
p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Rolik O. I., Zhevakin S. D., 2024
DOI 10.15588/1607-3274-2024-3-14

UDC 004.94

COST OPTIMIZATION METHOD FOR INFORMATIONAL
INFRASTRUCTURE DEPLOYMENT IN STATIC MULTI-CLOUD

ENVIRONMENT

Rolik O. I. – Dr. Sc., Professor, Head of the Department of Information Systems and Technologies, National Technical

University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine.
Zhevakin S. D. – Post-graduate student of the Department of Information Systems and Technologies, National Technical

University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine.

ABSTRACT
Context. In recent years, the topic of deploying informational infrastructure in a multi-cloud environment has gained popularity.

This is because a multi-cloud environment provides the ability to leverage the unique services of cloud providers without the need to
deploy all infrastructure components inside them. Therefore, all available services across different cloud providers could be used to
build up information infrastructure. Also, multi-cloud offers versatility in selecting different pricing policies for services across
different cloud providers. However, as the number of available cloud service providers increases, the complexity of building a cost-
optimized deployment plan for informational infrastructure also increases.

Objective. The purpose of this paper is to optimize the operating costs of information infrastructure while leveraging the service
prices of multiple cloud service providers.

Method. This article presents a novel cost optimization method for informational infrastructure deployment in a static multi-
cloud environment whose goal is to minimize the hourly cost of infrastructure utilization. A genetic algorithm was used to solve this
problem. Different penalty functions for the genetic algorithm were considered. Also, a novel parameter optimization method is
proposed for selecting the parameters of the penalty function.

Results. A series of experiments were conducted to compare the results of different penalty functions. The results demonstrated
that the penalty function with the proposed parameter selection method, in comparison to other penalty functions, on average found
the best solution that was 8.933% better and took 18.6% less time to find such a solution. These results showed that the proposed
parameter selection method allows for efficient exploration of both feasible and infeasible regions.

Conclusion. A novel cost optimization method for informational infrastructure deployment in a static multi-cloud environment is
proposed. However, despite the effectiveness of the proposed method, it can be further improved. In particular, it is necessary to
consider the possibility of involving scalable instances for informational infrastructure deployment.

KEYWORDS: cost optimization, information infrastructure, initial placement, multi-cloud, parameters selection method,
penalty function.

ABBREVIATIONS

VM is a virtual machine;
GA is a genetic algorithm;
AWS is an Amazon web services;
vCPU is a virtual central unit processor.

NOMENCLATURE
P is a set of cloud service providers;
G is a set of virtual machines with general-purpose

specialization that are available in all cloud service
providers P;	

A is a set of application components which define
information infrastructure;

S is a relation matrix (A×A) of application components
that must be deployed within the same cloud provider;

D is a relation matrix (A×A) of application
components that should be placed in different clouds;

R is a set of availability zones, that are available in all
cloud providers P;

Bra is a relationship matrix (R×A) which defines the
possibility of deploying application component aA in
availability zone rR.

Cprg is a hourly price of on-demand usage of a virtual
machine at the provider pP, in the region rR of class
gG.

Xaprg is a binary decision variable equal to 1 when
component aA is placed at the provider pP, in the
region rR, of the VM class gG, and 0 otherwise;

Wpg is a number of CPU cores of virtual machine type
gG from the cloud provider pP;

Wa
min

 is a minimum required number of CPU cores for
application component aA;

Epg is a amount of memory of virtual machine type g
 	G from the cloud provider pP;

Ea
min is a minimum required amount of memory for

the application component aA;
s is a number of constraints that have been met;
m is a total number of constraints;
ri is a penalty weight multiplier that inequity

constraints impose when violated;
cj is a penalty weight multiplier that equity constraints

impose when violated.

INTRODUCTION
Cloud computing gained popularity in the last decade

and continues to be relevant in our time [1]. Cloud
computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of
configurable computing resources (e.g., servers, storage,
applications, services, and networks) that can be rapidly
provisioned and released with minimal management effort

160

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Rolik O. I., Zhevakin S. D., 2024
DOI 10.15588/1607-3274-2024-3-14

or service provider interaction [2]. The significant
advantage of using the cloud provider’s services is the
ability to rapidly scale infrastructure components. This
advantage is achieved due to the rapid provision of
additional computing services for a certain period, which
allows to overcome spikes in service demand. This makes
cloud computing superior to on-premise solutions, as their
computing resources cannot scale with the same ease and
speed.

In turn, the combination of on-premise data centers
and services of cloud providers is widely used in the
industry for hosting information infrastructure. This
approach is called a hybrid cloud. In such an approach,
the services of cloud providers are often used to handle
high demand, while the main computational resources are
concentrated in on-premise data centers. However, while
this approach solves the problem of limited scalability of
on-premise data centers, it is not a long-term solution
because on-premise data centers require constant support
and updates.

According to statistics for 2023, about 92% of
companies plan or already stick to a multi-cloud approach
for service deployment [3, 4]. This statistic is primarily
associated with the advantages provided by a multi-cloud
in comparison to the use of a single-cloud provider. The
biggest disadvantage of using the services of only one
provider is the problem of vendor lock. Vendor lock
refers to a situation where an organization becomes
heavily dependent on a specific cloud service provider.
This dependency restricts the ability to switch to another
cloud provider without spending a substantial budget. The
multi-cloud offers greater flexibility in service
deployment, as all availability zones of selected cloud
service providers can be used to deploy services. As
shown in statistics [3], one of the main reasons for using a
multi-cloud approach is cost optimization for service
deployment and utilization. This is because multi-cloud
provides access to different pricing policies for identical
services among different cloud providers. For example, a
virtual machine with 4 virtual processors and 16 gigabytes
of RAM in the geographical area of Tokyo costs $0.2502
per hour of usage in AWS [5], compared to Google Cloud
where a virtual machine with the same characteristics
costs $0.2168 per hour of usage [6].

Despite the significant advantages provided by the
multi-cloud, it also introduces additional complexity in
building an information infrastructure deployment plan.
Such complexity is associated with an increased set of
possible options, across different providers. The dynamic
changes in load and virtual machine price also add
significant complexity during deployment plan
construction. To overcome these problems, cloud service
brokering mechanisms are often used [7]. In general, such
mechanisms accept as input parameters the initial
deployment plan of services and statistical data regarding
load changes over a certain period. However, while the
user can provide reliable information regarding the
service placement of information infrastructure, collecting
and presenting information about the dynamics of service

load changes can be problematic. The main problem in
providing such information lies in its collection. In order
to collect data about the load, it is necessary to observe
the operation of the services, which involves additional
costs. Another problem is that by the time the data is
transferred to the broker, it will already be out of date.

To address the identified problems, this study will
propose a cost optimization method for information
infrastructure deployment in a static multi-cloud
environment. A static environment was chosen because
the information infrastructure will be deployed to collect
data on service loads and obtain patterns of their use. That
is, it is assumed that the data collection period will be
shorter than the period of updating prices for service
usage by the cloud service provider. Information collected
in this way will reflect the actual system needs. In the
future, this information could be used by the broker for
dynamic infrastructure component placement.
Additionally, the resulting initial placement strategy can
speed up the dynamic placement algorithm by using the
provided initial deployment plan as a starting point in the
algorithm’s operation.

The object of study is the informational infrastructure
deployment in a static multi-cloud environment. This
involves analysing how different service pricing for
comparable services from different cloud service
providers can be utilized to minimize the cost of
informational infrastructure operation.

The subject of study is the methods of combinatorial
optimization for creating an information infrastructure
deployment plan.

