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ABSTRACT

Context. This paper provides a new approach in concept drift detection using an ensemble of simple spiking neural networks.
Such approach utilizes an event-based nature and built-in ability to learn spatio-temporal patterns of spiking neurons, while ensemble
provides additional robustness and scalability. This can help solve an active problem of limited time and processing resources in
tasks of online machine learning, especially in very strict environments like IoT which also benefit in other ways from the use of
spiking computations.

Objective. The aim of the work is the creation of an ensemble of simple spiking neural networks to act as a concept drift detector
in the tasks of online data stream mining.

Method. The proposed approach is primary based on the accumulative nature of spiking neural networks, especially Leaky Inte-

grate-and-Fire neurons can be viewed as gated memory units, where membrane time constant Ty, is a balance constant between

remembering and forgetting information. A training algorithm is implemented that utilizes a shallow two-layer SNN, which takes
features and labels of the data as an input layer and the second layer consists of a single neuron. This neuron’s activation implies that
an abrupt drift has occurred. In addition to that, such model is used as a base model within the ensemble to improve robustness,
accuracy and scalability.

Results. An ensemble of shallow two-layer SNNs was implemented and trained to detect abrupt concept drift in the SEA data
stream. The ensemble managed to improve accuracy significantly compared to a base model and achieved competitive results to
modern state-of-the-art models.

Conclusions. Results showcased the viability of the proposed solution, which not only provides a cheap and competitive solution
for resource-restricted environments, but also open doors for further research of SNN’s ability to learn spatio-temporal patters in the
data streams and other fields.

KEYWORDS: machine learning, online learning, spiking neural networks, concept drift, drift detector, artificial neural
networks, data stream mining, artificial intelligence, leaky integrate-and-fire neuron.

ABBREVIATIONS
ANN is an artificial neural network;
GRU is a gated recurrent unit;
LSTM is a long short-term memory;
ML is a machine learning;
PLIF is a parametric leaky integrate-and-fire neuron;
RNN is a recurrent neural network;
SEA is a streaming ensemble algorithm;
SNN is a spiking neural network.

NOMENCLATURE
T 1S a membrane time variable that determines the

hj(X) is an ensemble’s j-th base model function;

N is a number of base models used in ensemble;

T is a number of iterations the SNN receives the input;
Vi is a membrane potential at a time point t;

Xt is an input vector at a time point t;

Xj is a data stream’s i-th feature;

y is a data stream’s true label.

y' is a model’s output of drift detection.

INTRODUCTION
Data stream mining in the online manner is a complex

task that involves strict restrictions on time and process-
ing resources, while still requiring adequate results and a
need to process huge volumes of data. This implies con-
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decay rate;
f (Vi_1, X¢) is a LIF’s neural dynamics function;
g(X) is an ensemble’s function;
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siderable limitations on used algorithms, even making
many state-of-the-art ML models unusable. In addition,
many models are unable to adapt quickly to the changing
environment and therefore become obsolete. This is espe-
cially prominent with ANNs which fail to adjust their
trainable parameters to the concept drift without utilizing
resource-hungry recurrent architectures [1].

Many approaches have been proposed to solve existing
online learning problems. In recent years, interest has spiked
greatly in applying more biologically inspired systems to
solve ML tasks. SNNs are one such system. They are con-
sidered to be the third generation of ANNs that closely
mimic the inner work of biological neurons in human brains
[2]. In comparison to regular ANNS, spiking neurons imple-
ment biological mechanisms like the accumulation of mem-
brane potential, refractory period, charge decay and simula-
tion of neurotransmitters’ explosions. Such mechanisms
result in lower power consumption [3], analogue and event-
based nature, as well as an ability to learn temporal patterns
in the data [4].

These characteristics make SNNs a viable solution for
listed problems of online learning, especially in the most
resource limited environments like IoT, which also bene-
fit from other advantages of spiking computations. Recent
research showcased that SNNs are able to adapt to the
concept drift [5] and to be used as drift detectors as well
when combined with evolving architectures [6].

But overall, the research on spiking drift detectors is
very limited. In addition to that and to our knowledge, no
research was proposed to utilize ensembling techniques
with SNNs to detect the concept drift, while ensembles of
ANNs were showcased to be efficient in such task, as
well as improving SNNs performance (as described in
section 2).

The object of study is the process of concept drift de-
tection during online learning and data stream mining.

The subject of study is the use of spiking neural net-
works as concept drift detectors.

