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ABSTRACT 

Context. The rocket motion control system is time-varying, since its parameters during flight depend on the point of the 
trajectory and fuel consumption. Stability margin indicators are determined in a limited area of individual points of the trajectory 
using algorithms that are developed only for linear stationary systems, which leads to the need to enter stock factor in hardware. In 
the available sources, due attention is not paid to the development of methods for determining the quantitative assessment of the 
stability margin of the time-varying control system. 

Objective is to develop a methodological support for the construction of an algorithm for calculating the stability margin indica-
tors of the time-varying system for controlling the rocket rotational motion in the plane of yawing using the equivalent stationary 
approximation at a selected trajectory section. 

Method. The mathematical model of the control system for the rocket rotational movement in one plane is adopted in the form of 
a linear differential equation without considering the inertia of the executive device and other disturbing factors. The effect of 
deviation of parameters from their average values for a certain trajectory section is considered as a disturbance, which makes it 
possible to transition from a non-stationary model to an equivalent approximate stationary one. The Nyquist criterion is used to 
estimate the stability margin indicators, which is based on the analysis of the frequency characteristic of an open system, for the 
determination of which the Laplace transform mathematical apparatus is used. To simplify the transition from functions of time in the 
differential equation of perturbed motion to functions of a complex variable in the Laplace transform, time-varying model parameters 
are presented in the form of a sum of exponential functions. 

Result. Methodological support was developed for building an algorithm for determining the stability margin of the rocket’s 
rotary motion control system at a given trajectory section with time-inconstant parameters. 

Conclusions. Using the example of the time-varying system for controlling the rocket rotational movement, the possibility of 
using the Laplace transformation to determine the stability margin indicators is shown. 

The obtained results can be used at the initial stage of project work. 
The next stage of the research is an assessment of the level of algorithm complexity, considering the inertia of the executive 

device and the disturbed movement of the mass center. 
KEYWORDS: rocket motion control, time-varying system, Laplace transform. 

 
ABBREVIATIONS 

APFC is an amplitude-phase frequency characteristic; 
LC is law of control; 
LTV is a linear time-varying system; 
MLS is the method of least squares; 
CO is the control object; 
TF is a transfer function; 
CS is the control system for rotational motion of the 

rocket in the yaw plane; 
LF is a Lyapunov function; 
CP is a characteristic polynomial. 

 
NOMENCLATURE 

,a a   are average values of parameters of the CS 

model at the trajectory section; 

( ), ( )a t a t    are variable components of the model 

parameters at the trajectory section depending on the time 
from the beginning of the section; 

,i iC C   are coefficients in the i-th term of the 

approximation of variable component of the model 
parameters by the sum of exponential functions; 

1( )d t  is a signal at the input of the CS; 

1f  is a specified value of the frequency of the 

missile body oscillations in the transient process of 
disturbance compensation; 

2kf , 2f  are frequency of the rocket body oscillations 

in the transient process of disturbance compensation at the 
k-th step of the iterations and one after their end; 

j is an imaginary unit; 
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k is a current number of iteration; 
',k k   are coefficients of LC; 

l is the number of rows in the array N; 
{ ( )}L f t  is the Laplace transform operator of the time 

function; 
m  is a disruptive acceleration; 
N  is a array of polynomial ( )kQ s  depending on the 

l  argument values; 
( ), ( )P s Q s  are numerator and denominator of the TF 

( )zw s ; 

( )aQ s  is a denominator of the TF ( )w s ; 

0Q  is a first approximation of the denominator  of the 

TF ( )zw s ; 

( )kQ s  is a denominator of TF ( )zw s  at the k-th 

iterations step; 
Qd(s,cur) is a component CP of CS caused by the 

instability of the model parameters depending on the 
complex variable s and the image cur of the signal at the 
output of the CS; 

2 1 0, ,k k kq q q , 2 1 0, ,q q q  are coefficients of CP ( )Q s  

at the k-th iterations step and after their completion; 

,i ir r   are exponents of the exponential functions in the 

i-th term of approximation of variable components of the 
model parameters ( ), ( )a t a t   ; 

si is an i-th value of complex argument s; 
( ), ( )u v   are real and imaginary component of the 

APFC of the open CS; 
u jv  is a plane of the real and imaginary components 

of the APFC ( )w s  of the opened CS; 

( )w s  is a TF of the opened CS; 

( ), ( )z mw s w s  are TF of CS; 

0( )zw s  is a first approximation of TF ( )zw s ; 

( )zkw s  is a TF ( )zw s  at the k-th step of the 

iterations; 
  is an equivalent rotation angle of the steering wheel 

of the CS regulator’s executive device;  

1  is a specified value of the stability margin on the 

CP roots plane; 

2k , 2  are margins of stability on the CP roots 

plane at the k-th iteration step and after its end; 

a , ph  are CS stability margin indicators by 

amplitude and by phase; 
аст, phct are stability margin indicators when using 

the method of frozen coefficients; 
, ,     are yaw angle and its derivatives; 

,g g   are given values of the yaw angle and its 

derivative; 

0( )s  is a first approximation of the image of the 

output signal of the CS; 

1 is a value of the circular frequency at which the 
APFC of the open CS crosses a circle of unit radius. 
 