The purpose of the work is to develop a method
which will create a deployment plan for informational
infrastructure in a static multi-cloud environment. The
resulting plan should consider the provided constraints on
virtual machine parameters and placement strategy. The
goal is to minimize the hourly operational cost of
infrastructure utilization.

1 PROBLEM STATEMENT

Suppose that the hourly price for the use of virtual
machines of class g  	G, across cloud providers p  	P,
within availability zones r  	R is static and set to Cprg.
Also, provided a set of application components a  	A that
form informational infrastructure, which should be
deployed. Then, the set of decision variables Xaprg should
be found that will minimize the information infrastructure
deployment cost as presented in (1–7).

,min    
   Aa Pp Rr Gg

aprgprg XC
(1)

Subject to:

,,min

P

AaWWX a
p Rr Gg

pgaprg   
  

 (2)

,,min

P

AaEEX a
p Rr Gg

pgaprg   
  

 (3)

161

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Rolik O. I., Zhevakin S. D., 2024
DOI 10.15588/1607-3274-2024-3-14

,)(
2121

P
aa

Rr Gg
prga

p Rr Gg
prga SXX    

   

,,, 2121 Aaaaa 

(4)

,)(
2121

P
aa

Rr Gg
prga

p Rr Gg
prga DXX    

   

,,, 2121 Aaaaa 

(5)

,,, 
 


Pp

ra
Gg

aprg RrAaBX (6)

,,1 AaX
Pp Rr Gg

aprg 
  

 (7)

,,,, 02121
NBSDX raaaaaarpg 

.,,,, minmin NWEEWC pgpgaarpg 

Where (2) and (3) define the constraints regarding the

virtual machine parameters on which the application
component should be deployed. Where (2) describes the
constraint for the minimal number of virtual cores and (3)
describes constraints regarding the minimal amount of
virtual memory. Constraints (4) specifies application
components that must be deployed within the same cloud
provider, while (5) specifies the components that must be
deployed in different cloud providers. In (6) the
constraints regarding deploying application components
only in certain availability zones are described. Constraint
(7) specifies that each application component must be
deployed only in one instance on one of the available
virtual machines. This limitation is introduced to simplify
the gathering of necessary information.

2 REVIEW OF THE LITERATURE

The topic of virtual infrastructure deployment, or
Virtual Machines (VMs) placement problem, is widely
described in the literature. These problems are often
classified as combinatorial problems. The main approach
to solving these problems is mathematical optimization
methods. In the literature, the VMs placement problem is
reviewed from two perspectives: from the cloud service
provider’s perspective and from the cloud resource
consumer’s perspective.

The main goal of a cloud service provider is to
maximize profit by utilizing existing resources. For
instance, increasing the profit of the cloud provider in [8]
is achieved by minimizing electricity consumption by the
data centers. This is achieved by compactly rearranging
VMs placement. Meantime the authors tried to find a
balance in service level agreement change,
simultaneously maximizing it. Additionally, cost
optimization can be achieved through network traffic
optimization by reducing the distance between servers, as
demonstrated in [9].

On the other hand, the goal of cloud service
consumers is to minimize the utilization costs of
information infrastructure that is deployed on the cloud
provider’s services. In articles [7, 10–17], the main focus
was concentrated on minimizing costs associated with
operating the information infrastructure in the cloud. For

example, in [10], the authors formulated the problem of
virtual machine placement as a multi-objective
optimization problem, the main goal of which was to
minimize processing and memory resource usage. As a
result, the authors proposed the VMPACS algorithm to
solve this problem. The main goal of the proposed
algorithm is to search the solution space more efficiently
and obtain a Pareto set of solutions.

In recent years, the multi-cloud has increasingly
attracted the attention of researchers. This trend is
because multi-cloud provides the ability to use different
pricing policies that are available among different cloud
service providers. This leads to the expansion of search
space in solving the problem of cost optimization of
information infrastructure utilization in the cloud. Thus,
in [11] the authors proposed an algorithm for the optimal
placement of applications in a hybrid cloud. The
described algorithms specialized in service-based
applications (SBA) placement. The authors aimed to
optimize the communication and hosting costs of SBA.
By striking a balance between private and public cloud
resources, the proposed algorithm aims to enhance the
overall efficiency of hybrid cloud deployments. In [12],
authors proposed an optimal virtual machine placement
(OVMP) algorithm. The goal of the presented algorithm
is to minimize the cost of hosting VMs in a multi-cloud
environment with consideration of the uncertainty of
demand and VMs prices. The problem in OVMP is
described as a two-stage stochastic integer programming
problem. In [13] a novel cloud brokering architecture was
presented. This architecture provides a cost-optimized
deployment plan for the placement of virtual resources in
a multi-cloud environment. The main objective of the
resulting deployment plan is to select the best cloud
services with optimal cost, considering the value of the
defined Service Measurement Index along with additional
physical and logical constraints. The proposed cloud
brokering architecture has been modeled using a mixed
integer programming formulation. This formulation is
solved using the Benders decomposition algorithm.

In many studies, the type of VMs placement is divided
into static and dynamic. Dynamic placement involves
optimization of the existing infrastructure placement plan
through dynamic adjustments considering changes in
service loads. Articles dedicated to dynamic placement
operate with statistical data regarding changes in service
prices, service loads, and other parameters. Dynamic
placement algorithms are executed once in a certain
period to respond to a change in load that occurred since
the last algorithm invocation. These algorithms should be
fast to make changes in VMs placement plan as quickly as
possible to reduce the time gap when the number of
available services mismatches the load. In [14], the
authors proposed an optimal cloud resource provisioning
(OCRP) algorithm to address the challenge of resource
provisioning in cloud computing. The authors formulated
a stochastic programming model to optimize the
provisioning of computing resources. They have used
both reservation and on-demand provisioning plans. The

162

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Rolik O. I., Zhevakin S. D., 2024
DOI 10.15588/1607-3274-2024-3-14

algorithm takes into account the uncertainty of demand
and resource prices. The authors inspected different
approaches to obtain the solution of the OCRP algorithm,
such as deterministic equivalent formulation, sample-
average approximation, and Bender’s decomposition
algorithm. In [7] authors addressed the Cloud Resource
Management Problem in multi-cloud environments. The
authors tried to reduce the cost and the execution time of
consumer applications among Infrastructure as a Service
services from multiple cloud providers. The authors used
a Biased Random-Key Genetic Algorithm to solve the
problem. This algorithm is based on a cloud brokerage
mechanism and is designed to provide high-quality real-
time solutions to automate the cloud resource
management and deployment process.

Along with dynamic VMs placement algorithms,
static VMs placement algorithms are appearing in the
literature [15–17]. Unlike dynamic, static placement
algorithms are invoked only once to determine the initial
infrastructure placement plan. These algorithms are static
due to neglecting the dynamic changes of various
parameters such as load, service costs, service
availabilities, etc. Such neglect occurs since the algorithm
uses the available values at the time of invocation,
without taking into account their subsequent change over
time [15]. The purpose of the infrastructure deployed in
such a way is to obtain metrics regarding its operation and
interaction patterns. In [15], the authors proposed an
architecture for a cloud broker that deploys VMs across
multiple clouds. The goal of the broker was to minimize
the total infrastructure cost by selecting the best cloud
provider services based on the current conditions. The
authors presented a binary integer programming
formulation of the problem, which was then resolved
using AMPL with the use of MINOS and CPLEX solvers.
In [16] authors proposed a solution to optimize the
placement of VMs across multiple cloud providers taking
into account user-provided criteria. The developed
algorithm was formulated as an integer programming
problem. The authors tried to find a balance between price
and performance tradeoffs for the resulting placement
plan. Criteria provided by the user could steer the VM
allocation by specifying the maximum budget along with
minimum acceptable performance value along with
constraints regarding load balance, hardware
configuration of individual VMs, etc. In [17] authors
formulated the problem of cost optimization in a multi-
site multi-cloud environment. Optimization criteria were
considered as the total price of infrastructure deployment
which included the price of VMs reservation and the price
of communication between them. To solve the problem
authors formulated a greedy-based algorithm.

