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ABSTRACT

Context. Creating guaranteed competitive motion control systems for complex multidimensional moving objects, including un-
stable ones, that operate under random controlled and uncontrolled disturbing factors, with minimal design costs, is one of the main
requirements for achieving success in this class devices market. Additionally, to meet modern demands for the accuracy of motion
control processes along a specified or programmed trajectory, it is essential to synthesize an optimal control system based on experi-
mental data obtained under conditions closely approximating the real operating mode of the test object.

Objective. The research presented in this article aims to synthesize an optimal tracking control system for the Stewart platform’s
working surface motion, taking into account its multidimensional dynamic model.

Method. The article employs a method of a multidimensional tracking control system structural transformation into an equivalent
stabilization system for the motion of a multidimensional control object. It also utilizes an algorithm for synthesizing optimal
stabilization systems for dynamic objects, whether stable or not, under stationary random external disturbances. The justified
algorithm for synthesizing optimal stochastic stabilization systems is constructed using operations such as addition and multiplication
of polynomial and fractional-rational matrices, Wiener factorization, Wiener separation of fractional-rational matrices, and the
calculation of dispersion integrals.

Results. As a result of the conducted research, the problem of defining the concept of analytical design for a Stewart platform’s
optimal motion control system has been formalized. The results include the derived transformation equations from the tracking
control system to the equivalent stabilization system of the Stewart platform’s working surface motion. Furthermore, the structure
and parameters of the main controller transfer function matrix for of this control system have been determined.

Conclusions. The justified use of the analytical design concept for the Stewart platform’s working surface optimal motion
control system formalizes and significantly simplifies the solution to the problem of synthesizing complex dynamic systems,
applying the developed technology presented in [1]. The obtained structure and parameters of the Stewart platform’s working surface
motion control system main controller, which is divided into three components W, W,, and W;, improve the tracking quality of the
program signal vector, account for the cross-connections within the Stewart platform, and increase the accuracy of executing the
specified trajectory by increasing the degrees of freedom in choosing the controller structure.

KEYWORDS: synthesis, transfer function matrix, tracking control system, quality functional, Stewart platform.

ABBREVIATIONS O, 18 @ zero matrix of size mxn;

MFD is a method of matrix fraction description;
WS is a working surface.

NOMENCLATURE

C is a non-negative definite polynomial weight matrix
of size mxm, which bounds the variance of the control
signal u;

E,, is the 2nxn unit matrix;

Gyt+G; is a stable fractional-rational matrix, which is
the stable part of the result of the separation of the matrix
G;

G, is a gain coefficient of the disturbance spectral d-

ensity matrix in the controlled object S / ;
YobWob
K

g
characterizing the dynamics of the object PO_1 ;

is a gain coefficient of the feedback matrix

M, M, is an (extended) polynomial matrix of
dimensions 2nxm and nxm, respectively, that determines
the sensitivity of the object to changes in control signals;

m is the number of signals at the output of the control
system,;

n is the local system inputs number;
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P, Py is an (extended) polynomial matrix of
dimensions 2nx2n and nXxn, respectively, that
characterizes the dynamics of the control object;

R is a positively definite polynomial weight matrix of
size nxn, which determines the influence of the
stabilization error variance on the criterion e;

ro is a vector of program signals;

S’ isa transposed spectral density matrix of the
Tolo
vector ry;

S,ﬁu is a transposed spectral density matrix of control
signal deviations;

S)/C is a transposed spectral density matrix of the
£17ve]
vector x,; at the output of the extended control object;
s/ is a transposedmatrix of spectral densities of

YobWob

the disturbing influence;
Séoio is a transposed spectral density matrix of the
extended disturbance vector &,

OPEN a ACCESS




p-ISSN 1607-3274 PagioenektpoHika, iHpopmaTuka, ynpasiainss. 2024. Ne 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. Ne 3

S:) v is a transposed mutual spectral density matrix
0

between vectors @q and y;

To+T, is a stable fractional-rational matrix, which is
the stable part of the result of the separation of the matrix
T,

u is an m-dimensional vector of control signals;

W, W,, W, Ws are transfer function matrices of the
main controller and its components;

x; is a vector of signals at the output of the control
system;

x, 1s extended vector of reactions;

7, - 71 are auxiliary transfer functions;

Zn, Z71 are fractional rational matrices;

® is a block matrix of transfer functions of size
nx(n+m);

o 1S a measurement’s noise variance coefficient,
values: 0=0.0018 rad?;

€, 1s a tracking error;

01, ¢, are vectors of measurement noise;

W, 18 a vector of centred stationary random distur-
bances in the control object.

INTRODUCTION

Research results on the methods of designing control
systems for mechanisms with a parallel structure based on
the Stewart platform [2], taking into account the princi-
ples of automatic control theory, have determined that
regardless of the application area, all the Stewart platform
working surface (WS) motion control systems are multi-
dimensional closed-loop control systems operating under
the influence of random disturbances.

In the article [3], the Stewart platform dynamics mod-
el is identified and its transfer function, as well as the
transfer function of the shaping filter, is determined. It has
been determined that the considered mechanism is a mul-
tidimensional stable mechanical filter for both control
signals and disturbances in the working area of the mech-
anism. Analysis of the Stewart platform dynamics’ model
identification results shows that the primary influence on
the motion of the moving platform center of mass is the
change in control inputs. However, neglecting the impact
of disturbances reduces the positioning accuracy of the
platform. Therefore, for the synthesis of the control sys-
tem, methods should be applied that allow for determin-

ro & & & |
:ﬁ)@:‘v K,

VAN

ing the structure and parameters of the multidimensional
controller, taking such influences into account.