The purpose of the work is to broad the existing re-
search by exploring how SNN’s built-in abilities to learn
spatio-temporal patterns can be utilized to build spiking
detectors with shallow architectures and exploring how
ensemble of such detectors can create a more robust sys-
tem.

1 PROBLEM STATEMENT

This study aim is to develop an ensemble of simple
SNNss to identify the abrupt concept drift in the artificially
generated data stream and to analyze whether such ap-
proach improves the performance of the base model.

To do so, a training pipeline is to be implemented that
trains a model in the online manner by providing the input
vector X that consists of both the input features and the
true label of the data stream:

X :(X15X2:~-~sxnsy): (1)
where X; represents a stream’s feature and y is its true
label.
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As a result, two experiments are to be performed: one
with just the SNN model and one with the ensemble; and
their metrics are to be compared.

2 REVIEW OF THE LITERATURE

In regular ANNs, memorization is achieved by im-
plementing recurrent layers or by using gating mecha-
nisms, like in LSTM [7] or GRU [8]. Previously, re-
searchers tried to reimplement similar memory blocks for
SNNs [9], but recently, they focused more on built-in
short-term memory capacity. SNNs have an accumulative
nature due to the membrane potential and authors of [10]
noted that the Leaky Integrate-and-Fire (LIF) model can
be viewed as a gated memory unit if the formula is rewrit-
ten the next way:

1
f(Veg, Xo) =V +_C_(_(Vt—l ~Vreset) + X¢)- )
m

Which in case of Vygget =0 looks like:

1 1
f(\/t—laxt):(l__ -1t — Xt 3
T T

m m

As noted in the original research, the integration proc-
ess and the leak can be viewed as update and reset gates,
while the accumulated membrane potential V;_; functions

as a hidden state. With such interpretation, the membrane
time constant t,, is a balance constant between remem-

bering and forgetting information. A larger t,, allows for

a better estimate of the frequency of input spikes, but
requires more time to charge and fire, which works well
with a stable input signal. On the contrary, a smaller T,

means a faster voltage decay, which makes the LIF neu-
ron sensitive to time-varying input signals and able to
respond quickly — at the cost of losing the accuracy of
distinguishing between different input signals. Further-
more, the same research proposed to make the t, train-

able to help to find the balance without an additional
hyperparameter tuning. Such solution they named as PLIF
model.

Therefore, LIF nodes can be used as a cheap memory
unit which also have an event-based nature. In addition,
LIFs have perks of regular dense layers, like being able to
combine inputs and capture relationships between differ-
ent features. In this context, LIF nodes can function as
two layers at the same time. This makes them even more
suitable to be used as concept drift detectors, especially
when faced with sudden or recurring drifts.

A popular and a common technique in ML is usage of
ensemble learning techniques. Ensembles combine pre-
dictions of multiple base models which provides an im-
proved generalization, better handling of class imbalance
and overall robustness. In addition to that, ensembles can
be more resource-efficient than training a single and com-
plex model. Due to these, ensembles gathered attention to
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be used in online learning scenarios and have been al-
ready showcased to be effective in them [11, 12], espe-
cially when used in IoT systems [13] (where SNNs shine
as well [14]). They also showcased the ability to detect
the concept drift [15].

The human nervous system also appears to utilize
some ensemble effects or techniques: groups of neurons
or neural circuits act together to improve motor skills, as
was noted in the [16]. The same research also developed
and tested Spiking Voter Ensemble Network which was
built on ensemble of simplified three-neuron models with
utilization of the input timing dependent synaptic plastic-
ity. The proposed model achieved improved MNIST [17]
performance. Other research also showcased general
improvements for simple SNNs when combined with
ensemble techniques: authors of [18] achieved state-of-
the-art results for MNIST, NMNIST [19] and DSV Ges-
ture [20] datasets while lowering the number of trainable
parameters by half; and authors of [21] also achieved
state-of-the-art results for MNIST and CIFAR-10 [22]
datasets.

3 MATERIALS AND METHODS

The key part of any ensemble algorithm is a base
model. As was noted previously, the use of online learn-
ing sets restrictions for such models: the model should be
simple to not consume large amounts of resources, while
also being able to adapt to new patterns in the data stream.
In our proposed solution, we utilize a shallow two-layer
PLIF-based with the next key characteristics:

1) The first layer takes the input vector X to learn pat-
terns between the features and the labels;

2) The second layer consists of a single PLIF neuron,
activation of which indicates if the concept drift occurred,

3) The PLIF’s membrane state does not reset between
the iterations. This allows the model’s internal state to
accumulate information over time and capture subtle
changes in the data stream that may indicate a potential
drift.

