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ABSTRACT 
Context. With the development of blockchain technology and the increasing use of smart contracts, which are automatically 

executed in blockchain networks, the significance of securing these contracts has become extremely relevant. Traditional code 
auditing methods often prove ineffective in identifying complex vulnerabilities, which can lead to significant financial losses. For 
example, the reentrancy vulnerability that led to the DAO attack in 2016 resulted in the loss of 3.6 million ethers and the split of the 
Ethereum blockchain network. This underscores the necessity for early detection of vulnerabilities. 

Objective. The objective of this work is to develop and test an innovative approach for identifying and localizing vulnerabilities 
in smart contracts based on the analysis of attention vectors in a model using BERT architecture. 

Method. The methodology described includes data preparation and training a transformer-based model for analyzing smart 
contract code. The proposed attention vector analysis method allows for the precise identification of vulnerable code segments. The 
use of the CodeBERT model significantly improves the accuracy of vulnerability identification compared to traditional methods. 
Specifically, three types of vulnerabilities are considered: reentrancy, timestamp dependence, and tx.origin vulnerability. The data is 
preprocessed, which includes the standardization of variables and the simplification of functions. 

Results. The developed model demonstrated a high F-score of 95.51%, which significantly exceeds the results of contemporary 
approaches, such as the BGRU-ATT model with an F-score of 91.41%. The accuracy of the method in the task of localizing 
reentrancy vulnerabilities was 82%. 

Conclusions. The experiments conducted confirmed the effectiveness of the proposed solution. Prospects for further research 
include the integration of more advanced deep learning models, such as GPT-4 or T5, to improve the accuracy and reliability of 
vulnerability detection, as well as expanding the dataset to cover other smart contract languages, such as Vyper or LLL, to enhance 
the applicability and efficiency of the model across various blockchain platforms. 

Thus, the developed CodeBERT-based model demonstrates high results in detecting and localizing vulnerabilities in smart 
contracts, which opens new opportunities for research in the field of blockchain platform security. 

KEYWORDS: smart contracts, vulnerabilities, blockchain, machine learning, attention vector analysis, transformers, code 
security, code audit. 

 
ABBREVIATIONS 

NN is a Neural Network; 
BERT is a Bidirectional Encoder Representations 

from Transformers; 
GPT is a Generative Pre-trained Transformer; 
GRU is a Gated Recurrent Unit; 
LSTM is a Long Short-Term Memory; 
RNN is a Recurrent Neural Network; 
CNN is a Convolutional Neural Network; 
AUC is an Area Under the Curve; 
ROC is a Receiver Operating Characteristic; 
RGB is Red, Green, Blue; 
TP is a True Positive; 
FN is a False Negative; 
FP is a False Positive; 
TN is a True Negative. 

 
NOMENCLATURE 

C is a set of all smart contracts; 
V is a set of all possible vulnerabilities; 
T is a set of tokens in a smart contract code; 
ti is the i-th token in a smart contract code; 
A is a set of attention weights for tokens; 
a is an attention weights for the token; 

f() is a model that maps a smart contract to a set of 
vulnerabilities; 

wij is an attention weight from token ti to tj token; 
D is a dataset; 
Q is a query matrix; 
K is a key matrix; 
V is a value matrix; 
P is a value of precision; 
R is a value of recall; 
dk is a key dimension; 
F  is an F score, which is a weighted harmonic mean 

of precision and recall; 
 is a weight of recall in the F  score; 

windows_size is a size of the sliding window; 
token_att_mean is a mean attention value for a token 

across all axes;  
windows_sumj is a sum of averaged attentions, where j 

is the index of the start of the window in the sequence of 
tokens; 

start_index is a starting index from which the total 
windows_sum is calculated; 

FPRi is a False Positive Rate value at the i-th point; 
TPRi is a True Positive Rate value at the i-th point. 
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INTRODUCTION 
With the development of blockchain technology and 

the increasing popularity of smart contracts, the need to 
ensure their security has grown. Smart contracts, which 
are automatically executed when predetermined condi-
tions are met, have become the foundation for numerous 
applications, ranging from financial transactions to voting 
systems. However, like any software code, smart con-
tracts are susceptible to vulnerabilities that can lead to 
significant financial losses and a loss of trust in the tech-
nology. According to industry research, companies lose 
billions of dollars each year due to smart contract 
breaches, highlighting the critical need to improve meth-
ods for their protection. For example, the 2016 hack of 
TheDAO, in which 3.6 million Ether were stolen due to a 
reentrancy vulnerability, led to the split of the Ethereum 
blockchain and underscores the critical necessity for early 
detection of vulnerabilities [1]. 