INTRODUCTION 
The main requirements for the CS, as that’s known are 

to ensure the specified parameters of the stability margin 
indicators and the accuracy of the trajectory. The 
fulfillment of these requirements is achieved by choosing 
the structure and parameters of the regulator and 
modeling the disturbed motion of the rocket in the 
vicinity of the nominal kinematic values.  

At the first stage of CS development, a mathematical 
apparatus is used in the form of a system of linear 
differential equations with parameters that are assumed to 
be constant in the vicinity of a certain trajectory point [1], 
while as a result of fuel consumption, an increase in speed 
and flight altitude, the parameter values can change by 
tens of percent. That is, the so-called method of frozen 
coefficients is used, as a result, the dependence of the 
parameter on time is a piecewise-constant function. The 
advantage of this approach is the possibility of using it to 
solve the problems of analysis and synthesis of the 
mathematical apparatus of linear stationary systems, in 
particular, the Laplace transformation and obtaining the 
TF, based on which the accuracy and stability indicators 
are determined. The disadvantage is the presence of an 
error in the value of the model parameters, which is the 
largest at the extreme points of the selected time interval. 
This leads to the need to introduce reserve factors to 
obtain the specified values of the indicators guaranteed, 
which leads to an increase in the requirements for the 
power of the CS executive device and, as a result, to a 
decrease in the weight of the rocket’s payload. 

In this work, on the interval of the trajectory, where 
the time-varying system is matched by an equivalent 
stationary one, the variable component of the model 
parameter is approximated by exponential smoothing, 
which, thanks to the known properties of the Laplace 
transform, significantly simplifies the algorithm for 
obtaining the TF in comparison with approximation by 
other functions, for example, power series. 

The TF includes a component that describes the 
influence of time instability of the model parameters on 
the CS indicators, but its coefficients on the selected 
trajectory interval do not depend on time, that is, it is a 
mathematical model of an equivalent stationary system. 

Compared to the method of frozen coefficients, where 
the dependence of the parameter on time is a piecewise 
constant function and the largest error take place at the 
extreme points of the interval, the error of the parameter 
is determined only by the accuracy of exponential 
smoothing. 

The TF of an equivalent stationary system makes it 
possible to determine the dependence of the CS 
indicators, particularly the margin of stability on the 
design parameters by using the mathematical apparatus of 
stationary systems. 
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The object of the study is the control of the rotational 
movement of the rocket in the yaw plane. 

The subject of the study is the stationary 
approximation of the LTV at a given time interval 
obtained by using the Laplace transform of non-time-
constant components of the CS model. 

The purpose of the work is to develop a methodical 
support for the construction of an algorithm for calculat-
ing the indicators of the margin of stability of the time-
varying system of controlling the rotational motion of the 
rocket in the  plane of yawing using the equivalent sta-
tionary approximation on a given time interval. 

 
1 PROBLEM STATEMENT  

The known in the theory of automatic control 
approach to determine the margin of stability uses the 
APFC of an open control system and based on the 
Nyquist criterion, according to which is performed an 
analysis of its location relative to the critical point with 
coordinates –1, j0 on the plane of real and imaginary parts 
of the APFC.  

CS open at point A is a series connection of the 
regulator and CO (Fig. 1). The rotary motion of the rocket 
in the plane of yawing is taken as the CO, the input signal 
of which is perturbing acceleration m and the equivalent 
rotation angle  of the regulator’s executive device. 

 

 
Figure 1 – Control sysems structural schema 

 
The level of complexity of CS mathematical models 

depends on the research task. The order of the system of 
differential equations can be between 2 and 16. 

For example, the disturbed motion of a typical three-
stage space rocket in the channel of yawing, considering 
the first harmonic of fuel vibrations in four tanks and two-
tone elastic oscillations of the rocket body, is described by 
a system of differential equations of the 16-th order [1]. 

The study of the stability of the rotational movement 
of the rocket at the first stage of design can be carried out 
without considering the fluctuations of the fuel in the 
tanks, the inertia of the executive device, the disturbed 
movement of the mass center and the final stiffness of the 
rocket body, since the frequency spectrum of the 
mentioned factors overlaps insignificantly. As a result the 
CO is considered as a rigid body, and the disturbed mo-
tion in one of the stabilization planes (for example, in the 
plane of yawing) is described by a second-order differen-
tial equation, the coefficients of which have the constant 
and time-variable components: 

 
  mtata )()(  

[ ( )] [ ( )]a a t a a t m           . (1)

 

In this work, on the example of the rotational motion 
of a “solid” rocket in one plane, the possibility of 
obtaining a stationary approximation of the LTV on a 
selected trajectory section by applying the Laplace 
transformation of equation (1) is considered, where the 
variable components of the model parameters a(t) and 
a (t) are given by the sum of exponential functions. 

