180 and 180 degrees. N is 
bounded between –90 and 90 degrees. Alt can take any 
value in the range (-inf, inf). FOV must be within the 
range (0, 360] degrees. (ws, hs) must be greater than 0, 
bounded within (0, inf). (P, R, Y) angles are limited to 
values between –180 and 180 degrees. Coordinates Ap 
must be within the range [0, inf). 

 
2 REVIEW OF THE LITERATURE 

Path following is a critical challenge for small fixed-
wing UAVs [1]. This study introduces a Lyapunov-stable 

path guidance law designed to follow specific planar 
curved paths. To ensure smoothness, a modified satura-
tion function was developed for the guidance law. An 
analysis was conducted to explore the relationship be-
tween control parameters and input constraints, identify-
ing the appropriate parameter ranges. 

To optimize the guidance law parameters, the NMPC 
technique was applied, resulting in the PFC_NMPC 
method. This method enhances the UAV’s performance in 
following both straight-line and circular paths. Using 
Lyapunov stability arguments for switched systems, the 
stability of the nonlinear switched system was ensured. 

Square and circular paths were generated to evaluate 
the path-following control of a simulated fixed-wing 
UAV. Various guidance laws were compared, including 
those with PFC, parameters tuned using PFC_FL, 
PFC_NMPC, vector field, and pure pursuit with line-of-
sight. The PFC_NMPC method demonstrated superior 
performance, achieving faster convergence to the desired 
path and maximizing the effective flight path length. 

The study addresses [2] the challenge of maintaining 
high control performance for UAVs in harsh environ-
ments, focusing on trajectory tracking under wind distur-
bances, specifically average wind and wind shear. It high-
lights the need for timely disturbance compensation, 
which is often overlooked. 

To enhance control accuracy and robustness, a novel 
antidisturbance sliding mode control is developed based 
on a reference model. This method includes the use of 
state compensation function observers to improve the 
estimation of states and disturbances that are difficult to 
measure directly. Additionally, a tracking differentiator is 
employed to estimate and compensate for disturbance 
variations, increasing the system’s sensitivity to distur-
bances. 

The proposed observer and controller’s effectiveness 
and stability are analyzed. Verification is conducted 
through simulations and actual flights using multiple in-
dustrial fans to replicate average wind and wind shear 
conditions. The performance of the new method is com-
pared to state-of-the-art active disturbance rejection con-
trol and sliding mode control. Results show that the new 
method improves accuracy by over 61.2% compared to 
these existing methods. 

Heavy payload airdrops significantly alter flight dy-
namics, presenting a challenge for flight controller design 
[3]. This study addresses the control issues associated 
with aircraft performing heavy payload drops. A multi-
equilibrium switched systems approach is employed to 
model the substantial changes in flight dynamics and trim 
points during such missions, particularly when payloads 
are released from non-central positions. 

To ensure stability and minimize control bumps, a 
bumpless transfer switched controller is proposed. Unlike 
previous studies focusing on systems with a common 
equilibrium, this research extends stability conditions and 
bumpless transfer techniques to multi-equilibrium scenar-
ios. 
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Simulations and hardware-in-loop experiments vali-
date the proposed method, demonstrating its effectiveness 
in maintaining flight control system stability and achiev-
ing smooth transitions during payload drops [4]. This 
method offers a robust solution for managing the complex 
dynamics involved in heavy payload airdrop missions. 

This study introduces a trajectory tracking control 
method [4] for fixed-wing UAVs using DDPG. First, the 
trajectory control problem is integrated into a reinforce-
ment learning framework and converted into a Markov 
decision process, with a DDPG agent implemented in 
TensorFlow. 

Next, simulations were conducted to train and opti-
mize the model in a 3D environment for trajectory track-
ing control, resulting in a comprehensive DDPG-based 
controller capable of managing the UAV’s flight state and 
rudder control. 

Finally, a digital simulation system was built to test 
the proposed method, taking into account parametric un-
certainties, measurement noise, and control system re-
sponse delays. The effectiveness and robustness of the 
DDPG controller were validated by comparing its per-
formance with traditional PID control. 