The object of study is the security of smart contracts 
deployed on blockchain networks. 

Detecting and eliminating vulnerabilities in smart con-
tracts before they are deployed on the blockchain is a 
critically important task. Traditional code auditing meth-
ods, including manual analysis and automated static and 
dynamic analysis tools, often fail to fully ensure the secu-
rity of smart contracts due to their limitations in identify-
ing complex and non-obvious vulnerabilities. 

The subject of study includes the methods of vulner-
ability detection and localization within smart contracts 
using machine learning techniques, with a focus on trans-
former-based models like BERT. 

Modern methods for detecting vulnerabilities in smart 
contracts include symbolic execution, fuzzing, and formal 
verification. Well-known tools for vulnerability detection, 
such as Oyente, Mythril, Securify, Slither, and Smart-
check, automatically analyze contract code and can iden-
tify common types of vulnerabilities, including reentrancy 
issues, incorrect authorization via tx.origin, timestamp 
dependencies, and unhandled exceptions. However, these 
tools may produce false positives or miss real threats due 
to their reliance on predefined rules, which cannot accu-
rately interpret complex code logic. Additionally, these 
preset rules quickly become outdated and cannot adapt or 
generalize to new data that continually evolves in the 
smart contract domain. Unlike these methods, deep learn-
ing approaches extract knowledge from data and can con-
tinuously update, maintaining their relevance. In recent 
years, researchers have been actively exploring the appli-
cation of machine learning methods for software code 
analysis. Transformer-based models, such as BERT and 
its adaptations for code like CodeBERT, have shown 
promising results in understanding code semantics and 
identifying potential vulnerabilities. 

The purpose of the work is to develop and validate a 
novel method for identifying and localizing vulnerabilities 
in smart contracts using attention vector analysis imple-
mented through a CodeBERT-based model, improving 
the accuracy and efficiency of smart contract audits. 

1 PROBLEM STATEMENT 
The task of identifying vulnerabilities in smart con-

tracts can be formalized as follows. Let C be the set of all 
smart contracts, and V be the set of all possible vulner-
abilities. It is necessary to build a model f: C  V*, 
where f( ) returns the set of vulnerabilities for each 
contract c  C. 

For each contract c a set of tokens T={t1, t2, �, tn}, is 
determined, where ti is the i-th token of the code. The 
analysis of attention vectors allows determining the atten-
tion weights A={a1, a2, �, an}, where ai is the attention 
weight for token ti  

For each smart contract, it is necessary to identify vul-
nerable code segments using attention vectors. Let wij be 
the attention weight from token ti  to token tj. Then the 
overall attention weight for token ti is defined as: 

.
1

n

j
iji wa  

 
2 REVIEW OF THE LITERATURE 

In this section, we analyze scientific works dedicated 
to identifying vulnerabilities in smart contracts using deep 
learning technologies. 

Huang et al. [2] developed a model for detecting vul-
nerabilities in smart contracts using convolutional neural 
networks. This model transforms the binary representa-
tion of vulnerable code into RGB images, complicating 
the preservation of syntactic and semantic information 
and leading to a high level of false negatives, despite im-
proving accuracy in some cases. 

Liao et al. [3] utilized N-gram modeling and tf-idf fea-
ture vectors for analyzing the source code of smart con-
tracts. They trained traditional machine learning models 
to identify 13 types of vulnerabilities using real-time fuzz 
testing. However, designating some critical operational 
codes as stop-words may lead to missed vulnerabilities 
and false negatives. 

Yu et al. [4] presented the first systematic and modu-
lar framework for detecting vulnerabilities in smart con-
tracts based on deep learning. They introduced the con-
cept of a �Vulnerability Candidate�, focused on analyzing 
dependencies between different data elements and control 
flow. Experiments showed a significant improvement in 
efficiency by 25.76% in F1 score. However, for vulner-
abilities with limited data and control flow dependencies, 
no substantial improvement was observed. 

