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ABSTRACT 
Context. In recent years, the topic of deploying informational infrastructure in a multi-cloud environment has gained popularity. 

This is because a multi-cloud environment provides the ability to leverage the unique services of cloud providers without the need to 
deploy all infrastructure components inside them. Therefore, all available services across different cloud providers could be used to 
build up information infrastructure. Also, multi-cloud offers versatility in selecting different pricing policies for services across 
different cloud providers. However, as the number of available cloud service providers increases, the complexity of building a cost-
optimized deployment plan for informational infrastructure also increases. 

Objective. The purpose of this paper is to optimize the operating costs of information infrastructure while leveraging the service 
prices of multiple cloud service providers. 

Method. This article presents a novel cost optimization method for informational infrastructure deployment in a static multi-
cloud environment whose goal is to minimize the hourly cost of infrastructure utilization. A genetic algorithm was used to solve this 
problem. Different penalty functions for the genetic algorithm were considered. Also, a novel parameter optimization method is 
proposed for selecting the parameters of the penalty function. 

Results. A series of experiments were conducted to compare the results of different penalty functions. The results demonstrated 
that the penalty function with the proposed parameter selection method, in comparison to other penalty functions, on average found 
the best solution that was 8.933% better and took 18.6% less time to find such a solution. These results showed that the proposed 
parameter selection method allows for efficient exploration of both feasible and infeasible regions. 

Conclusion. A novel cost optimization method for informational infrastructure deployment in a static multi-cloud environment is 
proposed. However, despite the effectiveness of the proposed method, it can be further improved. In particular, it is necessary to 
consider the possibility of involving scalable instances for informational infrastructure deployment. 

KEYWORDS: cost optimization, information infrastructure, initial placement, multi-cloud, parameters selection method, 
penalty function. 

 
ABBREVIATIONS 

VM is a virtual machine; 
GA is a genetic algorithm; 
AWS is an Amazon web services; 
vCPU is a virtual central unit processor. 
 

NOMENCLATURE 
P is a set of cloud service providers; 
G is a set of virtual machines with general-purpose 

specialization that are available in all cloud service 
providers P;	 

A is a set of application components which define 
information infrastructure; 

S is a relation matrix (A×A) of application components 
that must be deployed within the same cloud provider; 

D is a relation matrix (A×A) of application 
components that should be placed in different clouds; 

R is a set of availability zones, that are available in all 
cloud providers P; 

Bra is a relationship matrix (R×A) which defines the 
possibility of deploying application component aA in 
availability zone rR. 

Cprg is a hourly price of on-demand usage of a virtual 
machine at the provider pP, in the region rR of class 
gG. 

Xaprg is a binary decision variable equal to 1 when 
component aA is placed at the provider pP, in the 
region rR, of the VM class gG, and 0 otherwise; 

Wpg is a number of CPU cores of virtual machine type 
gG from the cloud provider pP; 

Wa
min

 is a minimum required number of CPU cores for 
application component aA; 

Epg is a amount of memory of virtual machine type g 
 	G from the cloud provider pP; 

Ea
min is a minimum required amount of memory for 

the application component aA; 
s is a number of constraints that have been met; 
m is a total number of constraints; 
ri is a penalty weight multiplier that inequity 

constraints impose when violated; 
cj is a penalty weight multiplier that equity constraints 

impose when violated. 
 

INTRODUCTION 
Cloud computing gained popularity in the last decade 

and continues to be relevant in our time [1]. Cloud 
computing is a model for enabling ubiquitous, convenient, 
on-demand network access to a shared pool of 
configurable computing resources (e.g., servers, storage, 
applications, services, and networks) that can be rapidly 
provisioned and released with minimal management effort 
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or service provider interaction [2]. The significant 
advantage of using the cloud provider’s services is the 
ability to rapidly scale infrastructure components. This 
advantage is achieved due to the rapid provision of 
additional computing services for a certain period, which 
allows to overcome spikes in service demand. This makes 
cloud computing superior to on-premise solutions, as their 
computing resources cannot scale with the same ease and 
speed. 

In turn, the combination of on-premise data centers 
and services of cloud providers is widely used in the 
industry for hosting information infrastructure. This 
approach is called a hybrid cloud. In such an approach, 
the services of cloud providers are often used to handle 
high demand, while the main computational resources are 
concentrated in on-premise data centers. However, while 
this approach solves the problem of limited scalability of 
on-premise data centers, it is not a long-term solution 
because on-premise data centers require constant support 
and updates. 

According to statistics for 2023, about 92% of 
companies plan or already stick to a multi-cloud approach 
for service deployment [3, 4]. This statistic is primarily 
associated with the advantages provided by a multi-cloud 
in comparison to the use of a single-cloud provider. The 
biggest disadvantage of using the services of only one 
provider is the problem of vendor lock. Vendor lock 
refers to a situation where an organization becomes 
heavily dependent on a specific cloud service provider. 
This dependency restricts the ability to switch to another 
cloud provider without spending a substantial budget. The 
multi-cloud offers greater flexibility in service 
deployment, as all availability zones of selected cloud 
service providers can be used to deploy services. As 
shown in statistics [3], one of the main reasons for using a 
multi-cloud approach is cost optimization for service 
deployment and utilization. This is because multi-cloud 
provides access to different pricing policies for identical 
services among different cloud providers. For example, a 
virtual machine with 4 virtual processors and 16 gigabytes 
of RAM in the geographical area of Tokyo costs $0.2502 
per hour of usage in AWS [5], compared to Google Cloud 
where a virtual machine with the same characteristics 
costs $0.2168 per hour of usage [6]. 