The Gobi Desert in southern Mongolia contains an ex-
ceptionally rich record of dinosaur and vertebrate fossils 
from the latest Cretaceous Period [5]. Over a dozen sites 
across various basins have yielded one of the world’s 
most diverse palaeofaunas from this interval. Much of this 
diversity has been unearthed from the fluvial deposits of 
the Nemegt Formation. Despite extensive historical and 
ongoing research in southern Mongolia, accurate maps 
and detailed geological data for the main fossil sites are 
still lacking. This gap limits the ability to investigate how 
local palaeoecological dynamics influenced the distribu-
tion and evolutionary patterns of Nemegt taxa. One sig-
nificant site, Guriliin Tsav, has yielded over a hundred 
notable fossil specimens but remains less studied com-
pared to the nearby Bügiin Tsav, one of the most prolific 
Nemegt Formation localities. To address this, a project 
was initiated in 2018 to create a high-resolution topog-
raphic map of Guriliin Tsav using UAVs. This effort in-
cluded plotting the geographic and stratigraphic distribu-
tions of palaeontological resources on the map. Addition-
ally, stratigraphic and taphonomic data were collected, 
enabling the first detailed palaeoecological interpretation 
of Guriliin Tsav and comparison with other southern 
Mongolian localities. The results of this project, along 
with new topographic and stratigraphic data from Bügiin 
Tsav, are presented. These findings provide new insights 
into the temporal and geographic distribution of verte-
brate taxa in the latest Cretaceous of Mongolia. 

Drones, or UAVs, have gained significant importance 
worldwide for various commercial and defense applica-
tions [6]. The NIOT under the MOES is focusing on mari-
time applications of UAVs. A heavy-lift drone has been 
customized by NIOT for marine environments, capable of 
withstanding coastal wind conditions up to 40 kmph and 
carrying an instrumentation payload of 10 kg. This UAV 
can collect ocean data and perform seawater sampling. 

The payload may include a CTD sensor, a programmable 
seawater sampler, a MPS for ocean data collection, and a 
LiDAR device integrated with a high frame rate camera 
system for coastal mapping and DEM development. The 
hexacopter UAV can endure winds up to 10 m/s and fea-
tures a waterproof IPX7 thruster with a maximum thrust 
of 153 N per axis. It is equipped with a GPS, a barometric 
pressure sensor, a compass, a highly accurate gyroscope, 
a 15 MP surveillance camera, and an accelerometer sen-
sor, all connected to a reliable cube orange flight control-
ler module with a redundant 32-bit controller via a SPI. 
The drone’s structure and frame are made of carbon fiber 
composites, providing an excellent weight-to-strength 
ratio. Initial field tests were conducted to ensure the 
drone’s suitability for various marine applications with 
payloads ranging from 5–10 kg, including coastal demon-
strations and ocean data collections performed in the 
coastal waters of Nellore (Andhra Pradesh) and Chennai 
(Tamil Nadu). 

Cracks serve as the primary indicators of the structural 
health of concrete structures [7]. Frequent inspection is 
essential for maintenance, and automatic crack inspection 
offers significant advantages in terms of efficiency and 
accuracy. Traditional image-based crack detection sys-
tems have been used for individual images, but they are 
not effective for inspecting large areas. Therefore, an im-
age-based crack detection system using a DCNN is pro-
posed to identify cracks in mosaic images composed of 
UAV photos of concrete footings. UAV images are trans-
formed into 3D footing models, from which composite 
images are created. The CNN model is trained on 224 × 
224 pixel patches, with training samples augmented 
through various image transformation techniques. The 
proposed method localizes cracks on composite images 
using the sliding window technique. The VGG16 CNN 
detection system, with a 95% detection accuracy, demon-
strates superior performance compared to feature-based 
detection systems. 

The fine-scale spatial heterogeneity of low-growth 
Arctic tundra landscapes requires high-resolution remote 
sensing data to accurately detect vegetation patterns [8]. 
Although multispectral satellite and aerial imaging, in-
cluding UAVs, are commonly used, hyperspectral UAV 
imaging has not been thoroughly explored in these eco-
systems. In this study, the added value of hyperspectral 
UAV imaging compared to multispectral UAV imaging 
was assessed for modeling plant communities in low-
growth oroarctic tundra heaths in Saariselkä, northern 
Finland. Three different spectral compositions were com-
pared: 4-channel broadband aerial images, 5-channel 
broadband UAV images, and 112-channel narrowband 
UAV images. Vascular plant aboveground biomass, leaf 
area index, species richness, Shannon’s diversity index, 
and community composition were estimated based on 
field vegetation plot data. Spectral and topographic in-
formation were used to compile 12 explanatory datasets 
for random forest regression and classification. The high-
est R² values for aboveground biomass and leaf area index 
were found to be 0.60 and 0.65, respectively, with broad-
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band variables being the most important. In the best mod-
els for biodiversity metrics, species richness and Shan-
non’s index had R² values of 0.53 and 0.46, respectively, 
with hyperspectral, topographic, and multispectral vari-
ables showing high importance. For four floristically de-
termined community clusters, random forest classifica-
tions and fuzzy cluster membership regressions were con-
ducted, with the overall accuracy for classification reach-
ing 0.67 at best, and cluster membership estimated with 
an R² of 0.29–0.53. Variable importance depended heav-
ily on community composition, with topographic, multis-
pectral, and hyperspectral data all selected for these mod-
els. Hyperspectral models generally outperformed multis-
pectral ones when topographic data were excluded. When 
topographic data were included, the performance differ-
ence was reduced, with hyperspectral data improving R² 
values by 0–10 percentage points, mainly in metrics with 
lower initial R² values. These findings suggest that while 
hyperspectral imaging can outperform multispectral imag-
ing, multispectral and topographic data are generally suf-
ficient for practical applications in tundra heaths 