In reviewed articles, the VMs placement problem is
carried out, almost without consideration of dependency
between them. As some articles include data transmission
cost into the total cost, it is not enough to describe
dependency and communication between applications
inside information infrastructure. Also, the described
approaches consider that distinct applications in

informational infrastructure should be placed within one
virtual machine. Such a model does not reflect modern
trends. Nowadays, with the development of architectural
approaches to building informational infrastructure, the
virtual machine is used to host application component
rather than the whole application. Additionally, most of
the reviewed articles ignore the possibility of deploying
information infrastructure components in different
availability zones. Therefore, they are using a multi-cloud
approach only to expand the possible choice of VMs for
placement. In contrast, this work will propose a method
for information infrastructure deployment in a static
multi-cloud environment, in which application
components are placed on different VMs. Also, the
possibility of deploying infrastructure components in
different availability zones will be considered, as well as
the constraints regarding service placement in certain
availability zones that are associated with the legislation
of different countries.

Figure 1 – System model

3 MATERIALS AND METHODS
As depicted in Figure 1, the system model consists of

six core components: cloud service consumer, cloud
service provider, virtual machines, information
infrastructure, availability zones of cloud providers, and
cloud brokering mechanism. The cloud service consumer
wants to deploy information infrastructure.

Cloud service providers specialize in providing cloud
services to customers on demand. Cloud service providers
offer the following service models: Software as Service
(SaaS) – the capability provided to the consumer to use
the provider’s applications running on cloud
infrastructure, Infrastructure as Service (IaaS) – the
capability provided to the consumer to provision
processing, storage, networks, and other fundamental
computing resources where the consumer can deploy and
run arbitrary software, which can include operating
systems and applications, Platform as Service (PaaS) –
the capability provided to the consumer to deploy onto the
cloud infrastructure consumer-created or acquired
applications created using programming languages,

163

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Rolik O. I., Zhevakin S. D., 2024
DOI 10.15588/1607-3274-2024-3-14

libraries, services, and tools supported by the provider [2].
Let P = {P1, P2, ..., Plast} define the set of cloud service
providers.

Cloud service providers offer non-standardized APIs
for interacting with their services. Such makes those
services not interchangeable among different providers.
Consequently, the only model that has unified
characteristics and configuration parameters, regardless of
the selected cloud service provider is application-level
services, specifically IaaS services. In this work, among
all IaaS services, the deployment of virtual machines will
be reviewed.

The virtual machines within each cloud provider are
divided into classes by specialization in such a way that
they fully cover customers’ needs. Within each
specialization, virtual machines are further divided into
classes. The division into classes is based on the virtual
machine parameters, with the most common criteria being
the number of virtual processors and the amount of virtual
memory. Thus, among cloud service providers, analogs
can be found for each type of virtual machine within each
specialization. This work will focus on virtual machines
with general-purpose specialization. General-purpose
virtual machines provide a balance of computing,
memory, and networking resources. These instances are
ideal for applications that use these resources in equal
proportions, such as web servers [18]. Therefore, let G =
{G1, G2, ..., Glast} define a set of virtual machine classes
within general-purpose specialization that are available
among all providers.

Nowadays, there is no direct correlation between the
set of applications in the information infrastructure and
the resulting number of virtual machines that will be used
for their deployment. This is associated with the use of
new architectural approaches to building information
infrastructure and its components. An example of such an
architecture is service-oriented architecture (SOA) [19].
In this architecture applications can be divided into
several components, each of which can be separately
deployed on different virtual machines. Such a
deployment approach enables independent scaling of
application components which leads to more efficient
resource utilization. Let A = {A1, A2, ..., Alast} define the
set of application components. Set A allows the
deployment of different applications and therefore their
components, to do so all application components of all
applications should be placed inside the set.

During the application operation, its components
constantly exchange requests and messages, generating a
significant data flow. To optimize the cost of information
infrastructure operation, application components are
placed as close as possible to each other, usually within
the same provider. Such placement occurs because most
cloud providers have zero communication costs within the
internal network, unlike the costs for communication with
external networks [20]. Therefore, let S (A×A) define the
relation matrix of application components that must be
deployed within the same cloud provider. Thus, Sa1a2

equals 1 when a1 and a2 components must be deployed
within the same provider, and 0 otherwise.

Despite the benefits of services co-location, it is also
associated with certain risks. The article [21] gives
examples in which, in order to ensure system security,
application components are deployed on separate clouds.
Such fragmentation of the application is associated with
mistrust towards cloud service providers, as they
represent a closed system where it is impossible to track
what happens to the application source code that is
transferred for hosting. Cloud service providers have
access to inbound and outbound application traffic. Using
this data, application logic can be reconstructed. Due to
such risks, some architectural approaches divide the
application into components, so that the information about
each component is insufficient to reconstruct an overall
picture of the application’s operation. Moreover, these
components are deployed on different clouds. Therefore,
let D (A×A) define the relationship matrix of application
components that should be placed in different clouds.
Thus, Da1a2 equals 0 when a1 and a2 components must be
deployed in different providers, and 1 otherwise.

However not only safety considerations can make
adjustments to the service deployment plan. Restrictions
regarding service deployment may arise from the
legislation of the country in where the user operates. Also,
similar restrictions may arise for clients with whom the
user operates. These restrictions are often related to
regional zones where data can be stored and how it should
be used, along with who can access it, and under which
conditions. An example of such a restriction is the
General Data Protection Regulation (GDPR). GDPR in
the European Union imposes restrictions on the transfer of
personal data outside the European Economic Area (EEA)
to ensure an adequate level of protection. Data transfers to
countries outside the EEA must adhere to specific
safeguards outlined in the GDPR, such as adequacy
decisions, standard contractual clauses, binding corporate
rules, or explicit consent from data subjects [22]. In the
United States, similar restrictions are imposed by laws
such as HIPAA [23] and GLBA [24]. Additionally,
countries such as China, Indonesia, Vietnam, and India
have restrictions in which certain types of data should be
stored and processed only within the country. Therefore,
let R = {R1, R2, ..., Rlast} define the set of availability
zones, such that each provider p  	P has a data center
located in the availability zone r  	R. Also, let B (R×A)
define the relationship matrix between application
component a and availability zone r. Such that, Bra equals
0 when component a should not be deployed in the
availability zone r, and 1 otherwise.

Cloud service providers offer access to resources on-
demand basis, charging an hourly fee for their usage. The
cost of using a virtual machine depends on its
specialization, parameters, and the region in which it will
be deployed. In addition to the on-demand plan, cloud
service providers offer the opportunity to reserve virtual
machines for a long period. In the reservation plan, the
user pays an upfront fee along with an hourly usage fee.

164

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Rolik O. I., Zhevakin S. D., 2024
DOI 10.15588/1607-3274-2024-3-14

The hourly cost of using a reserved virtual machine is
lower than the on-demand rate [25].