Despite the significant advantages provided by the 
multi-cloud, it also introduces additional complexity in 
building an information infrastructure deployment plan. 
Such complexity is associated with an increased set of 
possible options, across different providers. The dynamic 
changes in load and virtual machine price also add 
significant complexity during deployment plan 
construction. To overcome these problems, cloud service 
brokering mechanisms are often used [7]. In general, such 
mechanisms accept as input parameters the initial 
deployment plan of services and statistical data regarding 
load changes over a certain period. However, while the 
user can provide reliable information regarding the 
service placement of information infrastructure, collecting 
and presenting information about the dynamics of service 

load changes can be problematic. The main problem in 
providing such information lies in its collection. In order 
to collect data about the load, it is necessary to observe 
the operation of the services, which involves additional 
costs. Another problem is that by the time the data is 
transferred to the broker, it will already be out of date. 

To address the identified problems, this study will 
propose a cost optimization method for information 
infrastructure deployment in a static multi-cloud 
environment. A static environment was chosen because 
the information infrastructure will be deployed to collect 
data on service loads and obtain patterns of their use. That 
is, it is assumed that the data collection period will be 
shorter than the period of updating prices for service 
usage by the cloud service provider. Information collected 
in this way will reflect the actual system needs. In the 
future, this information could be used by the broker for 
dynamic infrastructure component placement. 
Additionally, the resulting initial placement strategy can 
speed up the dynamic placement algorithm by using the 
provided initial deployment plan as a starting point in the 
algorithm’s operation. 

The object of study is the informational infrastructure 
deployment in a static multi-cloud environment. This 
involves analysing how different service pricing for 
comparable services from different cloud service 
providers can be utilized to minimize the cost of 
informational infrastructure operation. 

The subject of study is the methods of combinatorial 
optimization for creating an information infrastructure 
deployment plan. 

The purpose of the work is to develop a method 
which will create a deployment plan for informational 
infrastructure in a static multi-cloud environment. The 
resulting plan should consider the provided constraints on 
virtual machine parameters and placement strategy. The 
goal is to minimize the hourly operational cost of 
infrastructure utilization. 

 
1 PROBLEM STATEMENT 

Suppose that the hourly price for the use of virtual 
machines of class g  	G, across cloud providers p  	P, 
within availability zones r  	R is static and set to Cprg. 
Also, provided a set of application components a  	A that 
form informational infrastructure, which should be 
deployed. Then, the set of decision variables Xaprg should 
be found that will minimize the information infrastructure 
deployment cost as presented in (1–7).  
 

,min    
   Aa Pp Rr Gg

aprgprg XC  
(1)
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Where (2) and (3) define the constraints regarding the 

virtual machine parameters on which the application 
component should be deployed. Where (2) describes the 
constraint for the minimal number of virtual cores and (3) 
describes constraints regarding the minimal amount of 
virtual memory. Constraints (4) specifies application 
components that must be deployed within the same cloud 
provider, while (5) specifies the components that must be 
deployed in different cloud providers. In (6) the 
constraints regarding deploying application components 
only in certain availability zones are described. Constraint 
(7) specifies that each application component must be 
deployed only in one instance on one of the available 
virtual machines. This limitation is introduced to simplify 
the gathering of necessary information. 

 
2 REVIEW OF THE LITERATURE 

The topic of virtual infrastructure deployment, or 
Virtual Machines (VMs) placement problem, is widely 
described in the literature. These problems are often 
classified as combinatorial problems. The main approach 
to solving these problems is mathematical optimization 
methods. In the literature, the VMs placement problem is 
reviewed from two perspectives: from the cloud service 
provider’s perspective and from the cloud resource 
consumer’s perspective. 

The main goal of a cloud service provider is to 
maximize profit by utilizing existing resources. For 
instance, increasing the profit of the cloud provider in [8] 
is achieved by minimizing electricity consumption by the 
data centers. This is achieved by compactly rearranging 
VMs placement. Meantime the authors tried to find a 
balance in service level agreement change, 
simultaneously maximizing it. Additionally, cost 
optimization can be achieved through network traffic 
optimization by reducing the distance between servers, as 
demonstrated in [9].  

On the other hand, the goal of cloud service 
consumers is to minimize the utilization costs of 
information infrastructure that is deployed on the cloud 
provider’s services. In articles [7, 10–17], the main focus 
was concentrated on minimizing costs associated with 
operating the information infrastructure in the cloud. For 

example, in [10], the authors formulated the problem of 
virtual machine placement as a multi-objective 
optimization problem, the main goal of which was to 
minimize processing and memory resource usage. As a 
result, the authors proposed the VMPACS algorithm to 
solve this problem. The main goal of the proposed 
algorithm is to search the solution space more efficiently 
and obtain a Pareto set of solutions. 