Gao et al. [5] proposed an automated method based on 
word embedding representations for studying the features 
of smart contracts in the Solidity language. Zhang et al. 
[6] developed a vulnerability detection method that com-
bines information graphs and integrated learning to ex-
tract features from smart contracts. Sendner et al. [7] were 
the first to propose a migration learning-based method for 
vulnerability detection, which uses a universal feature 
extractor to analyze smart contract bytecode and inde-
pendent branches to analyze each type of vulnerability. 
Zhuang et al. [8] were the first to propose using a contract 
graph to represent the syntactic and semantic structures of 
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smart contracts and applied graph convolutional neural 
networks for analyzing vulnerabilities based on this 
graph. 

The analysis of existing scientific works shows that 
static analysis-based tools suffer from false positives and 
false negatives due to their reliance on predefined rules 
[9]. These tools are incapable of performing deep syntac-
tic and semantic analysis, and predefined rules quickly 
become outdated, unable to adapt or generalize to new 
data. Unlike them, deep learning methods do not require 
predefined detection rules and can adaptively learn the 
characteristics of vulnerabilities during the training proc-
ess. 

 
3 MATERIALS AND METHODS 

Transformers represent a neural network architecture 
that was first introduced in the paper �Attention is All 
You Need� in 2017 [10]. The main innovation of trans-
formers is the attention mechanism, which allows models 
to dynamically focus on different parts of the input data, 
making it particularly effective for natural language proc-
essing tasks. This architecture differs from previous ap-
proaches, such as RNN and CNN, in that it is entirely 
based on attention without the need for sequential data 
processing. This significantly accelerates training and 
improves the handling of long dependencies in text [11]. 

BERT is one of the most well-known implementations 
of the transformer architecture, developed by Google in 
2018. The main difference between BERT and preceding 
transformer models lies in its ability to process texts in a 
bidirectional manner. Traditional models, such as GPT, 
process text either left-to-right or right-to-left, limiting the 
context available to each word in a sentence. In contrast, 
BERT analyzes context in both directions, enabling it to 
better understand the contextual relationships between 
words. Figure 1 provides an example of the general archi-
tecture of source code classification models based on 
CodeBERT [12, 13]. 

 
Figure 1 � General architecture of classification models based 

on BERT 

In the context of smart contract analysis, BERT can be 
used for various tasks, including classification, vulnerabil-
ity detection, and automatic code correction. Thanks to its 
ability to capture complex dependencies in the data, 
BERT effectively handles the syntactic and semantic fea-
tures of smart contract programming languages such as 
Solidity [14]. This makes it an ideal tool for identifying 
potential vulnerabilities and errors in the code, which is 
critically important for ensuring the security and reliabil-
ity of blockchain platforms. 

An important stage of our research is data preparation, 
which underpins the training of a machine learning model 
for detecting vulnerabilities in smart contracts. To this 
end, we collected a dataset of 2000 Solidity smart contract 
source codes, each of which was analyzed using the static 
code analysis tool Oyente, designed to identify vulner-
abilities and issues in smart contracts written in Solidity. 

The dataset was divided into two categories: vulner-
able and non-vulnerable smart contracts. The analysis 
determined that approximately 80% of the smart contracts 
do not contain vulnerabilities, while the remaining 20% 
contain one or more vulnerabilities identified using 
Oyente. We selected three types of vulnerabilities from 
the Oyente analysis results: reentrancy, timestamp de-
pendence, and tx.origin vulnerability. 

To enhance the efficiency and accuracy of model 
training, special attention was paid to the preprocessing of 
smart contract source code. In particular, the following 
normalization strategies were implemented: 

1. Normalization of variables: All variables in the 
source code were renamed to a standardized format (e.g., 
VAR1, VAR2, ..., VARN). This reduced the diversity of 
the model�s input data and minimized the risk of overfit-
ting to specific or unique variable names that do not carry 
functional significance. This approach promotes more 
generalized model training, enabling it to better adapt to 
new, previously unseen smart contracts. 

2. Simplification of functions: Auxiliary functions that 
do not impact the core logic of the contracts, such as log-
ging functions or helper functions used for code simplifi-
cation, were excluded. This reduces the complexity of the 
code input to the model and allows it to focus on func-
tions that directly affect the contract�s state and security. 
The remaining functions were standardized to eliminate 
variability in naming and approaches to performing simi-
lar operations, which also contributes to more stable and 
predictable model training. 