This study focuses on the initial deployment of
infrastructure in a multi-cloud environment, the main
purpose of which is to collect the necessary metrics for
further infrastructure utilization. It is considered that the
observation period will be less than the minimum
reservation period, i.e., one year, so only on-demand
virtual machines will be used. Also, such a pricing
scheme is appropriate given the uncertainty of the virtual
machines’ utilization post-observation period. Therefore,
let the element Cprg from the matrix C (P×R×G) define
the hourly price of a virtual machine at the provider pP,
in the region r  	R of class g  	G for on-demand usage.

The described problem is a combinatorial optimization
problem, as the main challenge lies in the optimal or
suboptimal deployment of virtual machines.
Combinatorial optimization problems (COPs), especially
real-world COPs, are challenging because they are
difficult to formulate and solve. Additionally, choosing
the proper solver algorithm and defining its best
configuration is also a difficult task due to the existence
of several solvers characterized by different
parametrizations [26].

To solve the problem, a family of genetic algorithms
was used. Genetic algorithms (GA) are a family of
computational models inspired by evolution. These
algorithms encode a potential solution to a specific
problem on a simple chromosome-like data structure and
apply recombination operators to these structures to
preserve critical information [27]. The general scheme of
the GA is presented in Figure 2.

Figure 2 – General scheme of generic algorithm

Due to constraint (7), the solution string encoding is

performed in the form of representing decision variables
as a vector.

GA is suited for unconstrained optimization. For use
in constrained optimization, a penalty function is
introduced. The main goal of the penalty function is to
add a penalty value to the fitness result for an infeasible
solution. The penalty value depends on the constraint’s
violation amount or on the amount by which constraints
are violated. Therefore, a feasible result would have more
chances to pass through during the reproduction phase in
comparison to an infeasible one. There are two types of
penalty functions: exterior and interior [27]. In the interior

penalty function, all elements from the initial population
should be feasible. On the other hand, the exterior penalty
function doesn’t require an initial population to be
feasible. Exterior penalty functions are used more often
because, in some cases, finding a feasible solution is itself
an NP-hard task.

In this work, different exterior penalty functions will
be compared to find out the best-fitting one for the
described problem, such as:

– Static penalty function;
– Dynamic penalty function;
– Additive penalty function.
The static penalty function adds a penalty based on the

number of violated constraints. The static penalty function
was taken from [28] and has the following form:










.otherwise),1(

,feasibleiswhen),(
)(

m

s
K

xxof
xstatic (8)

Where x is the solution vector, of (x) is the value of the

objective function for the solution vector x, K is a large
positive constant, s determines the number of constraints
that have been met, and m determines the total number of
constraints.

A dynamic penalty function adjusts the penalty value
during the optimization process using information about
the current state of the population. These adjustments
balance the exploration and exploitation phases of
optimization, potentially improving both the speed and
quality of results. The dynamic penalty function was
chosen from [29] and presented in equations (9–12):

),()()()(xSVCYtxofxdynamic  , (9)

 



q

i

m

qj
ji xDxDxSVC

1

)()(),( , (10)



 


,otherwise,)(

,,0)(when,0
)(

xg

qixg
xD

i

i
i

 (11)

Where in (9) x is the solution vector, of (x) is the value

of the objective function for the solution vector x. Y, α, β
are the input parameters of the penalty function, which are
defined by the user and t is the iteration counter. Equation
(10) determines the value of the penalty function
depending on the violated constraints, where m is the total
number of constraints. The (11) equation determines the
penalty value imposed by inequality constraints when the
constraints are violated, suppose that inequality
constraints have the following representation gi (x) ≤ 0,
 i  {1, 2, …, q}. The (12) equation in turn determines
the penalty value for equality constraints with following
form hj (x) = 0,  j  {q + 1, q + 2, …, m}.

The additive penalty function uses weights that are
defined for each constraint independently. Additive
penalties have the following form:

165

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Rolik O. I., Zhevakin S. D., 2024
DOI 10.15588/1607-3274-2024-3-14

)()()()(
1

xLcxGrxofxadditive
m

qj
jj

q

i
ii 



 ,

}...,,2,1{},,...,2,1{ mqqjMcqiMr ji 
(13)

])(,0max[)(xgxG ii  , (14)
|)(|)(xhxL jj  . (15)

Where in (13) ri and cj define the penalty weight

multipliers that inequality and equality constraints
respectively impose when violated. Also, parameters β
and γ in (14) and (15) are used to balance the impact that
inequality and equality constraints have on penalty value.
The set M contains the values of all weights. Compared to
the previously described penalty functions, this function
can be more precisely adapted to the problem due to a
larger set of parameters and the possibility of fine-tuning
them. But with such an opportunity, the problem of
finding the values of these weights arises. The issue is
that the penalty value directly depends on the values of
the weights ri and cj. If they are set too small, the time to
find the first feasible solution will increase, while the
result could be better due to the possible search across the
infeasible region [28]. Conversely, if ri and cj are given
too large values, the GA will quickly enter the local
optimum and will less frequently resort to searching
across infeasible space.

To find the ri and cj parameter values of the additive
function, the scalable semi-swarm parameter optimization
algorithm (S3POA) was developed. The algorithm
consists of two stages: finding relative parameter values
and adjusting them.

In the first stage of the S3POA algorithm, the
objective function was modified so that each constraint,
when violated, was multiplied by a large value. Thus, the
penalty function takes the following form (16).

.)(~)(~)()(
1 











  



q

i

m

qj
jjii xLcxGrBxofxEvaluate (16)

Figure 3 – Scheme of the first stage of S3POA

In Figure 3 the scheme of the first stage of S3POA is

presented. The input parameters for the described
algorithm include the number of iterations of the GA.

This value should not be too small to allow the algorithm
to reach a local optimum, but it also should not be too big
to prevent the algorithm from conducting a long search in
the infeasible region. The idea of the first stage algorithm
involves conducting a fixed number of iterations of the
GA with the (16) objective function. After the GA is
finished, the final population is analyzed. If any element
of the final population belongs to the feasible region, the
next iteration of the algorithm is performed. Otherwise,
among the elements of the final population, the constraint
with the most violations is identified. After finding such a
constraint, its corresponding relative weight (ři for a non-
strict constraint and čj for a strict constraint) is increased
by one. The next iteration of the algorithm is conducted
with updated weights. The algorithms continue until a
given number of iterations is reached which is provided as
an input parameter to the algorithm.

Gradually increasing the values of the stopping
weights, decreases the probability that they will be
violated in the next iteration of the algorithm. This leads
to a more comprehensive consideration of the resulting
weight values. As a result, the values of the relative
weights ři and čj are obtained such that ři  M̃  i{1, 2,
… , q}, čj  M̃  j  {q + 1, q + 2, … , m}. These
relative weights allow for examining the relationship
between constraints.

The found relative weight values cannot be used
immediately to solve the given problem, as their value
increases with the number of algorithm iterations, which
may result in assigning excessive values to them.
Excessively large values of these parameters will lead to a
situation where the GA will quickly find a feasible
solution, but then it will have a harder time considering
infeasible solutions because it will have excessively high
fitness values [28]. To overcome this issue, found weight
values are considered relative. To find the best fitting
weight values, the objective function from (13) will be
used, but with the following values:









,otherwise,

,1,1

i

i
i r

r
r 


 (17)









.otherwise,

,1,1

j

j
j c

c
c 


 (18)

In (17) and (18), the multiplier µ is responsible for the

scale that should be applied to the variables ři and čj to
avoid the problem of insufficient and excessive weight
assignment. The value of relative weights equal to 1 is not
scaled since during the experiments these constraints were
not violated, so they do not prevent reaching the feasible
solution.