In recent years, the multi-cloud has increasingly 
attracted the attention of researchers. This trend is 
because multi-cloud provides the ability to use different 
pricing policies that are available among different cloud 
service providers. This leads to the expansion of search 
space in solving the problem of cost optimization of 
information infrastructure utilization in the cloud. Thus, 
in [11] the authors proposed an algorithm for the optimal 
placement of applications in a hybrid cloud. The 
described algorithms specialized in service-based 
applications (SBA) placement. The authors aimed to 
optimize the communication and hosting costs of SBA. 
By striking a balance between private and public cloud 
resources, the proposed algorithm aims to enhance the 
overall efficiency of hybrid cloud deployments. In [12], 
authors proposed an optimal virtual machine placement 
(OVMP) algorithm. The goal of the presented algorithm 
is to minimize the cost of hosting VMs in a multi-cloud 
environment with consideration of the uncertainty of 
demand and VMs prices. The problem in OVMP is 
described as a two-stage stochastic integer programming 
problem. In [13] a novel cloud brokering architecture was 
presented. This architecture provides a cost-optimized 
deployment plan for the placement of virtual resources in 
a multi-cloud environment. The main objective of the 
resulting deployment plan is to select the best cloud 
services with optimal cost, considering the value of the 
defined Service Measurement Index along with additional 
physical and logical constraints. The proposed cloud 
brokering architecture has been modeled using a mixed 
integer programming formulation. This formulation is 
solved using the Benders decomposition algorithm. 

In many studies, the type of VMs placement is divided 
into static and dynamic. Dynamic placement involves 
optimization of the existing infrastructure placement plan 
through dynamic adjustments considering changes in 
service loads. Articles dedicated to dynamic placement 
operate with statistical data regarding changes in service 
prices, service loads, and other parameters. Dynamic 
placement algorithms are executed once in a certain 
period to respond to a change in load that occurred since 
the last algorithm invocation. These algorithms should be 
fast to make changes in VMs placement plan as quickly as 
possible to reduce the time gap when the number of 
available services mismatches the load. In [14], the 
authors proposed an optimal cloud resource provisioning 
(OCRP) algorithm to address the challenge of resource 
provisioning in cloud computing. The authors formulated 
a stochastic programming model to optimize the 
provisioning of computing resources. They have used 
both reservation and on-demand provisioning plans. The 
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algorithm takes into account the uncertainty of demand 
and resource prices. The authors inspected different 
approaches to obtain the solution of the OCRP algorithm, 
such as deterministic equivalent formulation, sample-
average approximation, and Bender’s decomposition 
algorithm. In [7] authors addressed the Cloud Resource 
Management Problem in multi-cloud environments. The 
authors tried to reduce the cost and the execution time of 
consumer applications among Infrastructure as a Service 
services from multiple cloud providers. The authors used 
a Biased Random-Key Genetic Algorithm to solve the 
problem. This algorithm is based on a cloud brokerage 
mechanism and is designed to provide high-quality real-
time solutions to automate the cloud resource 
management and deployment process. 

Along with dynamic VMs placement algorithms, 
static VMs placement algorithms are appearing in the 
literature [15–17]. Unlike dynamic, static placement 
algorithms are invoked only once to determine the initial 
infrastructure placement plan. These algorithms are static 
due to neglecting the dynamic changes of various 
parameters such as load, service costs, service 
availabilities, etc. Such neglect occurs since the algorithm 
uses the available values at the time of invocation, 
without taking into account their subsequent change over 
time [15]. The purpose of the infrastructure deployed in 
such a way is to obtain metrics regarding its operation and 
interaction patterns. In [15], the authors proposed an 
architecture for a cloud broker that deploys VMs across 
multiple clouds. The goal of the broker was to minimize 
the total infrastructure cost by selecting the best cloud 
provider services based on the current conditions. The 
authors presented a binary integer programming 
formulation of the problem, which was then resolved 
using AMPL with the use of MINOS and CPLEX solvers. 
In [16] authors proposed a solution to optimize the 
placement of VMs across multiple cloud providers taking 
into account user-provided criteria. The developed 
algorithm was formulated as an integer programming 
problem. The authors tried to find a balance between price 
and performance tradeoffs for the resulting placement 
plan. Criteria provided by the user could steer the VM 
allocation by specifying the maximum budget along with 
minimum acceptable performance value along with 
constraints regarding load balance, hardware 
configuration of individual VMs, etc. In [17] authors 
formulated the problem of cost optimization in a multi-
site multi-cloud environment. Optimization criteria were 
considered as the total price of infrastructure deployment 
which included the price of VMs reservation and the price 
of communication between them. To solve the problem 
authors formulated a greedy-based algorithm. 

In reviewed articles, the VMs placement problem is 
carried out, almost without consideration of dependency 
between them. As some articles include data transmission 
cost into the total cost, it is not enough to describe 
dependency and communication between applications 
inside information infrastructure. Also, the described 
approaches consider that distinct applications in 

informational infrastructure should be placed within one 
virtual machine. Such a model does not reflect modern 
trends. Nowadays, with the development of architectural 
approaches to building informational infrastructure, the 
virtual machine is used to host application component 
rather than the whole application. Additionally, most of 
the reviewed articles ignore the possibility of deploying 
information infrastructure components in different 
availability zones. Therefore, they are using a multi-cloud 
approach only to expand the possible choice of VMs for 
placement. In contrast, this work will propose a method 
for information infrastructure deployment in a static 
multi-cloud environment, in which application 
components are placed on different VMs. Also, the 
possibility of deploying infrastructure components in 
different availability zones will be considered, as well as 
the constraints regarding service placement in certain 
availability zones that are associated with the legislation 
of different countries. 
 

 
Figure 1 – System model 

 

3 MATERIALS AND METHODS 
As depicted in Figure 1, the system model consists of 

six core components: cloud service consumer, cloud 
service provider, virtual machines, information 
infrastructure, availability zones of cloud providers, and 
cloud brokering mechanism. The cloud service consumer 
wants to deploy information infrastructure. 