As a result, the TF of the open system and, 
accordingly, the APFC, based on which the indicators of 
the margin of stability are determined, do not depend on 
time, as in stationary systems. 

This approach complements the methodical base of 
design work, as it makes it possible to establish trajectory 
intervals with constant LC coefficients, which has the 
consequence of reducing the level of complexity of the 
rocket motion control algorithm. 

 
2 REVIEW OF THE LITERATURE 

The issue of analysis and synthesis of LTV is an 
integral part of the theory of automatic control, the 
development of which is caused by the need to solve 
several technical problems, particularly, the design of CS 
for the movement of aircraft. For their research, with the 
aim of determining the LC that provides the specified 
indicators, various variants of the mathematical apparatus 
is used, for example, Lyapunov differential inequalities, 
matrix polynomials, Lyapunov – Krasovsky functionals, 
Lyapunov – Bregman functions, Lyapunov’s parametric 
equations, models predictive control, differential 
equations with constant coefficients around a certain time. 

Analysis of stability of LTV compared to stationary 
systems is much more complicated for several reasons. 
First, another formulation of the concept of stability, 
secondly, there is no obvious connection between the 
stability of the LTV and the eigenvalues of the matrix of 
the equations system. In addition, the result of the 
analysis largely depends on the state transition matrices, 
the possibility of determining which is obvious not 
always [2]. 

The construction of LF for LTV is related to the 
solution of a scalar differential equation, which contains 
both improper and double integrals [3]. For scalar LTV, a 
method of LF construction based on the use of the integral 
of the system parameter with a weight function on a finite 
interval is proposed. Conditions are imposed on the 
weight function so that LF is positively defined and 
uniformly bounded, and its time derivative according to 
the LTV equations is negatively defined, which is a 
criterion of stability. 

New methods of LF construction for a certain class of 
LTV are proposed [4], Lyapunov’s inverse theorem for 
asymptotic stability is proved. Its necessary and sufficient 
conditions are obtained based on the proved Lyapunov’s 
differential inequalities [5]. 

With the use of Riccatti equations and matrix 
inequalities, an algorithm for assessing the stability of 
LTV, whose disturbances are described by quadratic 
constraints, was developed [6]. 
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Obtaining the specified technical indicators of the 
LTV by using the Lyapunov stability theory is shown on 
the examples of spacecraft orientation systems [7, 8]; 
control of the disturbed movement of the aircraft in the 
pitch plane [9], the movement of the aircraft with vertical 
take-off and landing [10, 11], the glider in the presence of 
prohibited flight zones [12–14], guidance when meeting 
the conditions at the end of the flight interval [15]. 

The effectiveness of using Lyapunov’s differential 
inequalities for the construction of the algorithm for the 
calculation of CL is shown, which provides a compromise 
between the requirements of speed and accuracy of 
stabilization, the properties of the transient process are 
established, and the assumption of a limited range of 
coefficient changes is removed. 

The concept of building a dynamic controller in LTV 
feedback, when its parameters are known only 
approximately, has been developed [16]. The sufficient 
and necessary conditions for the possibility of solving the 
problem in the form of matrix inequalities are obtained, 
based on which the parameters of the controller are 
determined. 

In the control system of the rocket rotational 
movement the model parameters deviation from the time-
varying nominal values can amount to ten or more 
percent, therefore, to increase the efficiency of using the 
method of frozen coefficients, an algorithm for their 
refinement by using the data of measuring devices on the 
current values of part of the state vector coordinates is 
proposed [17]. Algorithms for specifying LTV parameters 
for various types of disturbances are also described in 
works [18–21]. 

The presence of non-linear links in the aircraft traffic 
CS complicates the task of obtaining the specified 
indicators, particularly, the stability margin. Linearization 
of non-linear links at certain points of the trajectory leads 
to LTV. The perespective method of predictive control 
[22, 23] was used for their research. An example of its 
application can be a predictive controller for solving the 
problem of meeting spaceships in the context of a limited 
three-body problem, which can be used to control the 
docking process with space stations between the Earth 
and the Moon [24]. 

The analysis of available sources shows that the 
problem of quantitative assessment of the stability margin 
of time-varying control systems, in particular systems for 
controlling the rocket rotational movement does not have 
a proper solution. 

Based on the equivalent stationary approximation of 
the LTV on a certain trajectory section, this indicator can 
be defined as the reduced smallest distance from the 
selected point in the space of LC coefficients to the 
boundary of the stability region or on the plane of the CP 
roots as the distance from its imaginary axis to the nearest 
root, and also based on the criterion stability by Nyquist 
through analyzing the APFC of an open system as a 
amplitude margin and phase margin. 

