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ABSTRACT 
Context. Significant challenges facing hardware developers of artificial intelligence systems force them to look for new non-

standard architectural solutions. One of the promising solutions is the transition from von Neumann’s classic architecture to neuro-
morphic architecture, which at the hardware level tries to imitate the work of the neural network of the human brain. A neuromorphic 
processor built as hardware implementation of a spiking neural network consists of a large number of elementary electronic circuits 
that structurally and functionally correspond to neurons. Thus, the design of hardware implementation of a spiking neuron as the 
basic building element of a neuromorphic processor is of great scientific interest. 

Objective. The goal of the work is to design an analog spiking neuron hardware implementation with digital control of input sig-
nals by binary synaptic weighting coefficients. 

Method. Designing is performed at the logical/schematic and topological levels of the design flow using modern tools of elec-
tronic design automation. All proposed schematic and layout solutions are verified and simulated using computer aided design tools 
to prove their functionality. 

Results. The schematic and layout solutions have been developed and investigated for the hardware implementation of the spik-
ing analog neuron with digital control of input signals by binary synaptic weighting coefficients to be the basic building element of a 
spiking neural network of the neuromorphic processor. 

Conclusions. The proposed hybrid design of the spiking neuron hardware implementation benefits by combining the simplicity 
of analog signal processing methods in the neuron with digital control of the state of the neuron using binary weighting coefficients. 
The simulation results confirm the functionality of the obtained schematic/layout solutions and demonstrate the possibility of imple-
menting logical functions inherent in the perceptron. The prospects for further research may include the design of hardware imple-
mentation for a spiking neural network core based on the developed schematic and layout solutions for the spiking neuron.  

KEYWORDS: neuromorphic processor, spiking neural network, neuron, synaptic coefficient, layout design. 
 

ABBREVIATIONS 
AI is artificial intelligence; 
ANN is an artificial neural network; 
SNN is a spiking neural network; 
VLSI is very large-scale integration; 
IC is integrated circuit; 
CAD is computer aided design; 
EDA is electronic design automation; 
DRC is design rule check; 
ERC is electrical rule check; 
LVS is layout versus schematic; 
LIF is leaky integrate-and-fire; 
STDP is spike timing dependent plasticity; 
GPU is a graphics processing unit; 
MOS is metal-oxide-semiconductor; 
Si-IPD is silicon-based integrated passive devices; 
DC is a direct current. 

 
NOMENCLATURE 

VDD is a positive power supply voltage for integrated 
circuits; 

VGND is a zero voltage reference point in the circuit 
used as a baseline for measuring the voltage of other cir-
cuit components; 

Vbase. is a reference voltage for the excitatory or inhibi-
tory circuits of the synaptic input; 

Voffset is a decremental or incremental voltage for the 
excitatory or inhibitory circuits of the synaptic input; 

wi is a synaptic weighting coefficient of the i-th synap-
tic input of the neuron. 

INTRODUCTION 
The growing interest in building AI systems based on 

neural networks prompts the search for new architectural 
solutions for hardware, which would be more adequate to 
the methods of solving problems in the neural network 
basis. It becomes clear that using arrays of graphics proc-
essors for the hardware of AI systems has significant limi-
tations in terms of energy efficiency, autonomy, mobility, 
scalability, etc., and can only be considered as a tempo-
rary solution. Therefore, in recent years, more and more 
attention has been drawn to neuromorphic computer sys-
tems that are built and function similarly to the biological 
neural network of the human brain. A neuromorphic 
processor in such a system is a VLSI circuit organized as 
a spiking neural network of computing elements that 
functionally correspond to neurons. The design of neuro-
morphic processors, their basic elements and the hardware 
implementation of neuromorphic calculations is an actual 
problem of modern computer engineering. 

The object of study is the process of signal process-
ing control in the hardware implementation of the analog 
spiking neuron. 

The subject of study is the methods for the design 
and verification of the hardware implementation of the 
analog spiking neuron for a neuromorphic processor neu-
ral network. 