Cloud service providers specialize in providing cloud 
services to customers on demand. Cloud service providers 
offer the following service models: Software as Service 
(SaaS) – the capability provided to the consumer to use 
the provider’s applications running on cloud 
infrastructure, Infrastructure as Service (IaaS) – the 
capability provided to the consumer to provision 
processing, storage, networks, and other fundamental 
computing resources where the consumer can deploy and 
run arbitrary software, which can include operating 
systems and applications, Platform as Service (PaaS) – 
the capability provided to the consumer to deploy onto the 
cloud infrastructure consumer-created or acquired 
applications created using programming languages, 
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libraries, services, and tools supported by the provider [2]. 
Let P = {P1, P2, ..., Plast} define the set of cloud service 
providers. 

Cloud service providers offer non-standardized APIs 
for interacting with their services. Such makes those 
services not interchangeable among different providers. 
Consequently, the only model that has unified 
characteristics and configuration parameters, regardless of 
the selected cloud service provider is application-level 
services, specifically IaaS services. In this work, among 
all IaaS services, the deployment of virtual machines will 
be reviewed. 

The virtual machines within each cloud provider are 
divided into classes by specialization in such a way that 
they fully cover customers’ needs. Within each 
specialization, virtual machines are further divided into 
classes. The division into classes is based on the virtual 
machine parameters, with the most common criteria being 
the number of virtual processors and the amount of virtual 
memory. Thus, among cloud service providers, analogs 
can be found for each type of virtual machine within each 
specialization. This work will focus on virtual machines 
with general-purpose specialization. General-purpose 
virtual machines provide a balance of computing, 
memory, and networking resources. These instances are 
ideal for applications that use these resources in equal 
proportions, such as web servers [18]. Therefore, let G = 
{G1, G2, ..., Glast} define a set of virtual machine classes 
within general-purpose specialization that are available 
among all providers. 

Nowadays, there is no direct correlation between the 
set of applications in the information infrastructure and 
the resulting number of virtual machines that will be used 
for their deployment. This is associated with the use of 
new architectural approaches to building information 
infrastructure and its components. An example of such an 
architecture is service-oriented architecture (SOA) [19]. 
In this architecture applications can be divided into 
several components, each of which can be separately 
deployed on different virtual machines. Such a 
deployment approach enables independent scaling of 
application components which leads to more efficient 
resource utilization. Let A = {A1, A2, ..., Alast} define the 
set of application components. Set A allows the 
deployment of different applications and therefore their 
components, to do so all application components of all 
applications should be placed inside the set. 

During the application operation, its components 
constantly exchange requests and messages, generating a 
significant data flow. To optimize the cost of information 
infrastructure operation, application components are 
placed as close as possible to each other, usually within 
the same provider. Such placement occurs because most 
cloud providers have zero communication costs within the 
internal network, unlike the costs for communication with 
external networks [20]. Therefore, let S (A×A) define the 
relation matrix of application components that must be 
deployed within the same cloud provider. Thus, Sa1a2 

equals 1 when a1 and a2 components must be deployed 
within the same provider, and 0 otherwise. 

Despite the benefits of services co-location, it is also 
associated with certain risks. The article [21] gives 
examples in which, in order to ensure system security, 
application components are deployed on separate clouds. 
Such fragmentation of the application is associated with 
mistrust towards cloud service providers, as they 
represent a closed system where it is impossible to track 
what happens to the application source code that is 
transferred for hosting. Cloud service providers have 
access to inbound and outbound application traffic. Using 
this data, application logic can be reconstructed. Due to 
such risks, some architectural approaches divide the 
application into components, so that the information about 
each component is insufficient to reconstruct an overall 
picture of the application’s operation. Moreover, these 
components are deployed on different clouds. Therefore, 
let D (A×A) define the relationship matrix of application 
components that should be placed in different clouds. 
Thus, Da1a2 equals 0 when a1 and a2 components must be 
deployed in different providers, and 1 otherwise. 

However not only safety considerations can make 
adjustments to the service deployment plan. Restrictions 
regarding service deployment may arise from the 
legislation of the country in where the user operates. Also, 
similar restrictions may arise for clients with whom the 
user operates. These restrictions are often related to 
regional zones where data can be stored and how it should 
be used, along with who can access it, and under which 
conditions. An example of such a restriction is the 
General Data Protection Regulation (GDPR). GDPR in 
the European Union imposes restrictions on the transfer of 
personal data outside the European Economic Area (EEA) 
to ensure an adequate level of protection. Data transfers to 
countries outside the EEA must adhere to specific 
safeguards outlined in the GDPR, such as adequacy 
decisions, standard contractual clauses, binding corporate 
rules, or explicit consent from data subjects [22]. In the 
United States, similar restrictions are imposed by laws 
such as HIPAA [23] and GLBA [24]. Additionally, 
countries such as China, Indonesia, Vietnam, and India 
have restrictions in which certain types of data should be 
stored and processed only within the country. Therefore, 
let R = {R1, R2, ..., Rlast} define the set of availability 
zones, such that each provider p  	P has a data center 
located in the availability zone r  	R. Also, let B (R×A) 
define the relationship matrix between application 
component a and availability zone r. Such that, Bra equals 
0 when component a should not be deployed in the 
availability zone r, and 1 otherwise. 

Cloud service providers offer access to resources on-
demand basis, charging an hourly fee for their usage. The 
cost of using a virtual machine depends on its 
specialization, parameters, and the region in which it will 
be deployed. In addition to the on-demand plan, cloud 
service providers offer the opportunity to reserve virtual 
machines for a long period. In the reservation plan, the 
user pays an upfront fee along with an hourly usage fee. 
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The hourly cost of using a reserved virtual machine is 
lower than the on-demand rate [25]. 