 
 

3 MATERIALS AND METHODS 
As is known, the sequence of determining the CS 

stability margin  includes the following actions: the 
choice of a mathematical model, for example, in the form 
of differential equations; their Laplace transformation and 
obtaining the TF; transition from TF to APFC of an open 
system under the condition of using the Nyquist stability 
criterion. 

Representation of the variable component of 
parameters of the CS model (Fig. 1) by the sum of 
exponential functions has advantages from the point of 
view of the level of complexity of the transition from 
differential equations (1) to TF. This follows from the 
well-known properties of the Laplace transform of the 
time function ( )f t  into a function of the complex 

variable s, which is called the image and can be written 
as: 

 

0

{ ( )} ( ) s tL f t f t e dt


    . (2)

 
When the approximation of the variable component of 

the CS model parameter is carried out by the sum of, for 
example, six exponential functions, that is 

 
6

1

( ) ir t
i

i

a t C e  
 


  , (3)

 
then based on (2, 3) the Laplace transform of the separate  
component of equation (1) according to the image delay 
theorem will be as follows 
 

6 6

1 1

{ ( )} { } ( )ir t
i i i

i i

L a t L C e C s r 
   

 
          . (4)

 
Therefore, relation (4) gives the Laplace 

transformation of the product of the yaw angle   on the 

variable component of the model parameter, which has 
the consequence of simplifying the transition from the CS 
differential equation to the TF. 

If in LC  the dependence of the equivalent rotation 
angle   of the regulator’s executive device steering 
wheel on the given and actual value of the yaw angle 

,g   are taken into account with the coefficients  

',k k   their time derivatives ,g   , that is 

 
'( ) ( )g gk k           , (5)

 
then in the CS model (1) there will also be products of the 
yaw angle   and its derivative   on the variable 

component of the model parameter )(ta : 
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6

1

( ) ir t
i

i

a t C e  
 


      , 

 
6

1

( ) ir t
i

i

a t C e  
 


       . (6)

 
The use of ratios (2, 4, 6) and the method of 

integration by parts establishes a connection between the 
individual terms of the CS equation (1) and their images: 

 
6

1

{ ( )} ( )i i
i

L a t C s r  


     , 

 
6

1

{ ( )} ( ) ( )i i i
i

L a t C s r s r   


        . (7)

 
According to (1, 3–7), the CS equation can be written 

in the form: 
 

6

1

( )ir t
i

i

a C e  
 


       

6
'

1

( ) ( )ir t
i

i

k k a C e  
   


         

6
'

1

( ) ( )ir t
g g i

i

k k a C e m 
   


        . (8)

 
It’s known the principle of superposition is valid for 

linear systems, according to which the result of the action 
of the input signal )(tg  or )(tm  can be determined 

independently. In order to build an algorithm for 
calculating indicators of the CS stability margin from two 
possible TFs 

 
{ ( )} ( ) { ( )} ( )

( ) , ( )
{ ( )} ( ) { ( )} ( )z m

g g

L t s L t s
w s w s

L t s L m t m s

   
   

 
, (9)

 
in this work, the TF ( )zw s  is selected, which is 

determined by the Laplace transformation of equation (8) 
at zero initial values. 

To obtain the TF, the differential equation (8) is 
transformed into an algebraic one with respect to the 
images of the actual ( )s  and specified ( )g s  value of 

the yaw angle: 
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Equation (10) makes it possible to obtain the TF 
( )zw s  in the form of a fractional-rational function of a 

complex-type argument s: 
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where the designations are accepted: 
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Iterations are necessary to obtain the TF ( )zw s , since 

the image of the output signal )(s  is included in the last 

three terms of the equation (10) left part, which are a 
consequence of the time instability of the model 
parameters on the trajectory’s selected section and 
considered as a disturbance in this work. 

To obtain the first approximation of the image of the 
output signal 0( )s  necessary for the iterations, the 

image of the signal at the input of the CS ( )g s  is 

required, the choice of which does not affect the 
indicators of the stability margin. From the point of view 
of the complexity level of the algorithm, it can be taken as 
constant  single signal with accuracy up to the factor d, 
that is ( ) 1( )g t d t   . Then according to (2) 

( ) /g s d s  . 

When the disturbance is not taken into account, then 
in equation (10) terms with coefficients ,i iC C   are 

assumed to be zero and the first approximation of the TF 
( )zw s  will have the form 
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'
0

0 2 '

( )( )
( )

( )z
g

a k k ss
w s

s s a k s k a a

  

    

  
 
      

. (13)

 
The first approximation of the output signal’s image  

 

0 0 0( ) ( ) ( ) ( ) /g z zs s w s d w s s      . 

 
Numerator (11) of TF ( )zw s  

 
'( ) ( )P s a k k s        

6 6
'

1 1

( )i
i

ii i

C
s k k C

s r


  
 


    

   (14)

 
according to equation (10) and relations for the terms of 
its right-hand side: 

 
( ) ( ) ( )

,
( ) ( )

g g

g g

s s ss
s

s s s

     
 

  
. 