The architecture is shown in Fig. 1:

PLIE ————>» V'

{has drifi happened?)

Figure 1 — The proposed model architecture

This approach does not use any additional helping
models and only analyzes the stream’s data. Ideally, it can
learn both virtual and real drifts. In addition, the refrac-
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tory period, that comes after the action potential, prevents
excessive neural activity. Meaning, it won’t fire again
right after the drift detection. This lowers chances of
recurring false-positive activations and removes the need
to develop additional timeout mechanisms for the model
when it successfully detected the drift. Also, as was men-
tioned in the section 2, the initial t,, controls how sensi-

tive the neuron is. Though it is different for each task,
normally it is expected that data stream will be stable and
concept drift won’t occur often. Because of that, higher
values of the initial t,, will prevent the fast charge decay

and can further decrease false-positive activations.

The main drawback of such SNN model (which will
be referred as the base model) comes from its simplicity,
meaning it will fail to learn complex patterns without
changes in the architecture. To overcome this, an ensem-
ble is used. The ensemble trains up to N base models,
each receiving the input vector X. The verdict whether
concept drift has occured is determined by the formula

“:

9(X) =max(hy (X),hy (X),....hN (X)), “

where h j(X) represents the base model function. If any

of the models are activated, then we conclude that the
drift has occurred.

For the model training, a backpropagation algorithm is
used. And to ease the experiment, it has a few restrictions
on the concept drift: an abrupt concept drift occurs after
the set number of iterations and a new drift cannot occur
before the previous one was successfully detected.

The whole process is visualized in the Fig. 2.

4 EXPERIMENTS

The developed training algorithm was tested using the
SEA (streaming ensemble algorithm) artificial data stream
generator [23] with an abrupt concept drift. This data
stream generates 3 features {Xl, X2,X3} (where X3 doesn’t
take part in the classification) and a binary target variable
that is calculated by one of the (5-8) equations that switch
during the drift:

y=(X +X%)<8, %)
y=(X +X%)<9, (6)
y =X +X%)<7, (N
y=(X +X)<9.5. ®

As was mentioned in section 1, two experiments were
performed: one with just the base model and second one
with the ensemble of multiple such models. Both experi-
ments run with the next configuration:

— the initial membrane time variable was set at t,, =5

for slower charge decay;
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Can new drift happen?

Do nothing———N
Change function

Get 1 sample

Artificial Data
Stream Generator

Unite X and Y

Is stream drifted? (true, target)

A

b

Is stream drifted?
(pred)

Figure 2 — Flowchart of the training algorithm

— training is done with 20000 iterations, testing is
done with 2000 iterations;

— spiking neurons “see” the data only for a T =1
number of iterations;

— a new drift occurs once in 200 iterations.

Initial weights are randomly generated and no
additional hyperparameter tuning was performed. The
ensemble uses N =5 base models which are trained on
the same data. Also, the random seed was freezed.

The tools used for the program realization are Python,
PyTorch [24] and SpikingJelly [25].

The results of these experiments are shown in the
section 5.

5 RESULTS
The first experiment with a simple base model did not
yield good results. While this SNN was capable of identi-
fying the drift, the accuracy of predictions stayed very
low, with the last accuracy being equal to 29% and the
average accuracy stagnating only around 34%. The accu-
racy history graph is shown in Fig. 3.

(train) Drift Detection Accuracy History

1.0 — accuracy

Accuracy

0.4

0.3

T T T T T
10000 12500 15000 17500 20000
Time

T T T T
0 2500 5000 7500

Figure 3 — The training accuracy history of the base spiking
model

The situation with the testing is similar with the last
accuracy being equal to 43% as shown in Fig. 4 (it also
shows when the drift has happened and has been identi-
fied). Though, the fact that the metric stayed consistent
between the training-testing phases is promising. In addi-
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tion to that, on average, SNN required 285 iterations be-
fore identifying the drift. Also, the overall efficiency is
very sensitive to the initial hyperparameters.