This study focuses on the initial deployment of 
infrastructure in a multi-cloud environment, the main 
purpose of which is to collect the necessary metrics for 
further infrastructure utilization. It is considered that the 
observation period will be less than the minimum 
reservation period, i.e., one year, so only on-demand 
virtual machines will be used. Also, such a pricing 
scheme is appropriate given the uncertainty of the virtual 
machines’ utilization post-observation period. Therefore, 
let the element Cprg from the matrix C (P×R×G) define 
the hourly price of a virtual machine at the provider pP, 
in the region r  	R of class g  	G for on-demand usage.  

The described problem is a combinatorial optimization 
problem, as the main challenge lies in the optimal or 
suboptimal deployment of virtual machines. 
Combinatorial optimization problems (COPs), especially 
real-world COPs, are challenging because they are 
difficult to formulate and solve. Additionally, choosing 
the proper solver algorithm and defining its best 
configuration is also a difficult task due to the existence 
of several solvers characterized by different 
parametrizations [26].  

To solve the problem, a family of genetic algorithms 
was used. Genetic algorithms (GA) are a family of 
computational models inspired by evolution. These 
algorithms encode a potential solution to a specific 
problem on a simple chromosome-like data structure and 
apply recombination operators to these structures to 
preserve critical information [27]. The general scheme of 
the GA is presented in Figure 2. 

 

 
Figure 2 – General scheme of generic algorithm 

 
Due to constraint (7), the solution string encoding is 

performed in the form of representing decision variables 
as a vector.  

GA is suited for unconstrained optimization. For use 
in constrained optimization, a penalty function is 
introduced. The main goal of the penalty function is to 
add a penalty value to the fitness result for an infeasible 
solution. The penalty value depends on the constraint’s 
violation amount or on the amount by which constraints 
are violated. Therefore, a feasible result would have more 
chances to pass through during the reproduction phase in 
comparison to an infeasible one. There are two types of 
penalty functions: exterior and interior [27]. In the interior 

penalty function, all elements from the initial population 
should be feasible. On the other hand, the exterior penalty 
function doesn’t require an initial population to be 
feasible. Exterior penalty functions are used more often 
because, in some cases, finding a feasible solution is itself 
an NP-hard task. 

In this work, different exterior penalty functions will 
be compared to find out the best-fitting one for the 
described problem, such as: 

– Static penalty function; 
– Dynamic penalty function; 
– Additive penalty function. 
The static penalty function adds a penalty based on the 

number of violated constraints. The static penalty function 
was taken from [28] and has the following form: 
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Where x is the solution vector, of (x) is the value of the 

objective function for the solution vector x, K is a large 
positive constant, s determines the number of constraints 
that have been met, and m determines the total number of 
constraints. 

A dynamic penalty function adjusts the penalty value 
during the optimization process using information about 
the current state of the population. These adjustments 
balance the exploration and exploitation phases of 
optimization, potentially improving both the speed and 
quality of results. The dynamic penalty function was 
chosen from [29] and presented in equations (9–12): 

 
),()()()( xSVCYtxofxdynamic  , (9)

 



q

i

m

qj
ji xDxDxSVC

1

)()(),(  , (10)



 


,otherwise,)(

,,0)(when,0
)(

xg

qixg
xD

i

i
i

 (11)

 
Where in (9) x is the solution vector, of (x) is the value 

of the objective function for the solution vector x. Y, α, β 
are the input parameters of the penalty function, which are 
defined by the user and t is the iteration counter. Equation 
(10) determines the value of the penalty function 
depending on the violated constraints, where m is the total 
number of constraints. The (11) equation determines the 
penalty value imposed by inequality constraints when the 
constraints are violated, suppose that inequality 
constraints have the following representation gi (x) ≤ 0, 
 i   {1, 2, …, q}. The (12) equation in turn determines 
the penalty value for equality constraints with following 
form hj (x) = 0,  j   {q + 1, q + 2, …, m}. 

The additive penalty function uses weights that are 
defined for each constraint independently. Additive 
penalties have the following form: 
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Where in (13) ri and cj define the penalty weight 

multipliers that inequality and equality constraints 
respectively impose when violated. Also, parameters β 
and γ in (14) and (15) are used to balance the impact that 
inequality and equality constraints have on penalty value. 
The set M contains the values of all weights. Compared to 
the previously described penalty functions, this function 
can be more precisely adapted to the problem due to a 
larger set of parameters and the possibility of fine-tuning 
them. But with such an opportunity, the problem of 
finding the values of these weights arises. The issue is 
that the penalty value directly depends on the values of 
the weights ri and cj. If they are set too small, the time to 
find the first feasible solution will increase, while the 
result could be better due to the possible search across the 
infeasible region [28]. Conversely, if ri and cj are given 
too large values, the GA will quickly enter the local 
optimum and will less frequently resort to searching 
across infeasible space. 

To find the ri and cj parameter values of the additive 
function, the scalable semi-swarm parameter optimization 
algorithm (S3POA) was developed. The algorithm 
consists of two stages: finding relative parameter values 
and adjusting them. 

In the first stage of the S3POA algorithm, the 
objective function was modified so that each constraint, 
when violated, was multiplied by a large value. Thus, the 
penalty function takes the following form (16). 

 

.)(~)(~)()(
1 











  



q

i

m

qj
jjii xLcxGrBxofxEvaluate  (16)

 

 
Figure 3 – Scheme of the first stage of S3POA 

 
In Figure 3 the scheme of the first stage of S3POA is 

presented. The input parameters for the described 
algorithm include the number of iterations of the GA. 