 

The LC coefficients (5) k  and '
k , which are 

included in (8, 10–14), are determined for the selected 
trajectory interval based on the given previous values of 
the margin of stability 1  on the CP roots plane and the 

frequency  1f  of the rocket body oscillations in the 

transient process of disturbance compensation: 
 

2 2 2 '
1 1 1( 4 ) / , 2 / .k f a a k a              (15)

 
Relations (15) are obtained from the fact that the roots 

of the denominator 0Q  of the first TF approximation 

(13) according to the values 1  and f1 are as follows: 

 

1,2 1 12s j f      . 

 
Iterations to determine the denominator ( )Q s  TF 

( )zw s    CP can be carried out according to the scheme: 

 
6

0 1
1 1

1
( ) ( ) ( )

( )k i k i
k i

Q s Q s C s r
s   

 


     

 
  

6

1
1

( )i k i
i

k C s r   


      

6
'

1
1

( ) ( ) ;i k i i
i

k C s r s r    



      


  (16)

( )
( ) ; ( ) ( ) ( )

( )zk k g zk
k

P s
w s s s w s

Q s
       

( ) / ; 1,zkw s d s k n   , 

 

where the index k  is the number of the iteration step, 
)(0 sQ  is the denominator of the TF (13), in which the 

disturbance is not considered. 
At each step of the iteration, an array N  of l  rows 

and two columns is created, in which the values of CP 
( )kQ s  are entered, where the argument s  varies in a 

range sufficient to calculate the passage of the APFC in 
the vicinity of the critical point according to the Nyquist 
stability criterion. By processing this array with the use of 
MLS ( l  equations with three unknown coefficients of 
the CP), the current coefficients 2 1 0, ,k k kq q q  of the CP 

and, accordingly, the values 2 2,k kf  are determined. 

The number of iteration steps n  depends on the 
results of checking the achievement of the specified value 
of the difference of the modules selected to control the 
convergence of the values at the current and previous 

step, for example 2 2 1k kf f   or 2 2 1k k  . 

The result of the performed iterations is the indicator 

2  of the stability margin on the CP roots plane and TF 

(9) of the closed system 
 

2
2 1 0

( )
( )z

P s
w s

q s q s q


   
, (17)

 
which is necessary to determine the indicators of the 
stability margin according to the Nyquist criterion. These 
indicators are based on the TF of the system open at point 
A (Fig. 1), 
 

2
2 1 0

( ) ( ) ( )
( ) ,

1 ( ) ( )( )
z

z a

w s P s P s
w s

w s Q sq s q s q P s
  

     
(18)

  
taking into account the location of the polynomial ( )aQ s  

roots.  
The formulation of the Nyquist criterion depends on 

the number of polynomial ( )aQ s  roots in the right half 

of the complex plane. 
For example, when one of the roots is located in the 

right half of the plane, then the CS is stable, if in the 
frequency interval from zero to infinity the critical point 
K  in this criterion is semi-encircled by the open system’s 
curve of APFC 

 
( )

( ) ( ) ( )
( )a

P j
w j u j v

Q j


      


, (19)

 
where the polynomials , aP Q  are represented in formulas 

(14, 17, 18). 
Indicators of stability margin in terms of amplitude 

a  and phase ph  are determined based on the APFC 

of the open system (19). 
The peculiarity of the application of the torque of the 

CS executive device to the rocket body is that the model 
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parameter a  (1) is less than zero, therefore, unlike the 

classical version of the Nyquist stability criterion, the 
coordinates of the critical point on the plane u jv  are as 

follows: [ 1 0]j  . 

The margin of stability by amplitude a  is the 

distance from the point K  to the point S  of intersection 
of the APFC (19) and the circle of unit radius with the 
center O  of the plane u jv , and the margin of stability by 

phase ph  is the angle’s value between the axis Ou  and 

the  vector  OS  (Fig. 2). 

 
Figure 2 – Margin of stability by amplitude and by phase 

 
The named indicators of the margin of stability are not 

independent, the relationship between them is determined 
by the following ratios: 

 

2 (1 cos )a ph     , 
2

arccos(1 )
2
a

ph


   , 

 
which can be used for additional control of the obtained 
results. 

The choice between a  and ph  in the process of 

studying the system’s dynamic characteristics depends on 
the specific task. 

To calculate the described indicators of the stability 
margin of the CS on the selected trajectory interval, the 
following data are required: 

– constant components of the model parameters (1) 

 aa , ; 

– coefficients of approximation of variable component 
of the model parameters by the sum of exponential 
functions (3, 6) 
 

;6,1,, ,,  irCrC iiii  

 
– the preset values of the stability margin 1  on the 

plane of the CP ( )Q s  roots and the frequency 1f  of the 

rocket body oscillations in the transient process of the 
disturbance compensation. 

The results of the calculations should be: 

– LC coefficients (5) ',  kk ; 

– values of the stability margin 2  on the CP ( )Q s  

roots plane and the frequency 2f  of the rocket body 

oscillations in the transient process of the disturbances 
compensation; 

– indicators of the stability margin of the CS by 
amplitude a  and by phase ph . 