4 EXPERIMENTS

To conduct the experiments, the input parameters of
the problem were set and presented in Tables 1 – 6. Table
1 shows the regions where virtual machines will be

166

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Rolik O. I., Zhevakin S. D., 2024
DOI 10.15588/1607-3274-2024-3-14

deployed. As for cloud service providers, AWS, Azure,
and Google Cloud were chosen as they occupy a
significant portion of the cloud services market [30].

Table 1 – Correspondence of the geographic regions to the
availability regions of the providers

 AWS Azure Google Cloud
EU west eu-west-1 West Europe europe-west1-b

US east us-east-1 East US us-east4-a

EU
central

eu-central-1 Sweden Central europe-north1-a

Japan asia-south1-a Japan East asia-northeast1-a

Table 2 – Description of selected virtual machines among different cloud service providers

 VM names Provider vCPUs
Memory
Size (GB)

Price in West
Europe ($)

Price in
East US

($)

Price in North
Europe ($)

Price in
Japan ($)

t2.small AWS 1 2 0.027 0.025 0.0286 0.0322

t2.medium AWS 2 4 0.0539 0.0499 0.0571 0.0643

t2.xlarge AWS 4 16 0.2086 0.1926 0.2214 0.2502

t2.2xlarge AWS 8 32 0.4172 0.3852 0.4428 0.5004

Standart_A1_V2 Azure 1 2 0.041 0.043 0.041 0.054

Standart_A2_V2 Azure 2 4 0.087 0.091 0.0861 0.113

Standart_A4_V2 Azure 4 8 0.183 0.191 0.182 0.238

Standart_A8_V2 Azure 8 16 0.383 0.4 0.38 0.5

t2d-standard-1 Google Cloud 1 4 0.0465 0.0476 0.0465 0.0542

t2d-standard-2 Google Cloud 2 8 0.0929 0.0952 0.093 0.1084

t2d-standard-4 Google Cloud 4 16 0.1859 0.1903 0.1861 0.2168

t2d-standard-8 Google Cloud 8 32 0.3718 0.3806 0.3721 0.4336

Information about the selected classes of virtual
machines, their characteristics, and the on-demand hourly
cost of using them relative to regions is presented in Table
2. According to the information presented in Table 2, four
different classes of virtual machines were formed based
on the number of virtual processors. Tables 3–5 describe
the requirements regarding application components
deployment. Thus, Table 3 presents the requirements
regarding application components deployment within the
same cloud service provider, defining the matrix S. Table
4 presents the requirements regarding application
components deployment within different cloud service
providers, defining the matrix D. Table 5 describes the
requirements regarding the characteristics of virtual
machines on which application components should be
deployed.

Constraints regarding the application components
deployment in relation to availability zones were also
introduced. Specifically, a3 and a6 application
components must be located within the European
geographic region, meaning they can be deployed in the
EU West and EU Central geographical zones.

Table 3 – Constraints on the placement of application
components within one provider

 1 2 3 4 5 6 7 8

1 0 1 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 0 0 0 0 1 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 1 0 0 0 0 0

7 0 0 0 0 0 0 0 1

8 0 0 0 0 0 0 1 0

Table 4 – Constraints on the placement of application
components across different providers

 1 2 3 4 5 6 7 8

1 1 1 0 1 1 0 1 1

2 1 1 0 1 1 0 1 1

3 0 0 1 1 1 1 0 0

4 1 1 1 1 0 1 1 1

5 1 1 1 0 1 1 1 1

6 0 0 1 1 1 1 0 0

7 1 1 0 1 1 0 1 1

8 1 1 0 1 1 0 1 1

167

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Rolik O. I., Zhevakin S. D., 2024
DOI 10.15588/1607-3274-2024-3-14

Table 5 – Minimum required virtual machine parameter
values for application components deployment

Application 1 2 3 4 5 6 7 8

Min vCPU 2 1 4 6 3 1 2 8

Min Memory (GB) 4 2 16 16 8 2 16 20

To conduct experiments, a virtual machine of class

c7i.xlarge from the AWS provider was used. The
c7i.xlarge is the compute-optimized family of instances
with 4 vCPUs of Intel Xeon Scalable (Sapphire Rapids)
with 3.2 GHz clock speed, 8.0 GB of memory, and up to
12.5 Gbps of bandwidth [31].

The same basic parameters of the GA were set for
each penalty function. Also, the GA was run 100 times
with each penalty function. The termination condition for
the algorithm was reaching 1000 iterations.

Parameter tuning of the penalty function parameters as
well as other GA parameters is carried out individually
for each problem. Parameter tuning for GAs is widely
covered in the literature. In this section, the focus will be
on parameter tuning for the described penalty functions.

Аs for the static penalty function input parameter is K,
which, as described in [29], should be a large number.
Therefore, during the experiments, the value determined
by the authors will be used, such that K = 109.

For the dynamic penalty function, the input
parameters are the values Y, α, β. The authors in [29]
suggest using values Y = 0.5, α = 2, β = 2. To find the
values of these parameters, a series of experiments were
conducted, as a result of which it was found that, for the
described problem, the best result was achieved with the
values Y = 0.7, α = 1, β = 1. These values will be used in
further experiments.

For the additive penalty function, weight values were
calculated with the S3POA algorithm. As input
parameters for the S3POA algorithm, the value of
geneticAlgorithmIterationCount was set to 89. With this
number of iterations, GA reached a feasible solution in
47.8% of invocations, such an indicator showed the
ability of the algorithm to find feasible value without
conducting an extensive search. The value of
S3poaIterationCount was set to 1000. The value of B was
set to 109. As depicted in [29], common values of β and γ
parameters are 1 or 2. During experiments, those
parameters were assigned the following values: β = 1,
γ = 2, since the described problem has only one type of
equality constraint (7) which had a significant impact on
the result and was most often violated.

5 RESULTS

Based on the results of the conducted experiments, the
static penalty function failed to achieve a result that
belongs to the feasible region. This outcome was due to
the function definition, as it only considered the number
of violated constraints without considering the degree of
their violation. Unfortunately, this description was

insufficient to guide the algorithm toward a feasible
result. Therefore, the results of the static penalty function
were excluded from the further experiment results.

Figure 4 – Comparison of the average objective function values

for the additive and dynamic penalty functions.

For the dynamic and additive penalty functions, the

resulting values of the objective functions that belonged
to the feasible region were compared. To analyze the
obtained results, the value of the approximated global
optimum was determined. This value was found during
problem-solving without considering constraints (4)–(7).
The excluded constraints described the deployment plan
of virtual machines. Figure 4 demonstrates a comparison
diagram of the average obtained results for the dynamic
and additive penalty functions. It includes the average,
maximum, and minimum values of the objective function
obtained during the experiments. The value of the
approximated optimum was displayed in Figure 4 with a
dashed line.

Additionally, a comparison of the average time spent
to find the first feasible and resulting solutions for the
dynamic and additive penalty functions was conducted,
and the obtained results are presented in Figure 5.

Figure 5 – Comparison of the average time spent to find the

first feasible and the resulting solutions for the additive and
dynamic penalty functions.

168

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Rolik O. I., Zhevakin S. D., 2024
DOI 10.15588/1607-3274-2024-3-14

6 DISCUSSION
Comparing the results of the dynamic and additive

penalty functions, it can be concluded that the dynamic
penalty function failed to achieve any feasible result in
33% of еру experiments, while for the additive penalty
function, this indicator was only 10% of the conducted
experiments.