This value should not be too small to allow the algorithm 
to reach a local optimum, but it also should not be too big 
to prevent the algorithm from conducting a long search in 
the infeasible region. The idea of the first stage algorithm 
involves conducting a fixed number of iterations of the 
GA with the (16) objective function. After the GA is 
finished, the final population is analyzed. If any element 
of the final population belongs to the feasible region, the 
next iteration of the algorithm is performed. Otherwise, 
among the elements of the final population, the constraint 
with the most violations is identified. After finding such a 
constraint, its corresponding relative weight (ři for a non-
strict constraint and čj for a strict constraint) is increased 
by one. The next iteration of the algorithm is conducted 
with updated weights. The algorithms continue until a 
given number of iterations is reached which is provided as 
an input parameter to the algorithm.  

Gradually increasing the values of the stopping 
weights, decreases the probability that they will be 
violated in the next iteration of the algorithm. This leads 
to a more comprehensive consideration of the resulting 
weight values. As a result, the values of the relative 
weights ři and čj are obtained such that ři   M̃  i{1, 2, 
… , q}, čj   M̃  j   {q + 1, q + 2, … , m}. These 
relative weights allow for examining the relationship 
between constraints. 

The found relative weight values cannot be used 
immediately to solve the given problem, as their value 
increases with the number of algorithm iterations, which 
may result in assigning excessive values to them. 
Excessively large values of these parameters will lead to a 
situation where the GA will quickly find a feasible 
solution, but then it will have a harder time considering 
infeasible solutions because it will have excessively high 
fitness values [28]. To overcome this issue, found weight 
values are considered relative. To find the best fitting 
weight values, the objective function from (13) will be 
used, but with the following values: 
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In (17) and (18), the multiplier µ is responsible for the 

scale that should be applied to the variables ři and čj to 
avoid the problem of insufficient and excessive weight 
assignment. The value of relative weights equal to 1 is not 
scaled since during the experiments these constraints were 
not violated, so they do not prevent reaching the feasible 
solution. 

 
4 EXPERIMENTS 

To conduct the experiments, the input parameters of 
the problem were set and presented in Tables 1 – 6. Table 
1 shows the regions where virtual machines will be 
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deployed. As for cloud service providers, AWS, Azure, 
and Google Cloud were chosen as they occupy a 
significant portion of the cloud services market [30]. 
 
 
 
 
 
 

Table 1 – Correspondence of the geographic regions to the 
availability regions of the providers 

 AWS Azure Google Cloud 
EU west eu-west-1 West Europe europe-west1-b 

US east us-east-1 East US us-east4-a 

EU 
central 

eu-central-1 Sweden Central europe-north1-a 

Japan asia-south1-a Japan East asia-northeast1-a 

 

Table 2 – Description of selected virtual machines among different cloud service providers 

 VM names Provider vCPUs 
Memory  
Size (GB) 

Price in West 
Europe ($) 

Price in  
East US 

($) 

Price in North 
Europe ($) 

Price in  
Japan ($) 

t2.small AWS 1 2 0.027 0.025 0.0286 0.0322 

t2.medium AWS 2 4 0.0539 0.0499 0.0571 0.0643 

t2.xlarge AWS 4 16 0.2086 0.1926 0.2214 0.2502 

t2.2xlarge AWS 8 32 0.4172 0.3852 0.4428 0.5004 

Standart_A1_V2 Azure 1 2 0.041 0.043 0.041 0.054 

Standart_A2_V2 Azure 2 4 0.087 0.091 0.0861 0.113 

Standart_A4_V2 Azure 4 8 0.183 0.191 0.182 0.238 

Standart_A8_V2 Azure 8 16 0.383 0.4 0.38 0.5 

t2d-standard-1 Google Cloud 1 4 0.0465 0.0476 0.0465 0.0542 

t2d-standard-2 Google Cloud 2 8 0.0929 0.0952 0.093 0.1084 

t2d-standard-4 Google Cloud 4 16 0.1859 0.1903 0.1861 0.2168 

t2d-standard-8 Google Cloud 8 32 0.3718 0.3806 0.3721 0.4336 
 

Information about the selected classes of virtual 
machines, their characteristics, and the on-demand hourly 
cost of using them relative to regions is presented in Table 
2. According to the information presented in Table 2, four 
different classes of virtual machines were formed based 
on the number of virtual processors. Tables 3–5 describe 
the requirements regarding application components 
deployment. Thus, Table 3 presents the requirements 
regarding application components deployment within the 
same cloud service provider, defining the matrix S. Table 
4 presents the requirements regarding application 
components deployment within different cloud service 
providers, defining the matrix D. Table 5 describes the 
requirements regarding the characteristics of virtual 
machines on which application components should be 
deployed. 

Constraints regarding the application components 
deployment in relation to availability zones were also 
introduced. Specifically, a3 and a6 application 
components must be located within the European 
geographic region, meaning they can be deployed in the 
EU West and EU Central geographical zones. 

