
p-ISSN 1607-3274 , , . 2024. 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. 3

© Tereshchenko O. I., Komleva N. O., 2024
DOI 10.15588/1607-3274-2024-3-15

UDC 004.4�24

IDENTIFICATION AND LOCALIZATION OF VULNERABILITIES IN
SMART CONTRACTS USING ATTENTION VECTORS ANALYSIS IN A

BERT-BASED MODEL

Tereshchenko O. I. � Postgraduate student of the Department of Software Engineering, Odes Polytechnic National

University, Odesa, Ukraine.
Komleva N. O. � PhD, Associate Professor, Head of the Department of Software Engineering, Odes Polytechnic

National University, Odesa, Ukraine.

ABSTRACT
Context. With the development of blockchain technology and the increasing use of smart contracts, which are automatically

executed in blockchain networks, the significance of securing these contracts has become extremely relevant. Traditional code
auditing methods often prove ineffective in identifying complex vulnerabilities, which can lead to significant financial losses. For
example, the reentrancy vulnerability that led to the DAO attack in 2016 resulted in the loss of 3.6 million ethers and the split of the
Ethereum blockchain network. This underscores the necessity for early detection of vulnerabilities.

Objective. The objective of this work is to develop and test an innovative approach for identifying and localizing vulnerabilities
in smart contracts based on the analysis of attention vectors in a model using BERT architecture.

Method. The methodology described includes data preparation and training a transformer-based model for analyzing smart
contract code. The proposed attention vector analysis method allows for the precise identification of vulnerable code segments. The
use of the CodeBERT model significantly improves the accuracy of vulnerability identification compared to traditional methods.
Specifically, three types of vulnerabilities are considered: reentrancy, timestamp dependence, and tx.origin vulnerability. The data is
preprocessed, which includes the standardization of variables and the simplification of functions.

Results. The developed model demonstrated a high F-score of 95.51%, which significantly exceeds the results of contemporary
approaches, such as the BGRU-ATT model with an F-score of 91.41%. The accuracy of the method in the task of localizing
reentrancy vulnerabilities was 82%.

Conclusions. The experiments conducted confirmed the effectiveness of the proposed solution. Prospects for further research
include the integration of more advanced deep learning models, such as GPT-4 or T5, to improve the accuracy and reliability of
vulnerability detection, as well as expanding the dataset to cover other smart contract languages, such as Vyper or LLL, to enhance
the applicability and efficiency of the model across various blockchain platforms.

Thus, the developed CodeBERT-based model demonstrates high results in detecting and localizing vulnerabilities in smart
contracts, which opens new opportunities for research in the field of blockchain platform security.

KEYWORDS: smart contracts, vulnerabilities, blockchain, machine learning, attention vector analysis, transformers, code
security, code audit.

ABBREVIATIONS

NN is a Neural Network;
BERT is a Bidirectional Encoder Representations

from Transformers;
GPT is a Generative Pre-trained Transformer;
GRU is a Gated Recurrent Unit;
LSTM is a Long Short-Term Memory;
RNN is a Recurrent Neural Network;
CNN is a Convolutional Neural Network;
AUC is an Area Under the Curve;
ROC is a Receiver Operating Characteristic;
RGB is Red, Green, Blue;
TP is a True Positive;
FN is a False Negative;
FP is a False Positive;
TN is a True Negative.

NOMENCLATURE

C is a set of all smart contracts;
V is a set of all possible vulnerabilities;
T is a set of tokens in a smart contract code;
ti is the i-th token in a smart contract code;
A is a set of attention weights for tokens;
a is an attention weights for the token;

f() is a model that maps a smart contract to a set of
vulnerabilities;

wij is an attention weight from token ti to tj token;
D is a dataset;
Q is a query matrix;
K is a key matrix;
V is a value matrix;
P is a value of precision;
R is a value of recall;
dk is a key dimension;
F is an F score, which is a weighted harmonic mean

of precision and recall;
 is a weight of recall in the F score;

windows_size is a size of the sliding window;
token_att_mean is a mean attention value for a token

across all axes;
windows_sumj is a sum of averaged attentions, where j

is the index of the start of the window in the sequence of
tokens;

start_index is a starting index from which the total
windows_sum is calculated;

FPRi is a False Positive Rate value at the i-th point;
TPRi is a True Positive Rate value at the i-th point.

173

p-ISSN 1607-3274 , , . 2024. 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. 3

© Tereshchenko O. I., Komleva N. O., 2024
DOI 10.15588/1607-3274-2024-3-15

INTRODUCTION
With the development of blockchain technology and

the increasing popularity of smart contracts, the need to
ensure their security has grown. Smart contracts, which
are automatically executed when predetermined condi-
tions are met, have become the foundation for numerous
applications, ranging from financial transactions to voting
systems. However, like any software code, smart con-
tracts are susceptible to vulnerabilities that can lead to
significant financial losses and a loss of trust in the tech-
nology. According to industry research, companies lose
billions of dollars each year due to smart contract
breaches, highlighting the critical need to improve meth-
ods for their protection. For example, the 2016 hack of
TheDAO, in which 3.6 million Ether were stolen due to a
reentrancy vulnerability, led to the split of the Ethereum
blockchain and underscores the critical necessity for early
detection of vulnerabilities [1].

The object of study is the security of smart contracts
deployed on blockchain networks.

Detecting and eliminating vulnerabilities in smart con-
tracts before they are deployed on the blockchain is a
critically important task. Traditional code auditing meth-
ods, including manual analysis and automated static and
dynamic analysis tools, often fail to fully ensure the secu-
rity of smart contracts due to their limitations in identify-
ing complex and non-obvious vulnerabilities.

The subject of study includes the methods of vulner-
ability detection and localization within smart contracts
using machine learning techniques, with a focus on trans-
former-based models like BERT.

