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ABSTRACT

Context. Mathematical models of many optimization problems encountered in economics and engineering are taken in the form
of an integer knapsack problem. Since this problem belongs to the class of “NP-complete”, that is, “hard to solve” problems, the
number of operations required by known methods to find its optimal solution is exponential. This does not allow solving large-scale
problems in real time. Therefore, various and fast working approximate solution methods of this problem have been developed.
However, it is known that the approximate solution provided by those methods can differ significantly from the optimal solution in
most cases. Therefore, after taking any approximate solution as a starting point, there is a demand to develop methods for its further
improvement. Development of such methods has both theoretical and great practical importance.

Objective. The main purpose solving of this issue is as follows. The main purpose in performing this work is to first find an ini-
tial approximate solution of the problem using any known method, and then work out an algorithm for successively further improve-
ment of this solution. For this purpose, the set of numbers with which the coordinates of the optimal solution and the found approxi-
mate solution can differ should be determined. After that, new solutions should be constructed by assigning possible values to the
unknowns corresponding to the numbers in that set, and the best among these solutions should be selected. However, the algorithm
for constructing such a solution should be simple, require a small number of operations, not cause difficulties from the point of view
of programming, be new and be applicable to practical issues.

Method. The essence of the proposed method consists of the following. First, the initial approximate solution of the considered
problem and the value of the objective function corresponding to this solution are found by a known rule. After that, the optimal
solution of the problem is easily found by a known method, without taking into account the condition that the unknowns are integers.
Obviously, this solution can take at most one coordinate fractional value. It is assumed that the coordinates of the optimal solution of
the integer knapsack problem and the initial approximate solution may differ around a certain fractional coordinate of the optimal
solution of the continuous problem. Then, the minimum number of non-zero coordinates and zero coordinates in the optimal solution
is found. Corresponding theorems have been proved for this. It is assumed that the different coordinates of the optimal solution and
the initial approximate solution located between those minimal numbers. Therefore, the best solution can be selected by successively
changing the coordinates between those minimum numbers one by one.

Results. Extensive calculation experiments were conducted with the application of the proposed method.To have a high quality
of this method was confirmed once again through experiments.

Conclusions. The proposed method is new, simple in nature, easy to consider from the programming point of view, and has
important practical importance. Thus, we call this solution the innovative improved approximate solution.

KEYWORDS: Integer knapsack problem, initial approximation solution, minimum number of zeros and non-zero coordinates in
optimal solution, innovative improvement of initial approximation solution, error estimation and experiments.

NOMENCLATURE

. flo optimal value of the objective function in the
N — number of issues resolved;

N — number of unknowns;
a;j,¢j,dj(j=1n) andb are given positive integers;

Xj (] =L_n) — j-th unknown;

xt - approximate solution;

f' — value of the approximate solution to the
objective function;

X" - optimal solution of the problem;

- optimal value of the objective function;

XP o optimal solution of the appropriate linear

programming problem;

k — number of the fractional coordinate in the

numerical XP solution;
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appropriate linear programming problem;

Xk — coordinate , that fractional coordinate in the xP

solution;
p, q, & —mentioned positive integer;
6|1(,68 — certain integers expressed as a percentage;

n(l) and n(0) - minimal number of non-zero

coordinates and zeros, respectively, in the optimal
solution of the considered problem;
;,®, — certain set of numbers, respectively;

n(w;),N(w,)— number of elements of matching sets;

X_* and X'P — optimal solutions of certain problems;
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N, and n — respectively, is the minimum number of

non-zero coordinates and the maximum number of zero
coordinates in the optimal solution of a certain problem;

X" _ innovative improved final solution;

fit — value of the objective function according to the

solution X't ;

5 and &' respectively, are the relative errors (in
percent) of the initial approximate solution and the
innovative improved solution from the optimal solution.

INTRODUCTION
Consider the following integer knapsack problem:

n
Zlcjxj —> max, (1)
J:
n
zanij, (2)
j=1
0<xj<dj, (j=Ln) 3)
Xj— integer (j=1n). 4)

Here, without breaking generality, we accept that —
aj>0,c;>0,d;>0,(j=Ln) and b>0 are given

integers.

The problem (1.1)—(1.4) is called the integer knapsack
problem or the one-constrained integer programming
problem in the literature [1-3], etc.