The purpose of the work is to develop and study 
schematic and layout solutions for the hardware imple-
mentation of the analog spiking neuron with the digital 
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control of input signals by binary synaptic weighting co-
efficients.  

 
1 PROBLEM STATEMENT 

The key problem of neuromorphic computing is the 
design and fabrication of neuromorphic chips based on 
the hardware implementation of spiking neurons and spik-
ing neural networks as VLSI circuits [1, 2]. The spiking 
neural network of a neuromorphic processor can be built 
based on the use of analog or digital circuits [3–6]. Both 
approaches have some advantages and drawbacks. But the 
best option would rather be a hybrid circuit as a combina-
tion of analog and digital parts. The optimal choice for the 
hardware implementation of a neuromorphic processor is 
the LIF model of the spiking neuron. In [7, 8], a simple 
implementation of the synapse of the LIF model of an 
analog spiking neuron was proposed, which uses circuits 
of parallel-connected MOS transistors that control the 
current at the output of the synapse to weigh the input 
signals. However, no method has been proposed to con-
trol the weighing of input signals based on the values of 
the weighting coefficients. That is why the problem is to 
design the hardware implementation of a spiking analog 
neuron with digital control of input signals weighing 
based on the synaptic input model described in [7]. The 
hardware implementation of the hybrid spiking neuron 
must be designed at the schematic and layout level of the 
VLSI design flow using CAD tool Tanner EDA with ap-
propriate verification procedures. 

 
2 REVIEW OF THE LITERATURE 

Growing demands of modern AI systems reveal prob-
lems and limitation their hardware implementation based 
on traditional architecture solutions. Using supercomput-
ers and GPU arrays as the hardware platform of AI sys-
tems results in the problems of huge energy consumption, 
limited scalability, and the lack of autonomy. In recent 
years, it has become obvious that the most promising way 
to solve these problems would be the transition to neuro-
morphic systems. Such systems at the hardware level im-
plement the concept of spiking neural networks for the 
organization of massive parallel processing of informa-
tion.  

Spiking neural networks belong to the third generation 
of neural networks. SNN is a type of artificial neural net-
work that mainly relies on methods of transmitting and 
processing information in the form in which they exist in 
the biological nervous system. As in its biological origi-
nal, in a SNN, information is transmitted through connec-
tions between neurons using short pulses –  spikes, which 
are generated by neurons when they are activated. In the 
biological nervous system, a spike corresponds to a nerve 
impulse.  

An important feature of the SNN is the asynchronous 
nature of the work of neurons, due to which there is no 
constant flow of data across all synaptic connections be-
tween neurons, as in a conventional artificial neural net-
work. Each neuron in SNN works independently of the 

others, responding only to the arrival of a spike from one 
of the pre-synaptic neurons by changing the membrane 
potential. This event-driven and asynchronous nature of 
the work makes it possible to build an energy-efficient 
hardware implementation of a spiking neural network as a 
neuromorphic chip. 

The method of processing spikes in an artificial neu-
ron depends on the neuron model used in the spiking neu-
ral network. There are various models [9] of the neuron, 
many of which have been implemented in hardware, 
which can be divided into biologically plausible, biologi-
cally inspired, integrate-and-fire models, and derivatives 
of the original McCulloch-Pitts model. Biologically plau-
sible models such as Hodgkin-Huxley model [10] try to 
describe the physical processes in the biological neuron as 
accurately as possible in terms of ion’s transferring 
mechanism through the neuron cell membrane. Biologi-
cally inspired models are simplified variants of the Hodg-
kin-Huxley model, for example, Fitzhugh-Nagumo [11], 
Hindmarsh-Rose [12] models, or the popular Izhikevich 
spiking neuron model [13], which accurately model the 
behavior of the biological neuron rather than its physical 
activity. Although those models are more computation-
oriented and have a simpler hardware implementation 
than for the Hodgkin-Huxley model, they are still too 
complex to practically build neuromorphic systems based 
on them. 