Modern methods for detecting vulnerabilities in smart
contracts include symbolic execution, fuzzing, and formal
verification. Well-known tools for vulnerability detection,
such as Oyente, Mythril, Securify, Slither, and Smart-
check, automatically analyze contract code and can iden-
tify common types of vulnerabilities, including reentrancy
issues, incorrect authorization via tx.origin, timestamp
dependencies, and unhandled exceptions. However, these
tools may produce false positives or miss real threats due
to their reliance on predefined rules, which cannot accu-
rately interpret complex code logic. Additionally, these
preset rules quickly become outdated and cannot adapt or
generalize to new data that continually evolves in the
smart contract domain. Unlike these methods, deep learn-
ing approaches extract knowledge from data and can con-
tinuously update, maintaining their relevance. In recent
years, researchers have been actively exploring the appli-
cation of machine learning methods for software code
analysis. Transformer-based models, such as BERT and
its adaptations for code like CodeBERT, have shown
promising results in understanding code semantics and
identifying potential vulnerabilities.

The purpose of the work is to develop and validate a
novel method for identifying and localizing vulnerabilities
in smart contracts using attention vector analysis imple-
mented through a CodeBERT-based model, improving
the accuracy and efficiency of smart contract audits.

1 PROBLEM STATEMENT
The task of identifying vulnerabilities in smart con-

tracts can be formalized as follows. Let C be the set of all
smart contracts, and V be the set of all possible vulner-
abilities. It is necessary to build a model f: C V*,
where f() returns the set of vulnerabilities for each
contract c C.

For each contract c a set of tokens T={t1, t2, �, tn}, is
determined, where ti is the i-th token of the code. The
analysis of attention vectors allows determining the atten-
tion weights A={a1, a2, �, an}, where ai is the attention
weight for token ti

For each smart contract, it is necessary to identify vul-
nerable code segments using attention vectors. Let wij be
the attention weight from token ti to token tj. Then the
overall attention weight for token ti is defined as:

.
1

n

j
iji wa

2 REVIEW OF THE LITERATURE

In this section, we analyze scientific works dedicated
to identifying vulnerabilities in smart contracts using deep
learning technologies.

Huang et al. [2] developed a model for detecting vul-
nerabilities in smart contracts using convolutional neural
networks. This model transforms the binary representa-
tion of vulnerable code into RGB images, complicating
the preservation of syntactic and semantic information
and leading to a high level of false negatives, despite im-
proving accuracy in some cases.

Liao et al. [3] utilized N-gram modeling and tf-idf fea-
ture vectors for analyzing the source code of smart con-
tracts. They trained traditional machine learning models
to identify 13 types of vulnerabilities using real-time fuzz
testing. However, designating some critical operational
codes as stop-words may lead to missed vulnerabilities
and false negatives.

Yu et al. [4] presented the first systematic and modu-
lar framework for detecting vulnerabilities in smart con-
tracts based on deep learning. They introduced the con-
cept of a �Vulnerability Candidate�, focused on analyzing
dependencies between different data elements and control
flow. Experiments showed a significant improvement in
efficiency by 25.76% in F1 score. However, for vulner-
abilities with limited data and control flow dependencies,
no substantial improvement was observed.

Gao et al. [5] proposed an automated method based on
word embedding representations for studying the features
of smart contracts in the Solidity language. Zhang et al.
[6] developed a vulnerability detection method that com-
bines information graphs and integrated learning to ex-
tract features from smart contracts. Sendner et al. [7] were
the first to propose a migration learning-based method for
vulnerability detection, which uses a universal feature
extractor to analyze smart contract bytecode and inde-
pendent branches to analyze each type of vulnerability.
Zhuang et al. [8] were the first to propose using a contract
graph to represent the syntactic and semantic structures of

174

p-ISSN 1607-3274 , , . 2024. 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. 3

© Tereshchenko O. I., Komleva N. O., 2024
DOI 10.15588/1607-3274-2024-3-15

smart contracts and applied graph convolutional neural
networks for analyzing vulnerabilities based on this
graph.

The analysis of existing scientific works shows that
static analysis-based tools suffer from false positives and
false negatives due to their reliance on predefined rules
[9]. These tools are incapable of performing deep syntac-
tic and semantic analysis, and predefined rules quickly
become outdated, unable to adapt or generalize to new
data. Unlike them, deep learning methods do not require
predefined detection rules and can adaptively learn the
characteristics of vulnerabilities during the training proc-
ess.

3 MATERIALS AND METHODS

Transformers represent a neural network architecture
that was first introduced in the paper �Attention is All
You Need� in 2017 [10]. The main innovation of trans-
formers is the attention mechanism, which allows models
to dynamically focus on different parts of the input data,
making it particularly effective for natural language proc-
essing tasks. This architecture differs from previous ap-
proaches, such as RNN and CNN, in that it is entirely
based on attention without the need for sequential data
processing. This significantly accelerates training and
improves the handling of long dependencies in text [11].

BERT is one of the most well-known implementations
of the transformer architecture, developed by Google in
2018. The main difference between BERT and preceding
transformer models lies in its ability to process texts in a
bidirectional manner. Traditional models, such as GPT,
process text either left-to-right or right-to-left, limiting the
context available to each word in a sentence. In contrast,
BERT analyzes context in both directions, enabling it to
better understand the contextual relationships between
words. Figure 1 provides an example of the general archi-
tecture of source code classification models based on
CodeBERT [12, 13].

Figure 1 � General architecture of classification models based

on BERT

In the context of smart contract analysis, BERT can be
used for various tasks, including classification, vulnerabil-
ity detection, and automatic code correction. Thanks to its
ability to capture complex dependencies in the data,
BERT effectively handles the syntactic and semantic fea-
tures of smart contract programming languages such as
Solidity [14]. This makes it an ideal tool for identifying
potential vulnerabilities and errors in the code, which is
critically important for ensuring the security and reliabil-
ity of blockchain platforms.

An important stage of our research is data preparation,
which underpins the training of a machine learning model
for detecting vulnerabilities in smart contracts. To this
end, we collected a dataset of 2000 Solidity smart contract
source codes, each of which was analyzed using the static
code analysis tool Oyente, designed to identify vulner-
abilities and issues in smart contracts written in Solidity.

The dataset was divided into two categories: vulner-
able and non-vulnerable smart contracts. The analysis
determined that approximately 80% of the smart contracts
do not contain vulnerabilities, while the remaining 20%
contain one or more vulnerabilities identified using
Oyente. We selected three types of vulnerabilities from
the Oyente analysis results: reentrancy, timestamp de-
pendence, and tx.origin vulnerability.