Given the modern requirements for the accuracy of
motion control processes of a moving object along a spec-
ified or programmed trajectory, it is necessary to synthe-
size the optimal structure and parameters of the object’s
control system, taking into account both real controllable
and uncontrollable stochastic disturbing factors [4]. Also,
in the process of synthesizing the optimal controller struc-
ture, it is necessary to evaluate and consider multidimen-
sional dynamic models of the object itself, its basic parts,
as well as the controllable and uncontrollable disturbing
factors that affect the object in its real motion.

This work object of study is a Stewart platform’s
working surface motion multidimensional tracking con-
trol system. The Stewart platform is a spatial mechanism
with a parallel kinematic structure, consisting of six iden-
tical kinematic chains (actuators) [5]. Such mechanisms
include processing centers (machines), coordinate meas-
uring centers, vibration platforms (testing rigs), motion
simulators, and stabilization platforms. The Stewart plat-
form has six degrees of freedom for the motion of its
moving platform. By programmatically adjusting the
lengths of the Stewart platform actuators, it is possible to
control the position of the moving base, move it in verti-
cal and horizontal directions, and rotate it in three planes.

The subject of study is the algorithm for converting
the tracking system into an equivalent stabilization sys-
tem, as well as the algorithm for synthesizing the Stewart
platform’s working surface motion control system.

The purpose of the work is to obtain the structure
and parameters of an optimal controller for the Stewart
platform’s working surface motion control system, using
a justified multidimensional objects optimal stochastic
sta-bilization systems synthesizing algorithm.

1 PROBLEM STATEMENT

As a result of the conducted research and the structural
schemes analysis of Stewart platform WS motion control
system when used for various types of technological tasks
such as positioning, stabilization, motion simulators of
moving objects, etc. [5], and taking into account the prin-
ciples of automatic control theory, it has been established
that regardless of the application area, all motion control
systems of the Stewart platform WS can be classified as
multidimensional dual-loop tracking systems (Fig. 1) [2].

_____ | Wob

X

: M, PO-l ::>

W3
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W[ - Kl ¢

Figure 1 — Structural diagram of a multidimensional dual-loop tracking control system
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We will also consider that the vector of output coordi-
nates x; is fully measured using a system of imperfect
sensors, whose dynamics are determined by the transfer
matrix K;. At the output of the sensors, there is an n-
dimensional vector of centered stationary random noises
¢, with a fractional-rational matrix spectral density

S(Pl(pl . The system input is an n-dimensional vector of the

motion program signal 7y. The program signal setter is
described by the transfer function matrix K, of size nxn.
The stationary random noise of the program signal setter
is characterized by the n-dimensional vector ¢,.

The study of research results, which are given in the
sources [1, 6-8], made it possible to set the task of defin-
ing the Stewart platform WS optimal motion control sys-
tem analytical design concept.The mentioned concept
involves transforming the structural diagram in Fig. 1 into
an equivalent structural diagram of a multidimensional
stabilization system [6], taking into account the rules of
structural diagrams and linear systems transformation [7].
This consolidation formalizes and significantly simplifies
the solution of synthesizing complex dynamic systems,
such as the Stewart platform’s WS motion control system,
using the developed technology presented in [1]. This
technology utilizes an algorithm for synthesizing optimal
systems for stochastic stabilization of motion in multidi-
mensional controlled objects, which is robust even in the
presence of stationary random external disturbances. It
ensures enhanced reliability in computation results, com-
bining the simplicity of computational algorithms with the
capabilities and physical transparency of algorithms de-
scribed in the monograph [6].

2 REVIEW OF THE LITERATURE

The technologies for synthesizing optimal linear time-
invariant multidimensional control systems in the fre-
quency domain [6—10] review has shown that the funda-
mental creating such systems method can be considered
as the synthesizing optimal multidimensional stabilization
systems presented in [8] method. It is based on the the
Frobenius formula for polynomial matrix inversion use
and involves complex computations in forming special-
purpose polynomial matrices. All of this limits the effec-
tiveness of applying the algorithms from [8] to solve the
synthesis task, especially as the order and dimensions of
the controlled object increase. At the same time, this
monograph has proven that the structure and parameters
of these service matrices do not affect the choice of the
optimal regulator and the effectiveness of its use in the
system; they only determine the course and complexity of
the computational synthesis processes.

In the monograph [9], a new procedure for determin-
ing the aforementioned service matrices is justified based
on the factorization of a properly constructed block poly-
nomial matrix. It has allowed the author to significantly
simplify the basic synthesis algorithm. At the same time,
the relationships obtained in [9] allow for the synthesis of
an optimal multidimensional stabilization system de-
signed to operate under random disturbances in the form
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of a white noise vector and with ideal measurement of the
output coordinates of the object, such as the Stewart plat-
form.

In the monograph [6], a new method for synthesizing
optimal multidimensional stabilization systems for dy-
namic objects, including unstable ones, is justified. This
method is designed to operate under stationary random
external disturbances with “non-ideal” measurements of
the object’s output coordinates. The algorithms based on
this method involve selecting special-purpose polynomial
matrices from physical considerations, which significantly
simplifies their formation process. At the same time, re-
peated application of this method for creating stabilization
systems has shown that as the dimensionality of the con-
trolled object increases, problems of catastrophic loss of
computational accuracy arise when performing computer
calculations with limited bit-length precision.