Note that, Since the problem (1)—(4) belongs to the
NP-complete class, that is, to the class of “hard-to-solve
problems”, the maximum number of operations required
by known methods (branches and bounds, dynamic
programming and some combinatorial type) to find its
optimal solution is exponential is from the compilation.
Therefore, it is not possible to solve large-scale problems
with these methods in real time. Therefore, certain
approximate solution methods of problem (1.1)—(1.4)
have been developed [2, 3, 6, 7], etc. These methods
mainly based on the criterion

max;:—. (5)

So, for the number J. found from relation (5), the
coordinate Xj, is given the maximum value that satisfies
the conditions (2)—(4). Then, the next new number j« is
found from relation (5) and the corresponding coordinate
Xj, 1s given a value.

The process of constructing such a solution ends after
evaluating all n number of coordinates. In this case, the
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value is found by looking at each coordinate only once,
and the number of operations required is at most O(nz)

compilation.

Without violating generality, let us assume that the
coefficients of problem (1)—(4) satisfy the following
relations:

C .G k
—2>—=2>.>2"F2>2..2—. (6)

C
a A an

Then, if we ignore the completeness condition on the
variables Xj, (J=1,n) in the considered problem, the

received continuous problem (1)—(3) turns into a simple
linear programming problem. The optimal solution of this
obtained problem is easily found analytically, and only
one coordinate may not be an integer in this solution.

Suppose, this is k-th coordinate and is like X, = X,

We assume that the coordinates of the optimal
solution of the integer knapsack problem (1)—(4) and the
coordinates of the initial approximate solution differ
around a certain k-th coordinate. Note that, we came to
this conclusion after numerous numerical experiments,
and the same result was also given in [8, 13]. If we can
find those different coordinates and give a new value, it is
natural that a better solution can be obtained. Such a
solution algorithm is proposed in this work. For this
purpose, a suitable theorem for finding the minimum
number of coordinates with “0” values and values
different from “0” in the optimal solution of problem (1)—
(4) has been proved. In this time, we assume that the
initial minimal number of non-zero coordinates and the
minimal number of zeros in the easily found optimal
solution of the continuous problem (1)—(3) also coincide
with the optimal solution of the integer knapsack problem
(1)~(4). Therefore, the initial approximate solution may
have coordinates that differ from the optimal solution in
that range. Because, in this range, Cj/a;j ratios are not

significantly different from each other. Therefore, we can
get a better solution by changing the coordinates in this
range within the conditions (2)—(4).

Note that such an idea was used in works [4, 5].

1 PROBLEM STATEMENT
Suppose we consider problem (1)—(4) and here
relations (6) are satisfied. Then the approximate solution

of that problem X'=(x{,x5,...x}) is found by the
following formula:

j-1

~ t

dj,lf aldj sb—Zaixi,
i=1

-+

J j-1 j-1
(b—Zaixf]/aj ,if aJdJ >b—Zaixit.

i=1 i=
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Here, j=1,2,...,n takes values and [z] is the integer

part of the number z. Substituting this solution in the
function (1), we get the approximate

value of that problem.
If the optimal solution of the problem (1)—(4) is

X = (Xl*, x;,..., X:) , then the maximum f value of the

function (1) in this problem is as follows
* n *
f = ZCJXJ .
j=1

Obviously it must be fl<tf” However, since

finding the optimal solution X "= (Xl* , X;,..., X:) is related
to serious difficulties, it is necessary to find the upper
limit of the approximate value of f*. Because the

approximation of the approximate solution to the optimal
solution should be evaluated. For this purpose, we need to
solve a simple linear programming problem, ignoring the
completeness condition (4) in problem (1)—(4). We call
that issue an unbreakable issue. Because here the
condition of being integers is not imposed on the
unknowns. Note that the optimal solution of obtained
unbreakable issue (1)—(3), i.e. simple linear programming

problem X Ip — (X{p, Xlzp,..., XLp) is found by the following

well-known formula.
=
dj,lf ajdj <b- Zaixip,
i=1

i1 i1
xP =1(b— Y aix{P)/aj.if ajd; >b- Y axP.(k=J), (8)
i=1 =

0, if j=k+1,k+2,...,n.

So, in this solution, only the k-th Xll(IO variable can take

a fractional value. It is known that, if the coordinate X is

an integer, then this solution is the optimal solution of
problem (1)—(4). By substituting the solution of (8) into
the function (1) we will get the number

n
Ip _ P
f —ZlclxJ )
J:

It is clear that, the number f P is the upper limit of

the approximate number f'. Because we do not take into

account the condition of (4) being integers over the
unknowns, the set of possible solutions of the problem
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increases, and the maximum value obtained at this time
will also be a large value. So, the following relation is
true:

Here, the symbol [flp] indicates the integer part of

the number f'P. Thus, if we denote [flp] =f , this
number will be the upper limit of the approximate value
of f'. As a result we get fl<f"<f.This relationship
allow us that, to estimate the approximation of the found

fl approximation to the optimal solution, that is, the

absolute or relative error.