 
 
 
 
 
 
 

Table 3 – Constraints on the placement of application 
components within one provider 

 1 2 3 4 5 6 7 8 

1 0 1 0 0 0 0 0 0 

2 1 0 0 0 0 0 0 0 

3 0 0 0 0 0 1 0 0 

4 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

6 0 0 1 0 0 0 0 0 

7 0 0 0 0 0 0 0 1 

8 0 0 0 0 0 0 1 0 
 

Table 4 – Constraints on the placement of application 
components across different providers 

 1 2 3 4 5 6 7 8 

1 1 1 0 1 1 0 1 1 

2 1 1 0 1 1 0 1 1 

3 0 0 1 1 1 1 0 0 

4 1 1 1 1 0 1 1 1 

5 1 1 1 0 1 1 1 1 

6 0 0 1 1 1 1 0 0 

7 1 1 0 1 1 0 1 1 

8 1 1 0 1 1 0 1 1 
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Table 5 – Minimum required virtual machine parameter 
values for application components deployment 

Application 1 2 3 4 5 6 7 8 

Min vCPU 2 1 4 6 3 1 2 8 

Min Memory (GB) 4 2 16 16 8 2 16 20 

 
To conduct experiments, a virtual machine of class 

c7i.xlarge from the AWS provider was used. The 
c7i.xlarge is the compute-optimized family of instances 
with 4 vCPUs of Intel Xeon Scalable (Sapphire Rapids) 
with 3.2 GHz clock speed, 8.0 GB of memory, and up to 
12.5 Gbps of bandwidth [31]. 

The same basic parameters of the GA were set for 
each penalty function. Also, the GA was run 100 times 
with each penalty function. The termination condition for 
the algorithm was reaching 1000 iterations. 

Parameter tuning of the penalty function parameters as 
well as other GA parameters is carried out individually 
for each problem. Parameter tuning for GAs is widely 
covered in the literature. In this section, the focus will be 
on parameter tuning for the described penalty functions. 

Аs for the static penalty function input parameter is K, 
which, as described in [29], should be a large number. 
Therefore, during the experiments, the value determined 
by the authors will be used, such that K = 109.  

For the dynamic penalty function, the input 
parameters are the values Y, α, β. The authors in [29] 
suggest using values Y = 0.5, α = 2, β = 2. To find the 
values of these parameters, a series of experiments were 
conducted, as a result of which it was found that, for the 
described problem, the best result was achieved with the 
values Y = 0.7, α = 1, β = 1. These values will be used in 
further experiments. 

For the additive penalty function, weight values were 
calculated with the S3POA algorithm. As input 
parameters for the S3POA algorithm, the value of 
geneticAlgorithmIterationCount was set to 89. With this 
number of iterations, GA reached a feasible solution in 
47.8% of invocations, such an indicator showed the 
ability of the algorithm to find feasible value without 
conducting an extensive search. The value of 
S3poaIterationCount was set to 1000. The value of B was 
set to 109. As depicted in [29], common values of β and γ 
parameters are 1 or 2. During experiments, those 
parameters were assigned the following values: β = 1,  
γ = 2, since the described problem has only one type of 
equality constraint (7) which had a significant impact on 
the result and was most often violated.  

 
5 RESULTS 

Based on the results of the conducted experiments, the 
static penalty function failed to achieve a result that 
belongs to the feasible region. This outcome was due to 
the function definition, as it only considered the number 
of violated constraints without considering the degree of 
their violation. Unfortunately, this description was 

insufficient to guide the algorithm toward a feasible 
result. Therefore, the results of the static penalty function 
were excluded from the further experiment results. 

 

 
Figure 4 – Comparison of the average objective function values 

for the additive and dynamic penalty functions. 
 
For the dynamic and additive penalty functions, the 

resulting values of the objective functions that belonged 
to the feasible region were compared. To analyze the 
obtained results, the value of the approximated global 
optimum was determined. This value was found during 
problem-solving without considering constraints (4)–(7). 
The excluded constraints described the deployment plan 
of virtual machines. Figure 4 demonstrates a comparison 
diagram of the average obtained results for the dynamic 
and additive penalty functions. It includes the average, 
maximum, and minimum values of the objective function 
obtained during the experiments. The value of the 
approximated optimum was displayed in Figure 4 with a 
dashed line. 

Additionally, a comparison of the average time spent 
to find the first feasible and resulting solutions for the 
dynamic and additive penalty functions was conducted, 
and the obtained results are presented in Figure 5. 
 

 
Figure 5 – Comparison of the average time spent to find the 

first feasible and the resulting solutions for the additive and 
dynamic penalty functions. 
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6 DISCUSSION 
Comparing the results of the dynamic and additive 

penalty functions, it can be concluded that the dynamic 
penalty function failed to achieve any feasible result in 
33% of еру experiments, while for the additive penalty 
function, this indicator was only 10% of the conducted 
experiments.  

To assess the possibility of the selected penalty 
functions exiting from the local optimum and continuing 
searching for a better solution, after reaching the first 
feasible solution, experiments were conducted in which 
the first founded feasible solution was compared with the 
resulting solution of the algorithm. Thus, among all the 
results that reached a feasible solution, the additive 
penalty function obtained a resulting solution that was 
better than the first feasible solution in 85% of cases, 
while for the dynamic penalty function, this indicator was 
61%. 

Analyzing Figure 4, it can be concluded that the 
additive penalty function, on average, showed on 8.933% 
better results than the dynamic function. Also, on average, 
the result of the additive function was by 22.36% greater 
than the value of the approximated optimum. 

For the additive penalty function, the average 
algorithm runtime was 1241.53 seconds, while for the 
dynamic penalty function, this value was equal to 1239.59 
seconds. Based on the obtained results, the use of 
different penalty functions had almost no effect on the 
overall algorithm runtime. 