Coral reefs provide a range of ecological services and 
support highly diverse coastal ecosystems [9]. However, 
the extent of living corals has been reduced by half glob-
ally due to anthropogenic and natural stressors. Continu-
ous monitoring using accessible RS methods to map coral 
habitats is necessary for effective conservation and man-
agement strategies. Recently, the use of RPAS for coral 
reef RS has increased. Image misalignment is considered 
a key problem in the SfM workflow. Combinations of 
IAS and KPL optimizations aim to improve the quality of 
the sparse cloud while lowering SfM reconstruction un-
certainty, increasing projection accuracy, and ultimately 
improving coral habitat classification accuracy. Orthoi-
mages were produced from a total of 25 combinations of 
IAS (lowest, low, medium, high, and highest) and KPL 
(5k, 10k, 20k, 40k, and 60k) using Agisoft™ Metashape 
software. Measurements of geometric distortion, effi-
ciency, and completeness were used to evaluate these 
orthoimages with three visible bands. Results that satis-
fied the requirements for both geometric quality and spec-
tral accuracy, as well as processing efficiency, identified 
the optimum alignment methods needed for routinely 
monitoring and mapping coral reefs of Pulau Bidong. The 
SfM-image alignment techniques chosen for this study 
produced a greater extent of coral mapping, a higher 
number of tie points and matches, better image alignment 
success and coral habitat classification accuracy, reduced 
processing time and memory usage, and no geometric 
distortions. The development of the methodology for the 
optimum parametrization of RPAS multispectral imagery 
would be beneficial to researchers studying coral reefs, 
marine sciences, and RS data analysts. Reliable methods 
for evaluating the quality of orthoimages and faster proc-
essing methods to achieve coastal RS objectives would be 
provided. 

In the context of today’s pressing air pollution chal-
lenges, accurate and consistent air pollution mapping is 
deemed crucial for understanding pollutant distribution 

and identifying pollution sources [10]. While current 
technologies, including sensors and UAVs, have started 
addressing this issue, the full potential of UAV-based 
solutions remains largely untapped. This pioneering nu-
merical study demonstrates the effective feasibility of 
precise and consistent air pollution mapping in local areas 
that exceed the coverage capacity of a single UAV. The 
approach involves employing multiple UAVs, which re-
quires rigorous mission planning encompassing various 
complex stages. These stages include subdividing the 
mapping area into manageable sub-areas, evaluating the 
technical capabilities of each UAV, assigning specific 
tasks to UAVs, and conducting individual mapping opera-
tions. By endowing UAVs with full autonomy, horizontal 
air pollution maps are generated across different layers 
within the designated area. This method’s distinct advan-
tage is its simultaneous acquisition of vertical profiles at 
all points within the study region, eliminating the need for 
additional efforts. Through strategic technical analysis, it 
was revealed that each UAV’s mission coverage area 
could be expanded by over 30%, leading to more consis-
tent air pollution mapping. Furthermore, this finding sug-
gests a reduction of up to 25% in the total number of 
UAVs required for studies covering significantly larger 
areas. 

Saltwater intrusion [11], a natural process of mixing 
freshwater from watersheds with seawater, is common in 
estuaries. Traditional station-based monitoring of saltwa-
ter intrusion is both time-consuming and labor-intensive. 
To facilitate rapid monitoring, this study devised new 
remote sensing algorithms for measuring water surface 
salinity, employing four decision tree-based machine 
learning models. These models were trained using in-situ 
salinity data collected concurrently with hyperspectral 
images from UAVs in the Pearl River Delta. A 10-fold 
cross-validation assessed model performance, with 
XGBoost emerging as the top performer (R2=0.93, 
RMSE = 0.88 psu). Subsequently, the developed model 
was applied to Sentinel-2 multispectral satellite images to 
estimate estuarine salinity distribution at a larger spatial 
scale. The results showcased the efficacy of the machine 
learning models proposed in this study for mapping salin-
ity distribution in river channels, thus offering an efficient 
and practical approach for monitoring saltwater intrusion 
in river channels at a regional scale. 