Numerous experiments and the solution of real
practical problems show that the approximate solution of
(7) found by the known classical way and the

corresponding approximate value of f' can differ

significantly from the optimal solution X" and the

corresponding f*  number. Therefore, our goal in

performing this presented work is to develop an algorithm
to find a better solution than the solution

Xt =(xf,x§,...,xﬁ). However, this algorithm should be
simple, give a greater value to the function (1) than the
initial solution, should not be difficult from the
programming point of view, and should be suitable for
solving real practical problems. Therefore, we will call
such a solution found an innovative improved
approximate (suboptimal) solution.

2 REVIEW OF THE LITERATURE

First of all, let us note that the integer knapsack
problem, including the Boolean programming problems,
have been known since the last century. Since these issues
have wide practical applications, various solution
methods have been developed to find their optimal
solutions [1-3]. Since these issues have wide practical
applications, various solution methods have been
developed to find their optimal solutions [1-3]. But it
soon became clear that none of those methods had
polynomial time complexity. In other words, the Boolean
programming problem, as well as the integer bag
problem, belong to the NP-complete class, that is, to the
class of hard-to-solve problems [4]. Therefore, various
approximate (suboptimal) solving methods were
developed for this class of problems [2, 3, 5-6, etc]. On
the other hand, taking into account that these issues are of
wide practical importance, their more generalized models
began to be applied [7-10, 14, etc.]. Here, generalization
means that the given coefficients are located in certain
intervals. In some works, the methods of finding the
stability interval of the optimal solution and finding the
generalized solution in certain problems whose
coefficients are intervals have been developed [11-12

etc.].
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Despite all this, certain studies have been conducted to
further improve the approximate solutions found in
integer programming problems [8, 9, 13, etc.]. In the
article we have presented, the problem of finding an
initial approximate solution to the integer knapsack
problem has been considered.

In [15, 16, 20-23], certain approximate solution
methods of knapsack problems described by various
models were developed. Certain methods of solving the
knapsack problem, whose initial data are in the form of
intervals, are given in works [17-19]. A certain
relationship between the optimal solution of the linear
programming problem and the approximate solution of
the integer programming problem was considered in [24],
and the average case analysis of solutions of the knapsack
problem with greedy algorithms was considered in [25].

3 MATERIALS AND METHODS
First, let’s note that we can write formulas (7) and (8)
more concisely as follows. Because such writing is more
convenient from the point of view of programming. For
each j,(j=12,...,n) numbers

1
th =min{dj,{(b—12aixit)/aj}, )

i=1

j-1
lep =min{dj,(b_2‘iaixf)/aj}. (10)
i=

Note that when finding the solution of the continuous
problem (1)~3) X'P = (xP,xP,...,xP) with the formula
(10) for a certain first number j=k

j-1
(b- Zaidi)/aj de,
i=l
then we remember that number k and it is clear that
lep =0 for the numbers j=k+1,k+2,...,n.

Thus, the optimal solution of the continuous problem
(1)—(3) with the formula (10) is in the following form:

xp =(d1,d2,...,dk_1,%,o,...,0). (1)

If the number Xy =% in the solution (11) is an

integer, then this solution is the optimal solution of the
integer knapsack problem (1)—(4) and no further research
is needed.

o . .
Assume Xy = E is a fractional number.
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Conducted numerous experiments show that the
coordinates of the optimal solution X~ = (Xik , X;,..., X:) of
(H)—(4) are
xt= (X},X;,..., Xﬁ) solution

the problem approximately

coordinates  differ only

around the k-th XLp coordinate in formula (11). Because,

around certain je[k—p;k+q] of the Xll(p coordinate,
C .

—L ratios do not differ significantly from each other. The
a .
J

selection of numbers p and q will be reported below.

Note that according to formula (11) lep =0 for

numbers j=k+Lk+2,..,k+q and lep #0 for
numbers j=Kk-—p,k—p+1,..,k. Therefore, in order to
get a better solution, we can construct the new solution

X' with the formula (7) by successively writing
Xj = dj —l,dj -2,...,0 for each number

j=k+Lk+2,..,k+q
number j=k-p,k—p+L..,k to the left of number k.

to the right of number k and for

At this time, for each approximate solution of X 'we

calculate the new f' value of the function (1) and

remember the largest value and the corresponding X t
solution. We called this last-mentioned solution an
innovative improved solution. Obviously, this solution
will not be worse than the original solution found by the
known formula (7).