To enhance the efficiency and accuracy of model
training, special attention was paid to the preprocessing of
smart contract source code. In particular, the following
normalization strategies were implemented:

1. Normalization of variables: All variables in the
source code were renamed to a standardized format (e.g.,
VAR1, VAR2, ..., VARN). This reduced the diversity of
the model�s input data and minimized the risk of overfit-
ting to specific or unique variable names that do not carry
functional significance. This approach promotes more
generalized model training, enabling it to better adapt to
new, previously unseen smart contracts.

2. Simplification of functions: Auxiliary functions that
do not impact the core logic of the contracts, such as log-
ging functions or helper functions used for code simplifi-
cation, were excluded. This reduces the complexity of the
code input to the model and allows it to focus on func-
tions that directly affect the contract�s state and security.
The remaining functions were standardized to eliminate
variability in naming and approaches to performing simi-
lar operations, which also contributes to more stable and
predictable model training.

To ensure effective model training, each smart con-
tract was transformed into a format suitable for neural
network processing. This included tokenizing the text of
the smart contracts using the pre-trained tokenizer associ-
ated with the CodeBERT model, specifically the Rober-
taTokenizer from the Transformers library. However,
processing long texts has always been a challenging task
in the field of deep learning. Therefore, the maximum
input sequence length was limited to 256 tokens, which
allowed for a balance between the detail of data represen-
tation and computational resource requirements. If the
extracted code contained more than 256 tokens, it was

175

p-ISSN 1607-3274 , , . 2024. 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. 3

© Tereshchenko O. I., Komleva N. O., 2024
DOI 10.15588/1607-3274-2024-3-15

truncated, and code with fewer than 256 tokens was pad-
ded with zeros. This approach ensures standardized input
data length, adheres to the length limits set for the Code-
BERT model, and preserves the features of the vulner-
abilities.

To evaluate the model�s effectiveness, the dataset D
was divided into three subsets: training, validation, and
test:

testvaltrain DDDD . (1)

The split was performed randomly while maintaining
the proportions between vulnerable and non-vulnerable
smart contracts. The validation subset, comprising 20% of
the total examples, was used for hyperparameter tuning
and evaluating intermediate training results, while the test
subset, also comprising 20% of the total examples, was
used for the final assessment of the model�s performance.

As the basis for vulnerability detection, we used the
pre-trained CodeBERT model from Microsoft, which is
an adaptation of the BERT model specifically designed
for working with source code. The model was further
trained on the prepared smart contract dataset to adapt it
to the specifics of the task.

Smart contracts in text form are fed into the model.
These texts represent the source code of smart contracts
written in Solidity. The input text is transformed into a
sequence of tokens using the pre-trained tokenizer associ-
ated with the CodeBERT model. The tokenizer converts
the source code into a set of tokens that the model can
effectively process [15]. The token sequence is fed into
the BERT model (CodeBertModel). CodeBERT processes
the tokens using attention mechanisms and transformers
to extract contextualized vector representations of the
tokens.

Instead of relying solely on the hidden state of the
[CLS] token, which aggregates information across the
entire sequence and is traditionally used for classification,
it is proposed to use all tokens in the sequence. These
tokens are fed into a single-layer Bidirectional GRU. The
use of Bidirectional GRU allows the model to better cap-
ture the context in both directions (left-to-right and right-
to-left), which improves the understanding of contextual

relationships between tokens in a broader context [16].
This can lead to a more accurate understanding of the
meaning of the entire input text and, consequently, to im-
proved classification accuracy.

The output from the bidirectional GRU is then fed into
a fully connected layer (nn.Linear), which converts the
GRU output into logits for each class (in our case, binary
classification into vulnerable or non-vulnerable smart
contracts). The logits are converted into probabilities us-
ing the softmax function, and the class with the highest
probability is chosen as the model�s prediction. The
model continues to minimize the CrossEntropyLoss func-
tion during training, which helps measure the difference
between the model�s predictions and the true class labels.
The model�s effectiveness is evaluated on the validation
and test datasets to confirm its ability to generalize to new
data [17]. Figure 2 shows the overall architecture of the
proposed model.

To detect and localize vulnerabilities in smart con-
tracts, we used attention vector analysis generated by the
CodeBERT model. The attention vectors were analyzed to
identify the tokens and code fragments that the model
focused on most during classification. This approach al-
lowed us not only to detect potential vulnerabilities but
also to pinpoint specific locations in the code that require
further analysis and corrections. This process includes
several key stages:

Stage 1 involves obtaining predictions and attention
vectors. The model processes the input data and returns
logits for each token and attention weights. The attention
weights indicate how much attention the model pays to
each token while analyzing other tokens. The attention
weights are calculated as follows:

.)max(),,(V
d

QK
softVKQAttention

k

T
 (2)

Stage 2 involves the selection of attention vectors

from the last layer. Attention vectors from the last layer of
the transformer are selected because they reflect the
model�s highest-level understanding of the context.

Figure 2 � General architecture of the proposed model

176

p-ISSN 1607-3274 , , . 2024. 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. 3

© Tereshchenko O. I., Komleva N. O., 2024
DOI 10.15588/1607-3274-2024-3-15

Stage 3 focuses on averaging attention across
heads. Attention is averaged across all heads of the
attention mechanism in the last layer to obtain a gener-
alized representation of how the model distributes its
attention among tokens.

Stage 4 includes additional averaging across tokens.
After averaging attention across the heads of the atten-
tion mechanism, additional averaging is performed
across all tokens in the sequence. This averaging helps
produce a single attention vector for the entire input
set, simplifying the analysis and interpretation of which
aspects of the input data the model pays the most atten-
tion to overall.

Stage 5 entails the exclusion of special tokens. The
first and last tokens are excluded from the analysis be-
cause they usually contain meta-information ([CLS],
[SEP]) and are not related to the substantive part of the
smart contract code.

Figure 3 shows the stages of transforming the atten-
tion matrix of the last layer.

Figure 3 � Stages of transformation of the attention matrix of

the last layer

Stage 6 determines important code segments. By it-

erating through all possible windows of a given size,
the sum of averaged attention in each window is calcu-
lated. The window with the maximum sum of averaged
attention is considered the most important code seg-
ment.

For each possible window of size window_size to-
kens, the sum of averaged attention is calculated using
the following formula:

.___
_ sizewindowj

ji
j imeanatttokensumwindows (3)

Next, the indices of the tokens corresponding to the

window with the highest attention are determined.
These tokens represent the code segment that the
model considers most significant or potentially vulner-
able.

