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ABSTRACT 
Context. This paper provides a new approach in concept drift detection using an ensemble of simple spiking neural networks. 

Such approach utilizes an event-based nature and built-in ability to learn spatio-temporal patterns of spiking neurons, while ensemble 
provides additional robustness and scalability. This can help solve an active problem of limited time and processing resources in 
tasks of online machine learning, especially in very strict environments like IoT which also benefit in other ways from the use of 
spiking computations. 

Objective. The aim of the work is the creation of an ensemble of simple spiking neural networks to act as a concept drift detector 
in the tasks of online data stream mining. 

Method. The proposed approach is primary based on the accumulative nature of spiking neural networks, especially Leaky Inte-
grate-and-Fire neurons can be viewed as gated memory units, where membrane time constant m  is a balance constant between 

remembering and forgetting information. A training algorithm is implemented that utilizes a shallow two-layer SNN, which takes 
features and labels of the data as an input layer and the second layer consists of a single neuron. This neuron’s activation implies that 
an abrupt drift has occurred. In addition to that, such model is used as a base model within the ensemble to improve robustness, 
accuracy and scalability. 

Results. An ensemble of shallow two-layer SNNs was implemented and trained to detect abrupt concept drift in the SEA data 
stream. The ensemble managed to improve accuracy significantly compared to a base model and achieved competitive results to 
modern state-of-the-art models. 

Conclusions. Results showcased the viability of the proposed solution, which not only provides a cheap and competitive solution 
for resource-restricted environments, but also open doors for further research of SNN’s ability to learn spatio-temporal patters in the 
data streams and other fields. 

KEYWORDS: machine learning, online learning, spiking neural networks, concept drift, drift detector, artificial neural 
networks, data stream mining, artificial intelligence, leaky integrate-and-fire neuron. 

 
ABBREVIATIONS 

ANN is an artificial neural network; 
GRU is a gated recurrent unit; 
LSTM is a long short-term memory; 
ML is a machine learning; 
PLIF is a parametric leaky integrate-and-fire neuron; 
RNN is a recurrent neural network; 
SEA is a streaming ensemble algorithm; 
SNN is a spiking neural network. 

 
NOMENCLATURE 

m  is a membrane time variable that determines the 

decay rate; 
),( 1 tt XVf   is a LIF’s neural dynamics function; 

g(X) is an ensemble’s function; 

hj(X) is an ensemble’s j-th base model function; 
N is a number of base models used in ensemble; 
T is a number of iterations the SNN receives the input; 
Vt is a membrane potential at a time point t; 

tX  is an input vector at a time point t; 

ix  is a data stream’s i-th feature; 

y  is a data stream’s true label. 

y  is a model’s output of drift detection. 

 
INTRODUCTION 

Data stream mining in the online manner is a complex 
task that involves strict restrictions on time and process-
ing resources, while still requiring adequate results and a 
need to process huge volumes of data. This implies con-
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siderable limitations on used algorithms, even making 
many state-of-the-art ML models unusable. In addition, 
many models are unable to adapt quickly to the changing 
environment and therefore become obsolete. This is espe-
cially prominent with ANNs which fail to adjust their 
trainable parameters to the concept drift without utilizing 
resource-hungry recurrent architectures [1]. 

Many approaches have been proposed to solve existing 
online learning problems. In recent years, interest has spiked 
greatly in applying more biologically inspired systems to 
solve ML tasks. SNNs are one such system. They are con-
sidered to be the third generation of ANNs that closely 
mimic the inner work of biological neurons in human brains 
[2]. In comparison to regular ANNs, spiking neurons imple-
ment biological mechanisms like the accumulation of mem-
brane potential, refractory period, charge decay and simula-
tion of neurotransmitters’ explosions. Such mechanisms 
result in lower power consumption [3], analogue and event-
based nature, as well as an ability to learn temporal patterns 
in the data [4]. 

These characteristics make SNNs a viable solution for 
listed problems of online learning, especially in the most 
resource limited environments like IoT, which also bene-
fit from other advantages of spiking computations. Recent 
research showcased that SNNs are able to adapt to the 
concept drift [5] and to be used as drift detectors as well 
when combined with evolving architectures [6]. 

But overall, the research on spiking drift detectors is 
very limited. In addition to that and to our knowledge, no 
research was proposed to utilize ensembling techniques 
with SNNs to detect the concept drift, while ensembles of 
ANNs were showcased to be efficient in such task, as 
well as improving SNNs performance (as described in 
section 2). 

The object of study is the process of concept drift de-
tection during online learning and data stream mining. 

The subject of study is the use of spiking neural net-
works as concept drift detectors. 