Analyzing the data presented in Figure 5, it can be 
concluded that, on average, the GA with the additive 
penalty function required 2.437 times less time to find the 
first feasible solution compared to the dynamic penalty 
function. Also, the average time spent to find the best 
solution for the additive penalty function was 18.6% less 
than the time required for the dynamic penalty function to 
find such a solution. Considering that 85% of the 
resulting solutions obtained by the additive penalty 
function were better than the first feasible solution, 
compared to 61% for the dynamic function, it can be 
concluded that, despite spending less time to find the best 
solution, the additive function less often stopped at the 
local optimum and had a higher chance of finding a more 
profitable solution. 

Summing up, it can be concluded that during the 
experiments, the additive penalty function performed 
better than the dynamic and the static penalty functions. 
Also, this result indicates that the described S3POA 
parameter tuning algorithm is capable of balancing the 
input parameter values. On the one hand, the algorithm 
spends less time finding the first feasible solution, and on 
the other hand, upon reaching a local optimum, the 
algorithm retains the ability to search for better solutions 
among the infeasible region. Referring to [28], these 
characteristics indicate the selection of best-fitting 
parameter values for the penalty function. This result was 
achieved through direct interaction with the problem 
during the determination of parameter values. That is, the 
proposed parameter tuning method directly interacted 

with the problem, dynamically adjusting the parameter 
values to achieve better results, rather than statically 
enumerating possible values as was the case with the 
dynamic and static functions. 

 
CONCLUSION 

In this paper, the problem of informational 
infrastructure deployment in a static multi-cloud 
environment was formulated as an optimization problem, 
the main goal of which was to minimize the hourly cost of 
utilizing information infrastructure. A GA was used to 
solve the formulated problem. Various penalty functions 
were observed for the proposed algorithm, namely static, 
dynamic, and additive. The input parameter values were 
tuned for the selected penalty functions. Additionally, a 
S3POA parameter tuning algorithm for the penalty 
function parameters was proposed. The obtained results 
showed that the additive penalty function with parameters 
selected by the proposed S3POA method turned out to be 
better in comparison to others.  

The scientific novelty. A new method was proposed 
that allows the decrease of information infatuation 
utilization cost in a static multi-cloud environment, which 
considers the division of the application into components 
and introduces restrictions on their placement. The use of 
different availability zones to deploy application 
components was  also considered. Additionally, a new 
parameter optimization method for GA penalty functions 
was proposed, which allows obtaining better parameter 
values due to consistent interaction with the researched 
problem. 

The practical orientation of the study. The 
information infrastructure deployed under the described 
assumptions can be used to collect data about application 
load and interaction patterns over a certain period. Such 
information provides a clear view of infrastructure needs 
and can be used during infrastructure operations to have 
reliable information on the possible service loads and 
resource requirements. 

Prospects for further research. In future research, it 
makes sense to consider the usage of scalable instances. 
In addition, the proposed solution can be integrated into 
dynamic placement algorithms to be used as a starting 
point in the algorithm’s operation. 
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МЕТОД ОПТИМІЗАЦІЇ ВИТРАТ ДЛЯ РОЗМІЩЕННЯ ІНФОРМАЦІЙНОЇ ІНФРАСТРУКТУРИ В 
СТАТИЧНОМУ МУЛЬТИХМАРНОМУ СЕРЕДОВИЩІ 
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АНОТАЦІЯ 
Актуальність. Останнім часом набула популярності тема розміщення інформаційної інфраструктури в мультихмарному 

середовищі. Дана тенденція пов’язана з тим, що мультихмарне середовище надає можливість використовувати унікальні 
сервіси різних хмарних постачальників. Таким чином, всі доступні сервіси хмарних постачальників можуть бути 
використані при побудові інформаційної інфраструктури. Крім того, різні цінові політики серед постачальників можуть 
бути розглянуті при виборі сервісів. Проте зі збільшенням кількості наявних постачальників хмарних послуг зростає 
складність побудови оптимального плану з розміщення інформаційної інфраструктури. 

Мета роботи. Метою роботи є оптимізація витрат пов’язаних з експлуатацією інформаційної інфраструктури в 
мультихмарному середовищі з урахуванням цін на аналогічні сервіси, серед постачальників хмарних послуг. 

Метод. В роботі пропонується новий метод оптимізації витрат для розміщення інформаційної інфраструктури в 
статичному мультихмарному середовищі, який мінімізує погодинну вартість її використання. Для вирішення цієї задачі 
було використано генетичний алгоритм. Були розглянуті різні функції штрафу для генетичного алгоритму. Також 
пропонується новий метод підбору параметрів для функцій штрафу. 

Результати. Була проведена серія експериментів для порівняння результатів різних функцій штрафу. Результати 
показали, що функція штрафу із запропонованим методом підбору параметрів знаходила рішення, яке було у середньому на 
8,933% кращим і вимагало на 18,6% менше часу, в порівняні з іншими. Отримані результати демонструють, що 
запропонований метод підбору параметрів забезпечує ефективний пошук серед областей допустимих і недопустимих 
рішень. 

Висновок. Запропоновано новий метод оптимізації витрат для розміщення інформаційної інфраструктури в статичному 
мультихмарному середовищі. Однак, незважаючи на ефективність запропонованого методу, його можна значно покращити. 
Зокрема, необхідно розглянути можливість залучення масштабованих віртуальних машин при розміщенні інформаційної 
інфраструктури. 

КЛЮЧОВІ СЛОВА: оптимізація витрат, інформаційна інфраструктура, початкове розміщення, мультихмара, метод 
підбору параметрів, функція штрафів. 
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