3 MATERIALS AND METHODS
The synthesizing an optimal tracking control system
for the Stewart platform’s WS motion, as a multidimen-
sional controlled object, task is formulated as follows.
Suppose we have an n-dimensional linear controlled ob-
ject (Fig. 1), whose motion is described by a system of

ordinary differential equations, represented under zero
initial conditions in the Laplace-transformed form:

Foxp =Mou+vy - (1)

Supplement the object equation (1) with the error
equation:

Ex =T~ X1
so we can write the following system of equations:

Foxy =Mou+y,p
Ex =1 —X ’

or for better understanding, let’s rewrite this system of
equations as follows:

{P0x1+0n5x :M0M+(//0b (2)

E,x+E,,=0,+1

Write the system of equations (2) in vector-matrix

form:
= u+ s
En En €x Onxm 0

introduce new notations:

R O My Vob
el Bl R e
En En Onxm o
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M
X = ,
S)C

Given the notation (3), equation (1) can be written as
follows:

Axg =Mu+vy,, “)

As seen in Fig. 1, the input to the sensors K and K,
are the output coordinate vector of the controlled object x;
and the tracking system error €, respectively, while the

output of the sensors K and K; yield the vectors x, and ¢;.
Then, the following equation can be written:

X2 _ Kl 0 X1
el e

introduce the notation:

K—Kl 0 _x2
I I S ©)

The sensors K and K, have noises ¢; and ¢,, which
are multidimensional stationary-centered random proc-
esses with known spectral density matrices and cross-
spectral densities. As seen in Fig. 1, the vectors x; and &,
act at the input of the regulator ¥ of the tracking system,
so the following equation can be written:

MM

introduce the notation:

¥, :{’“}, 0 :[(‘”] ®)
€ (0%

Taking into account equation (5) and notation (6-8),
we obtain:

Xe, = Koxe +9q -

According to the block diagram in Fig. 1, the equation
of the control signal u can be defined as follows:

u=Ws(=Wx; +W,e,),

and in matrix form
X
u=ws[-w Wz{ 3},
€2
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where W, is the transfer function of the controller of the
double-loop tracking system:

Wo=ws[-w, w,]. 9

Then

u=Wo(Koxs +90)- (10)

Therefore, the two-loop tracking system (Fig. 1) is
structurally equivalent to the stabilization system depicted
in Fig. 2, described by the equations of the object (4) and
the controller (10).

—_

Figure 2 — Structural diagram of a multi-dimensional stabiliza-
tion system

At the first stage of transformations, the structural di-
agram (Fig. 2) is reduced to the output x, of the sensors

K, (Fig. 3), and the resulting system of differential equa-
tions is equivalent to the relationships (1):

ngl =Mu +vy, (11)
in which the following notations are adopted
-1
P=K0AKy , M =KjoMy, x; =Kgx;» (12)

v =Koy, -

v

‘X I

Po

Wo =Sk

Figure 3 — Result of the structural transformations first stage

To determine the polynomial matrix K;o with the min-
imum possible order of elements, it is proposed to use a
combination of algorithms for left-sided pole removal
[12] and MFD decomposition [10] of the fractional-

rational matrix K ! and the product of matrices AK L
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In this process, the matrix K,y should be found as a result
of the MFD decomposition [10] of the following product:

-1 -
KioP=HKy,

where K,y is the result of the left-side removal of the
poles of the sensor transfer function matrix [12]

-
KK, =Ky,

and between the determinants of polynomial matrices K
and K, there is an identity

B

10| =|K20

which is a consequence of the MFD decomposition of
fractional-rational matrices.

In the second stage, the structural diagram (Fig. 3) is
transformed into a standard form (Fig. 4), where the input
of the stabilization system is affected by an extended dis-
turbance vector &

£=(E,. P (13)
where the vector & is the result of the vertical concatena-
tion of the vectors y and @,

§0=P}},
Po

a vector xg —acts as the output of the system.

(14

Wy k——

Figure 4 — Structural diagram of a typical stabilization system

By analogy with [6], the relationship between the vec-
tors & and x, is defined as follows:

Xe, :K(;]l:inz (E2117P)_(02n’E2n):|§0 > s)

where Ff is the matrix transfer function of the closed
€2

“object + regulator” system from the extended distur-
bance vector & to the output signal vector x . The con-

trol signal vector u in the closed system also depends on
the extended disturbance vector &
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u:Fué(E2n’P)&.:07 (16)

where F° is the matrix transfer function of the closed

“object + regulator” system from the extended distur-
bance vector & to the control vector u.
In works [6, 8], based on equation (11), it has been

proven that there is a relationship between matrices F,°

and Ff , which is characterized by the following rela-

2
tion:

PFf2 ~MF>=E,,. (17)

€

Additionally, it has been demonstrated that the struc-
ture and parameters of these matrices depend on the ma-
trix of transfer functions of the regulator ):

Fr =Wo(P—Mwy )",
& _(p_ —1
Fo =(P=Mip)”

(18)
(19)

Thus, the structural transformations (Fig. 2-4) and
equations (15), and (16) reduce the task of synthesizing an
optimal stabilization system to the following: it is neces-
sary to determine the structure and parameters of the
regulator W, transfer function matrix by known polyno-
mial and fractional-rational matrices M, Py, Ky, S

and Swm

function in the feedback circle to the control object en-
sures the stability of the stabilization system (Fig. 2) and
delivers a minimum to the following quality criterion:

e =<x/ Rx, > +<u/Cu> .
€ 1

By substituting definitions (5) and (6) into the quality
criterion of the stabilization system (20), we determine
the functional of the quality criterion for the two-loop
tracking system as follows:

YobWob °
. The inclusion of the regulator W, transfer

(20)

e=<xé(KoIYB”}R[OWEAKO%>+<u/Cu>, @1)

n

introduce the notation

R = (KEIY{Z" }R[O,WE” ](Kal).

n

Unlike in the stabilization system where R is a coeffi-
cient, in the tracking system, R; equals a matrix 2x2:
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e_[0 0 ’
"o, KIRK,| (22)

The task of synthesizing the regulator in the tracking
system is to ensure, the first, the stability of the closed-
loop tracking system and, the second, minimum of the
system functional (21) by selecting the optimal structure
of the regulator Wj.