Peach cultivation is of significant economic impor-
tance, and obtaining the spatial distribution of peach or-
chards is crucial for yield prediction and precision agri-
culture. In this study, a new U-Net semantic segmentation 
model is introduced, utilizing ResNet50 as a backbone 
network and augmented with an EMA mechanism module 
and a LayerScale adaptive scaling parameter [12]. To 
address style differences between images from UAV, 
Google Earth, and Sentinel-2 satellite, CycleGAN are 
incorporated. This synthesis ensures that UAV images 
conform to a comparable style found in Google Earth and 
Sentinel-2 images, while feature details of high spatial 
resolution UAV images are transferred to Google Earth 
and Sentinel-2 images through transfer learning. The re-
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sults demonstrate that using ResNet50 as a backbone net-
work for the U-Net model yields higher accuracy com-
pared to using VGG16 for the U-Net model. Specifically, 
the MIoU values for UAV and Sentinel-2 images are 
higher by 0.49 % and 0.95 %, respectively. The MIoU 
values for UAV, Google Earth, and Sentinel-2 images 
increased by 0.87 %, 1.71 %, and 1.74 %, respectively, 
with the introduction of EMA. Additionally, with the in-
troduction of LayerScale adaptive scaling parameters, the 
MIoU values increased by 0.31 %, 0.33 %, and 1.44 %, 
respectively, further enhancing the segmentation accuracy 
of the model. After applying CycleGAN and transfer 
learning, the MIoU increased by 1.02 %, 0.15 %, and 1.57 
% for UAV, Google Earth, and Sentinel-2 images, respec-
tively, resulting in MIoU values of 97.39 %, 92.08 %, and 
84.54 %. The comparative analysis with DeepLabV3+, 
PSPNet, and HRNet models demonstrates the superior 
mapping performance of the proposed method. Moreover, 
the method exhibits good generalization and mapping 
speed across six test sites in the research area. Overall, 
this approach ensures high precision and efficiency in 
peach orchard mapping, accommodating various spatial 
resolutions, and holds potential for addressing diverse 
requirements in peach orchard mapping applications. 

Cost-effective vision-based obstacle avoidance for 
UAVs operating in GPS-denied environments is dis-
cussed in this paper [13]. The system combines the 
YOLO architecture with stereo vision cameras (OAK-D 
Lite), a Raspberry Pi computer, and a flight controller unit 
(Pixhawk-Cube). Navigating safely through obstacles 
becomes challenging for UAVs in GPS-denied environ-
ments. To address this issue, the drone is configured in 
altitude hold mode, and the system is trained on the 
COCO dataset, enabling it to recognize objects and ana-
lyze the surrounding areas to identify free spaces. By do-
ing so, the drone can traverse an obstacle-free path. The 
detected obstacle information is then utilized to generate 
avoidance trajectories, allowing the UAV to navigate 
around obstacles safely. Real-Time testing of the pro-
posed technique demonstrates its efficacy in detecting and 
avoiding obstacles within a threshold distance of 2 me-
ters, with an error rate of 10%. The drone’s relative speed 
is configured at 2 m/s during these tests. 

In this paper [14], the focus lies on achieving precise 
position and attitude data for drones in GPS-denied envi-
ronments by integrating SLAM to provide visual meas-
urements for EKF, thereby ensuring operational stability. 
An experiment was conducted to execute commands from 
the ground control PC using the map created through 
SLAM. The primary tools utilized included the Pixhawk 
Orange, Jetson Nano, and the ZED-Mini camera. The 
research highlights the effectiveness of these tools and 
methods in improving indoor drone functionality. 

At present [15], owing to the growing interest in 
UAVs and the continuous advancement of the UAV mar-
ket and artificial intelligence technologies, this branch of 
robotics is increasingly penetrating various sectors of the 
economy. The rising popularity of fast and lightweight 
vehicles like UAVs has led to an increased demand for 

efficient flight path planning algorithms to achieve di-
verse objectives such as overflight, obstacle detection, 
and collision avoidance. Our algorithm achieves one of 
these objectives by navigating around static obstacles in 
3D space using a sparse weighted graph. A hybrid method 
has been devised to determine the safest and fastest route 
based on Dijkstra’s algorithm, which operates with satel-
lite images of various terrain classifications. The novelty 
of the proposed algorithm lies in the integration of artifi-
cial neural networks for terrain class categorization and 
utilizing this data in flight task planning. The concept 
involves charting a route over the safest terrain to ensure 
that in the event of an emergency descent or landing, the 
UAV remains locatable. This approach is more memory-
efficient as it does not necessitate storing all vertices in an 
open list, unlike algorithms with similar functionality. 
Alongside the software architecture, the most suitable 
hardware architecture for the intended purpose –
delivering cargo to challenging terrain – is presented. 