The purpose of the work is to broad the existing re-
search by exploring how SNN’s built-in abilities to learn 
spatio-temporal patterns can be utilized to build spiking 
detectors with shallow architectures and exploring how 
ensemble of such detectors can create a more robust sys-
tem. 

 
1 PROBLEM STATEMENT 

This study aim is to develop an ensemble of simple 
SNNs to identify the abrupt concept drift in the artificially 
generated data stream and to analyze whether such ap-
proach improves the performance of the base model. 

To do so, a training pipeline is to be implemented that 
trains a model in the online manner by providing the input 
vector X that consists of both the input features and the 
true label of the data stream: 

 

),,...,,( 21 yxxxX n , (1)

where ix  represents a stream’s feature and y is its true 

label. 

As a result, two experiments are to be performed: one 
with just the SNN model and one with the ensemble; and 
their metrics are to be compared.  

 
2 REVIEW OF THE LITERATURE 

In regular ANNs, memorization is achieved by im-
plementing recurrent layers or by using gating mecha-
nisms, like in LSTM [7] or GRU [8]. Previously, re-
searchers tried to reimplement similar memory blocks for 
SNNs [9], but recently, they focused more on built-in 
short-term memory capacity. SNNs have an accumulative 
nature due to the membrane potential and authors of [10] 
noted that the Leaky Integrate-and-Fire (LIF) model can 
be viewed as a gated memory unit if the formula is rewrit-
ten the next way: 
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Which in case of 0resetV  looks like: 
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As noted in the original research, the integration proc-

ess and the leak can be viewed as update and reset gates, 
while the accumulated membrane potential 1tV  functions 

as a hidden state. With such interpretation, the membrane 
time constant m  is a balance constant between remem-

bering and forgetting information. A larger m  allows for 

a better estimate of the frequency of input spikes, but 
requires more time to charge and fire, which works well 
with a stable input signal. On the contrary, a smaller m  

means a faster voltage decay, which makes the LIF neu-
ron sensitive to time-varying input signals and able to 
respond quickly – at the cost of losing the accuracy of 
distinguishing between different input signals. Further-
more, the same research proposed to make the m  train-

able to help to find the balance without an additional 
hyperparameter tuning. Such solution they named as PLIF 
model. 

Therefore, LIF nodes can be used as a cheap memory 
unit which also have an event-based nature. In addition, 
LIFs have perks of regular dense layers, like being able to 
combine inputs and capture relationships between differ-
ent features. In this context, LIF nodes can function as 
two layers at the same time. This makes them even more 
suitable to be used as concept drift detectors, especially 
when faced with sudden or recurring drifts. 

A popular and a common technique in ML is usage of 
ensemble learning techniques. Ensembles combine pre-
dictions of multiple base models which provides an im-
proved generalization, better handling of class imbalance 
and overall robustness. In addition to that, ensembles can 
be more resource-efficient than training a single and com-
plex model. Due to these, ensembles gathered attention to 

86



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2024. № 4 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2024. № 4 

 

© Bodyanskiy Ye. V., Savenkov D. V., 2024 
DOI 10.15588/1607-3274-2024-4-8  
 

be used in online learning scenarios and have been al-
ready showcased to be effective in them [11, 12], espe-
cially when used in IoT systems [13] (where SNNs shine 
as well [14]). They also showcased the ability to detect 
the concept drift [15]. 

The human nervous system also appears to utilize 
some ensemble effects or techniques: groups of neurons 
or neural circuits act together to improve motor skills, as 
was noted in the [16]. The same research also developed 
and tested Spiking Voter Ensemble Network which was 
built on ensemble of simplified three-neuron models with 
utilization of the input timing dependent synaptic plastic-
ity. The proposed model achieved improved MNIST [17] 
performance. Other research also showcased general 
improvements for simple SNNs when combined with 
ensemble techniques: authors of [18] achieved state-of-
the-art results for MNIST, NMNIST [19] and DSV Ges-
ture [20] datasets while lowering the number of trainable 
parameters by half; and authors of [21] also achieved 
state-of-the-art results for MNIST and CIFAR-10 [22] 
datasets. 

 
3 MATERIALS AND METHODS 

The key part of any ensemble algorithm is a base 
model. As was noted previously, the use of online learn-
ing sets restrictions for such models: the model should be 
simple to not consume large amounts of resources, while 
also being able to adapt to new patterns in the data stream. 
In our proposed solution, we utilize a shallow two-layer 
PLIF-based with the next key characteristics:  

1) The first layer takes the input vector X to learn pat-
terns between the features and the labels; 

2) The second layer consists of a single PLIF neuron, 
activation of which indicates if the concept drift occurred; 

3) The PLIF’s membrane state does not reset between 
the iterations. This allows the model’s internal state to 
accumulate information over time and capture subtle 
changes in the data stream that may indicate a potential 
drift. 