To solve this problem, rewrite the functional (20) in
the frequency domain:

Jjoo
ezl_ jtr(S)/c . R1+SL/ijds_ (23)
J =
—joo

€17e]

Define the matrix of varied transfer functions @ as
follows

Fui 2222@4'221, (24)

where

1
Zy) Z(B+AP_1MT , 221 Z—ZzzAP_l . (25)

A and B are polynomial matrices found as a result of rep-
resenting the auxiliary block matrix H:

0,, P -M
H=| P -R O2pxm | »

M« Oppn, —-C

(26)

in the form of the product of two factors (block polyno-
mial matrices) ¥ and 2:

H=VZV , (27)
where
E,, -S N

v=| o, P -M]|,
0m><2n A B (28)

02n E2n 02n><m

L= E, 02n 02n><m >
Omen Om><2n - Em

provided that the determinant V| is a Hurwitz polynomial.

The algorithm for factorizing matrix (27) was firstly
proposed and detailed in [9]. Substituting expressions
(26) and (28) into equation (27) establishes the existence
of the following relationships:
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PS + S«P+ AxA =R,
M+S + NuP = BeA = 0,0,
PN + S«M — 4«B = Oyppn»

M«N + N«M + B«B =C.

(29)

In this case, the performance criterion (23) with equa-
tions (13—17) and (24) transforms into the functional:

e E E
e :l' J l}’{|:( Pn ]Zzl*M*P*_lRG +( PHJ *_1 X
] * *

—Jjo

E
! —1 ! n
X RG]S&O&O + @*Zzz*M*Bk RGS&O&O ( B ] -

(30)

E

n

O !
—[ HJRGS{%O?%O + [Zz]*CZz] + 221*C222@+@* X

’ En
X 299xCzy +€Z5*222*C222@KEWP )Séoéo B ds,

where “*” is the sign of the Hermitian matrix conjugation
[13], G is a fractional-rational matrix equal to

G =P "Mz, (E,,P)+ P Mzy,®(E,, P)+
+ PN (E,,P)=(0,E,).

The matrix S’iofo is defined as the result of applying

the Wiener-Khinchin theorem to the vector (14) in the
form:

! _ S\,VW S(’PO‘V
Sty = S/ S’ ’
Yoo PoPo

31

where matrix S(W is the transposed matrix of spectral

densities of the equivalent disturbances vector, which,
considering expression (12), is equal to:

Sty =Kio-S

’
S(PO‘U

-Kyox, (32)

(33)

’
YV,

— Q!
- Klo S(pl\ur :

The search for the algorithm to determine the structure
and parameters of the transfer function matrix W, as in [6,
8, 9], can be accomplished by minimizing the functional
(30) on the class of robust and physically realizable vari-
able matrices @ using the Wiener-Kolmogorov procedure.
According to this procedure, the first variation of the
functional (30) has been found:

Joo
de = l t{&D* 2 or(*)+ itr(”‘)* S(D}ds ,
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0
0D+«

tl”(*): Zpo* (M*R;lRpilM + C)Zzz(p X

X(E P)S/ " +z (MP 1RP 1j\4Z +
n» EoCo R 2% IV H L 21

—1 —1 '
+M+P'RP +C221XEH,P)S§O§O x

En —1 ’ En
x ( P J— 29psMxP R(O,. E, )SE ( B J .

%

Define the matrix D as the result of the left-sided fac-
torization [11] of generalized disturbances spectral den-
sity’s transpose matrix.

’ En
DDx = (En,P)Séoio( j : (36)

P
Assume that the fractional-rational matrix 7 equals:
T =2y (M*&‘IRP‘1M221+ M«P'RPT 4+ CZZIJD , 37)
and the matrix G:

G= —222*M*P*_1R(S’

' -1
You + S BDE. (38)

Since the relationships (29) hold, the expression (37)
is reduced to the form:

TZZzz*(M*Bk_IS* —N*)D ,

and the partial derivative (35) is simplified and repre-
sented as

0 tr(*)= ®DDx + TDx — GDs .

*

Thus, the first variation of the quality functional (34)
becomes equal to:

My =| 0.01(s +2.1)s> +0.225 +0.03 |5 +1.355 +0.83

Jjoo
Se :l, [tr{3D(@DDx +TDw - GD: ) +
—jOO .

(39)
+(DDus + DTx — DG: )3 ds

As seen from the monograph [6], the matrix of vari-
able functions @, which meets the conditions of stability
and physical realizability and minimizes the functional
(30), considering expression (39), should be determined
based on the following relationship:

®=—Ty+T, +Gy+G,)D". (40)

Substituting the result (40) into expression (24) and

solving equation (18) for the regulator’s transfer function

matrix, taking into account relationship (25), allows us to
determine that:

Wy=B+oM) (- 4+P). (41)
4 EXPERIMENTS

The initial data for synthesizing the optimal structure
of the Stewart platform’s WS motion two-loop tracking
control systems consists of its dynamic models, as a con-
trol object, as well as the spectral density of the acting
disturbance, which were determined based on the results
of field tests under conditions close to the real operating
mode of the experimental sample of the Stewart platform,
using special algorithms [3]. Thus, the dynamics of the
Stewart platform (Fig. 1) are described by the matrices:

) 0 0
=0 2z 0], (42)
0 0 Zy

where 2 =(2 +0.635+0.15)52 + 25 +1.09),
2 = (2 +0.115+0.04;.