Bringing these indicators closer to the desired values 
can be ensured by correcting 1 , 1f  or characteristics of 

the CS executive device. 
 

4 EXPERIMENTS 
The purpose of the experiments is to verify the 

described methodological support for the construction of 
the algorithm for determining the indicators of the CS 
stability margin on the example of the trajectory section 
of the rocket first stage, where the deviations of the model 
parameters from their average values can be 40%. 

On this trajectory section, the variable components of 
the model parameters in the equation (1) are 
approximated by the sum of exponential functions (3, 6), 
the coefficients of which and exponents are given in the 
Table 1. 
 
Table 1 – Approximation coefficients of  the model parameters 

variable components 
 

i  ir  iC  
ir  iC  

1 0.14149 5365 0.04742 –2.836 
2 0.14266 –17210 0.06852 10.296 
3 –0.30716 11.781 0.00621381 0.565 
4 0.14383 24170 0.1209 0.0661 
5 –0.31185 –11.579 0.5 –4.310–

9 
6 0.14445 –12320 0.07312 –8.017 

 
According to the sequence of the described actions, 

the following data are also required to build the algorithm 
for calculating the indicators of the stability margin of the 
rocket rotational motion control system in one plane:  

– constant components ,a a   of the model 

parameters in the equation (1);  
– preset values of the stability margin 1  on the plane 

of the CP roots and the frequency 1f  of the rocket body 

oscillations in the transient process of the disturbance 
compensation. 

For the selected trajectory section, the coefficients CL 

k , '
k  are determined according to (15) with two 

variants of the previous values of the stability margin 1  

(Table 2). 
 

Table 2 – Data for calculation of LC coefficients  
 

a  a  1  1f  

s–2 s–1 Hz 
1.2 0.849 –0.331 
0.5 

0.3 

 
The experiments were carried out in the Mathcad 

environment, in which the following data determination 
procedures were used: 
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– polyroots(q) – the roots of the polynomial whose 
coefficients are entered in the array q; 

– angle(a,b) – the angle between the abscissa axis and 
the vector with coordinates a, b; 

– Minimize(f,x) – argument x, at which the function 
f(x) is minimal; 

– Re(f), Im(f) – real and imaginary component of the 
complex function f.  

The main procedures that were necessary for the 
operation of the algorithm are as follows: 

– fm(l,a,b,Q) – entry into the array l values of the 
argument x in the range a...b and the corresponding values 
of the function Q(x). By processing this array using MLS, 
it is approximated by a polynomial of a given degree; 

– fq(l,mq)  calculation of the coefficients q0, q1, q2  
of the polynomial Q (16) by processing array mq of l 
rows using the MLS, which is also filled by the fm 
procedure: 

 
1

2

1 1 1
0

2 3
1

1 1 1 1
2

2 3 4 2

1 1 1 1

( )

( )

( )

l l l

i i i
i i i

l l l l

i i i i i
i i i i

l l l l

i i i i i
i i i i

l s s Q s

q

q s s s s Q s

q

s s s s Q s



  

   

   

   
   
   

     
            
      

   
   

   

  

   

   

; 

 
– f(s,q0,q1,q2) – determination at the current step of 

the iteration of the image of the CS output signal 
depending on the complex argument s and the coefficients 
of the polynomial Q (12, 16) under the action of the 
disturbance  ( ) 1( )g t t  , 

 

0 1 2 2
2 1 0

( )
( , , , )

( )

P s
f s q q q

q s q s q s
 

    
; (20)

 
– Qd(s,cur) – calculation of the value of the 

component of the polynomial Q (16), which is due to the 
instability of the model parameters, depending on the 
coefficients q0k, q1k, q2k  of the function cur (20) at the 
current iteration step; 

Q(s,cur) – calculation of the CP value (16) at the 
current iteration step: 

 
2 '( , )curQ s s a k s a          

( , )d cura k Q s     ; 

 
– u(), v() – the real and imaginary component of 

the APFC of the open system according to (18): 
 

2

2

Re( ( )) ( )
( )

1 2 Re( ( )) ( )

z z

z z

w j w j
u

w j w j

  
 

   
, 

 

2

Im( ( ))
( )

1 2 Re( ( )) ( )

z

z z

w j
v

w j w j


 

   
; 

 

– f1() – function for calculation using the 
Minimize(f1,) procedure of the frequency 1, at which 
the APFC crosses a circle of unit radius: 
 

2 2
1( ) ( ) ( ) 1f u v      ; 

 

– a(1), ph(1) – formulas for calculating the 
stability margin according to the Nyquist criterion by 
amplitude and by phase: 

 

2 2
1 1 1( ) ( ( ) 1) ( )a u v         , 

 

1 1 1( ) angle( ( ), ( ))ph u v     . 
 