To ensure effective model training, each smart con-
tract was transformed into a format suitable for neural 
network processing. This included tokenizing the text of 
the smart contracts using the pre-trained tokenizer associ-
ated with the CodeBERT model, specifically the Rober-
taTokenizer from the Transformers library. However, 
processing long texts has always been a challenging task 
in the field of deep learning. Therefore, the maximum 
input sequence length was limited to 256 tokens, which 
allowed for a balance between the detail of data represen-
tation and computational resource requirements. If the 
extracted code contained more than 256 tokens, it was 
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truncated, and code with fewer than 256 tokens was pad-
ded with zeros. This approach ensures standardized input 
data length, adheres to the length limits set for the Code-
BERT model, and preserves the features of the vulner-
abilities. 

To evaluate the model�s effectiveness, the dataset D 
was divided into three subsets: training, validation, and 
test: 

 

testvaltrain DDDD . (1)
 

The split was performed randomly while maintaining 
the proportions between vulnerable and non-vulnerable 
smart contracts. The validation subset, comprising 20% of 
the total examples, was used for hyperparameter tuning 
and evaluating intermediate training results, while the test 
subset, also comprising 20% of the total examples, was 
used for the final assessment of the model�s performance. 

As the basis for vulnerability detection, we used the 
pre-trained CodeBERT model from Microsoft, which is 
an adaptation of the BERT model specifically designed 
for working with source code. The model was further 
trained on the prepared smart contract dataset to adapt it 
to the specifics of the task. 

Smart contracts in text form are fed into the model. 
These texts represent the source code of smart contracts 
written in Solidity. The input text is transformed into a 
sequence of tokens using the pre-trained tokenizer associ-
ated with the CodeBERT model. The tokenizer converts 
the source code into a set of tokens that the model can 
effectively process [15]. The token sequence is fed into 
the BERT model (CodeBertModel). CodeBERT processes 
the tokens using attention mechanisms and transformers 
to extract contextualized vector representations of the 
tokens.  

Instead of relying solely on the hidden state of the 
[CLS] token, which aggregates information across the 
entire sequence and is traditionally used for classification, 
it is proposed to use all tokens in the sequence. These 
tokens are fed into a single-layer Bidirectional GRU. The 
use of Bidirectional GRU allows the model to better cap-
ture the context in both directions (left-to-right and right-
to-left), which improves the understanding of contextual 

relationships between tokens in a broader context [16]. 
This can lead to a more accurate understanding of the 
meaning of the entire input text and, consequently, to im-
proved classification accuracy. 

The output from the bidirectional GRU is then fed into 
a fully connected layer (nn.Linear), which converts the 
GRU output into logits for each class (in our case, binary 
classification into vulnerable or non-vulnerable smart 
contracts). The logits are converted into probabilities us-
ing the softmax function, and the class with the highest 
probability is chosen as the model�s prediction. The 
model continues to minimize the CrossEntropyLoss func-
tion during training, which helps measure the difference 
between the model�s predictions and the true class labels. 
The model�s effectiveness is evaluated on the validation 
and test datasets to confirm its ability to generalize to new 
data [17]. Figure 2 shows the overall architecture of the 
proposed model. 

To detect and localize vulnerabilities in smart con-
tracts, we used attention vector analysis generated by the 
CodeBERT model. The attention vectors were analyzed to 
identify the tokens and code fragments that the model 
focused on most during classification. This approach al-
lowed us not only to detect potential vulnerabilities but 
also to pinpoint specific locations in the code that require 
further analysis and corrections. This process includes 
several key stages: 

Stage 1 involves obtaining predictions and attention 
vectors. The model processes the input data and returns 
logits for each token and attention weights. The attention 
weights indicate how much attention the model pays to 
each token while analyzing other tokens. The attention 
weights are calculated as follows: 

 

.)max(),,( V
d

QK
softVKQAttention

k

T
 (2)

 
Stage 2 involves the selection of attention vectors 

from the last layer. Attention vectors from the last layer of 
the transformer are selected because they reflect the 
model�s highest-level understanding of the context. 

 
Figure 2 � General architecture of the proposed model 
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Stage 3 focuses on averaging attention across 
heads. Attention is averaged across all heads of the 
attention mechanism in the last layer to obtain a gener-
alized representation of how the model distributes its 
attention among tokens. 