The architecture is shown in Fig. 1: 
 

 
Figure 1 – The proposed model architecture 

 
This approach does not use any additional helping 

models and only analyzes the stream’s data. Ideally, it can 
learn both virtual and real drifts. In addition, the refrac-

tory period, that comes after the action potential, prevents 
excessive neural activity. Meaning, it won’t fire again 
right after the drift detection. This lowers chances of 
recurring false-positive activations and removes the need 
to develop additional timeout mechanisms for the model 
when it successfully detected the drift. Also, as was men-
tioned in the section 2, the initial m  controls how sensi-

tive the neuron is. Though it is different for each task, 
normally it is expected that data stream will be stable and 
concept drift won’t occur often. Because of that, higher 
values of the initial m  will prevent the fast charge decay 

and can further decrease false-positive activations. 
The main drawback of such SNN model (which will 

be referred as the base model) comes from its simplicity, 
meaning it will fail to learn complex patterns without 
changes in the architecture. To overcome this, an ensem-
ble is used. The ensemble trains up to N base models, 
each receiving the input vector X. The verdict whether 
concept drift has occured is determined by the formula 
(4): 

 
))(),...,(),(max()( 21 XhXhXhXg N , (4)

 
where )(Xhj  represents the base model function. If any 

of the models are activated, then we conclude that the 
drift has occurred. 

For the model training, a backpropagation algorithm is 
used. And to ease the experiment, it has a few restrictions 
on the concept drift: an abrupt concept drift occurs after 
the set number of iterations and a new drift cannot occur 
before the previous one was successfully detected.  

The whole process is visualized in the Fig. 2. 
 

4 EXPERIMENTS 
The developed training algorithm was tested using the 

SEA (streaming ensemble algorithm) artificial data stream 
generator [23] with an abrupt concept drift. This data 
stream generates 3 features  321 ,, xxx  (where 3x  doesn’t 

take part in the classification) and a binary target variable 
that is calculated by one of the (5–8) equations that switch 
during the drift: 

 
,8)( 21  xxy  (5)

 
,9)( 21  xxy  (6)

,7)( 21  xxy  (7)
 

.5.9)( 21  xxy  (8)
 

As was mentioned in section 1, two experiments were 
performed: one with just the base model and second one 
with the ensemble of multiple such models. Both experi-
ments run with the next configuration: 

– the initial membrane time variable was set at 5m  

for slower charge decay; 
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Figure 2 – Flowchart of the training algorithm 

 

– training is done with 20000 iterations, testing is 
done with 2000 iterations; 

– spiking neurons “see” the data only for a 1T   
number of iterations; 

– a new drift occurs once in 200 iterations. 
Initial weights are randomly generated and no 

additional hyperparameter tuning was performed. The 
ensemble uses 5N  base models which are trained on 
the same data. Also, the random seed was freezed. 

The tools used for the program realization are Python, 
PyTorch [24] and SpikingJelly [25]. 

The results of these experiments are shown in the 
section 5. 

 

5 RESULTS 
The first experiment with a simple base model did not 

yield good results. While this SNN was capable of identi-
fying the drift, the accuracy of predictions stayed very 
low, with the last accuracy being equal to 29% and the 
average accuracy stagnating only around 34%. The accu-
racy history graph is shown in Fig. 3. 

 

 
Figure 3 – The training accuracy history of the base spiking 

model 
 

The situation with the testing is similar with the last 
accuracy being equal to 43% as shown in Fig. 4 (it also 
shows when the drift has happened and has been identi-
fied). Though, the fact that the metric stayed consistent 
between the training-testing phases is promising. In addi-

tion to that, on average, SNN required 285 iterations be-
fore identifying the drift. Also, the overall efficiency is 
very sensitive to the initial hyperparameters. 

 
Figure 4 – The testing accuracy history  

of the base spiking model 
 

The ensemble method managed to produce much bet-
ter results: the average train accuracy increased to 87% 
(as shown in Fig. 5) on the train data and maintained the 
test accuracy around 91% (as shown in Fig. 6). In addition 
to that, the drift detection time improved as well: on aver-
age, the drifts were detected in 22.65 iterations during the 
training and in 8.44 iteration during the testing. 

 

 
Figure 5 – The training history of the ensemble 
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Figure 6 – The testing accuracy history  

of the ensemble 
 

6 DISCUSSION 
As evident from the results, the provided base model 

was very weak and non-robust, making it non-applicable 
to real-world tasks, especially with more complex data. 
Still, it showcased the ability to learn the patterns. But 
when it was used within the ensemble, the overall accu-
racy and detection time improved significantly. 