The starting index of the window is calculated as
follows:

)_(maxarg_ jj sumwindowindexstart . (4)

Based on the starting index of the window and the

window size, the tokens corresponding to the most sig-
nificant code segment are selected. These tokens are
then converted back to text using the tokenizer to rep-

resent the important code fragments. The result is a segment
of the smart contract code that the model considers most
likely to contain vulnerabilities.

This approach provides a deeper understanding of which
parts of the code attract the most attention from the model,
potentially indicating the presence of vulnerabilities or other
critical aspects of the code.

4 EXPERIMENTS

For training the model and conducting experiments, the
following software and technical resources were used. De-
velopment and testing were carried out in the Python pro-
gramming language, providing flexibility and powerful ca-
pabilities for working with machine learning algorithms. The
primary framework used for working with the model was
Pytorch Lightning, which structured the model training
process, making it cleaner, more modular, and scalable.

All development and testing were conducted on the
Windows 11 operating system.

The technical configuration of the computer used for
training and experiments included the following specifica-
tions:

Processor: Intel Core i9-12900K, providing high per-
formance with its 16 cores and 24 threads, and a maximum
clock speed of 5.2 GHz.

RAM: 32 GB DDR4, allowing efficient handling of large
data volumes and complex models without memory con-
straints.

Graphics Card: NVIDIA GeForce RTX 3090 with 24 GB
of GDDR6X memory.

Storage: 1 TB SSD, ensuring fast data access and effi-
cient storage of extensive datasets and experimental results.

This configuration provided the necessary computational
power and speed required for handling complex machine
learning tasks and data analysis.

The model was trained using the AdamW optimizer and
a learning rate scheduler, which effectively adapted the
learning rate depending on the training stage. A batch size of
32 was used during training, which was conducted over 8
epochs, each consisting of 4 steps. The model included one
GRU layer with a hidden state size of 16. These parameters
helped avoid overfitting while achieving the best results.
During training, metrics such as accuracy and loss on the
training and validation sets were monitored.

Thanks to the careful tuning of parameters and the model
architecture, an accuracy of 98.67% on the training data and
97.34% on the validation data was achieved (Figures 4 and
6). These results underscore the high effectiveness and ade-
quacy of the chosen approach for solving the task.

The dynamics of the validation loss values for the train-
ing and validation data are visualized in Figures 5 and 7,
respectively. These graphs illustrate how the model gradu-
ally minimized errors throughout the training process,
achieving progressively lower loss values.

177

p-ISSN 1607-3274 , , . 2024. 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. 3

© Tereshchenko O. I., Komleva N. O., 2024
DOI 10.15588/1607-3274-2024-3-15

Figure 4 � Change in model accuracy during training

Figure 5 � Training Loss over epochs

Figure 6 � Change in model accuracy during validation

178

p-ISSN 1607-3274 , , . 2024. 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. 3

© Tereshchenko O. I., Komleva N. O., 2024
DOI 10.15588/1607-3274-2024-3-15

Figure 7 � Validation Loss over epochs

Figure 8 shows the confusion matrix for the test data.

As can be seen from the matrix, only 7 examples were
classified as False Positives and 5 as False Negatives,
indicating the model�s high capability to accurately
identify positive cases [18]. Using the obtained confusion
matrix, the model�s accuracy can be calculated as follows:

FNFPTNTP

TNTP
Accuracy =0.97. (5)

Figure 8 � Confusion matrix for test data

Furthermore, Figure 9 shows the ROC curve, with an

AUC reaching 0.97, which is close to 1. This indicates
that the model has excellent discriminative ability and can
effectively distinguish between classes.

The area under the curve is calculated using the
following formula:

.)
2

)((
1

1

1
1

n

i

ii
ii

TPRTPR
FPRFPRAUC (6)

Thus, the training and testing results confirm that the

developed model is a reliable prediction tool capable of
providing high accuracy and excellent generalization
ability on new data.

Figure 9 � ROC-curve

5 RESULTS

In our research, we analyzed various smart contracts
for vulnerabilities using modern static code analysis tools.
Figure 10 shows an example of Solidity code that demon-
strates the classic reentrancy vulnerability.

Figure 10 � Example of vulnerable code

This smart contract code contains a withdraw function
that may be vulnerable to reentrancy attacks due to the
sequence of operations. The function first checks the bal-
ance, then makes an external call to send funds
(msg.sender.call{value: amount}("")), and only after that
decreases the balance. This leaves room for an attacker to
repeatedly call the withdraw function during the execu-
tion of the external call, potentially allowing them to
withdraw more funds than they are entitled to if the at-

179

p-ISSN 1607-3274 , , . 2024. 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. 3

© Tereshchenko O. I., Komleva N. O., 2024
DOI 10.15588/1607-3274-2024-3-15

tacker controls the calling address. This violates the rec-
ommended �checks-effects-interactions pattern� design
pattern, which dictates that state changes should be made
before external calls [19].

To eliminate this vulnerability and enhance the secu-
rity of the smart contract, it is recommended to restructure
the operation logic, ensuring that all state changes are
performed before calling external contracts.

During the analysis, our tool highlighted the following
code segment, shown in Figure 11, as potentially vulner-
able.

Figure 11 � Detected vulnerable code

Confirming this code segment as vulnerable not only

demonstrates the risks associated with improper use of
external calls in smart contracts but also validates the ef-
fectiveness of our analysis method. This highlights the
importance of applying strict security patterns when de-
veloping smart contracts and the necessity of using static
code analysis tools to identify and eliminate potential
vulnerabilities before deploying contracts on the network.

In our research, we used heatmap visualization to ana-
lyze the attention matrices obtained from the implemented
model. The heatmap provides a clear representation of
which tokens in the smart contract text attract the most
attention from the model.

Figure 12 shows a graph where bright vertical stripes
indicate that certain tokens on the X-axis receive signifi-
cant attention from many other tokens in the sequence.
This suggests that such tokens may play a key role in un-
derstanding the context or contain critically important
information.

Figure 12 � Heat map of attention matrix

The model�s attention to these tokens can help identify
potential vulnerabilities or important aspects of the smart
contract�s logic, making this visualization method
particularly valuable for analyzing and improving smart
contract security.