—0.004(s +9.3)\s% +1.955 +1]s? +0.067s +0.09

0.013(s+5.4)6s+0.83)(s +o.15)(s2 +0.3s+0.067) -0.016(s —2.1)>%s+0.14)(s —0.027)(s2 +1.895+1

0.05(s+0.96)\s> +0.55 +0.14 s> —0.0185 +0.2

—0.008(s —2.1§s +0.76)(s +0.19)s? +0.24s + 0.085)

0.006(s +0.19)\s? +1.45 +0.54 |s? +1.235 + 4.09

, (43)

0.004(s +1.95)s2 +0.225 +0.055 |5 +1.065 + 0.67
0.025(s +0.94)(s2 ~0.25+0.067 |s* +0.59s +0.17
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the spectral density of the acting disturbance S(lfoWo :

9 53 32

' —4

Sy, =107%24(53 90 67|, (44)
32 6.7 344

where z3 = (s + 0.45)(s + 0.55) ,

52 +0.15+0.04)5? + 0.65 +0.15)s? + 25 1)

3

Zp =

Since the measurement of the output coordinate vector
x; and the program signal vector 7, is performed by iner-
tialess measuring devices, which according to their tech-
nical specifications are proportional elements with a
transfer coefficient equal to 1, the following equations are
satisfied:

K10 =K =E33,Kg =K =K; = E3,3,

according to the definitions (12) and (32), (33) following

000 0 0 0
000 0 0 0
R = 000 0 0 0 , (46)
0 0 0 016 -0.002 -0.06
0 0 0 —-0.002 024 -0.165
0 0 0 -0.06 -0.165 1.17 |
the polynomial weight matrix C is equal to:
001 0 0
C=| 0 001 O 47
0 0 0.01

Substituting matrices (42), (43), (46), (47) into
expression (26) allows us to determine the auxiliary
polynomial matrix H. Factorization of this matrix based
on algorithm [9] allowed us to determine the following
blocks of the matrix V (28), necessary for further
synthesis:

equations take place A=01242, B=E33, (48)
, , ’ , (0 0 0 0 0 0 |
P=R, M=M, Syy=Sy,y, > Sesy =Se, > (45) 000 0 0 0
X2 =X, Y=Y, 000 0 0 0
§= (49)
0 0 0 00797 —-0.00107 —0.031519
Tp find the auxil'iary matrix H, .it is necessary to de- 00 0 —000107 011927 —0.0825
termine the polynomial weight matrices R;, which defines
the impact of stabilization error variance on the criterion [0 0 0 —0.031519 -0.0825  0.58515 |
value (20), and C, which limits the variance of the control
signal u.
Based on the methodology for determining weight
matrices presented in the works [14], we obtain the poly-
nomial weight matrix R;, according (22):
| 0.555(5—9.269)(s+0.867)s + 0.00885)(s2 +0.39s+ 0.083)
2.9(s—0.8)(s+0.337)s - 0.19)(s2 +1.245+0.39
v 107 [ —27.579(s +0.9399 s> +0.5398s + 0.1419st ~0.165+0.22
zs | 0.555(s—9.269)s +0.867 s +0.00885|s? +0.39s +0.083
2.9(s—0.8)s+0.337)s —0.19 \s% +1.24s + 0.39
| —27.579(5+0.9399 5% +0.5398s + 0.1419 s* —0.165 + 0.22)
1.4946(s—1.419)s —0.29)(s + 0.159)(s2 +1.8s+ 0.96) (50)

0.93919(s +3.8)(s +2.185)(s +0.2466)(s2 +0.4747s +0.1616)
—4.57(s+o.195)(s2 +1.295+0.5287 s +1.567s+3.496)
1.4946(s —1.419)s —0.29)s + 0.159)(s2 +1.85+ 0.96)
0.93919(s +3.8)(s +2.185)(s +0.2466)(s2 +0.4747s +0.1616)
—4.57(s+o.195)(s2 +1.29s +0.5287 s +1.567s+3.496)
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1.4(s—0.856 s +0.8166 (s + 0.06667)(s2 +0.35s+ 0.1)
1.5936(s —0.7858 s> +0.31s +0.02536 s> +1.239s +0.395
~14.688(s +0.918)\s2 —0.2565 +0.05877 |s* +0.58955 +0.16
1.4(s—0.856)(s +0.8166 (s +0.06667 s +0.35s +0.1
1.5936(s — 0.7858 s +0.31s +0.02536 |52 +1.239s +0.395
~14.688(s +0.918)(s* —0.2565 +0.05877 |s> +O.58955+0.16)_

where
2
X

2
2= ‘sz 10.1 13s+0.0439‘ ‘sz 1+0.6255+0.15

X

) 2
§% +2.005s + 1.087‘ .

After substituting matrices (48) into expression (25),
the fractional-rational matrices z,, and z,; are found to be:

(5D

221 =012, 220 = E33.-

To determine the matrix Séoio (31), we consider

definition (45), as well as the fact that the extended vector
of output signals y and the extended vector of
measurement device noises @, are not correlated with
each other. Thus,

’ — ’ —
GV ~ S<p1\vob =033.

Based on this, we can determine:

O, O3 033 O3
' _ O3><3 DSrr O3><3 03><3
%0 71053 Oz Ry Oy
03><3 O3><3 03><3 gE
where
’ Qn 03><3
Syy = )
O35 DS,

DS,, — the of amplification coefficients matrix of the input
signal ry spectral density matrix, taken from [3], O, — the
weighted covariance matrix of the input signals y ex-
tended vector, disturbance ., and program signal r,.

According to [7], the weighted covariance matrix O, is
equal to:

0,=K;'(G,—aQ)K,",

© Zozulia V. A., Osadchyi S. 1., 2024
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0.0665 0.0441 0.0266
Q,,=10_5 0.0441 0.0646 0.0555].
0.0266 0.0555 0.2594

S’ _ Rn 03><3
PoPo O3><3 g E |’

where gE — the matrix, which is determined according to
recommendations [14], as a quantity approaching zero, R,
— the weighted covariance matrix of the measurement’s

. /
noises extended vector R, = <(P0(P0> .