(test) Drift Detection History Chart
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Figure 4 — The testing accuracy history
of the base spiking model

The ensemble method managed to produce much bet-
ter results: the average train accuracy increased to 87%
(as shown in Fig. 5) on the train data and maintained the
test accuracy around 91% (as shown in Fig. 6). In addition
to that, the drift detection time improved as well: on aver-
age, the drifts were detected in 22.65 iterations during the
training and in 8.44 iteration during the testing.

(train) Drift Detection Accuracy History
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Figure 5 — The training history of the ensemble
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Figure 6 — The testing accuracy history
of the ensemble

6 DISCUSSION

As evident from the results, the provided base model
was very weak and non-robust, making it non-applicable
to real-world tasks, especially with more complex data.
Still, it showcased the ability to learn the patterns. But
when it was used within the ensemble, the overall accu-
racy and detection time improved significantly.

Moreover, the achieved results are comparable to the
current state-of-the-art accuracy which include classical
ML algorithms [26] like Naive Bayes with an 86% accu-
racy and another ensemble-based Hoeffding Tree classi-
fier which also produced an 86% accuracy score (or 88%
when combined with the adaptive sliding window algo-
rithm [11]). Besides, the proposed solution achieved simi-
lar results to the current state-of-the-art RNN-based (re-
current neural network) solution [27], which produced an
accuracy of 91.70%, in addition to having a much smaller
number of trainable parameters.

This indicates the viability of the proposed solution to
be used in data streams analysis when faced with re-
source-restricted environments. Also, such methodology
allows for an easier integration into the IoT systems,
where each SNN can be implemented as a small separate
circuit with analogue sensors as an input. Also, it can
function as a plausible alternative to the deep learning
with which SNNs often struggle [28].

Nonetheless, additional testing on different data
streams is required to improve the proposed architecture
and algorithm and to test robustness. As already men-
tioned, the solution has its own disadvantages: it will
struggle with more complex data and will likely require
significant changes in the base model architecture.

CONCLUSIONS

This paper proposed a new approach in developing
concept drift detectors that focuses on utilizing SNN’s
abilities to spot the changes in spatio-temporal patterns in
data stream inflicted by the drift, and further improving it
with ensembling techniques. Experiments with a common
for such tasks artificial data were performed that gave
adequate and competitive results, which validated the
viability of the approach.

The scientific novelty of this work is that the method
of using an ensemble of simple spiking drift detectors is
firstly proposed. Ensemble’s base models take in features
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and label to learn spatio-temporal patters and fire if the
abrupt drift has occurred; while the ensemble of multiple
such models itself significantly improves the overall accu-
racy and gives state-of-the-art results on the tested artifi-
cial data, in addition to having small number of trainable
parameters.

The practical significance of obtained results is that
such approach provides a cheap and efficient solution for
extremely resource-limited environments that face con-
stant dangers of concept drift occurrences, like many IoT
systems that also benefit from analog and event-based
nature of SNNs. Moreover, the use of ensembles provides
an additional scalability by allowing the increase or de-
crease of model quantity to fit the practical needs.

Prospects for further research are to applying similar
approach of drift detection to more complex data struc-
tures, as well as a further study of SNN’s ability to learn
spatio-temporal patters in the data streams.
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AHCAMB.JIb IPOCTUX CIIAMKOBHUX HEPOHHUX MEPEK
B SIKOCTI JETEKTOPIB IPEV®Y KOHIEIIIIi

Boasincbkmii €. B. — 1-p TexH. Hayk, npodecop, npodecop Kadenpu IUTyYHOTO iHTENEKTY XapKiBCBKOTO HaI[lOHAIBEHOTO
YHIBEPCHTETY paJliOeJIEKTPOHIKH, XapKiB, YKpaiHa.

CagenkoB [I. B. — acmipanTt kadenpu MTYYHOrO iHTENEKTY XapKiBCHKOTO HAIIOHAIBHOTO YHIBEPCHUTETY PaliOCiIeKTPOHIKH,
XapkiB, YkpaiHa.