To assess the possibility of the selected penalty
functions exiting from the local optimum and continuing
searching for a better solution, after reaching the first
feasible solution, experiments were conducted in which
the first founded feasible solution was compared with the
resulting solution of the algorithm. Thus, among all the
results that reached a feasible solution, the additive
penalty function obtained a resulting solution that was
better than the first feasible solution in 85% of cases,
while for the dynamic penalty function, this indicator was
61%.

Analyzing Figure 4, it can be concluded that the
additive penalty function, on average, showed on 8.933%
better results than the dynamic function. Also, on average,
the result of the additive function was by 22.36% greater
than the value of the approximated optimum.

For the additive penalty function, the average
algorithm runtime was 1241.53 seconds, while for the
dynamic penalty function, this value was equal to 1239.59
seconds. Based on the obtained results, the use of
different penalty functions had almost no effect on the
overall algorithm runtime.

Analyzing the data presented in Figure 5, it can be
concluded that, on average, the GA with the additive
penalty function required 2.437 times less time to find the
first feasible solution compared to the dynamic penalty
function. Also, the average time spent to find the best
solution for the additive penalty function was 18.6% less
than the time required for the dynamic penalty function to
find such a solution. Considering that 85% of the
resulting solutions obtained by the additive penalty
function were better than the first feasible solution,
compared to 61% for the dynamic function, it can be
concluded that, despite spending less time to find the best
solution, the additive function less often stopped at the
local optimum and had a higher chance of finding a more
profitable solution.

Summing up, it can be concluded that during the
experiments, the additive penalty function performed
better than the dynamic and the static penalty functions.
Also, this result indicates that the described S3POA
parameter tuning algorithm is capable of balancing the
input parameter values. On the one hand, the algorithm
spends less time finding the first feasible solution, and on
the other hand, upon reaching a local optimum, the
algorithm retains the ability to search for better solutions
among the infeasible region. Referring to [28], these
characteristics indicate the selection of best-fitting
parameter values for the penalty function. This result was
achieved through direct interaction with the problem
during the determination of parameter values. That is, the
proposed parameter tuning method directly interacted

with the problem, dynamically adjusting the parameter
values to achieve better results, rather than statically
enumerating possible values as was the case with the
dynamic and static functions.

CONCLUSION

In this paper, the problem of informational
infrastructure deployment in a static multi-cloud
environment was formulated as an optimization problem,
the main goal of which was to minimize the hourly cost of
utilizing information infrastructure. A GA was used to
solve the formulated problem. Various penalty functions
were observed for the proposed algorithm, namely static,
dynamic, and additive. The input parameter values were
tuned for the selected penalty functions. Additionally, a
S3POA parameter tuning algorithm for the penalty
function parameters was proposed. The obtained results
showed that the additive penalty function with parameters
selected by the proposed S3POA method turned out to be
better in comparison to others.

The scientific novelty. A new method was proposed
that allows the decrease of information infatuation
utilization cost in a static multi-cloud environment, which
considers the division of the application into components
and introduces restrictions on their placement. The use of
different availability zones to deploy application
components was also considered. Additionally, a new
parameter optimization method for GA penalty functions
was proposed, which allows obtaining better parameter
values due to consistent interaction with the researched
problem.

The practical orientation of the study. The
information infrastructure deployed under the described
assumptions can be used to collect data about application
load and interaction patterns over a certain period. Such
information provides a clear view of infrastructure needs
and can be used during infrastructure operations to have
reliable information on the possible service loads and
resource requirements.

Prospects for further research. In future research, it
makes sense to consider the usage of scalable instances.
In addition, the proposed solution can be integrated into
dynamic placement algorithms to be used as a starting
point in the algorithm’s operation.

REFERENCES
1. Zhang X., Yue Q., He Z. Dynamic Energy-Efficient Virtual

Machine placement optimization for virtualized clouds,
Lecture Notes in Electrical Engineering, 2014, pp. 439–448.
DOI: 10.1007/978-3-642-53751-6_47.

2. Song F., Huang D., Zhou H., Zhang H., You I. An
Optimization-Based scheme for efficient virtual machine
placement, International Journal of Parallel Programming,
2013, Vol. 42, № 5, pp. 853–872. DOI: 10.1007/s10766-
013-0274-5.

3. Amazing Cloud Adoption Statistics [2023]: Cloud
migration, computing, and more [Electronic resource].
Access mode: https://www.zippia.com/advice/cloud-
adoption-statistics/

169

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Rolik O. I., Zhevakin S. D., 2024
DOI 10.15588/1607-3274-2024-3-14

4. Tawfeek M. A., El-Sisi A. B., Keshk A., Torkey F. A.
Virtual machine placement based on ant colony optimization
for minimizing resource wastage, Communications in
Computer and Information Science, 2014, pp. 153–164.
DOI: 10.1007/978-3-319-13461-1_16.

5. EC2 On-Demand Instance Pricing – Amazon Web Services.
Amazon Web Services, Inc [Electronic resource]. Access
mode: https://aws.amazon.com/ec2/pricing/on-
demand/?nc1-=h_ls

6. Pricing | Compute Engine: Virtual Machines (VMs) | Google
Cloud. [Electronic resource]. Access mode:
https://cloud.google.com/compute/all-pricing

7. Heilig L., Lalla-Ruiz E., Voss S. A cloud brokerage
approach for solving the resource management problem in
multi-cloud environments, Computers & Industrial
Engineering, 2016, Vol. 95, pp. 16–26. DOI:
10.1016/j.cie.2016.02.015.

8. Telenyk S., Zharikov E., Rolik O. Consolidation of virtual
machines using stochastic local search, Advances in
Intelligent Systems and Computing, 2017, pp. 523–537.
DOI: 10.1007/978-3-319-70581-1_37.

9. Song F. Huang D., Zhou H., Zhang H., You I. An
Optimization-Based scheme for efficient virtual machine
placement, International Journal of Parallel Programming,
2013, Vol. 42, № 5, pp. 853–872. DOI: 10.1007/s10766-
013-0274-5.

10. Tawfeek M. A., El-Sisi A. B., Keshk A., Torkey F. A.
Virtual machine placement based on ant colony optimization
for minimizing resource wastage, Communications in
Computer and Information Science, 2014, pp. 153–164.
DOI: 10.1007/978-3-319-13461-1_16.

11. Charrada F. B., Tebourski N., Tata S., Moalla S.
Approximate Placement of Service-Based Applications in
Hybrid Clouds, 2012 IEEE 21st International Workshop on
Enabling Technologies: Infrastructure for Collaborative
Enterprises. DOI: 10.1109/wetice.2012.76.

12. Chaisiri S., Lee B.-S., Niyato D. Optimal virtual machine
placement across multiple cloud providers, 2009 IEEE Asia-
Pacific Services Computing Conference (APSCC). DOI:
10.1109/apscc.2009.5394134.

13. Subramanian T., Nickolas S. Application based brokering
algorithm for optimal resource provisioning in multiple
heterogeneous clouds, Vietnam Journal of Computer
Science, 2015, Vol. 3, № 1, pp. 57–70. DOI:
10.1007/s40595-015-0055-8.

14. Màsdàrí M., Nabavi S. S., Ahmadi V. An overview of
virtual machine placement schemes in cloud computing,
Journal of Network and Computer Applications, 2016,
Vol. 66, pp. 106–127. DOI: 10.1016/j.jnca.2016.01.011.

15. Lucas-Simarro J. L., Moreno-Vozmediano R., Montero R.,
Llorente I. Cost optimization of virtual infrastructures in
dynamic multi-cloud scenarios, Concurrency and
Computation, 2012, Vol. 27, № 9, pp. 2260–2277. DOI:
10.1002/cpe.2972.