It should be noted that the number p used in the
interval [k— p;k +q] in this article is the minimal n(1)
number of non-zero coordinates in the optimal solution of
the problem (1)—(4) and the number q is found through
the minimum n(0) number of zeros in that solution. More
precisely, it is chosen as p=k—n(1),g=n-n(0)—k. We
will give the procedure for finding or evaluating the
numbers  and n(0) below.

It should be remembered that the issue of finding a
better solution by choosing a certain neighborhood of the
k-th coordinate in the formula (11) and finding a better
solution was discussed in [8,9,13]. In [13], the number p
was chosen as follows to determine the neighborhood of
the k-th coordinate [k -p,k+ p] , which received a

fractional value.

Cy—1  Cp+i
p = arg< max k" kT <5l
i ag—1 ag+l

Here 6 is the positive integer specified previously. As
it can be seen, if the number k is close to the last
coordinates or the first coordinate of the solution (11),
then it may not be possible to select the symmetric
interval [k— p,k+ p]. In the works of [8,9], only the

knapsack problem with Bul variable was considered and
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the neighborhood of the k-th coordinate [SIk,S(k)] was

selected there.

Thus, 8} =[k-%], 5 :[(n—k)-%] are defined,
and the number q is the minimum number of ones or
zeros in the optimal solution of the continuous knapsack
problem. Here, too, the selection of the number q can
cause some misunderstandings. So, when the number g

indicates the number of units, the interval 8%068 differs

from the interval obtained when the number q indicates
the number of zeros.
In this work, the neighborhood of the coordinate

Xk = % in the solution of (11) is chosen as
[k —p;k+q]=[n(1),n=n(0)].

As you can see, the relation n(l)<k <n-n(0) is
fulfilled. On the other hand, in order not to look at all the
numbers located in this interval, in other words, to get the
same result with a small number of operations, we need to
find the minimal number n(1) of non-zero coordinates and
the minimal number n(0) of zeros in the optimal solution
of problem (1)—(4)..In this case, in the process of
constructing a better solution, we should not change the
first n(1) number of non-zero coordinates and the last n(0)
number of zeros in the solution (11).

For this purpose, let’s look at the following issues:
n

lej — min, (12)
J:
n
Zanj Sb, (13)
j=1
4 t
ZCJ'XJ' >f, (14)
j=1
0<xj<dj, (j=Ln), (15)
xj— integer (j=Ln) (16)
and
n
lej — max, (17)
J:
n
Zanj Sb, (18)
j=1
4 t
ZCJ'X]‘ >f, (19)
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’n) b

—_—

<dj, (j= (20)

X; = integer (j=1,_n).

@n

Note that by solving problem (12)—(16), we can find
the minimum n(1) number of non-zero coordinates in the
optimal solution of problem (1)—~(4) as number n(w;) is

the number of elements of the set ;.
Thus, o ={j[X]>0}, and X" =(X{.X;....X,) is

the optimal solution of problem (12)—(16).

It is important to note that, the problem (12)—(16) is
the special constrained integer programming problem.
Obviously that, this problem from NP- complete class too
and it is not easy to find their optimal solution X v

Therefore, if we do not take into account the
completeness condition (16) imposed on the unknowns in
that problem, the range of possible solutions of this
problem will expand. Therefore, by solving the obtained
linear programming problem (12)—(15), can be found the
solution llp = (gip,glzp,...,glp). Then the number n (1) of

non-zero coordinates in this solution is found as follows:

n(1) =n(wy).
Here is m, ={j |lep >0} .

It is clear that, it should be n(1) <n(l). Because, when
the area grows, the minimum price can decrease.
However, since finding the number n(1) is related to the

solution of the linear programming problem (12)—(15)
with mixed constraints, we can still encounter certain
difficulties. Therefore, instead of problem (12)—(16), can
be considered the following problem with a larger
domain.

In this problem, without breaking generality, let us
assume that the relation ¢€;>Cp2>..2Cny2C, 1is

satisfied. Then the minimal number of non-zero
coordinates Nn; in the optimal solution of this problem can

be found as follows:

n

‘ n+1
CJdJ_f SZCJdJ
1 j=1

—
Il

It is clear that, the relationship n;<n(l)<n(l) is

satisfied.
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Thus, we can take the number n; which is easily

found, as the number of coordinates different from zero in
the optimal solution of the problem (1)—(4).