AHOTAIIA

AKTyaJbHicTb. Y Il CTATTi 3aIpONOHOBAHO HOBHH MiAXiJ J0 BUSABICHHA Ipel(y KOHIEMIi 3 BUKOPUCTAaHHIM aHCaMOIIO
MPOCTUX CHAHKOBHX HEHPOHHHUX Mepex. Takuil Imiaxin BUKOPUCTOBYE MOAIEBY NPHPOIY Ta BOYAOBaHY 3[aTHICTh HEUPOHIB BUBYATH
IIPOCTOPOBO-YACOBI ITATEPHH, a aHCAMOJIb 3a0e3Ieuye JONATKOBY pOOACTHICTH Ta MacmTaboBaHicTh. Lle MoXke IONOMOTTH BUPIIINTH
aKTyaJlbHy Ipo0JeMy OOMEXEHOCTI YaCOBHX Ta OOYMCIIIOBAJIBHUX PECYPCIB y 3ajavyax OHJalH MalIMHHOTO HaBYaHHSI, OCOOJHMBO B
JIy’Ke CyBOPHX cepeloBuIax, Takux sk [0T, ski Tako)k MaroTh iHIII TEPeBary BiJl BAKOPUCTAHHS IIHITIHT-004UCIICHb.

Meta po6orn. MeToro poGOTH € CTBOPEHHS aHCAaMOJIIO MPOCTHX CHAHKOBUX HEHPOHHUX MEpex Ui pOOOTH B SIKOCTI IETEKTOPa
KOHIIETITYaJIbHOTO Jpeiidy B 3a[a4ax iHTENeKTyalbHOTO aHali3y HOTOKIB JaHUX B [HTepHeTI.

MeTton. 3anponOHOBaHUH MiAXiJ B MIEPILIY Yepry 0a3yeTbesi Ha HAKOMUYYBaJIbHIA HPUPOI CIIafKOBUX HEHPOHHUX MEPEX, 0CO0-
JIMBO HETEPMETHYHNX HEHPOHIB IHTETpaIii-Ta-MoCTPiTy, AKi MOXHA PO3TIIIATH K OAWHHIN MaM sTi i3 3aTBOpaMu, 1e MeMOpaHHa

IOCTi}iHa 9acy Ty, € KOHCTAHTOIO OalaHCy MiX 3araM’ATOByBaHHSAM Ta 3a0yBaHHAM iH(opMarii. PeanizoBano aaroput™ HaB4aHHS,

KAl BUKOPUCTOBY€E HerianOoky aBoriapoBy SNN, 1[0 BUKOPHCTOBYE O3HaKH Ta MITKM JaHUX sIK BXiJHUH Iuap, a Apyrui map
CKJIQIA€ThCsl 3 OMHOTO HeWpoHa. AKTHBAIlisi [bOrO HEHpoHa oO3Hauyae, w10 BigOyBcst piskuit apeiid. Kpim Toro, Taka momenb
BHKOPHUCTOBYETHCS SIK 0a30Ba MOJIENb B aHCAMOTi JJIs MOKPAIEHHS pOOaCTHOCTI, TOYHOCTI Ta MacIITabOBaHOCTI.

PesyabTatn. AHcamOip HermuOokux ABomapoBux SNN Oyno peami3oBaHO Ta HAaBYEHO Ui BUSBICHHS PIi3KOTo Ipeidy
koHIentii B moroui gaHnx SEA. AHcamOio BAaiocs 3HAYHO MiABHIIATH TOYHICTH MOPIBHSHO 3 0a30BO0 MOJEIUIIO Ta JTOCATTH
KOHKYPEHTHHX PE3YJIbTATIB i3 Cy4aCHUMH MEPEIOBUMH MOJICIISIMH.

BucnoBkn. Pe3ynbraTi mokasany »KUTTE3ATHICTh 3alPOIIOHOBAHOTO PIIICHHS, SIKe HE TUIBKH 3a0e3redye JerieBe i KOHKypeH-
TOCIPOMOJKHE PIIlICHHS AJIsl CEPelOBHIN 3 0OMEKEHUMH pecypcaMH, aje i BiIKpUBAE JBEpi Ul MOJAJIbIINX JOCHIIIKEHb 31aTHOCTI
CMaiKOBUX HEHPOMEPEXK BUBYATH IIPOCTOPOBO-YACOBI IATEPHHU B IOTOKAX JAAHUX Ta HIIUX 00JIACTAX.

KJIFOUYOBI CJIOBA: marinHHe HaBUaHH, OHJIaiiH HABYaHHS, CIAHKOBI HEHPOHHI Mepexi, Apeiid KOHIeIil, 1eTeKTop Apei-
¢y, WTy4HI HEHPOHHI MEpexi, IHTEICKTyalbHUI aHaNi3 MOTOKY JAHUX, IITYYHHUN IHTENEKT, HEerepMEeTHYHUI HEipoH iHTerpaiii-Ta-

MOCTPiTy.
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