In our research, we selected 50 smart contracts in
which the Oyente static analysis tool identified
vulnerabilities related to reentrancy issues. In each of
these contracts, lines were marked where the incorrect
order of method calls occurs, potentially leading to
vulnerabilities. The analysis revealed that in 41 of these
smart contracts, the code areas marked by the analyzer
indeed contained the indicated lines, corresponding to an
accuracy of 82%. This confirms the effectiveness of the
applied analysis method for identifying potential
vulnerabilities.

Table 1 � Experimental results

Total number of
vulnerable con-

tracts

Number of vulnerabilities
correctly identified by the

developed analyzer

Accuracy, %

50 41 82

In the paper [20], we evaluated various models based

on key metrics. For the analysis, we selected models
based on Simple RNN, LSTM, Bidirectional LSTM
(BLSTM), Bidirectional GRU (BGRU), and Bidirectional
LSTM with Attention Mechanism (BLSTM-ATT). The
models were evaluated using the metrics precision, recall,
and F-beta:

,,
FNTP

TP
R

FPTP

TP
P (7)

.
)*(

)*)(1(
2

2

RP

RP
F (8)

The developed CodeBERT-GRU model demonstrates

significantly higher results, which are presented in
Table 2.

Table 2 � Comparison of the developed model with alternative

models
Model Precision,

%
Recall,
%

F-score
(=2), %

Simple RNN 66.34 64.85 65.14

LSTM 73.28 76.33 75.70

BLSTM 86.12 87.97 87.59

BGRU 86.05 88.10 87.68

BLSTM-ATT 89.87 90.66 90.50

BGRU-ATT 90.03 91.76 91.41

CodeBERT-GRU 94.26 95.83 95.51

180

p-ISSN 1607-3274 , , . 2024. 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. 3

© Tereshchenko O. I., Komleva N. O., 2024
DOI 10.15588/1607-3274-2024-3-15

In the course of the study, metrics such as precision,
recall, and F-measure (=2) were used to evaluate the
effectiveness of the models. Among the considered mod-
els, the developed CodeBERT-GRU model showed the
best results, highlighting its high efficiency in data proc-
essing. The precision of the CodeBERT-GRU model was
94.26%, recall was 95.83%, and the F-measure reached
95.51%. These indicators are significantly higher than
those of other analyzed models, such as BLSTM-ATT
and BGRU-ATT, which also showed high results with F-
measures of 90.50% and 91.41%, respectively. This indi-
cates that the integration of CodeBERT with LSTM not
only improves the processing of contextual information
but also provides a significant improvement in recogni-
tion and classification accuracy compared to traditional
models based on RNN, LSTM, and GRU.

6 DISCUSSION

The presented study offers a novel approach to identi-
fying and localizing vulnerabilities in smart contracts
through the analysis of attention vectors in a BERT-based
model, specifically using CodeBERT. Our method has
demonstrated a significantly higher F-score of 95.51%
compared to traditional approaches like the BGRU-ATT
model, which achieved an accuracy of 91.41%. Moreover,
our approach for localizing reentrancy vulnerabilities has
shown an accuracy of 82%, underscoring the effective-
ness of the proposed method.

In comparing our results with those of other authors, it
becomes evident that the application of transformer-based
models, particularly CodeBERT, provides a substantial
improvement in detecting and understanding code seman-
tics.

Gao et al. [5] and Zhang et al. [6] explored automated
methods based on word embeddings and integrated learn-
ing to extract features from smart contracts. Sendner et al.
[7] and Zhuang et al. [8] proposed using migration learn-
ing and graph convolutional neural networks for vulner-
ability analysis, respectively. While these methods have
shown promise, our approach�s integration of CodeBERT
with bidirectional GRU layers enhances the model�s abil-
ity to contextualize and understand code, leading to supe-
rior performance metrics.

A major issue with previous machine learning-based
methods, including those described in ESCORT [21], was
their inability to precisely pinpoint the vulnerable code
segments; they could only indicate whether the code was
vulnerable or not. ESCORT, for instance, leverages a
multi-output neural network architecture with a common
feature extractor and multiple branch structures, achieving
an average F1-score of 95% on six vulnerability types and
93% when extended to new types. However, it still pri-
marily focuses on whether a contract is vulnerable and
lacks the precise localization of vulnerabilities within the
code. Our method addresses this limitation by enabling
precise localization of the vulnerable code segments, pro-
viding more detailed and actionable insights for develop-
ers.

Our model�s performance metrics, with a precision of
94.26% and a recall of 95.83%, indicate a well-balanced
approach to vulnerability detection. The high precision
value signifies that the model is highly effective in mini-
mizing false positives, ensuring that the identified vulner-
abilities are indeed present in the smart contracts. This
reduces the likelihood of unnecessary alarm and enables
developers to focus on actual issues. Meanwhile, the high
recall value demonstrates the model�s capability to iden-
tify the majority of actual vulnerabilities, minimizing
false negatives and ensuring that most vulnerabilities are
detected. This balance between precision and recall re-
flects the robustness of our model in maintaining high
accuracy while effectively reducing both false positives
and false negatives.

The limitations of our study include the focus on So-
lidity smart contracts and the reliance on static code
analysis. Expanding the dataset to include other smart
contract languages such as Vyper and LLL could enhance
the generalizability of our model. Furthermore, incorpo-
rating dynamic analysis techniques alongside static analy-
sis could provide a more comprehensive understanding of
the contract�s behavior, thus increasing the detection rate
of complex vulnerabilities that manifest only during exe-
cution.

Practically, the results of our research can be applied
to improve the security auditing processes for smart con-
tracts. By integrating our model into existing auditing
tools, developers can identify and address vulnerabilities
more effectively before deployment, reducing the risk of
financial losses and enhancing trust in blockchain tech-
nologies.

Future research directions include the integration of
more advanced deep learning models such as GPT-4 or
T5, which could further improve the accuracy and robust-
ness of vulnerability detection. Additionally, expanding
the dataset to cover a wider variety of smart contract lan-
guages and incorporating dynamic analysis techniques
could provide a more holistic approach to smart contract
security.