Less biologically realistic and more computationally 
simple are a set of integrate-and-fire models of the spik-
ing neuron. These models and their more advanced vari-
ant – Leaky Integrate-and-Fire model offer a balance be-
tween the accuracy of the description of the neuron’s be-
havior and the simplicity of calculations [14]. 

The dynamics of the LIF model of a neuron is illus-
trated in Fig. 1 [15]. Spikes from pre-synaptic neurons are 
first modulated by the weights of synaptic inputs, then 
currents at synaptic inputs are integrated into the mem-
brane potential of the neuron, which exponentially de-
creases over time due to leakage. If the membrane poten-
tial exceeds the threshold value, the neuron generates an 
action potential in the form of a post-spike, after which 
the membrane potential decreases to the level of the rest-
ing potential. 

 

 
Figure 1 – Dynamic of the LIF model  

 
The behavior of LIF model accurately imitates bio-

logical neural network dynamic. That is why this model 
of a spiking neuron is currently the most popular in the 
hardware implementation of neuromorphic systems. 

Classical ANN training methods based on the back-
propagation algorithm, are hardly applicable to spiking 
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neural networks, since the SNN is digital in nature, and in 
addition, backpropagation does not comply with the prin-
ciple of biological plausibility. That is why there are two 
approaches to train SNN. First one is the method of Spike 
Timing Dependent Plasticity [16] based on the principle 
of locality [17]. According to this method the synapses 
which activate the post-synaptic neuron shortly after re-
ceiving spikes increase their weight, while the synapses 
that received spikes shortly after post-synaptic neuron 
activation decrease their weights. The STDP method is 
ready for the hardware implementation of learning 
mechanisms and makes it possible to train SNN directly 
on the neuromorphic chip. The second approach [18,19] 
applies the method of out-of-chip training that implies the 
construction of the classical ANN as a continuous ana-
logue of the SNN and teaching this auxiliary network 
using backpropagation method with a host computer. Af-
ter training, obtained synaptic weight coefficients are 
translated into synaptic memory on the neuromorphic 
chip. 

For more than two decades of research in the field of 
neuromorphic systems and computing, there have been 
several significant projects, most of which continue to this 
day [17]. One of the first projects was SpiNNaker, 
launched in 2011 at the University of Manchester and 
continued as a part of the European Human Brain Project 
on the SpiNNaker 2 hardware platform [20]. The SpiN-
Naker is not a neuromorphic processor but it is rather a 
massively parallel computing system that was specially 
built for simulating a spiking neural networks to model 
human brain structures. The first industrially produced 
neuromorphic chip was the TrueNorth chip [21], created 
in 2014 by IBM under the auspices of the DARPA SyN-
APSE program. The spiking neurons of the chip cores 
were built as simplified digital circuits that allow only 
addition and subtraction operations to be performed. Syn-
aptic weight coefficients were coded with 2-bit values, 
that is why only out-of-chip training was possible using a 
different hardware platform with the translation of weight 
coefficient values obtained as training results into synap-
tic memory of the TrueNorth chip. The first neuromorphic 
chip with the ability to learn directly on the chip was the 
Liohi chip [22] created by Intel in 2018 using a 14 nm 
technological process, and the Liohi 2 chip that was pre-
sented in 2021 and was already made by a 7 nm technol-
ogy. Synaptic weights in the Liohi chip can already be 
encoded with 8-bit values, which makes it possible to 
perform on-chip training. Synaptic weights are modified 
in the process of local training according to the rule of 
synaptic plasticity, which is formulated in the form of a 
simple formula with only addition and multiplication op-
erations implemented in a set of microprograms. The 
Tianjic neuromorphic chip presented by Beijing Xinhua 
University in 2019 became the first hybrid chip that com-
bines the architecture of the classical artificial neural net-
work and the spiking neural network in one neuromorphic 
system. [23,24]. The Tianjic chip is not designed for on-
chip training. Therefore, training is carried out on the 

platform of graphic processors, and the results of training 
are implemented in the synaptic memory of the chip. 