16. Tordsson J., Montero R., Moreno-Vozmediano R., Llorente
I. Cloud brokering mechanisms for optimized placement of
virtual machines across multiple providers, Future
Generation Computer Systems, 2012, Vol. 28, № 2,
pp. 358–367. DOI: 10.1016/j.future.2011.07.003.

17. Bellur U., Malani A., Narendra N. C. Cost optimization in
multi-site multi-cloud environments with multiple pricing
schemes, 2013 IEEE/ACM 6th International Conference on

Utility and Cloud Computing, pp. 115–122. DOI:
10.1109/cloud.2014.97.

18. General purpose instances – Amazon EC2. [Electronic
resource]. Access mode: https://docs.aws.amazon.com/-
ec2/latest/instancetypes/gp.html

19. SOA Source Book – Infrastructure for SOA. [Electronic
resource]. Access mode: https://collaboration.opengroup-
.org/projects/soa-book/pages.php?action=show&ggid=1336

20. Overview of data transfer costs for common architectures |
Amazon Web Services. Amazon Web Services. [Electronic
resource]. Access mode: https://aws.amazon.com/blogs/-
architecture/overview-of-data-transfer-costs-for-common-
architectures/

21. Kaviani N., Wohlstadter E., Lea R. Partitioning of web
applications for hybrid cloud deployment, Journal of
Internet Services and Applications, 2014, Vol. 5, № 1. DOI:
10.1186/s13174-014-0014-0.

22. Chapter 5 – Transfers of personal data to third countries or
international organisations – General Data Protection
Regulation (GDPR). General Data Protection Regulation
(GDPR). [Electronic resource]. Access mode: https://gdpr-
info.eu/chapter-5/

23. Health Insurance Portability and Accountability Act of
1996. ASPE. Online. 20 August 1996. [Electronic resource].
Access mode: https://aspe.hhs.gov/reports/health-insurance-
portability-accountability-act-1996

24. GovInfo. [Electronic resource]. – Access mode:
https://www.govinfo.gov/app/details/PLAW-106publ102

25. Introduction to Amazon EC2 Reserved instances. Amazon
Web Services, Inc. [Electronic resource]. Access mode:
https://aws.amazon.com/ec2/pricing/reserved-instances/

26. Peres F., Castelli M. Combinatorial Optimization Problems
and Metaheuristics: review, challenges, design, and
development, Applied Sciences, 2021, Vol. 11, № 14, P.
6449. DOI: 10.3390/app11146449.

27. Yeniay Ö. Penalty Function Methods for Constrained
Optimization with Genetic Algorithms, Mathematical and
Computational Applications, 2005, Vol. 10. № 1, pp. 45–56.
DOI: 10.3390/mca10010045.

28. Morales K., Quezada C. A universal Eclectic genetic
algorithm for constrained optimization, 6th European
Congress on Intelligent Techniques & Soft Computing.
1998. Vol. 518–522. [Electronic resource] Access mode:
http://cursos.itam.mx/akuri/PUBLICA.CNS-
/1998/Universal%20EGA%20%28EUFIT98%29.PDF.

29. Joines J. A., Houck C. R. On the use of non-stationary
penalty functions to solve nonlinear constrained
optimization problems with GA’s, First IEEE International
Conference on Evolutionary Computation, 2002. DOI:
10.1109/icec.1994.349995.

30. RICHTER, Felix. Amazon maintains cloud lead as
Microsoft Edges closer. Statista Daily Data. [Electronic
resource]. – Access mode: https://www.statista.com/chart/-
18819/-worldwide-market-share-of-leading-cloud-
infrastructure-service-providers/

31. Introducing Amazon EC2 Flex instances (1:24[Electronic
resource]. Access mode:
https://aws.amazon.com/ec2/instance-types/c7i/

Received 22.04.2024.
Accepted 16.08.2024.

170

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Rolik O. I., Zhevakin S. D., 2024
DOI 10.15588/1607-3274-2024-3-14

УДК 004.94

МЕТОД ОПТИМІЗАЦІЇ ВИТРАТ ДЛЯ РОЗМІЩЕННЯ ІНФОРМАЦІЙНОЇ ІНФРАСТРУКТУРИ В
СТАТИЧНОМУ МУЛЬТИХМАРНОМУ СЕРЕДОВИЩІ

Ролік О. І. – д-р техн. наук, професор, завідувач кафедри інформаційних систем та технологій, Національний технічний
університет України «Київський політехнічний інститут імені Ігоря Сікорського», Київ, Україна.

Жевакін С. Д. – аспірант кафедри інформаційних систем та технологій, Національний технічний університет України
«Київський політехнічний інститут імені Ігоря Сікорського», Київ, Україна.

АНОТАЦІЯ
Актуальність. Останнім часом набула популярності тема розміщення інформаційної інфраструктури в мультихмарному

середовищі. Дана тенденція пов’язана з тим, що мультихмарне середовище надає можливість використовувати унікальні
сервіси різних хмарних постачальників. Таким чином, всі доступні сервіси хмарних постачальників можуть бути
використані при побудові інформаційної інфраструктури. Крім того, різні цінові політики серед постачальників можуть
бути розглянуті при виборі сервісів. Проте зі збільшенням кількості наявних постачальників хмарних послуг зростає
складність побудови оптимального плану з розміщення інформаційної інфраструктури.

Мета роботи. Метою роботи є оптимізація витрат пов’язаних з експлуатацією інформаційної інфраструктури в
мультихмарному середовищі з урахуванням цін на аналогічні сервіси, серед постачальників хмарних послуг.

Метод. В роботі пропонується новий метод оптимізації витрат для розміщення інформаційної інфраструктури в
статичному мультихмарному середовищі, який мінімізує погодинну вартість її використання. Для вирішення цієї задачі
було використано генетичний алгоритм. Були розглянуті різні функції штрафу для генетичного алгоритму. Також
пропонується новий метод підбору параметрів для функцій штрафу.

Результати. Була проведена серія експериментів для порівняння результатів різних функцій штрафу. Результати
показали, що функція штрафу із запропонованим методом підбору параметрів знаходила рішення, яке було у середньому на
8,933% кращим і вимагало на 18,6% менше часу, в порівняні з іншими. Отримані результати демонструють, що
запропонований метод підбору параметрів забезпечує ефективний пошук серед областей допустимих і недопустимих
рішень.

Висновок. Запропоновано новий метод оптимізації витрат для розміщення інформаційної інфраструктури в статичному
мультихмарному середовищі. Однак, незважаючи на ефективність запропонованого методу, його можна значно покращити.
Зокрема, необхідно розглянути можливість залучення масштабованих віртуальних машин при розміщенні інформаційної
інфраструктури.

КЛЮЧОВІ СЛОВА: оптимізація витрат, інформаційна інфраструктура, початкове розміщення, мультихмара, метод
підбору параметрів, функція штрафів.

ЛІТЕРАТУРА
1. Zhang X. Dynamic Energy-Efficient Virtual Machine

placement optimization for virtualized clouds / X. Zhang,
Q. Yue, Z. He // Lecture Notes in Electrical Engineering. –
2014. – P. 439–448. DOI: 10.1007/978-3-642-53751-6_47.

2. An Optimization-Based scheme for efficient virtual machine
placement / [F. Song, D. Huang, H. Zhou et al.] //
International Journal of Parallel Programming. – 2013. –
Vol. 42, № 5. – P. 853–872. DOI: 10.1007/s10766-013-
0274-5.