This paper [16] introduces a novel software package 
named RoboPV for autonomous aerial monitoring of PV 
plants. RoboPV automates the aerial monitoring process, 
from optimal trajectory planning to image processing and 
pattern recognition for real-time fault detection and analy-
sis. RoboPV comprises four integrated components: 
boundary area detection, path planning, dynamic process-
ing, and fault detection. To design an optimal flight path, 
aerial images of PV plants are inputted to a developed 
encoder-decoder deep learning architecture to automati-
cally extract boundary points. Then, a novel path planning 
algorithm is executed by RoboPV to design an optimal 
flight path covering the entire PV plant regions. A high-
precision neural network trained for automatic fault detec-
tion analyzes aerial images in real-time during the flight. 
Several decision-making and maneuver algorithms are 
developed for various real-world flight conditions to en-
hance RoboPV’s performance during autonomous aerial 
inspection. RoboPV is a modular processing library 
installable on any micro-computer processor with low 
computational power. Additionally, support for the 
MAVLink communication protocol allows RoboPV to 
connect with an intelligent Pixhawk flight autopilot and 
navigate various multi-rotors. To demonstrate RoboPV’s 
performance, a six degrees of freedom dynamic model of 
a multi-rotor is developed in a SIMULINK environment 
with a defined aerial monitoring mission on three differ-
ent real megawatt-scale PV plants. The results demon-
strate that RoboPV can execute autonomous aerial inspec-
tion with an overall accuracy of 93% for large-scale PV 
plants. 

The ADACORSA demonstrator focuses on imple-
menting a fail-operational avionics architecture that com-
bines COTS elements from the automotive, aerospace, 
and artificial intelligence sectors [17]. A collaborative 
sensor setup, including a Time-of-Flight camera and 
FMCW RADAR from Infineon Technologies, stereo 
camera, LiDAR, IMU, and GPS, facilitates testing of het-
erogeneous sensor fusion solutions. A Tricore Architec-
ture on AURIX™ Microcontroller supports safety super-
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vision tasks and data fusion. An embedded computer plat-
form (NVIDIA Jetson Nano) enhances AI algorithm per-
formance and data processing. Additionally, an FPGA 
optimizes power consumption of Artificial Neural Net-
works. Lastly, a Pixhawk open-source flight controller 
ensures stabilization during normal flight operations and 
provides computer vision software modules for further 
processing of captured, filtered, and optimized environ-
mental data. This paper presents various hardware and 
software implementations, showcasing their emerging 
application within BVLOS drone services. 

Increasing productivity, reducing task completion 
time, scaling processing, excluding humans from the 
process of performing routine tasks, and ensuring online 
collection and processing of information are relevant for 
the operation of UAVs processes [18, 19]. 

The relevance of the project is due to the demand for 
UAV technologies with the integration of artificial 
intelligence in today’s conditions in the direction of 
creating an on-board logbook and transforming 
coordinates for the detection of objects on the surface of 
water bodies. 

 
3 MATERIALS AND METHODS 

The process of patrolling the surface of reservoirs and 
determining and identifying objects on their surface is 
based on interaction with a neural network, the work, 
structure and learning process of which are described in 
detail in [20]. For the specified neural network, tools 
should be developed to create an on-board flight log and 
report on found objects. The Ultralytics API was chosen 
to interact with the model. It is worth noting that the 
OpenCV library was used for image processing, as its 
functionality allows you to switch from processing test 
data from the media to processing data from the camera. 

During the development of the system, a problem 
arose: due to the reduction of the accuracy threshold for 
the neural network, it began to recognize one object as 
different objects of different classes. 

In order to avoid this phenomenon, which would lead 
to the overflow of the local UAV storage with a large 
number of photos of the same object, it was decided to 
add a stage of post-processing of NM predictions, which 
will be based on an algorithm similar to the filtering 
algorithm already implemented in NM, which suppresses 

re-detection of the object by the network and is based on 
the area of intersection of the detected rectangles. 

Accordingly, these results should be stored in the 
database as found objects. To perform this stage, the 
creation of a log using the tinydb library was 
implemented. Since this module does not support storing 
photos in the database, file names with unique identifiers 
will be used as record objects (Fig.1). Also, due to the 
remarks made in the AI training section, it would be 
logical to store the image from which the elements were 
extracted. As a result, it was possible to create logs for a 
completed mission using test images, which show that 
there is no duplication of information (Fig. 2). 

One of the features of the information system of this 
project is that within this system there are simultaneously 
two subsystems (the UAV and the user), one of which 
(the UAV) can play the role of an actor for the other (the 
user). For the user subsystem, precedents of data loading, 
display with filtering and creation of mission data by the 
user were selected. Accordingly, an integral part of this 
subsystem is a user database that will store data about 
missions, user-provided points, tasks associated with 
them, and will also provide the ability to save found 
objects in the form of images. Because of this, special 
PostgreSQL data types such as dot and bytea came in 
handy. The dot type allows you to store an actual pair of 
values of any type, which in our case will be the 
DECIMAL(10,7) type – a number of 10 characters with 7 
decimal places, which was taken from PC standards, in 
which geographic data has a significant part up to 7-th 
sign after the comma. The bytea data type allows you to 
store an array of bytes and is suitable for storing images, 
since the request to download, the image does not have to 
open the files name and perform read operations from the 
file on the server, which would significantly increase the 
operating time in the case of a database containing a large 
number found objects. As already mentioned, in the 
section of the analysis of ready-made solutions for a 
custom application, it would be possible to use a ready-
made application, provided that the functionality of 
planning missions and displaying images in the database 
is available, but this was not found. 