There are other successful projects in the field of de-
velopment of neuromorphic systems and their number is 
constantly increasing. The commercial success of artifi-
cial intelligence systems that we have observed in recent 
years and the apparent inability to support this success 
with adequate hardware platforms leads to the need for 
further research in the field of neuromorphic systems and 
their hardware implementation.  

 
3 MATERIALS AND METHODS 

Let’s consider the block diagram of an analog spiking 
neuron shown in Fig. 2. The neuron circuit contains a 
Schmidt trigger that implements the threshold function of 
activation and a ring oscillator that generates spikes. A 
leaky integrator forms the membrane potential of the neu-
ron, ensuring the accumulation of the potential to a 
threshold value upon the arrival of input signals and its 
gradual reduction to the resting potential in the absence of 
input spikes. The addition of input signals in the analog 
neuron is carried out as the usual sum of currents in an 
electric circuit. 
 

 
Figure 2 – Block diagram of an analog spiking neuron with two 

synaptic inputs [25] 
 

But the most significant components of the neuron are 
the synaptic inputs, which produce weighted input signals 
that are amplified or attenuated according to the values of 
the synaptic weights. To weigh the input signal, the hard-
ware implementation of the synapse has been proposed in 
[7,8] which uses excitation and inhibition circuits consist-
ing of several MOS transistors connected in parallel, as 
shown in Fig. 3. 
 

 
Figure 3 – Circuit diagram for the synaptic input [7] 
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By changing the voltage levels on the gates of the 
transistors in the excitation and/or inhibition circuits, the 
input signal can be weighted. This can be done by alter-
nately switching these transistors to the subthreshold 
mode of operation, which allows us to gradually increase 
or decrease the current at the synapse output. Regardless 
of the number of transistors in the circuits, it is sufficient 
to use two voltage levels – Vbase and Voffset, where VDD ≥ 
Vbase> Voffset for the excitation circuit, and VGND ≤ Vbase < 
Voffset for the inhibition circuit, which are alternately ap-
plied to the gates and switch the transistors one by one in 
the subthreshold mode of operation. Three MOS transis-
tors in the excitation and inhibition circuits, as shown in 
Fig. 3, provide a possibility to obtain four levels of cur-
rent at the synapse output and, accordingly, four levels of 
the post-synaptic potential at the leaky integrator. 

The selection of the post-synaptic potential level is 
carried out by switching the gates of the transistors in the 
excitation and/or inhibition circuits with one of two power 
sources – Vbase or Voffset. To control this selection for exci-
tation and inhibition circuits consisted of three MOS tran-
sistors, 2-bit values can be used acting as synaptic weight-
ing coefficients. 

The circuit diagram for digital control of voltage on 
the gates of MOS transistors in the excitation and inhibi-
tion circuits is shown in Fig. 4, with voltage switches 
built on two transmission gates [26]. 
 

 
Figure 4 – Circuit diagram for the digital control of voltage 

 
The layout design of the voltage control circuit is 

demonstrated in Fig. 5. 
 

 
Figure 5 – Layout design of the voltage control circuit  

 
The circuit diagram of the synaptic input with two 

blocks of digital control with excitatory and inhibitory 
weighting coefficients is shown in Fig. 6. Unlike a bio-
logical neuron, this hardware implementation allows us to 

use both excitatory and inhibitory weighting coefficients, 
which adds additional functional flexibility to such a neu-
ron implementation. 
 

 
Figure 6 – Circuit diagram for the synaptic input with the digital 

control of input signal by synaptic weights 
 

The advantage of the analog implementation of the 
neuron is the simplicity of adding new synaptic inputs to 
the neuron, since the summation of weighted input signals 
occurs naturally according to Kirchhoff’s law as the sum 
of currents. 