Stage 4 includes additional averaging across tokens. 
After averaging attention across the heads of the atten-
tion mechanism, additional averaging is performed 
across all tokens in the sequence. This averaging helps 
produce a single attention vector for the entire input 
set, simplifying the analysis and interpretation of which 
aspects of the input data the model pays the most atten-
tion to overall. 

Stage 5 entails the exclusion of special tokens. The 
first and last tokens are excluded from the analysis be-
cause they usually contain meta-information ([CLS], 
[SEP]) and are not related to the substantive part of the 
smart contract code. 

Figure 3 shows the stages of transforming the atten-
tion matrix of the last layer. 

 

 
Figure 3 � Stages of transformation of the attention matrix of 

the last layer 
 
Stage 6 determines important code segments. By it-

erating through all possible windows of a given size, 
the sum of averaged attention in each window is calcu-
lated. The window with the maximum sum of averaged 
attention is considered the most important code seg-
ment. 

For each possible window of size window_size to-
kens, the sum of averaged attention is calculated using 
the following formula: 

 

.___
_ sizewindowj

ji
j imeanatttokensumwindows  (3)

 
Next, the indices of the tokens corresponding to the 

window with the highest attention are determined. 
These tokens represent the code segment that the 
model considers most significant or potentially vulner-
able. 

The starting index of the window is calculated as 
follows: 

 
)_(maxarg_ jj sumwindowindexstart . (4)

 
Based on the starting index of the window and the 

window size, the tokens corresponding to the most sig-
nificant code segment are selected. These tokens are 
then converted back to text using the tokenizer to rep-

resent the important code fragments. The result is a segment 
of the smart contract code that the model considers most 
likely to contain vulnerabilities. 

This approach provides a deeper understanding of which 
parts of the code attract the most attention from the model, 
potentially indicating the presence of vulnerabilities or other 
critical aspects of the code. 

 
4 EXPERIMENTS 

For training the model and conducting experiments, the 
following software and technical resources were used. De-
velopment and testing were carried out in the Python pro-
gramming language, providing flexibility and powerful ca-
pabilities for working with machine learning algorithms. The 
primary framework used for working with the model was 
Pytorch Lightning, which structured the model training 
process, making it cleaner, more modular, and scalable. 

All development and testing were conducted on the 
Windows 11 operating system. 

The technical configuration of the computer used for 
training and experiments included the following specifica-
tions: 

Processor: Intel Core i9-12900K, providing high per-
formance with its 16 cores and 24 threads, and a maximum 
clock speed of 5.2 GHz. 

RAM: 32 GB DDR4, allowing efficient handling of large 
data volumes and complex models without memory con-
straints. 

Graphics Card: NVIDIA GeForce RTX 3090 with 24 GB 
of GDDR6X memory. 

Storage: 1 TB SSD, ensuring fast data access and effi-
cient storage of extensive datasets and experimental results. 

This configuration provided the necessary computational 
power and speed required for handling complex machine 
learning tasks and data analysis. 

The model was trained using the AdamW optimizer and 
a learning rate scheduler, which effectively adapted the 
learning rate depending on the training stage. A batch size of 
32 was used during training, which was conducted over 8 
epochs, each consisting of 4 steps. The model included one 
GRU layer with a hidden state size of 16. These parameters 
helped avoid overfitting while achieving the best results. 
During training, metrics such as accuracy and loss on the 
training and validation sets were monitored. 

Thanks to the careful tuning of parameters and the model 
architecture, an accuracy of 98.67% on the training data and 
97.34% on the validation data was achieved (Figures 4 and 
6). These results underscore the high effectiveness and ade-
quacy of the chosen approach for solving the task. 

The dynamics of the validation loss values for the train-
ing and validation data are visualized in Figures 5 and 7, 
respectively. These graphs illustrate how the model gradu-
ally minimized errors throughout the training process, 
achieving progressively lower loss values. 
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Figure 4 � Change in model accuracy during training 

 

 
Figure 5 � Training Loss over epochs 

 

 
Figure 6 � Change in model accuracy during validation 
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Figure 7 � Validation Loss over epochs 

 
Figure 8 shows the confusion matrix for the test data. 