The UAV configuration environment MissionPlanner 
was the closest to the goals of the task, which allows you 
to plan missions and  even perform certain manipulations 

 

  
Figure 1 – The contents of the 
log and input image directories 

Figure 2 – Selected saved objects 
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with servomotors in them, but it, like the selected flight 
controller, does not have functionality for working with 
images, as well as functionality for planning the work of 
NM. Accordingly, it was decided to create our own 
application in Python using the TKinter library. 

File description: 
– Overwatch_GUI.py – the main file that starts the 

application; 
– Nav.py – a file containing a class for the application 

to work with geographical data, their conversion into 
window coordinates and vice versa; 

– Frames.py – contains a description of all the 
windows used in the application and describes the logic of 
their operation; 

– Db_interdace.py – a copy of a similar file from the 
UAV functional development section, contains a class for 
describing database connection management as well as 
predefined database interaction procedures. 

Fig. 3 graphically illustrates infographic design of the 
information system being created, in particular, an ER 
diagram of the subject area is given. 

This database architecture allows you to perform the 
design of UAV missions at the expense of the mission, 
waypoints tables and store the found results in the table 
objects found. 

The custom application was designed to resemble the 
environment’s mission planner MissionPlanner (Fig. 4). 

Unfortunately, in the process of work, it was 
discovered that the developers of the mission planner used 
the TeleAtlas map from TerraMetrics (Fig. 5), which does 
not provide geodata for free. Because of this, it was 
decided to postpone the development of the map until any 

alternative was found. The difference between this type of 
map and, for example, OpenStreet map, is the satellite 
survey data superimposed on a coordinate grid from a 
three-dimensional scan of the terrain, provided to the user 
in  response  to  a  request  for  coordinates  in the form of 
raw” data with which the user can do anything. At the 
same time, OpenStreet map requires integration into an 
existing widget, which may not provide such functionality 
as, for example, feedback on the coordinates of the point 
where the user clicked on the map. 

– mission planning window; 
– window for viewing observation results. 
The combination of these two windows satisfies the 

needs of the user. Since calling a separate window for 
planning and displaying results would violate the user’s 
sense of integrity, it was decided to create a user interface 
with a single map area and panels that would reflect the 
functionality of the current “window”. The result was the 
following window forms (Fig. 6, Fig. 7). 

You can see that the created planner has the same 
functionality as the Mission Planner, but is enhanced with 
a log tab where you can view grouped observations. It is 
worth noting that the grouping of objects occurs using the 
extract_clusters method from the db_interface.py file. 
Objects are glued into a single cluster if the distance 
between them is less than or equal to one-twentieth of the 
minimum value between the horizontal and vertical fields 
of view. In this case, a cluster of images is formed and the 
point with the found object should be displayed not in 
lilac, but in blue. Also, the name of the object is changed 
“from the  one  that  was  recorded in the database during 

 
 

 
Figure 3 – ER- diagram of the subject area Figure 4 – Mission planner MissionPlanner 

 

 
Figure 5 – Marking the map in the Mission Planner environment with data provider companies 
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loading to “Object cluster #....”. The coordinate grid is 
less interactive and does not allow you to move with the 
mouse, instead a button to change the grid coordinates has 
been added. When you click it, the following window for 
changing the viewing area appears (Fig. 8). 

After entering the longitude and latitude coordinates 
(Fig. 9), the entered data is checked and, provided that the 
check was successful, the coordinate grid is rescaled 
(Fig. 10). 

When you click on a cluster, a dialog box is called in 
which you can see information about the objects found in 
this area (Fig. 11). 

Based on the training results, a conclusion was made 
about the similarity of the training results for the two 
models. This gave us reason to believe that in our case the 
models behave equally badly and it is necessary to find a 

solution to this problem, either in the development 
process, or to provide recommendations that can improve 
the quality of training in the future. Because a search on 
the Internet led to developer notes, which stated that such 
situations can occur due to discrepancies between the 
nature of the origin of the dataset and the nature of the 
actual images, poor image quality, or poor image markup 
quality. The way out of this kind of problems can be a 
radical change of dataset for training. It was decided to 
continue development, to take into account that the 
system is provided with additional functionality in the 
form of collecting a dataset for further training, and for 
current use the YOLOv5 model is taken due to its smaller 
number of parameters and, accordingly, the need for 
computing power. 