In conclusion, our study demonstrates that the applica-
tion of transformer-based models like CodeBERT signifi-
cantly enhances the detection and localization of vulner-
abilities in smart contracts. This approach offers a promis-
ing direction for future research and practical applications
in the field of blockchain security.

CONCLUSIONS

In our study, we presented an innovative approach to
identifying and localizing vulnerabilities in smart con-
tracts using attention vector analysis in the CodeBERT
model. This method not only effectively determines the
presence of vulnerabilities but also precisely points to the
areas in the code that require developers� attention. This
has been made possible by the deep understanding of the
context and semantics of the code, which is a significant
advantage over traditional auditing methods.

We successfully achieved an accuracy of 97.34% with
the developed CodeBERT model, which is significantly

181

p-ISSN 1607-3274 , , . 2024. 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. 3

© Tereshchenko O. I., Komleva N. O., 2024
DOI 10.15588/1607-3274-2024-3-15

higher compared to the accuracy of the BGRU-ATT
model, which was 90.03%. Furthermore, the vulnerability
localization method demonstrated an accuracy of 82% in
identifying reentrancy vulnerabilities, confirming the ef-
fectiveness of this approach for detecting specific types of
vulnerabilities in smart contracts.

The confirmation of the effectiveness of our approach
is reflected in the significant improvement in vulnerability
detection results compared to existing methods, as high-
lighted in our experimental results. The use of the Code-
BERT model for analyzing smart contracts has opened
new opportunities for research in the field of blockchain
security.

Finally, the results of our study can serve as a founda-
tion for further development of machine learning methods
in the field of blockchain platform cybersecurity. They
also emphasize the importance of continuing research in
this area, aimed at improving auditing technologies and
smart contract development to ensure their reliability and
security.

The scientific novelty of our research is rooted in the
development and validation of a novel approach for iden-
tifying and localizing vulnerabilities in smart contracts
using attention vector analysis within a BERT-based
model. Unlike traditional methods, our approach lever-
ages the deep contextual understanding provided by
CodeBERT, significantly enhancing the model�s accuracy
and robustness. A major issue with previous machine
learning-based methods was their inability to precisely
pinpoint the vulnerable code segments; they could only
indicate whether the code was vulnerable or not. Our in-
novative method addresses this limitation by enabling
precise localization of the vulnerable code segments, of-
fering more detailed and actionable insights for develop-
ers. This advancement marks a significant step forward in
the application of transformer-based models to the field of
blockchain security.

The practical significance of our research lies in its
potential to enhance security auditing processes for smart
contracts. By integrating our model into existing auditing
tools, developers can more effectively identify and ad-
dress vulnerabilities before deployment, thereby reducing
the risk of financial losses and enhancing trust in block-
chain technologies.

Prospects for further research include several prom-
ising directions based on the results obtained in this study.
First, the integration of more advanced deep learning
models, such as transformers with enhanced attention
mechanisms like GPT-4 or T5, could further improve the
accuracy and robustness of vulnerability detection and
localization in smart contracts. Second, expanding the
dataset to include a wider variety of smart contract lan-
guages beyond Solidity, such as Vyper or LLL, could
generalize the model�s applicability and effectiveness
across different blockchain platforms. Additionally, in-
corporating dynamic analysis techniques alongside the
static analysis employed in this study could provide a
more comprehensive understanding of the contract�s be-
havior, thereby increasing the detection rate of complex

vulnerabilities that manifest only during execution. These
future directions hold the potential to greatly advance the
field of smart contract security and contribute to the
broader adoption and trust in blockchain technologies.

ACKNOWLEDGEMENTS

We would like to express our sincere appreciation to
the Department of Software Engineering at Odesa Poly-
technic National University for their invaluable support
throughout this research.

REFERENCES

1. Komleva N. O., Tereshchenko O. I. Requirements for the
development of smart contracts and an overview of smart
contract vulnerabilities at the Solidity code level on the
Ethereum platform, Herald of Advanced Information Tech-
nology, 2023, Vol. 6, 1, pp. 54�68. DOI:
10.15276/hait.06.2023.4

2. Huang T. H.-D. Hunting the ethereum smart contract: Color-
inspired inspection of potential attacks [Electronic resource].
Access mode: https://arxiv.org/abs/1807.01868

3. Liao J.-W., Tsai T.-T., He C.-K. et al. Soliaudit: Smart con-
tract vulnerability assessment based on machine learning
and fuzz testing, IOTSMS 2019 : Sixth International Confer-
ence on Internet of Things: Systems, Management and Secu-
rity, Granada, 22�25 October 2019 : proceedings. New
York, NY, IEEE Press, 2019, pp. 458�465. DOI:
10.1109/IOTSMS48152.2019.8939256

4. Yu X., Hou B., Ying Z. et al. Deep learning-based solution
for smart contract vulnerabilities detection, Scientific Re-
ports, 2023, Vol. 13, P. 20106. DOI: 10.1038/s41598-023-
47219-0

5. Gao Z., Jiang L., Xia X. et al. Checking Smart Contracts
With Structural Code Embedding, IEEE Transactions on
Software Engineering, 2021, Vol. 47, 12, pp. 2874�
2891. DOI: 10.1109/TSE.2020.2971482

6. Zhang L., Wang J., Wang W. et al. A Novel Smart Contract
Vulnerability Detection Method Based on Information
Graph and Ensemble Learning, Sensors, 2022, Vol. 22, P.
3581. DOI: 10.3390/s22093581

7. Sendner C., Chen H., Fereidooni H. et al. Smarter Con-
tracts: Detecting Vulnerabilities in Smart Contracts with
Deep Transfer Learning, Network and Distributed System
Security : Symposium 2023, San Diego, 27�03 February�
March 2023 : proceedings. Reston, VA: The Internet Soci-
ety, 2023.