Now let’s find the minimum number of zeros in the
optimal solution of problem (1)—(4). For this purpose, by
making judgments according to the above, we have to
solve the problem (17)—(21) or the problem (17)—(20),
and finally the problem (22)—(25):

n

D Xj — max, (22)

j=1

n
zanj Sb, (23)

j=1
0<x;<dj, (j=Ln), (24)
X; — integer (j=1,n). (25)

In the case of (22)—(25), let us assume, without
violating  the  generality, that the relations
a <ap <...<a, are fulfilled in the condition (23). Then

the maximal number n of non-zero coordinates in the
optimal solution of this problem is found from the
following relationship:

It is clear that, we can take the number n(0)=n -n

instead of the minimal n(0) number of zeros in the
optimal solution of problem (1)—(4).
Thus, we proved the following theorem.
Theorem: The inequalities n(1)<n(l)

n(0)<n(0) for the minimum N(1) number of non-zero

and

coordinates and the minimum n(0) number of zeros in the
optimal solution of problem (1)—(4) it is true.

Let’s note that the coordinates of the optimal solution
of the problem (1)—(4) with the solution (11) can differ in
the interval [ n(1),n—n(0) ].

It is clear that d jnumbers are to the left and only

zeros are to the right of the k-th coordinate in the solution
of (3.3). Therefore, for each number ],
(=nM),n())+1L...k) to the left of the x;=12,..d;,

Xj =dj_1,dj_2,...,0 and Xj =1,2,...,dj for each (j=|(+1,

k+2,...) numbers on the right, new solutions can be
constructed by formulas (7) or (9). We will select the best
of those solutions and consider it as an innovative
improved approximate solution.

Now, let’s write the algorithm for the innovative
approximate solution method described above.
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ALGORITHM
Step 1. Enter the numbers n,b,Cj,aj,dj(j =1,n) and
accept bb:=b;
Step 2. For each number j,(j=12,...,n) you need to
find the solution X'P=(xP,xP,...xP,...xIP) with the

formula
dj, if ajdj sb—Zaixi s
i=1

j-1

= (b—Zaixi'p)/aj, if a
i=1

0, when j=k+1,k+2,..,n

j-1
idj>b-YaxP, (k= j),
i=l

and from here the fractional coordinate number K should
be noted. kk:=k; r:=0;

Step 3. If XLp is an integer, then the solution X e

is the optimal solution of problem (1)—(4). At this time
we should calculate

X" = (XT,X;,...,X:) = (x{p,xlzp,...,xl]p) , print f* and go to

step 21.

Step 4. To find the approximate solution of

xt= (x},xg,...,xﬁ) we need to calculate

j-1
; t
dj, if aJdJ Sb—Zaixi,
Xt- _ _ i=1 _

J J—l J—l
[b-Yax)/a;l, if ajd;>b-> ax,

i=1 i=1

for each number (j =1,2,...,n).
Step 5. Calculate the numbers

n n
Ip _ yipost L
f _Z‘icjxj L f _Z‘icjxj.
j= j=

Accept f':= f' and remembered the solution
Xt = (xS, xh) with £
Step 6. Coefficients ¢ j,(j :L_n) should be arranged

as C; 2Cy >...2C, and to find the minimal n; number of

non-zero coordinates in the optimal solution from the
relationship
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n+1

< ftS chdj
j=1

Ny
2.cid;
j=1

Step 7. Numbers a;,(] :L_n) should be arranged as

a<aj<..<ay and find the maximum n number of
coordinates different from zero in the optimal solution of
the problem (1)—(4) from the relationship and note
n0)=n-n

n+1

a]dj <b< Zlajdj
J:

M

—_
Il
N

and note n(0)=n -n.

Step 8. Set X} =[x} ]; b:=bb—a, xx}.
Step 9. For the numbers j, j=12,..,n j=Kk

j-1
dj, if aJdJ Sb—Zaixit,
Xt- _ . i=1 .
J j-1 j-1
[(b—Zaixit)/aj], if aJdJ >b—Zaixit.
i=1 i=1

Step 10. Calculate

n
fl= chxtj )
j=1

I fts fit, then should be accept fit.— gt ,
Xt :(x},xg,...,xﬁ,) .
Step 11. If r=0, then should be accept

Xt =[xk ]1+1; b==bb—a, xx{ ; r:=1and go to step 9.
Step 12 Set be accept r:=0
Step 13. Foreach ,(j=12,..n;j#k)

d

j-1
: t
i if aJdJ <b- E aj Xy,
i=1

X =

t
J

i-1 i-1
[b->ax)/a;l, if ajdj>b-> ax.
i=1 i=1

With the formula X' :(X},XE,...,XF,) calculate the

number f'
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Step 14. If f'>fY ther fli=fl,

Xt = (X} , XE,..., XE,) should be written and memorized. If
r:=1 goto Step 18.

Step 15. If Xﬁ < dy , then go to Step 17.

Step 16. k:=k+1; If k>n(0) k:=kk and go to the
Step 18.

Step 17. Xﬁ =1,2,...,d, and accordingly by taking
b:=bb—a, xx} go to the Step 13.