According to (8), the measurement’s noises extended
vector ¢, consists of the program signal measurement’s
noises ¢,, whose values approach zero, and of the output
signal measurement’s noises @;, whose values are
determined by the root-mean-square deviation of the
feedback sensor values. As the feedback sensor, an
inertial navigation system [16] is used, with the following
root-mean-square deviation values along the axes:

n /
=——[0.769 0.847 1.344[ .
o= ] )

Thus, R, is equal:

0.0018 0 0
R,=| O 0.0022 0
0 0 0.0056
S RESULTS

Based on the above experimental data, the product
DD- is obtained using expression (36). Define the matrix
D as the result of the left-sided factorization [11] product
DD-x:
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0.042426 7 0.0032097(s+0.39)z5  0.00063363s+0.45)z¢
0.0035306(s +0.39)z¢ 0.0466697% 0.0019254(s+0.418)z¢
| 00011 156(s+0.45)z  0.0030819(s+0.418)z 0.0746997
~0.042426 0 0
0 ~0.046669 0
| 0 0 ~0.074699
0.00078229(s+0.3158)z7  0.00048716(s+0.41)zs —0.0005479(s+0.1556)z; ] (52)
0.0002854(s+0.39)zs  0.0016987(s+0.3)-z7  0.00068386(s+0.412)z¢
9.018:107 (s+0.45)z  0.00058573(s+0.42)z5  0.007968(s+0.334)z,
0.52486 0 0
0.042654 0.23899 0
0.18619 ~0.013884 0.1671
where 26 = (Sz 4£0.5689 +0.191s2 + 25 +1'09)’ v and the extended vector of measurerpent device r}oises
(@ are not correlated, we will determine the fractional-
z7 = (s2 +0.555 +0.16 s + 25+ 1.09) , rational matrices 7 and G, which are subject to separation,

based on equations (37) and (38). The matrix G has onl

_(.2 2 q y
8 _(S +0.69s+0.166Xs +2S+1‘09)X negative poles, so the result of the separation Gy+G-.
X(SZ +0.27s+0.1). equals Os;. The result of the T matrix separation is as

Taking into account the obtained results (48-52), as follows:

well as the fact that the extended vector of output signals

-4

" 6.187(s+0.178)s? +0.5986s +0.15) 12.18(s+0.089)s? +0.605s +0.148
To+T, = 7.98(s +0.225 s> +0.62s+0.156) 26.64(s +0.114)|s* +0.617s +0.152
% 11.3696(s +0.096)[s2 +0.597s +0.146) 1.578(s —0.0034 s> +0.5897s +0.14

43.5(5—0.0249)(52+0.6ls+0.148) 0
160.7(s+0.036)(s2 +0.6186s+0.15) 0
0.128(s—7.7)s> +0.5778s +0.127) 0

2.286(s+0.085)s> +0.61s +o.148) 18.32(s—0.0277)s? +0.6255 + 0.15

0 69.91(s +0.0377 s2 +0.6255 +0.15
0 ~0.217 (s +1.786)is? +0.6255 +0.15
where zg = (SZ +0.113s+0.0439s2 +0.6255 + 0.15). So, as a result of applying algorithm (41) using the ob-

tained matrix ® and definitions (3), (45), and (48), we
find the transfer function matrix of the controller for the
two-loop tracking system in the form:

Thus, using equation (40) and the results of the sepa-
ration To+T,, Gy+G., the varying matrix @ can be deter-

mined.
| 854.69(s+1.447)(s2 +8.1175 +26.65 |5 +6.165s+34.87)
Wy=—o 269.13(s+1.49)(s2 +5.712s+14.1)s” +8.98s +130.7
01 _204.87(s+1.46)s2 +7.55 + 24.4)s? +5.035 +137.3
(53)
665.55(s +1.674)(s2 +10.1s +46.47 s> +4.286s+26.75)
—323.24(s +15.62)(s —3.042)(s + 1.579 s> + 6.54s +29.76
—347.88(s +1.65)\s% +3.137s +29.15 |s% +12.65 + 76.73
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906.75(s+0.946)(s2 +10.235+32.73 [s? + 5.4565+ 23.9)
865.26(s +0.9466 s> +10.08s +34.07 |s? +5.716s +17.9
—798.6(s +0.9462 ) s* +10.125 + 33.55 |s* + 6.867s + 27.39

—2.0366(s2 +10.45+33.5)s2 + 55 +21.28 s +7.135s+145.1) s
0.090625(s +58.39)(s — 51.5)|s? +10.4s +34.15 [s2 + 4.06s +14.95 |/s
—9.79(s+11.1)s —1.9)(s? +10.465 +33.67 |s> +5.07s + 21.4/s

—7.6496(s2 +7.95+26.64)s2 +5.75+30.76 |s? +10.14s + 62.3 /s
6.226(s +13.4)s—3.6 s +5.95+ 20.1}s> + 7.9955 + 33.49 /s
1.649(s2 +7.3185 +25.36 }s2 +7.4265 + 45 s> +11.25 +185.6)/s

E

—6.11(s2 +10.885+33.05 |s% +4.8695 +19.66 |s> +7.656s+46.29) s
7.8247(s% +10.89s +30,7 Js + 4.3s + 13 s> +8.165s +45.12 /s
1.1987(s +10.85)s +32.6)(s% +4.79s +18.36 |s? +9.877s + 234.8 /s

where z;, =(s+8.538)(s+0.97)(s2 +10.48s+33.15)>< tha't form a left coprime factorization pf the matrix W,.
5 Using the methodology from [17], which allows for the
X (S +4.918s+24.3). computation of the normalized left coprime factorization

The structure and parameters of the transfer function — of a matrix, the components of the transfer function ma-
matrices of the optimal multidimensional controller (Fig.  trices of the optimal multivariable controller W, (9) can
1) for the tracking system (9) were determined. According ~ be written as follows:
to [11], there exists a pair of matrices W3 and [-W1 W2]

- 854.69(s +1.2)\s% +6.898s +21.5 |s% +6.06s + 20.6)
Wy =—| —269.13(s +0.75)(s? +9.155s +29.4 }s% + 5.339s +32.76
I 204.87(s—1.336 )52 + 6.8785 +16.39 |52 + 4.8655 + 14