 

 
 

Figure 6 – Mission planning window 
 

 
Figure 7 – Mission log window  

 

 
 

Figure 8 – Window for changing the viewing area 

 
 

Figure 9 – New limits of the coordinate grid 
  

 
 

Figure 10 – Zoomed log window with redistributed clusters 
 

Figure 11 – Dialog window for displaying information about 
objects 
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Since the coordinates of the UAV are known, the 
missions (by default) are performed over a flat surface, 
the data related to its orientation in space, as well as the 
control of the tilt angle of the camera is done using a non-
autonomous 2-axis gimbal. It becomes possible to solve 
the problem of linking the coordinates of the found object 
not to the place from which the shooting took place, but to 
the approximate location of the object itself. The 
algorithm for solving this problem consists of the 
following stages: 

– Transferring coordinates from the image coordinate 
system to the camera’s angular coordinate system, taking 
into account its parameters; 

– Transferring the coordinates obtained in the 
previous stage to the coordinates of the beam, which 
indicates the direction from the UAV to the found object 
in the coordinate system related to the system of roll, yaw 
and pitch angles of the UAV, which will be related to 
such quantities as the direction to the south and an angle 
with the horizontal plane; 

– Finding the coordinates of the point of intersection 
of the ray and the plane of the reservoir. 

The mathematical description for the first stage is 
given below.  

Since the neural network works with 640x640 images, 
it is necessary to translate these coordinates back to the 
coordinates of the original image: 
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The coordinates of the original image must be 
normalized within the limits {–1;1} by the formula (2): 
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Calculation of beam angles in the camera coordinate 
system is carried out as follows. Considering that the 
camera manufacturer specified the angle of its field of 
view as the length in degrees of the captured image 
diagonal, it is possible to translate the image coordinates 
into the beam coordinates as follows: 
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The coordinates are as: 
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Mathematical description for the second stage: 
The transfer to the UAV coordinate system occurs as 

a sequential transfer of the angle (see the first stage of the 
mathematical description) to P, R and Y angles. 
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Mathematical description for the third stage: 
Calculation of displacement in meters in the UAV 

coordinate system with reference to Alt looks like this 
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Translation of the shift (see stage 2 of the 

mathematical description) into a shift in geodetic 
coordinates with reference to the location of the UAV (N, 
E, Alt : 
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The proposed mathematical description, which 
calculates the coordinates of the object based on the 
dimensions of the original image from the camera, the 
dimensions of the image with which the neural network 
works, the angle of the field of view of the camera, the 
position of the UAV and the angles of roll, pitch and yaw, 
allows you to transfer the coordinates of the object found 
by the NN, in the image to geographic coordinates, 
thereby moving away from the rigid reference to UAV 
coordinates. 

 

4 EXPERIMENTS 
The computer program implementing the proposed 

method, which complements mission planning, 
recognition of found objects using neural network 
technologies, and the process of creating a mission log for 
subsequent processing. 

The simulation places the UAV by default on the 
coast of Australia, so it was decided to demonstrate a test 
flight in this area (Fig. 12). 

The approximate starting point of the mission is given 
on Fig. 13. 
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Setting the coordinate grid of the planner for a given 
area is shown on Fig. 14. 

The mission route in the written mission planning 
environment is shown in Fig. 15. The current image of the 
mission contains a display of the mission trajectory on the 
map and a list with the possibility of editing the 
coordinates of reference points. It is possible to enter and 

edit the name of the mission when opening it for 
uploading to the database. 

The request to display the newly saved data in the 
database has the form shown in Fig. 16. In Fig. 16, a) 
shows a table characterizing the missions, and Fig. 16, b) 
the table of reference points of the mission is displayed. 

 

 

 
 

Figure 12 – The starting point of the simulation Figure 13 – Mission start point (approximate) 
  

Figure 14  – Setting the coordinate grid of the planner for a 
given area 

Figure 15  – A mission route in a written mission planning 
environment 

  

а b 
Figure 16 – Request to display newly saved data in the database: 

a – table characterizing the missions; b –  table of reference points of the mission 
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In the future, it is necessary to launch the UAV 
system. In Fig. 17 shows the movement of the UAV along 
the reference points of the mission, the special 
designations for the initial and next points and the 
conventional designations of the UAV rotors are 
illustrated. The results of observations downloaded from 
the logbook into the database are shown in Fig. 18. 

 
5 RESULTS 

Accordingly, the new images from the database, 
which were displayed in the graphical user interface, have 
the form shown in Fig. 19. Fig. 19, a has a greater degree 
of distance, and Fig. 19, b illustrates the process of 
revealing clusters of images when zooming in. 

We can see 2 clusters corresponding to the position of 
the view points that were described in the mission 

description. The images in the clusters correspond to the 
test images. 