Experiments with the use of the above tools made it 
possible to verify the possibility of using the sequence of 
actions described in section (3) to determine indicators of 
the CS stability margin at the selected trajectory section. 
 

5 RESULTS 
The advantage of representing the variable 

components of the model parameters as a sum of 
exponential functions is a simple transition from the CS 
differential equations (8) to their Laplace transformation, 
and the disadvantage is that iterations are necessary to 
obtain the TF. This can be seen from equation (10), in 
which the image (s) of the CS output signal is included 
in the terms of the left part of the equation, which are due 
to the instability of the parameters. 

The convergence of the iterative process of 
determining the instability influence of the model 
parameters on the stability margin  for the selected data 
example and two variants of the initial value 1  is shown 

in Tables 3, 4. 
In the third and fourth columns of the Tables 3, 4 are 

shown fragments of the array N  in which l values of CP 
Q(si) are entered in the range of arguments sufficient to 
establish the position of the APFC of the open system 
relative to the critical point in the Nyquist criterion. 
Processing of this array using MLS gives the coefficients 
and roots of CP (16) after the current iteration step. 

As follows from these Tables, for the selected data 
example, three iterations are enough so that the indicator 
2 of the CS stability margin, considering the instability 
of the model parameters, was calculated with an error of 
no more than 0.01 s–1. 

As is known, to calculate the parameters of the 
stability margin by amplitude a  and by phase ph  

based on the Nyquist criterion, the APFC ( )w j  of the 

open system (19) is needed in the vicinity of the 
frequency range , in which its passage relative to the 
critical point with coordinates [ 1 0]j   on the plane 

u jv  is determined. 
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Table 3 – Convergence of iterations at 1 = 1.2 s–1 

k i si Qk(si) 2 2k–2 k–1 
1 0.4 3.01972 
2 0.73043 5.3342038 
3 1.06087 6.5131834 
. ….. ….. 
l 8 82.30107 

0.9064601 –0.2935395 

q21 q11 q01 

1 

1.00444 1.82097 3.47350 
1 0.4 4.4387594 
2 0.73043 5.3424195 
3 1.06087 6.5218544 
. ….. ….. 
l 8 82.3035688 

0.9059249 –5.3510–4 

q22 q12 q02 

2 

1.00446 1.81992 3.48263 
1 0.4 4.4386312 
2 0.73043 5.342307 
3 1.06087 6.5217596 
. ….. ….. 
l 8 82.3035647 

0.9059502 –2.5310–5 

q23 q13 q03 

3 

1.00445 1.81997 3.48250 

 
The formulation of the criterion depends on the roots 

of the CP of the open system, which can be determined, 
for example, by the Minimize procedure in the Mathcad 
environment. For the data example in the Tables 1, 2 and 
1=1.2 s–1 they are equal to –0.963 and +1.075, i.e. one of 
the CP roots is in the right half of the roots plane. 
Therefore, according to the Nyquist criterion, the CS 
stability takes place under the condition that the curve of 
the APCH (19) is in the range frequency  from zero to 
infinity (Fig. 2) makes a semicircle above the critical 
point K with coordinates [ 1 0]j   . 

The calculations performed according to the described 
algorithm show that the instability of the model 
parameters for the data example (Tables 1, 2) at 1=1.2 s–

1 leads to a decrease of the stability margin in comparison 
with the results of the method of frozen coefficients for 
the selected trajectory section on the CP roots plane (16) 
by approximately 25% and, according to the Nyquist 
criterion, the stability margin in term of amplitude by 
15%, in term of phase by 16%. 

Since the relationships between the named indicators 
are not described by linear functions, the ratios between 
them in quantitative terms do not coincide. 

When 1=0.5 s–1 the indicators of the stability margin 
on the CP roots plane decrease by approximately 59%, 
and according to the Nyquist criterion, the stability 
margin in terms of amplitude and phase decreases by 58% 
(Table 5). 

The experiment results show the possibility of 
building an algorithm for calculating the stability margin 
indicators of a time-varying CS on a selected trajectory 
section obtaining an equivalent stationary CS using the 
Laplace transformation of the model parameters time-
varying components given by the sum of exponential 
functions. 

 

Table 4 – Convergence of iterations at 1 = 0.5 s–1 

k I si Qk(si) 2 2k–2 k–1 
1 0.4 3.01972 
2 0.73043 3.5782648 
3 1.06087 4.4027546 
. ….. ….. 
l 8 72.5998937 

0.3665767 –0.1334233 

q21 q11 q01 

1

1.00346 0.73569 2.51093 
1 0.4 2.679288 
2 0.73043 3.1218419 
3 1.06087 3.8378597 
. ….. ….. 
l 8 69.8009891 

0.2033659 –0.1632108 

q22 q12 q02 

2

1.00446 1.81992 3.48263 
1 0.4 2.6741968 
2 0.73043 3.120315 
3 1.06087 3.8388745 
. ….. ….. 
l 8 69.8023279 

0.2046855 0.0013196 

             q23 q13 q03 

3

1.00376 0.41091 2.29259 

Table 5 – Indicators of the CS stability margin  
1 2 а аст ph phct 

s–1 – degrees 
1.2 0.906 0.717 0.842 42.0 49.8 
0.5 0.205 0.174 0.414 10.0 23.9 

 

6 DISCUSSION 
To use the described actions in the design work for the 

construction of the algorithm for calculating the stability 
margin indicators, it is necessary given by tables or 
graphs of the dependence of the model parameters on 
time. The flight path is divided into sections, on each of 
which are determined coefficients of approximation of the 
model parameters variable components by the sum of 
exponential functions.  