Moreover, the achieved results are comparable to the 
current state-of-the-art accuracy which include classical 
ML algorithms [26] like Naïve Bayes with an 86% accu-
racy and another ensemble-based Hoeffding Tree classi-
fier which also produced an 86% accuracy score (or 88% 
when combined with the adaptive sliding window algo-
rithm [11]). Besides, the proposed solution achieved simi-
lar results to the current state-of-the-art RNN-based (re-
current neural network) solution [27], which produced an 
accuracy of 91.70%, in addition to having a much smaller 
number of trainable parameters. 

This indicates the viability of the proposed solution to 
be used in data streams analysis when faced with re-
source-restricted environments. Also, such methodology 
allows for an easier integration into the IoT systems, 
where each SNN can be implemented as a small separate 
circuit with analogue sensors as an input. Also, it can 
function as a plausible alternative to the deep learning 
with which SNNs often struggle [28].  

Nonetheless, additional testing on different data 
streams is required to improve the proposed architecture 
and algorithm and to test robustness. As already men-
tioned, the solution has its own disadvantages: it will 
struggle with more complex data and will likely require 
significant changes in the base model architecture. 

 
CONCLUSIONS 

This paper proposed a new approach in developing 
concept drift detectors that focuses on utilizing SNN’s 
abilities to spot the changes in spatio-temporal patterns in 
data stream inflicted by the drift, and further improving it 
with ensembling techniques. Experiments with a common 
for such tasks artificial data were performed that gave 
adequate and competitive results, which validated the 
viability of the approach. 

The scientific novelty of this work is that the method 
of using an ensemble of simple spiking drift detectors is 
firstly proposed. Ensemble’s base models take in features 

and label to learn spatio-temporal patters and fire if the 
abrupt drift has occurred; while the ensemble of multiple 
such models itself significantly improves the overall accu-
racy and gives state-of-the-art results on the tested artifi-
cial data, in addition to having small number of trainable 
parameters. 

The practical significance of obtained results is that 
such approach provides a cheap and efficient solution for 
extremely resource-limited environments that face con-
stant dangers of concept drift occurrences, like many IoT 
systems that also benefit from analog and event-based 
nature of SNNs. Moreover, the use of ensembles provides 
an additional scalability by allowing the increase or de-
crease of model quantity to fit the practical needs. 

Prospects for further research are to applying similar 
approach of drift detection to more complex data struc-
tures, as well as a further study of SNN’s ability to learn 
spatio-temporal patters in the data streams. 
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AНОТАЦІЯ 
Актуальність. У цій статті запропоновано новий підхід до виявлення дрейфу концепцій з використанням ансамблю 

простих спайкових нейронних мереж. Такий підхід використовує подієву природу та вбудовану здатність нейронів вивчати 
просторово-часові патерни, а ансамбль забезпечує додаткову робастність та масштабованість. Це може допомогти вирішити 
актуальну проблему обмеженості часових та обчислювальних ресурсів у задачах онлайн машинного навчання, особливо в 
дуже суворих середовищах, таких як IoT, які також мають інші переваги від використання шипінг-обчислень. 

Мета роботи. Метою роботи є створення ансамблю простих спайкових нейронних мереж для роботи в якості детектора 
концептуального дрейфу в задачах інтелектуального аналізу потоків даних в Інтернеті.  

Метод. Запропонований підхід в першу чергу базується на накопичувальній природі спайкових нейронних мереж, особ-
ливо негерметичних нейронів інтеграції-та-пострілу, які можна розглядати як одиниці пам’яті із затворами, де мембранна 
постійна часу m  є константою балансу між запам’ятовуванням та забуванням інформації. Реалізовано алгоритм навчання, 

який використовує неглибоку двошарову SNN, що використовує ознаки та мітки даних як вхідний шар, а другий шар 
складається з одного нейрона. Активація цього нейрона означає, що відбувся різкий дрейф. Крім того, така модель 
використовується як базова модель в ансамблі для покращення робастності, точності та масштабованості.  

Результати. Ансамбль неглибоких двошарових SNN було реалізовано та навчено для виявлення різкого дрейфу 
концепції в потоці даних SEA. Ансамблю вдалося значно підвищити точність порівняно з базовою моделлю та досягти 
конкурентних результатів із сучасними передовими моделями. 

Висновки. Результати показали життєздатність запропонованого рішення, яке не тільки забезпечує дешеве і конкурен-
тоспроможне рішення для середовищ з обмеженими ресурсами, але і відкриває двері для подальших досліджень здатності 
спайкових нейромереж вивчати просторово-часові патерни в потоках даних та інших областях.  

КЛЮЧОВІ СЛОВА: машинне навчання, онлайн навчання, спайкові нейронні мережі, дрейф концепцій, детектор дрей-
фу, штучні нейронні мережі, інтелектуальний аналіз потоку даних, штучний інтелект, негерметичний нейрон інтеграції-та-
пострілу.  
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