The images in the upper cluster are shown in Fig. 20. 
These include group (Fig. 20, a) and individual (Fig. 20, 
b) images. A more detailed study of object detection 
accuracy and methods of increasing it are described in the 
work of the authors [20]. 

In this way, the functionality of the system was tested, 
the generation and saving of the logbook was tested, the 
features of information presentation in the logbook were 
considered, the effectiveness of the interaction of the 
components of the created information system was 
evaluated, the operation of the proposed hardware and 
software complex for the study of water bodies was 
analyzed using the SITL environment from the flight 
controller developers. 

 
 

 
Figure 17  – Movement of the UAV along mission reference 

points 
Figure 18  – The results of observations downloaded to the 

database from the logbook 
  

а b 
Figure 19 – New images from the database that were displayed in the graphical interface 

a – has a greater degree of remoteness; b – illustrates the process of revealing clusters of images when zooming in 
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а b 
Figure 20 – Examples of images received by the user from UAVs 

a – group images; b – single images 
 

6 DISCUSSION 
In the process of developing the system, a problem 

arose: due to the reduction of the accuracy threshold for 
NM, it began to recognize one object as different objects 
of different classes. In order to avoid this phenomenon, 
which would lead to the overflow of the UAV’s local 
storage with a large number of photos of the same object, 
it was decided to add a stage of post-processing of the 
predictions of the neural network, which will be based on 
an algorithm similar to the filtering algorithm already 
implemented in the neural network, which suppresses re-
detection of the object by the network and is based on the 
area of intersection of the detected rectangles. In this way, 
it was possible to propose a mechanism for creating a 
flight log and implement a hardware and software 
complex of an information system for uploading 
information about the mission to the database by certain 
means and further work with this data regarding the 
classification and recognition of relevant objects. 

 
CONCLUSIONS 

The problem of systematization of objects detected 
during the mission on the surface of water bodies was 
solved by creating a flight log, organizing interaction with 
a neural network, applying post-processing of recognized 
objects, mathematically transforming the coordinates of 
objects for display and visualization into geographic 
coordinates, thereby moving away from rigid binding to 
UAV coordinates. 

The scientific novelty of obtained results is that the 
proposed mathematical description, which calculates the 
coordinates of the object, based on the dimensions of the 
original image from the camera. The dimensions of the 
image with which the neural network works, the angle of 
the camera’s field of view, the position of the UAV and 
the angles of roll, pitch and yaw, allow you to transfer the 
coordinates of the object found by the NM in the image to 
geographic coordinates, thereby moving away from the 
rigid reference to the coordinates of the UAV. 

The practical significance of obtained results is that a 
workable logbook generation and storage system has been 
created, which takes into account the peculiarities of 
information presentation in the logbook, and ensures 
effective interaction of the components of the created 
information system within the proposed hardware and 
software complex, which allows organizing the process of 
researching water bodies according to using the SITL 
environment from the flight controller developers. 

Prospects for further research are to study the 
proposed set of indicators for a broad class of practical 
problems. Prospects for further research should include 
the need to implement and test the developed hardware 
and software complex for collecting statistical data on the 
recognition and classification of objects for a specific 
field of application with a certain nomenclature of 
objects. 
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AНОТАЦІЯ 
Актуальність роботи обумовлена попитом на технології БПЛА з інтеграцією штучного інтелекту в умовах сьогодення.  
Мета роботи – розробити мінімальну робочу версію БПЛА-дослідника та програмного забезпечення для керування да-

ним БПЛА.  
Метод. Запропоноване математичне описання, яке вираховує координати об’єкту, спираючись на  розміри оригінально-

го зображення від камери,  розміри зображення з яким працює нейромережа, кут поля зору камери, положення БПЛА та 
кути крену, тангажу та рискання, дозволяє перенести координати об’єкту, знайденого НМ,  на зображенні у географічні 
координати, тим самим відійти від жорсткої прив’язки до координат БПЛА.  
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Результати. Було вирішено проблему систематизації детектованих в ході місії об’єктів на поверхні водойм шляхом фо-
рмування журналу польоту, організації взаємодії з нейромережею, застосування пост обробки розпізнаваних об’єктів, мате-
матичного перетворення координат об’єктів для відображення і візуалізації у географічних координати, тим самим відійти 
від жорсткої прив’язки до координат БПЛА.  

Висновки. Створено працездатну систему генерації та збереження бортового журналу, яка враховує особливості пред-
ставлення інформації в бортовому журналі, та забезпечує ефективну взаємодію компонентів створеної інформаційної сис-
теми у межах запропонованого апаратно-програмного комплексу, що дозволяє організувати процес дослідження водойм за 
допомогою середовища SITL від розробників польотного контролеру.  

КЛЮЧОВІ СЛОВА: БПЛА, польотний контролер, журнал місії, нейронна мережа, географічні координати, розпізнані 
зображення, точність прогнозу, постобробка зображень. 
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