8. Zhuang Y., Liu Z., Qian P. et al. Smart Contract Vulner-
ability Detection using Graph Neural Network [Electronic
resource], IJCAI'20: Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, 07�15 January 2021 : pro-
ceedings. Electronic resource, IJCAI, 2021, pp. 3283�3290.
DOI: 10.24963/ijcai.2020/454

9. Park D., Zhang Y., Saxena M. et al. A formal verification
tool for ethereum vm bytecode, ESEC/FSE '18: 26th ACM
Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, Lake
Buena Vista FL, 04�09 November 2018 : proceedings. New
York, Association for Computing Machinery, 2018,
pp. 912�915. DOI: 10.1145/3236024.3264591

10. Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L.,
Gomez A. N., Kaiser L., Polosukhin I. Attention Is All You
Need [Electronic resource]. Access mode:
https://arxiv.org/abs/1706.03762. DOI:
10.48550/arXiv.1706.03762

182

p-ISSN 1607-3274 , , . 2024. 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. 3

© Tereshchenko O. I., Komleva N. O., 2024
DOI 10.15588/1607-3274-2024-3-15

11. Tereshchenko O. I., Komleva N. O. Vulnerability Detection
of Smart Contracts Based on Bidirectional GRU and Atten-
tion Mechanism, Information and Communication Tech-
nologies in Education, Research, and Industrial Applica-
tions 2023: 18th International Conference, Ivano-Frankivsk,
18�22 September 2023 : proceedings. Berlin, Springer,
2023, Vol. 1980, pp. 276�287. DOI: 10.1007/978-3-031-
48325-7_21

12. Liu Y., Ott M., Goyal N., Du J., Joshi M., Chen D., Levy O.,
Lewis M., Zettlemoyer L., Stoyanov V. Roberta: A robustly
optimized bert pretraining approach [Electronic resource].
Access mode: https://arxiv.org/abs/1907.11692

13. Yu X., Zhao H., Hou B. et al. DeeSCVHunter: A deep learn-
ing-based framework for smart contract vulnerability detec-
tion, IJCNN �21 : 2021 International Joint Conference on
Neural Networks, Shenzhen, 18�22 July 2021 : proceedings.
New York, NY, IEEE Press, 2021, pp. 1�8. DOI:
10.1109/IJCNN52387.2021.9534324

14. Harer J. A., Ozdemir O., Lazovich T. et al. Learning to re-
pair software vulnerabilities with generative adversarial net-
works, NeurIPS 2018 : 32nd Conference on Neural Infor-
mation Processing Systems, Montreal, 03�08 December
2018 : proceedings. Red Hook, NY, Curran Associates Inc.,
2018, pp. 7933�7943. DOI: 10.48550/arXiv.1805.07475.

15. Zhou Y., Liu S., Siow J. et al. Devign: Effective vulnerabil-
ity identification by learning comprehensive program se-
mantics via graph neural networks, NeurIPS 2019 : 33rd
Conference on Neural Information Processing Systems,
Vancouver, 08�14 December 2019 : proceedings. Red
Hook, NY: Curran Associates Inc., 2019, Vol. 32. DOI:
10.48550/arXiv.1909.03496

16. Tsankov P., Dan A., Drachsler-Cohen D. et al. Securify:
Practical security analysis of smart contracts, CCS '18 :

2018 ACM SIGSAC Conference on Computer and Commu-
nications Security, Toronto, 15�19 October 2018 : proceed-
ings. New York, NY, ACM, 2018, pp. 67�82. DOI:
10.1145/3243734.3243780

17. Huang J., Han S., You W. et al. Hunting vulnerable smart
contracts via graph embedding based bytecode matching,
IEEE Transactions on Information Forensics and Security,
2021, Vol. 16, pp. 2144�2156. DOI:
10.1109/TIFS.2021.3050051

18. Yuan X., Lin G., Tai Y. et al. Deep neural embedding for
software vulnerability discovery: Comparison and optimiza-
tion, Security and Communication Networks, 2022, pp. 1�
12. DOI: 10.1155/2022/5203217

19. Feist. J., Greico G., Groce A. Slither: A static analysis
framework for smart contracts, WETSEB '19: 2nd Interna-
tional Workshop on Emerging Trends in Software Engineer-
ing for Blockchain, Monteal, Quebec, 27 May 2019 : pro-
ceedings, 2019. New York, NY, IEEE Press, 2019, pp. 8�
15. DOI: 10.48550/arXiv.1908.09878

20. Lutz O., Chen H., Fereidooni H., Sendner C. ESCORT:
Ethereum Smart COntRacTs Vulnerability Detection using
Deep Neural Network and Transfer Learning [Electronic re-
source]. Access mode: https://arxiv.org/abs/2103.12607.
DOI: 10.48550/arXiv.2103.12607

21. Rodler M., Li W., Karame G. O. et al. Sereum: Protecting
Existing Smart Contracts Against Re-Entrancy Attacks,
Network and Distributed System Security : Symposium 2019,
San Diego, 24�27 February 2019 : proceedings. Reston,
VA, The Internet Society, 2023. DOI:
10.14722/ndss.2019.23413

Received 05.06.2024.
Accepted 12.08.2024.

 004.4�24

 -

 BERT

 . . � « -
», , .

 . . � . . , , -
 « », , .

A

. - , -
 - , .

 ,
. , , DAO 2016 , 3,6
 - Ethereum. .

 � -
 , BERT.

. , -
. . -

 CodeBERT . -
, : , tx.origin.

, .
. F-score 95,51%,

 , BGRU-ATT F-score 91,41%. -
 82%.

. .
 , GPT-4 T5,

 , -
, Vyper LLL, - .

183

p-ISSN 1607-3274 , , . 2024. 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. 3

© Tereshchenko O. I., Komleva N. O., 2024
DOI 10.15588/1607-3274-2024-3-15

 , CodeBERT -
 - , - .

 : - , , , , , ,
 , .