Step 18. r=1; If x\i=d, , then k=k-1; If
k <n(1) go to the Step 20.

Step 19. Xf( =1,2,...,d, Kk values corresponding to
b:=bb—a, xx} and go to Step 13.

Step  20. fIt Xt =gt Kl X
S=(f"P1-ft/f"P]and &' = FP]-F/F'P].

Step 21. STOP.

Print

4 EXPERIMENTS

Numerous computational experiments have been
conducted to investigate the quality of the innovative
improved solution method we proposed above.

During the experiments, problems with a different
number of variables were solved (n=100, n=300, n=500,
n=1000). The coefficients of these problems were chosen
as random numbers with two digits and three digits at
most.

Thus, 0<cj<99, 0<a;<99d;=10,(j=Ln) or
0<cj<999, 0<a;<999d;=10,(j=1n),

1 n
b=[—ZaJdJ]

It should be noted that 4 different problems, each with
the same number of variables, were solved.
The results are given in the following tables and
notations are adopted as follows.
N — the number of the solved problem with the same
number of unknowns.
f — the upper bound of the optimal value of the
problem (1.1)—(1.4).
f'— the value of the function (1.1) according to the

approximate solution of the problem (1.1)—(1.4) found by
the known classical method.

f'_ the value given to the function (1.1) of the
improved approximate solution.

O — the relative error of the approximate value found
by the classical method, expressed as a percentage of the
optimal value. It mean that,

r3 t
gt f
f
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& — an innovative improved approximate persentage

Table 5 — Problems with three-digit coefficients

is relative error. (n=100)
O F_fl N 1 2 3 4
8! :T. 100 . ? 343742. 346062.00 | 375258.0 | 336331.00
ft 343485.00 | 345998.00 | 375018.00 | 336155.00
SRESULTS . Fit | 34366000 | 346040.00 | 375227.00 | 336305.00
Table 1 — Problems with two-digit coefficients
(n=100) S 0.07477 0.01849 0.06396 0.05233
N 1 2 3 4 6i 0.02386 0.00636 0.00826 0.00773
? 34211.00 34493.00 37378.00 33508.00
: 3930500 34486.00 3735300 | 3349200 Table 6 — Problems with three-digit coefficients
f (n=300)
it 34209.00 | 34491.00 | 37376.00 | 33506.00 N 1 2 3 4
5 0.01754 0.02029 0.06688 0.04775 ? 1035261.00 | 993336.00 | 976972.00 | 1002027.00
6i 0.00585 0.00580 0.00535 0.00597 f t 1035236.00 | 993265.00 | 976948.00 1001939.00
f it 1035251.00 | 993307.00 | 976948.00 10019
Table 2 — Problems with two-digit coefficients 95.00
S 0.00241 0.00715 0.00246 0.00878
(n=300)
N 1 2 3 2 6i 0.00097 0.00292 0.00246 0.00319
? 103013.00 98887.00 97245.00 99692.00
n 103010.00 98884.00 1 97244.00 99634.00 Table 7 — Problems with three-digit coefficients
f (n=500)
f it 103012.00 98885.00 97246.00 99693.00 N 1 2 3 4
5 0.00291 0.00303 0.00103 0.00802 ? 1620326.00 | 1718600.00 | 1712542.00 | 1689749.00
6i 0.00097 0.00202 0.00103 0.00100 ft 1620292.00 | 1718561.00 | 1712502.00 | 1689670.00
f it 1620303.00 | 1718587.00 | 1712528.00 | 1689739.00
Table 3 — Problems with two-digit coefficients
(n=500) S 0.00210 0.00227 0.00234 0.00468
N 1 2 3 4 N 0.00142 0.00076 0.00082 0.00059
T 161131.00 | 171036.00 170555.00 168122.00
f t 161128.00 | 171033.00 | 170555.00 168115.00 6 DISCUSSION
76113000 | 17103400 | 170555.00 | 168122.00 Based on the tables, the following conclusions can be
f! ' ' ' ' drawn.
5 0.00186 0.00175 0.00000 0.00416 In most cases, the initially found approximate solution
5 0.00062 0.00117 0.00000 0.00000 has been further improved. Rather, in 24 out of 28 solved
problems, the initial approximate solution was further
improved. In the remaining 4 problems, the initial
) o _ approximate solution has not improved. It can be assumed
Table 4 — Problems vzlltggz)vo-dlglt coefficients that this solution is the optimal solution. The relative
N 1 z(n— ) 3 y errors of the found approximate values from the optimal
value are very small and do not exceed 1%. This is very
) 339009.00 330007.00 | 329556.00 335835.00 . . .
f important for solving real practical problems. It should be
t 339009.00 | 330003.00 | 329555.00 | 335832.00 noted that the algorithm proposed in the article does not
f count options, so it takes seconds to solve problems.
git | 339009.00 | 330007.00 | 329556.00 | 335834.00 Therefore, we did not mention the computer time in the
5 0.00000 | 000121 | 0.00030 | 0.00089 tables.
i 0.00000 0.00000 0.00000 0.00030
8! CONCLUSIONS