As can be seen from the matrix, only 7 examples were 
classified as False Positives and 5 as False Negatives, 
indicating the model�s high capability to accurately 
identify positive cases [18]. Using the obtained confusion 
matrix, the model�s accuracy can be calculated as follows: 

 

FNFPTNTP

TNTP
Accuracy =0.97. (5)

 

 
Figure 8 � Confusion matrix for test data 

 
Furthermore, Figure 9 shows the ROC curve, with an 

AUC reaching 0.97, which is close to 1. This indicates 
that the model has excellent discriminative ability and can 
effectively distinguish between classes. 

The area under the curve is calculated using the 
following formula: 

 

.)
2

)((
1

1

1
1

n

i

ii
ii

TPRTPR
FPRFPRAUC  (6)

 
Thus, the training and testing results confirm that the 

developed model is a reliable prediction tool capable of 
providing high accuracy and excellent generalization 
ability on new data. 

 

 
Figure 9 � ROC-curve 

 
5 RESULTS 

In our research, we analyzed various smart contracts 
for vulnerabilities using modern static code analysis tools. 
Figure 10 shows an example of Solidity code that demon-
strates the classic reentrancy vulnerability. 

 

 
Figure 10 � Example of vulnerable code 

 

This smart contract code contains a withdraw function 
that may be vulnerable to reentrancy attacks due to the 
sequence of operations. The function first checks the bal-
ance, then makes an external call to send funds 
(msg.sender.call{value: amount}("")), and only after that 
decreases the balance. This leaves room for an attacker to 
repeatedly call the withdraw function during the execu-
tion of the external call, potentially allowing them to 
withdraw more funds than they are entitled to if the at-
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tacker controls the calling address. This violates the rec-
ommended �checks-effects-interactions pattern� design 
pattern, which dictates that state changes should be made 
before external calls [19]. 

To eliminate this vulnerability and enhance the secu-
rity of the smart contract, it is recommended to restructure 
the operation logic, ensuring that all state changes are 
performed before calling external contracts. 

During the analysis, our tool highlighted the following 
code segment, shown in Figure 11, as potentially vulner-
able. 

 

 
Figure 11 � Detected vulnerable code 

 
Confirming this code segment as vulnerable not only 

demonstrates the risks associated with improper use of 
external calls in smart contracts but also validates the ef-
fectiveness of our analysis method. This highlights the 
importance of applying strict security patterns when de-
veloping smart contracts and the necessity of using static 
code analysis tools to identify and eliminate potential 
vulnerabilities before deploying contracts on the network. 

In our research, we used heatmap visualization to ana-
lyze the attention matrices obtained from the implemented 
model. The heatmap provides a clear representation of 
which tokens in the smart contract text attract the most 
attention from the model.  

Figure 12 shows a graph where bright vertical stripes 
indicate that certain tokens on the X-axis receive signifi-
cant attention from many other tokens in the sequence. 
This suggests that such tokens may play a key role in un-
derstanding the context or contain critically important 
information. 

 
Figure 12 � Heat map of attention matrix 

 
 

The model�s attention to these tokens can help identify 
potential vulnerabilities or important aspects of the smart 
contract�s logic, making this visualization method 
particularly valuable for analyzing and improving smart 
contract security. 

In our research, we selected 50 smart contracts in 
which the Oyente static analysis tool identified 
vulnerabilities related to reentrancy issues. In each of 
these contracts, lines were marked where the incorrect 
order of method calls occurs, potentially leading to 
vulnerabilities. The analysis revealed that in 41 of these 
smart contracts, the code areas marked by the analyzer 
indeed contained the indicated lines, corresponding to an 
accuracy of 82%. This confirms the effectiveness of the 
applied analysis method for identifying potential 
vulnerabilities. 

 
Table 1 � Experimental results 

Total number of 
vulnerable con-

tracts 

Number of vulnerabilities 
correctly identified by the 

developed analyzer 

Accuracy, % 

50 41 82 

 
In the paper [20], we evaluated various models based 

on key metrics. For the analysis, we selected models 
based on Simple RNN, LSTM, Bidirectional LSTM 
(BLSTM), Bidirectional GRU (BGRU), and Bidirectional 
LSTM with Attention Mechanism (BLSTM-ATT). The 
models were evaluated using the metrics precision, recall, 
and F-beta: 

 

,,
FNTP
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R

FPTP
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P  (7)
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The developed CodeBERT-GRU model demonstrates 

significantly higher results, which are presented in 
Table 2. 