For the hardware implementation of the threshold ac-
tivation function, a Schmitt trigger is used, based on the 
circuit on MOS transistors, as shown in Fig. 7. The 
Schmitt trigger converts the analog input signal of the 
membrane potential into a digital output signal that acti-
vates a spike generator if the membrane potential of the 
neuron exceeds the threshold level. A classic ring oscilla-
tor consisting of an odd number of inverters arranged in a 
ring is used as a spike generator. 
 

 
Figure 7 – Circuit diagram of the Schmitt trigger 

 
The layout design of the neuron activator based on the 

Schmitt trigger and the generator of spikes based on the 
ring oscillator are shown in Fig. 8 and Fig. 9, respectively. 

Based on the developed components of the spiking 
neuron, a neuron circuit with two synaptic inputs was 
designed in accordance with the block diagram shown in 
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Fig. 2. The layout design of the neuron with two synaptic 
inputs and the digital control of input signals weighing by 
binary synaptic weighting coefficients is shown in Fig. 
10. It should be noted that capacitive and resistive ele-
ments of the leaky integrator are formed on the back side 
of the silicon wafer using 3D Silicon-based Integrated 

Passive Devices (Si-IPD) technology and through-silicon 
vias used to integrate passive components such as induc-
tors, resistors and capacitors on a chip. The characteristics 
of those elements were directly added to the netlist ex-
ported from the neuron layout for its verification. 

 
 

Figure 8 – Layout design of the Schmitt trigger Figure 9 – Layout design of the ring oscillator 
 

 
Figure 10 – Layout design of the analog spiking neuron with two synaptic inputs and digital control of input signals weighing 

 
 

4 EXPERIMENTS 
The spiking analog neuron hardware implementation 

is designed using Tanner EDA software which is a pro-
fessional standard in the field of VLSI design. The Tanner 
EDA provides a complex software solution for the design 
and verification at the schematic and layout levels of the 
design flow for full-custom analog and mixed signal inte-
grated circuits. The design flow can be demonstrated us-
ing the diagram shown in Fig. 11. 

After defining circuit specifications, a logic/transistor 
circuit is designed at schematic level using S-Edit compo-
nent of Tanner EDA. To simplify the design of larger 
structures, a symbolic designation (Symbol) is created and 
associated with the circuit. Simulation of the circuit at the 
schematic level is carried out to determine its functional-
ity and, in case of errors, the circuit is revised. The veri-
fied circuit is exported to the netlist of schematic level. 
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Figure 11 – Design flow diagram 

 
According to the transistor circuit, a topological draw-

ing (Layout) of the placement of diffusion areas of tran-
sistors, gates, interconnects, power buses, etc. on a silicon 
crystal is developed using L-Edit component of Tanner 
EDA.  Layout verification is carried out for compliance 
with design rules and technological standards using De-
sign Rule Check, (DRC) and Electrical Rule Check 
(ERC) procedures. If non-compliance with the design 
rules is detected, the layout design is corrected. 

Next, the layout is exported to the netlist of the layout 
level and is verified by comparing the netlists of the 
schematic and layout levels using Layout versus Sche-
matic Check (LVS) component. When inconsistencies are 
detected, the layout design is redone. At the final stage of 
design flow, Post Layout Simulation is carried out at the 
layout level to compare with that of schematic level. 
Simulation results at schematic and layout levels are ob-
tained as waveform probing of signals at reference nodes 
of the circuit.  

 
5 RESULTS 

It is well known that a neuron with two inputs is an 
elementary perceptron capable of implementing simple 
logical functions. Let’s investigate the functionality of 
proposed schematic solutions using the example of calcu-
lating logical functions. 

We will apply periodic signals to the pre-synaptic in-
puts of the neuron, which provide all four binary combi-
nations possible for a device with two inputs. Waveforms 
probing is registered at some reference nodes of the neu-
ron as input signals, membrane potential of the neuron, 
activation signal and output signal of the neuron. Since 
synaptic weighting coefficients are two-bit binary values, 
it is easy to estimate the effect of all possible combina-

tions of weighting coefficients of the synaptic inputs on 
the output signal of the neuron. Assume that the input 
signals are affected only by the excitatory weighting coef-
ficients of the synaptic inputs. Then, for a neuron with 
two synaptic inputs, we have sixteen possible combina-
tions of two-bit weighting coefficients w1 and w2. 