~665.55(s+2.697 s +4.36s +11 s2+7.267s+26.86) —2.0366 —7.6496  -6.11
323.24(s+0.64)(s2 +7.15+25.85 |s% +11.09s + 54.87 Wp=—1 009 6226 78247,
347.88(s+2.76 \s% + 4.815s +13.1}s% + 6.59s + 23.8 =979 1649 1.1987

—906.75(s+o.9598)(s2 +5.765 +16.37 |s% +8.309s +33.8)
—~865.26(s +0.9937 s> +6.079s +17.86Xs2 +8.4s +35.2)
798.6(s +0.9468 \s% +5.68s +16 |s* +8.365 +34.6

| (52 +9.435+32.57 Js* +5.51s +25.2 s +8.625s+55.26)
Wy =—]| —0.159 (s—262.9)s* +5.1s +19.39 s> +8.919s +33.28
100 0.213(s+220.1)s2 +9.6355 +34.4 |2 +5.75s +24.79

~0.159(s + 78.46)(s2 +6.6185 +19.46 |s* +6.37s +41.75)
(s+9.99)s —0.2656 (s2 +5.879s +17.4 |52 +7.88s +36.98 )
0.052825(s +25.17)|s% + 6.395s +18.8 s> —19.59s +347.5

~0.213(s —81.35)\s2 +10.79s +33.96 |s* + 4.85 +20.36
0.052825(s+363.6)(s2 +10.96s +34 Js +3.767s +13.1
(s+10.1) s —0.96 s> +10.68s +33.5 }s* +4.938s +20.8

where hances the tracking quality of the program signal vector
2 :(S2 +5.65s+15.87 |2 +7.767s+29.11)>< and accounts'tjor crosg-connection; within the St'ewaﬁ

5 platform. Additionally, it allows for increased precision in
x(s +8.589s+36.66). following the specified trajectory by increasing the de-

The main controller is divided into three components: ~ grees of freedom in selecting the controller structure.
W\, W, and Ws. This distribution of the controller en-
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6 DISCUSSION

The justified transformations (3)—(16) form the basis
for developing an information technology to convert the
structure of a multidimensional two-loop tracking system
into a multidimensional stabilization system. This trans-
formation will enable the assessment of tracking quality
and control costs in a two-loop multidimensional tracking
system under random and regular influences using stan-
dardized approaches for stabilization system analysis.

The developed rules for calculating the transfer func-
tion matrices of the controller (41) provide a theoretical
basis for defining an information technology for synthe-
sizing an optimal multidimensional two-loop tracking
system, which ensures the highest possible tracking accu-
racy along a random trajectory with an acceptable level of
control costs. The main limitation of using the relation
(41) is related to the requirement for the stationary and
centricity of the multidimensional useful signals and dis-
turbances acting at the system inputs.

The implementation of the obtained transfer function
matrices of the controller (Fig. 1) using microprocessor
technology requires the representation of the matrix equa-
tion as follows:

X3
u=wy[-m w7,
€

in the form of a finite-difference equation.

Additionally, the availability of algorithms for calcu-
lating the matrix of optimal transfer functions (24) from
the extended disturbance vector & to the control signal
vector u allows for the synthesis of an optimal quadratic
criterion (20) neuron-phase regulator.

CONCLUSIONS

The work involved synthesizing the optimal structure
and parameters of a multidimensional tracking control
system the Stewart platform’s WS motion control system,
considering a multidimensional dynamic model that in-
cludes the object itself, its basic components, controlled
and uncontrolled disturbances acting on it in conditions
close to real operating modes.

The scientific novelty of the obtained results lies in
the application of the tracking system reduction algorithm
to an equivalent stabilization system, which allowed for
the use of a justified method to synthesize an optimal
multidimensional stabilization system for a dynamic ob-
ject operating under the influence of multidimensional
stationary random useful signals, disturbances, and meas-
urement noise.

The practical significance of the obtained results lies
in determining the Stewart platform’s WS motion control
system main controller structure and parameters. Its inte-
gration into the feedback loop ensures the stability of the
closed-loop control system. The main controller is dis-
tributed into three components: W,, W,, and W;, which
improves the quality level of tracking the program signals
vector and allows for the consideration of cross-couplings
within the Stewart platform. It also provides the capability
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to increase the accuracy of trajectory execution by in-
creasing the number of freedom degrees in the controller
structure, as the controller consists of three transfer func-
tion elements.

Perspectives for further research. Considering that
the stabilization system synthesis algorithm forms the
basis for developing any closed-loop control system, it is
worthwhile to consider the next step as the development
of an information technology for analytical design of op-
timal multidimensional tracking systems under random
influences.
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YK 62.505:629.524
CUHTE3 BATATOBUMIPHOI CJIJIKYBAJIbHOI CACTEMU KEPYBAHHS IIJIAT®OPMU CTIOAPTA

303yas B. A. — kaHn. TexH. HayKk IOUEHT Kadexpu uudpoBoi EKOHOMIKM Ta CHCTEMHOTO aHanizy JlepkaBHOTO TOPrOBENBHO-
E€KOHOMIYHOTO yHiBepcutety, KponmBHuiikuii, Ykpaina.

Ocagunii C.I. — n-p TexH. Hayk, npodecop Kadeapu KOHCTPYKLIl MOBITPSHUX CYACH, aBiaJBUTYHIB Ta MiATPUMAaHHS JIbOTHOI
npuaatHocti JIkoTHOT akanemii HarionansHOrO aBiamiitHoro yHiBepcurery, KpornmeHuikuii, Ykpaina.