 
Table 2 � Comparison of the developed model with alternative 

models 
Model Precision, 

% 
Recall, 
% 

F-score 
( =2), % 

Simple RNN 66.34 64.85 65.14 

LSTM 73.28 76.33 75.70 

BLSTM 86.12 87.97 87.59 

BGRU 86.05 88.10 87.68 

BLSTM-ATT 89.87 90.66 90.50 

BGRU-ATT 90.03 91.76 91.41 

CodeBERT-GRU 94.26 95.83 95.51 
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In the course of the study, metrics such as precision, 
recall, and F-measure ( =2) were used to evaluate the 
effectiveness of the models. Among the considered mod-
els, the developed CodeBERT-GRU model showed the 
best results, highlighting its high efficiency in data proc-
essing. The precision of the CodeBERT-GRU model was 
94.26%, recall was 95.83%, and the F-measure reached 
95.51%. These indicators are significantly higher than 
those of other analyzed models, such as BLSTM-ATT 
and BGRU-ATT, which also showed high results with F-
measures of 90.50% and 91.41%, respectively. This indi-
cates that the integration of CodeBERT with LSTM not 
only improves the processing of contextual information 
but also provides a significant improvement in recogni-
tion and classification accuracy compared to traditional 
models based on RNN, LSTM, and GRU. 

 
6 DISCUSSION 

The presented study offers a novel approach to identi-
fying and localizing vulnerabilities in smart contracts 
through the analysis of attention vectors in a BERT-based 
model, specifically using CodeBERT. Our method has 
demonstrated a significantly higher F-score of 95.51% 
compared to traditional approaches like the BGRU-ATT 
model, which achieved an accuracy of 91.41%. Moreover, 
our approach for localizing reentrancy vulnerabilities has 
shown an accuracy of 82%, underscoring the effective-
ness of the proposed method. 

In comparing our results with those of other authors, it 
becomes evident that the application of transformer-based 
models, particularly CodeBERT, provides a substantial 
improvement in detecting and understanding code seman-
tics.  

Gao et al. [5] and Zhang et al. [6] explored automated 
methods based on word embeddings and integrated learn-
ing to extract features from smart contracts. Sendner et al. 
[7] and Zhuang et al. [8] proposed using migration learn-
ing and graph convolutional neural networks for vulner-
ability analysis, respectively. While these methods have 
shown promise, our approach�s integration of CodeBERT 
with bidirectional GRU layers enhances the model�s abil-
ity to contextualize and understand code, leading to supe-
rior performance metrics. 

A major issue with previous machine learning-based 
methods, including those described in ESCORT [21], was 
their inability to precisely pinpoint the vulnerable code 
segments; they could only indicate whether the code was 
vulnerable or not. ESCORT, for instance, leverages a 
multi-output neural network architecture with a common 
feature extractor and multiple branch structures, achieving 
an average F1-score of 95% on six vulnerability types and 
93% when extended to new types. However, it still pri-
marily focuses on whether a contract is vulnerable and 
lacks the precise localization of vulnerabilities within the 
code. Our method addresses this limitation by enabling 
precise localization of the vulnerable code segments, pro-
viding more detailed and actionable insights for develop-
ers. 

Our model�s performance metrics, with a precision of 
94.26% and a recall of 95.83%, indicate a well-balanced 
approach to vulnerability detection. The high precision 
value signifies that the model is highly effective in mini-
mizing false positives, ensuring that the identified vulner-
abilities are indeed present in the smart contracts. This 
reduces the likelihood of unnecessary alarm and enables 
developers to focus on actual issues. Meanwhile, the high 
recall value demonstrates the model�s capability to iden-
tify the majority of actual vulnerabilities, minimizing 
false negatives and ensuring that most vulnerabilities are 
detected. This balance between precision and recall re-
flects the robustness of our model in maintaining high 
accuracy while effectively reducing both false positives 
and false negatives. 

The limitations of our study include the focus on So-
lidity smart contracts and the reliance on static code 
analysis. Expanding the dataset to include other smart 
contract languages such as Vyper and LLL could enhance 
the generalizability of our model. Furthermore, incorpo-
rating dynamic analysis techniques alongside static analy-
sis could provide a more comprehensive understanding of 
the contract�s behavior, thus increasing the detection rate 
of complex vulnerabilities that manifest only during exe-
cution. 