© Mamedov K. Sh., Niyazova R. R., 2024
DOI 10.15588/1607-3274-2024-4-6

A new approximate solution method of the integer
knapsack problem is given in the presented article.
Through this method, any initial solution found by known
methods is successively improved. At this time, the
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interval where the coordinates that do not coincide with
the optimal solution are located is determined. After that,
it is possible to build a better solution by assigning new
values to the coordinates in those intervals.

The proposed method is new, simple in nature, easy to
consider from the programming point of view, and has
important practical importance, so this method is called
an innovative improved approximate solution method.
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YIK 519.852.6

THHOBAIIMHWI BIOCKOHAJIEHAA METO]I HABJIMKEHOT'O PIINEHHSA JIJTA 3ATAYT
HIVIOYHUCEJBHOI'O PAHIISA, CTUCHEHHS IOMUJIOK TA OBYUCJIIOBAJIBHI EKCIIEPUMEHTHU
MamenoB K. II. — g-p ¢i3.-mar. Hayk, npodecop bakuHCHKOro mep)kaBHOTO yHIBEpCHTETy Ta 3aBimyBad Bimainy [HcTHTYyTY
cUCTeM ynpaBiiHHS MiHiCTEpCTBa HAYKH 1 OCBITH.
HiszoBa P. P. — noxTopaHT, HayKoBuUii criBpoOiTHUK [HCTHTYTY cucTeM yrpaBiiHHS MiHiCTEepCTBa OCBITH 1 HAYKH.

AHOTAIIA

AKTyaJbHiCTb. MaTeMaTHyHi MOfIeNi 0araThoX 3a/1a4 ONTUMI3allil, 0 3yCTPIYarOThCSA B €KOHOMIIlI Ta TEXHilll, PO3TIIA A0 THCS
y ¢opmi 3amaui mpo uimouncenbHHH prok3ak. OCKUIBKM Ll 3agada HaJexuTh A0 kiacy «NP-moBHHX», TOOTO «BaXKO
PO3B’sI3yBaHUX», KIJIbKICTh OMepaliif, HEOOXiZHUX BIiJOMHM MeETOAaM [UIsi 3HAXOMKEHHS II ONTHMAaJbHOTO pPO3B’SI3KY,
eKkcroHeHwiagbpHa. Lle He mo3Bossie BUpinryBaTy MacuTaOHI 3aBIaHHS B PeXKHUMI peanbHOro yacy. ToMy po3po6ieHo pi3HOMaHITHI Ta
IIBUIKOIIPALIOI0YI METOIHM HAOIIDKEHOTO po3B’si3aHHA wi€el 3amxadi. OqHak BiioMo, 1m0 HaOMmKeHe pillleHHs, OTPUMaHe IIMMH METO-
JaMHd, y OUIBIIOCTI BUMAJKIB MOXKE CYTTE€BO BiAPI3HATHCS Bill ONTHMAIBbHOTO. TOMYy micis MPUHHATTA OyIb-IKOTO HaOIMKEHOTO
piIIeHHS 3a BUXIJHY TOUKY BHHHKA€ IOTpeda po3poOHTH MEeTOAN HOro MOAAIBIIOro BIOCKOHaNeHHS. Po3poOka Takux METOAiB Mae
SIK TCOPETHYHE, TaK i BEIUKE IPAKTUYHE 3HAYCHHSI.