1. Komleva N. O. Requirements for the development of smart
contracts and an overview of smart contract vulnerabilities
at the Solidity code level on the Ethereum platform /
N. O. Komleva, O. I. Tereshchenko // Herald of Advanced
Information Technology. � 2023. � Vol. 6, 1. � P. 54�68.
DOI: 10.15276/hait.06.2023.4

2. Huang T. H.-D. Hunting the ethereum smart contract: Color-
inspired inspection of potential attacks [Electronic resource]
/ T. H.-D. Huang. � Access mode:
https://arxiv.org/abs/1807.01868

3. Soliaudit: Smart contract vulnerability assessment based on
machine learning and fuzz testing / [J.-W. Liao, T.-T. Tsai,
C.-K. He et al.] // IOTSMS 2019 : Sixth International Con-
ference on Internet of Things: Systems, Management and
Security, Granada, 22�25 October 2019 : proceedings. �
New York, NY : IEEE Press, 2019. � P. 458�465. DOI:
10.1109/IOTSMS48152.2019.8939256

4. Deep learning-based solution for smart contract vulnerabili-
ties detection / [X. Yu, B. Hou, Z. Ying et al.] // Scientific
Reports. � 2023. � Vol. 13. � P. 20106. DOI:
10.1038/s41598-023-47219-0

5. Checking Smart Contracts With Structural Code Embedding
/ [Z. Gao, L. Jiang, X. Xia et al.] // IEEE Transactions on
Software Engineering. � 2021. � Vol. 47. � 12. �
P. 2874�2891. DOI: 10.1109/TSE.2020.2971482

6. A Novel Smart Contract Vulnerability Detection Method
Based on Information Graph and Ensemble Learning /
[L. Zhang, J. Wang, W. Wang et al.] // Sensors. � 2022. �
Vol. 22. � P. 3581. DOI: 10.3390/s22093581

7. Smarter Contracts: Detecting Vulnerabilities in Smart Con-
tracts with Deep Transfer Learning / [C. Sendner, H. Chen,
H. Fereidooni et al.] // Network and Distributed System Se-
curity : Symposium 2023, San Diego, 27�03 February�
March 2023 : proceedings. � Reston, VA: The Internet Soci-
ety, 2023.

8. Smart Contract Vulnerability Detection using Graph Neural
Network [Electronic resource] / [Y. Zhuang, Z. Liu, P. Qian
et al.] // IJCAI'20: Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, 07�15 January 2021 : pro-
ceedings. � Electronic resource: IJCAI, 2021. � P. 3283�
3290. DOI: 10.24963/ijcai.2020/454

9. A formal verification tool for ethereum vm bytecode /
[D. Park, Y. Zhang, M. Saxena et al.] // ESEC/FSE '18: 26th
ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
Lake Buena Vista FL, 04�09 November 2018 : proceedings.
� New York: Association for Computing Machinery, 2018.
� P. 912�915. DOI: 10.1145/3236024.3264591

10. Vaswani A. Attention Is All You Need [Electronic resource]
/ A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, I. Polosukhin. � Access mode:
https://arxiv.org/abs/1706.03762. DOI:
10.48550/arXiv.1706.03762

11. Tereshchenko O. I. Vulnerability Detection of Smart Con-
tracts Based on Bidirectional GRU and Attention Mecha-
nism / O. I. Tereshchenko, N. O. Komleva // Information
and Communication Technologies in Education, Research,
and Industrial Applications 2023: 18th International Confer-
ence, Ivano-Frankivsk, 18�22 September 2023 : proceed-

ings. � Berlin: Springer, 2023. � Vol. 1980. � P.276�287.
DOI: 10.1007/978-3-031-48325-7_21

12. Roberta: A robustly optimized bert pretraining approach
[Electronic resource] / [Y. Liu, M. Ott, N. Goyal et al.]. �
Access mode: https://arxiv.org/abs/1907.11692

13. DeeSCVHunter: A deep learning-based framework for smart
contract vulnerability detection / [X. Yu, H. Zhao, B. Hou et
al.] // IJCNN �21 : 2021 International Joint Conference on
Neural Networks, Shenzhen, 18�22 July 2021 : proceedings.
� New York, NY: IEEE Press, 2021. � P. 1�8. DOI:
10.1109/IJCNN52387.2021.9534324

14. Learning to repair software vulnerabilities with generative
adversarial networks / [J. A. Harer, O. Ozdemir, T. Lazovich
et al.] // NeurIPS 2018 : 32nd Conference on Neural Infor-
mation Processing Systems, Montreal, 03�08 December
2018 : proceedings. � Red Hook, NY: Curran Associates
Inc., 2018. � P. 7933�7943. DOI:
10.48550/arXiv.1805.07475.

15. Devign: Effective vulnerability identification by learning
comprehensive program semantics via graph neural net-
works / [Y. Zhou, S. Liu, J. Siow et al.] // NeurIPS 2019 :
33rd Conference on Neural Information Processing Systems,
Vancouver, 08�14 December 2019 : proceedings. � Red
Hook, NY: Curran Associates Inc., 2019. � Vol. 32. DOI:
10.48550/arXiv.1909.03496

16. Securify: Practical security analysis of smart contracts /
[P. Tsankov, A. Dan, D. Drachsler-Cohen et al.] // CCS '18 :
2018 ACM SIGSAC Conference on Computer and Commu-
nications Security, Toronto, 15�19 October 2018 : proceed-
ings. � New York, NY: ACM, 2018. � P. 67�82. DOI:
10.1145/3243734.3243780

17. Hunting vulnerable smart contracts via graph embedding
based bytecode matching / [J. Huang, S. Han, W. You et al.]
// IEEE Transactions on Information Forensics and Security.
� 2021. � Vol. 16. � P. 2144�2156. DOI:
10.1109/TIFS.2021.3050051

18. Deep neural embedding for software vulnerability discov-
ery: Comparison and optimization / [X. Yuan, G. Lin, Y. Tai
et al.] // Security and Communication Networks. � 2022. �
P. 1�12. DOI: 10.1155/2022/5203217

19. Feist. J. Slither: A static analysis framework for smart con-
tracts / J. Feist, G. Greico, A. Groce // WETSEB '19: 2nd In-
ternational Workshop on Emerging Trends in Software En-
gineering for Blockchain, Monteal, Quebec, 27 May 2019 :
proceedings. � 2019. � New York, NY: IEEE Press, 2019. �
P. 8�15. DOI: 10.48550/arXiv.1908.09878

20. ESCORT: Ethereum Smart COntRacTs Vulnerability Detec-
tion using Deep Neural Network and Transfer Learning
[Electronic resource] / [O. Lutz, H. Chen, H. Fereidooni,
C. Sendner]. � Access mode:
https://arxiv.org/abs/2103.12607. DOI:
10.48550/arXiv.2103.12607

21. Sereum: Protecting Existing Smart Contracts Against Re-
Entrancy Attacks / [M. Rodler, W. Li, G. O. Karame et al.]
// Network and Distributed System Security : Symposium
2019, San Diego, 24�27 February 2019 : proceedings. �
Reston, VA: The Internet Society, 2023. DOI:
10.14722/ndss.2019.23413

184