Practically, the results of our research can be applied 
to improve the security auditing processes for smart con-
tracts. By integrating our model into existing auditing 
tools, developers can identify and address vulnerabilities 
more effectively before deployment, reducing the risk of 
financial losses and enhancing trust in blockchain tech-
nologies. 

Future research directions include the integration of 
more advanced deep learning models such as GPT-4 or 
T5, which could further improve the accuracy and robust-
ness of vulnerability detection. Additionally, expanding 
the dataset to cover a wider variety of smart contract lan-
guages and incorporating dynamic analysis techniques 
could provide a more holistic approach to smart contract 
security. 

In conclusion, our study demonstrates that the applica-
tion of transformer-based models like CodeBERT signifi-
cantly enhances the detection and localization of vulner-
abilities in smart contracts. This approach offers a promis-
ing direction for future research and practical applications 
in the field of blockchain security. 

 
CONCLUSIONS 

In our study, we presented an innovative approach to 
identifying and localizing vulnerabilities in smart con-
tracts using attention vector analysis in the CodeBERT 
model. This method not only effectively determines the 
presence of vulnerabilities but also precisely points to the 
areas in the code that require developers� attention. This 
has been made possible by the deep understanding of the 
context and semantics of the code, which is a significant 
advantage over traditional auditing methods. 

We successfully achieved an accuracy of 97.34% with 
the developed CodeBERT model, which is significantly 
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higher compared to the accuracy of the BGRU-ATT 
model, which was 90.03%. Furthermore, the vulnerability 
localization method demonstrated an accuracy of 82% in 
identifying reentrancy vulnerabilities, confirming the ef-
fectiveness of this approach for detecting specific types of 
vulnerabilities in smart contracts. 

The confirmation of the effectiveness of our approach 
is reflected in the significant improvement in vulnerability 
detection results compared to existing methods, as high-
lighted in our experimental results. The use of the Code-
BERT model for analyzing smart contracts has opened 
new opportunities for research in the field of blockchain 
security. 

Finally, the results of our study can serve as a founda-
tion for further development of machine learning methods 
in the field of blockchain platform cybersecurity. They 
also emphasize the importance of continuing research in 
this area, aimed at improving auditing technologies and 
smart contract development to ensure their reliability and 
security. 

The scientific novelty of our research is rooted in the 
development and validation of a novel approach for iden-
tifying and localizing vulnerabilities in smart contracts 
using attention vector analysis within a BERT-based 
model. Unlike traditional methods, our approach lever-
ages the deep contextual understanding provided by 
CodeBERT, significantly enhancing the model�s accuracy 
and robustness. A major issue with previous machine 
learning-based methods was their inability to precisely 
pinpoint the vulnerable code segments; they could only 
indicate whether the code was vulnerable or not. Our in-
novative method addresses this limitation by enabling 
precise localization of the vulnerable code segments, of-
fering more detailed and actionable insights for develop-
ers. This advancement marks a significant step forward in 
the application of transformer-based models to the field of 
blockchain security.  

The practical significance of our research lies in its 
potential to enhance security auditing processes for smart 
contracts. By integrating our model into existing auditing 
tools, developers can more effectively identify and ad-
dress vulnerabilities before deployment, thereby reducing 
the risk of financial losses and enhancing trust in block-
chain technologies. 

Prospects for further research include several prom-
ising directions based on the results obtained in this study. 
First, the integration of more advanced deep learning 
models, such as transformers with enhanced attention 
mechanisms like GPT-4 or T5, could further improve the 
accuracy and robustness of vulnerability detection and 
localization in smart contracts. Second, expanding the 
dataset to include a wider variety of smart contract lan-
guages beyond Solidity, such as Vyper or LLL, could 
generalize the model�s applicability and effectiveness 
across different blockchain platforms. Additionally, in-
corporating dynamic analysis techniques alongside the 
static analysis employed in this study could provide a 
more comprehensive understanding of the contract�s be-
havior, thereby increasing the detection rate of complex 

vulnerabilities that manifest only during execution. These 
future directions hold the potential to greatly advance the 
field of smart contract security and contribute to the 
broader adoption and trust in blockchain technologies. 
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