Meta po6oru. OCHOBHA MeTa BHpILIEHHS LbOTO IIUTAHHS IOJsirac B HacTynmHoMy. OCHOBHA MeTa BHKOHAHHS JaHOI POOOTH
MOJIATAE B TOMY, 100 Oy/Ib-IKMM BiJIOMHM METOZOM CIIOYaTKy 3HAWTH BUXIJIHUN HaOIMKEHUH pO3B’SI30K 3a/adi, a IOTiM po3poOHTH
QJITOPUTM JUIS TIOC/IiZJOBHOTO MOJAJBIIOrO BJOCKOHAJICHHS 1IbOTO PO3B’s3Ky. s IbOro HEOOXiHO BU3HAYMTH HAOIp YMCEl, IKUMU
MOXYTb BIIPI3HATHCS KOOPIMHATH ONTHUMAJBHOIO i 3HaiileHOro HabmmKeHOro po3B’s3ky. Ilicnms mporo ciig moOymyBaTH HOBI
PO3B’S3KH HIISAXOM HPUCBOEHHS MOKJIMBUX 3HAU€Hb HEBIIOMHUM, IIO BiINOBIZAOTH YUCIAM I[bOTO HAOOpy, 1 BUOpaTH HaWKpamie 3
IUX PO3B’sA3KiB. ANl anropuT™M NOOYAOBH TAaKOT'O PIilICHHS MOBHHEH OyTH MPOCTHM, BIMAaraTé HEBEJIWKOI KUTBKOCTI omepamiil, He
BUKIIMKATH TPYAHOLIB 3 TOYKH 30py HPOTrpaMyBaHHs, OyTH HOBHM i 3aCTOCOBHUM JI0 MPAKTHYHUX 3aBJIaHb.

Metoa. CyTh 3ampoIIOHOBAHOTO CIIOCOOY Mmojsrae B HacTynmHoMy. CrodaTky 3a BiJOMHM HpPaBHJIOM 3HAXOISTH ITOYaTKOBHUI
HAOJIMKCHUI PO3B’SI30K 3ajadi, M0 PO3MIISAAETHCS, 1 BIAMOBIMHE HOMY 3HAueHHS Iib0BOT (yHKii. [licis 1pboro ontumaabHUR
PO3B’S30K 3a7avi JIETKO 3HAXOAUThH BIZIOMHM METOZOM 0e3 ypaxyBaHHsS yMOBH IIJIOCTi HeBimomux. O4eBHIHO, 11O LEil PO3B’ 30K
MOJKE NMPUMMATH He OUIbIIEe OJHOrO JPOOOBOro 3HaUYCHHS KoopAuHaTH. [lependavyaeTnes, 1110 KOOPAUHATH ONTUMAIILHOTO PO3B’SI3KY
[IITOYUCETBHOT 3aadui MpO paHelb 1 MOYaTKOBOrO HAOJMKEHOTO PO3B’SI3KY MOKYTh BIAPI3HATHCS HAaBKOJIO TMEBHOI apo06OBOT
KOOPJMHATH OINTHUMAJILHOTO PO3B’S3Ky HemepepBHOI 3amadi. [1oTiM 3HaiieHo MiHIMAIbHY KUIBKICTH HEHYJIBOBHUX KOOPIHHAT 1
HYJTBOBUX KOOPOMHAT B ONTHMAJIGHOMY pO3B’s3Ky. [lns mporo moBereHo BimmoBimHi Teopemu. [lepembauaerscs, mo pisHi
KOOPJIMHATH ONTHMAJIBbHOTO PO3B’SI3KY Ta [I0YATKOBOTO HAOJIMIKEHOTrO PO3B’S3KY 3HAXOAATHCS MK MMM MIHIMAJIbHUMHU YHCIIAMH.
Takum 4MHOM, HaWKpalie pilIeHHS MOXKHA BUOpATH MUITXOM TOCIIJOBHOI 3MiHH KOOPIMHAT MK IIMMH MIHIMAIEHUMH YUCIAMA
OJIMH 32 OJTHHM.

Pe3yabTaTn. [3 3acTocyBaHHSM 3alpOIIOHOBAHOTO METOAY OyJiM HPOBE/CHI YMCICHHI PO3paxyHKOBI eKcriepuMeHTH. Bucoka
SIKICTh IIbOTO METOJLY 1€ Pa3 MiATBepKEeHA SKCIIePUMEHTAIIBHO.

BucHOBKH. 3anpONOHOBAaHUH METOJ] € HOBHM, IIPOCTHM 3@ CBOEIO CYTTIO, JIETKMM IS IIPOrPaMyBaHHs Ta Ma€ BaXJIMBE IIpakK-
THUYHE 3Ha4YeHHs. TakuM YMHOM, MM Ha3UBA€EMO L€ PIillICHHS iIHHOBALifHUM NOKPAIEHUM HAOIMKSHHM PillICHHSIM.

KJIFOYOBI CJIOBA: 3aa4a npo 0ijo4ncenbHUN paHelb, po3B’A30K MOYaTKOBOTO HAOIIKEHHS, MiHIMalIbHA KUIBKICTh HYJbO-
BHX 1 HEHYJIOBUX KOOPAMHAT B ONITUMAJIBHOMY PO3B’A3KY, IHHOBalilfHE BIOCKOHAJICHHS PO3B’SI3KY IMOYAaTKOBOTO HAOIMKEHHS, OLli-
HKa MOXMOKH Ta CKCIICPUMEHTH.
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