AHOTAIIA

AxTyanabHicTb. CTBOPEHHS TapaHTOBAHO KOHKYPEHTOCIIPOMOXKHUX CHCTEM KEpYBaHHs PyXaMH CKJIQJHHX OaraTOBUMIPHHUX PYyXOMHUX 00 €KTiB, y
TOMY YHCJI HECTIMKHX, sKi (YHKIOHYIOTh B yMOBaxX Mii BHIAJIKOBHX KOHTPOJBOBAaHHX Ta HEKOHTPOIBOBAHHX 30ypIOI0YMX (akTopiB, 3
MiHIMaJbHUMH BUTPAaTaMU HA NIPOCKTYBAHHS € OJHI€I0 3 TOJIOBHUX BHUMOT JIOCATHEHHs YCIiXy Ha PMHKY JaHOTO Kiacy HpucTpoiB. Takoxk BaxiIUBO,
JUIS TOCSTHEHHS CyYaCHHX BUMOT IO TOYHOCTI IIPOIECIB KepyBaHHS PyXOM pyXoMoOro o0’ekTa Ha 3ajaHiil abo mporpaMoBaHiil TpaekTopii pyxy
HEeoOXiTHO CHHTE3yBaTH ONTHMAJIbHY CHCTEMH KepyBaHHS Ha IMiJCTaBi eKCIIEPEMEHTAIBHIUX JaHHX OTPUMAHUX B YMOBaX HAOJIIDKEHHX 1O PEaIbHOTO
pexuma QYHKLIIOHYBAaHHS TOCITITHOTO 3paska 00’ €KTy.

MeTta po6oTi. MeTor0 JOCITiIKEHHS, Pe3yJIbTAaTH SKOTO MPEACTAaBIICH] y i CTaTTi, € BAKOHAHHS CHHTE3Y ONTHUMAJIBHOI CIIiIKYBaIbHOI CHCTEMH
KepyBaHHs pyxoM pobodoi moiepxHi miatrdopmu CTioaprta 3 BpaxyBaHHIM ii OaraToBIMipHOT MOJENI JUHAMIKH.

MeTtoa. ¥V cTaTTi BUKOPUCTAHO METOJ| CTPYKTYPHOTO IIEPETBOPEHHs 0araToBUMIpPHOI CIIiIKYBAIbHOI CHCTEMH KEPYBaHHS 10 €KBIBaJICHTHOI CHC-
TeMHu CTadiiizauii pyxy 6araToBUMipHUX 00’€KTiB KepyBaHHsS. Tak0 BUKOPECTAHO alITOPUTM CHHTE3y ONTUMAJBbHOI CUCTEMH CTabiii3auil AuHaMiyu-
HHUX 00’€KTIB, SIK CTiMKUX, TaK Hi, B yMOBax Jii cTalliOHapHUX BHIAIKOBUX 30BHIIIHIX 30ypeHb. OOIPYHTOBAHHMII aITOPUTM CHHTE3Y ONTHMAIbHHX
CTOXAaCTUYHUX CHCTeM cTabimi3awii, moOymxoBaHuMii 3a JOMOMOrOI0 orepariil J0JaBaHHs, MHOXCHHs MOJIIHOMIaJbHHX Ta APOOOBO — PalliOHATBHHX
MaTpHIlb, BIHEPOBCHKOI (hakTOpH3allil, BIHEPOBCHKOI cenaparlii 1poOoBO — pallioHaIbHUX MaTPHULb, 3HAXOKECHHS TUCTICPCIMHIX IHTErpaliB.

Pe3yabTaTn. B pe3ynbrarti npoBefeHNX TOCIIDKeHb (GOpMalIi3oBaHo 3a1ady BU3HAYEHs KOHIEINLI] aHAIITHIHOTO KOHCTPYIOBAHHS ONTHMAJIBHOL
cucremu kepyBanHs pyxom PIT miardopmu Crioapra. Pesynbrati BKII0UalOTh BU3HAYCHI PIBHAHHS IIEPETBOPSHHS 3 CIIAKYIOYOT CUCTEMHU KepyBaHHs
JI0 eKBIBJICHTHOI CHUCTEMH cTabini3auii pyxy podouoi noiepxHi miatdopmu Ctroapra. Takox BU3HAUCHO CTPYKTYpY i HapaMeTpy MaTpulli epeaBa-
JIBHAX (DYHKIIIH TOBOBHOTI'O PETYJISATOPa ONTUMANIBHOI CJTiIKYBAJIbHOT CHCTEMH KEpyBaHHs pyXoM pobouoi noiepxHi miardpopmu Crroapra.

BucHoBku. OGrpyHTOBaHE BUKOPHCTAHHS KOHLEMNIi aHATITHYHOr0 KOHCTPYIOBAHHS ONTHUMAJIbHOI CHCTeMHU KepyBaHHs pyxoM PII miardopmu
Crioapta Qopmaiisye i iCTOTHO cHpoOLIye pO3B’S3aHHS 3ajadi CHHTE3y CKJIAJHHUX JAMHAMIYHMX CHCTEM Ta 3aCTOCYBAaHHS Ul LIbOTO PO3poOJICHOT
TexHoJIorl, npencTanieHol y [8]. OTpuMaHi CTpyKTypa Ta mapaMeTpy TOJOBHOTO PEryisiTopa cHcTeMH kepyBaHHs pyxoM PII miargopmu Crroapra,
KU po3noainenuii Ha Tpu ckiaanosi Wy, W, ta W3, criprisie HOJTINIICHHIO PiBEHb SKOCTI CIIIIKYBaHHS 32 BEKTOPOM IPOTrPAaMHHX CHTHAJIB 1 103BOJISIE
BpaxyBaTH MepexpecHi 3B’ 43ku BeepeauHi miatGopmu CTroapra, HiIBUILYE TOYHOCTI BUKOHAHHS 33aHOT TPAEKTOPIT 32 PaXyHOK 30UIBIIEHHS KIJIbKO-
CTi CTYIEHIB CBOOOIY IIPH BUOOPI CTPYKTYPH PETYIISTOPA.

KJIFOUYOBI CJIOBA: cuHTe3, MaTpHIs IepeJaBaibHuX QYHKLIH, Clikyloda cucTeMa KepyBaHHs, QyHKIioHat sikocTi, atdopma Crioapra.
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