Based on the CO characteristics and the CS executive 
device, the desired values of the CP roots are assigned. 

The Laplace transformation of the variable 
components of the model parameters makes it possible to 
move from a differential equation with time-varying 
coefficients to a TF, which matches LTV with an 
equivalent stationary system on a selected trajectory 
section. 

The proposed approach to determining the stability 
margin indicators of time-varying CS has the advantage 
that their error is the same for all points of the selected 
trajectory section, while when using the method of frozen 
coefficients, the error depends on the distance to the 
middle point of the trajectory section. This can give a 
possibility of increasing the size of the trajectory sections 
and, accordingly, reducing their number. 

 

CONCLUSIONS 
The scientific novelty of the work consists in the 

development of a methodology for determining the 
indicators of the margin of stability of a time-varying 
rotary motion control system of a rocket by means of 
Laplace transformation of the variable component of the 
mathematical model parameters given by the sum of 
exponential functions. 
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The practical significance of the obtained results is 
the expansion of the methodological basis for the design 
rocket motion control systems. 

Prospects for further research is to assess the 
complexity level of the algorithm taking into account the 
inertia of the executive device and the disturbed 
movement of the mass center. 
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ЗАПАС СТІЙКОСТІ НЕСТАЦІОНАРНОЇ СИСТЕМИ УПРАВЛІННЯ ОБЕРТАЛЬНИМ РУХОМ РАКЕТИ 
 
Авдєєв В. В. – д-р техн. наук, професор, професор кафедри кібербезпеки і комп’ютерно-інтегрованих технологій, Дніп-

ровський національний університет імені Олеся Гончара, Дніпро, Україна. 
Александров А. Є. – аспірант кафедри кібербезпеки і комп’ютерно-інтегрованих технологій, Дніпровський національ-

ний університет імені Олеся Гончара, Дніпро, Україна. 
 

AНОТАЦІЯ 
Актуальність. Система управління рухом ракети є нестаціонарною, оскільки в процесі польоту її параметри залежать 

від точки траєкторії і витрат палива. Показники запасу стійкості визначають в обмеженому околі окремих точок траєкторії з 
використанням алгоритмів, які розроблені тільки для лінійних стаціонарних систем, що призводить до необхідності введен-
ня коефіцієнтів запасу в апаратних засобах.  В доступних джерелах розробці методів визначення кількісної оцінки запасу 
стійкості нестаціонарної системи управління належної уваги не приділяється. 

Мета роботи – розробка методичного забезпечення побудови алгоритму розрахунку показників запасу стійкості неста-
ціонарної системи управління обертальним рухом ракети у площині рискання з використанням на вибраних дільницях трає-
кторії еквівалентного стаціонарного наближення.  

Метод. Математична модель системи управління обертальним рухом ракети в одній площині прийнята у вигляді ліній-
ного диференційного рівняння без врахування інерції виконавчого пристрою та інших збурювальних факторів. Ефект відхи-
лення параметрів від їх  середніх значень для певної дільниці траєкторії розглядається як збурення, що дає можливість пе-
реходу від нестаціонарної моделі до еквівалентної наближеної стаціонарної. Для оцінки показників запасу стійкості викори-
станий критерій Найквіста, що спирається на аналіз частотної характеристики розімкненої системи, для визначення якої 
використовується математичний апарат перетворення Лапласа. З метою спрощення переходу від функцій часу у диферен-
ційному рівнянні збуреного руху до функцій комплексного змінного у перетворенні Лапласа змінні у часі параметри моделі 
подані у вигляді суми експоненціальних функцій.  

Результат.  Розроблене методичне забезпечення для побудови алгоритму визначення запасу стійкості системи управ-
ління обертальним рухом ракети на заданій дільниці траєкторії з непостійними у часі параметрами. 

Висновки. На прикладі нестаціонарної системи управління обертальним рухом ракети показана можливість викорис-
тання перетворення Лапласа для визначення показників запасу стійкості.  

Отримані результати можуть бути використані на початковому етапі проектних робіт. 
Наступний етап дослідження це оцінка рівня складності алгоритму при врахуванні інерції виконавчого пристрою та збу-

реного руху центру мас. 
КЛЮЧОВІ СЛОВА: управління рухом ракети, лінійна нестаціонарна система, перетворення Лапласа. 
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