3. Amazing Cloud Adoption Statistics [2023]: Cloud
migration, computing, and more [Electronic resource]. –
Access mode: https://www.zippia.com/advice/cloud-
adoption-statistics/

4. Virtual machine placement based on ant colony optimization
for minimizing resource wastage / [M. A. Tawfeek,
A. B. El-Sisi, A. Keshk, F. A. Torkey] // Communications in
Computer and Information Science. – 2014. – P. 153–164.
DOI: 10.1007/978-3-319-13461-1_16.

5. EC2 On-Demand Instance Pricing – Amazon Web Services.
Amazon Web Services, Inc [Electronic resource]. – Access
mode: https://aws.amazon.com/ec2/pricing/on-
demand/?nc1-=h_ls

6. Pricing | Compute Engine: Virtual Machines (VMs) | Google
Cloud. [Electronic resource]. – Access mode:
https://cloud.google.com/compute/all-pricing

7. Heilig L. A cloud brokerage approach for solving the
resource management problem in multi-cloud environments
/ L. Heilig, E. Lalla-Ruiz, S. Voss // Computers & Industrial

Engineering. – 2016. – Vol. 95. – P. 16–26. DOI:
10.1016/j.cie.2016.02.015.

8. Telenyk S. Consolidation of virtual machines using
stochastic local search / S. Telenyk, E. Zharikov, O. Rolik //
Advances in Intelligent Systems and Computing. – 2017. –
P. 523–537. DOI: 10.1007/978-3-319-70581-1_37.

9. An Optimization-Based scheme for efficient virtual machine
placement / [F. Song, D. Huang, H. Zhou et al.] //
International Journal of Parallel Programming. – 2013. –
Vol. 42, № 5. – P. 853–872. DOI: 10.1007/s10766-013-
0274-5.

10. Virtual machine placement based on ant colony optimization
for minimizing resource wastage / [M. A. Tawfeek,
A. B. El-Sisi, A. Keshk, F. A. Torkey] // Communications in
Computer and Information Science. – 2014. – P. 153–164.
DOI: 10.1007/978-3-319-13461-1_16.

11. Approximate Placement of Service-Based Applications in
Hybrid Clouds / [F. B. Charrada, N. Tebourski, S. Tata,
S. Moalla] // 2012 IEEE 21st International Workshop on
Enabling Technologies: Infrastructure for Collaborative
Enterprises. DOI: 10.1109/wetice.2012.76.

12. Chaisiri S. Optimal virtual machine placement across
multiple cloud providers / S. Chaisiri, B.-S. Lee, D. Niyato //
2009 IEEE Asia-Pacific Services Computing Conference
(APSCC). DOI: 10.1109/apscc.2009.5394134.

13. Subramanian T. Application based brokering algorithm for
optimal resource provisioning in multiple heterogeneous
clouds / T. Subramanian, S. Nickolas // Vietnam Journal of
Computer Science. – 2015. – Vol. 3, № 1. – P. 57–70. DOI:
10.1007/s40595-015-0055-8.

171

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2024. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. № 3

© Rolik O. I., Zhevakin S. D., 2024
DOI 10.15588/1607-3274-2024-3-14

14. Màsdàrí M. An overview of virtual machine placement
schemes in cloud computing / M. Màsdàrí, S. S. Nabavi,
V. Ahmadi // Journal of Network and Computer
Applications. – 2016. – Vol. 66. – P. 106–127. DOI:
10.1016/j.jnca.2016.01.011.

15. Cost optimization of virtual infrastructures in dynamic
multi-cloud scenarios / [J. L. Lucas-Simarro, R. Moreno-
Vozmediano, R. Montero, I. Llorente] // Concurrency and
Computation. – 2012. – Vol. 27, № 9. – P. 2260–2277. DOI:
10.1002/cpe.2972.

16. Tordsson J. Cloud brokering mechanisms for optimized
placement of virtual machines across multiple providers /
[J. Tordsson, R. Montero, R. Moreno-Vozmediano,
I. Llorente] // Future Generation Computer Systems. – 2012.
– Vol. 28, № 2. – P. 358–367. DOI:
10.1016/j.future.2011.07.003.

17. Bellur U. Cost optimization in multi-site multi-cloud
environments with multiple pricing schemes / U. Bellur,
A. Malani, N. C. Narendra // 2013 IEEE/ACM 6th
International Conference on Utility and Cloud Computing. –
P. 115–122. DOI: 10.1109/cloud.2014.97.

18. General purpose instances – Amazon EC2. [Electronic
resource]. – Access mode: https://docs.aws.amazon.com/-
ec2/latest/instancetypes/gp.html

19. SOA Source Book – Infrastructure for SOA. [Electronic
resource]. – Access mode: https://collaboration.opengroup-
.org/projects/soa-book/pages.php?action=show&ggid=1336

20. Overview of data transfer costs for common architectures |
Amazon Web Services. Amazon Web Services. [Electronic
resource]. – Access mode: https://aws.amazon.com/blogs/-
architecture/overview-of-data-transfer-costs-for-common-
architectures/

21. Kaviani N. Partitioning of web applications for hybrid cloud
deployment / N. Kaviani, E. Wohlstadter, R. Lea // Journal
of Internet Services and Applications. – 2014. – Vol. 5, № 1.
DOI: 10.1186/s13174-014-0014-0.

22. Chapter 5 – Transfers of personal data to third countries or
international organisations – General Data Protection
Regulation (GDPR). General Data Protection Regulation

(GDPR). [Electronic resource]. – Access mode: https://gdpr-
info.eu/chapter-5/

23. Health Insurance Portability and Accountability Act of
1996. ASPE. Online. 20 August 1996. [Electronic resource].
– Access mode: https://aspe.hhs.gov/reports/health-
insurance-portability-accountability-act-1996

24. GovInfo. [Electronic resource]. – Access mode:
https://www.govinfo.gov/app/details/PLAW-106publ102

25. Introduction to Amazon EC2 Reserved instances. Amazon
Web Services, Inc. [Electronic resource]. – Access mode:
https://aws.amazon.com/ec2/pricing/reserved-instances/

26. Peres F. Combinatorial Optimization Problems and
Metaheuristics: review, challenges, design, and development
/ F. Peres, M. Castelli // Applied Sciences. – 2021. –
Vol. 11, № 14. – P. 6449. DOI: 10.3390/app11146449.

27. Yeniay Ö. Penalty Function Methods for Constrained
Optimization with Genetic Algorithms / Ö. Yeniay //
Mathematical and Computational Applications. – 2005. –
Vol. 10, № 1. – P. 45–56. DOI: 10.3390/mca10010045.

28. Morales K. A universal Eclectic genetic algorithm for
constrained optimization / K. Morales, C. Quezada // 6th
European Congress on Intelligent Techniques & Soft
Computing. 1998. Vol. 518–522. [Electronic resource]
Access mode: http://cursos.itam.mx/akuri/PUBLICA.CNS-
/1998/Universal%20EGA%20%28EUFIT98%29.PDF.

29. Joines J. A. On the use of non-stationary penalty functions
to solve nonlinear constrained optimization problems with
GA’s / J. A. Joines, C. R. Houck // First IEEE International
Conference on Evolutionary Computation. – 2002. DOI:
10.1109/icec.1994.349995.

30. RICHTER, Felix. Amazon maintains cloud lead as
Microsoft Edges closer. Statista Daily Data. [Electronic
resource]. – Access mode: https://www.statista.com/chart/-
18819/-worldwide-market-share-of-leading-cloud-
infrastructure-service-providers/

31. Introducing Amazon EC2 Flex instances (1:24[Electronic
resource]. – Access mode:
https://aws.amazon.com/ec2/instance-types/c7i/

172