Some simulation results for combinations of excita-
tory synaptic weighting coefficients which provide the 
implementation of different logical functions are shown in 
Fig. 12 as signal waveforms at reference nodes of the neu-
ron. 

The generalized result of modeling the neuron’s proc-
essing of input signals for sixteen combinations of excita-
tory synaptic weighting coefficients with interpretation in 
terms of logical functions is shown in Table 1 where A 
and B stand for signals at the pre-synaptic inputs.  

 
Table 1 – Logical functions generated at neuron’s output 

 

w2 w1 Neuron Output 
00 00 0 

00 01 A AND B 

00 10 A 

00 11 A 

01 00 A AND B 

01 01 A AND B 

01 10 A 

01 11 A 

10 00 B 

10 01 B 

10 10 A OR B 

10 11 A OR B 

11 00 B 

11 01 B 

11 10 A OR B 

11 11 A OR B 

 
To implement the logical NOT function, it is neces-

sary to use inhibitory weighting coefficients. The input 
signal to be inverted is applied to the first synaptic input 
of the neuron, while at the same time the second input is 
applied with DC signal whose level corresponds to VDD 
value. The signal at the first synaptic input is affected by 
inhibitory weighting coefficient only while the signal at 
the second synaptic input is neither amplified nor inhib-
ited. The signal waveforms at the reference nodes of the 
neuron are shown in Fig. 13 for inhibitory weighting coef-
ficient of the first synaptic input w1=10 while the others 
weighting coefficients are zero. 

Thus, the designed circuit of an analog neuron with 
digital control of input signals weighing using binary syn-
aptic coefficients acts as an elementary perceptron and 
can implement logical functions AND, OR and NOT. 
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a b 

c d 
Figure 12 – Signal waveforms at reference nodes of the neuron for some combinations of weighting coefficients: 

a – w1=01, w2=01, Out = A AND B; b – w1=11, w2=11, Out = A OR B; c – w1=10, w2=01, Out = A; d – w1=01, w2=10, Out = B 
 

 
Figure 13 – Logical NOT function implementation using  

inhibitory weighting coefficient w1=10   
 
 
 

6 DISCUSSION 
The spiking neuron is a node of a spiking neural net-

work that forms a neuromorphic chip. That is why the 
spiking neuron can be considered as a basic building ele-
ment for the neuromorphic processor. The main results of 
the paper are schematic and layout solutions for the hard-
ware implementation of an analog spiking neuron with 
digital control of input signals weighing. Analog nature of 
the neuron allows us to simplify signal processing imple-
mentation, but the state of the neural network should be 
saved as digital values of weighting coefficients in dis-
tributed memory devices. This fact determines require-
ments to provide the digital control of input signals 
weighing using binary values of weighting coefficients. 

The proposed solutions are based on the synaptic input 
schematic described in [7] which is the closest analogue 
to the considered hardware implementation. In [7], au-
thors discus simple approach to weigh input signals using 
the excitation and inhibition circuits consisted of parallel 
connected p-type and n-type MOS transistors. But any 
methods to control the amplification and attenuation of 
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input signals using synaptic weighting coefficients have 
not been proposed. In the presented research for the syn-
aptic input the schematic solution is developed to digitally 
control voltage on the gates of MOS transistors in the 
excitation and inhibition circuits. This allows us to control 
input signals of the neuron using binary values of the syn-
aptic weighting coefficients. 

The practical significance of the research is related to 
the layout design of the analog spiking neuron. This de-
sign can be used as the basic building block of a semicon-
ductor intellectual property core to produce a neuromor-
phic chip as an application-specific integrated circuit.  

The schematic solutions for all neuron blocks and the 
neuron as whole are verified by the simulation using CAD 
tools with obtaining waveforms of signals at reference 
nodes of circuits. The layout solutions are verified with 
DRC, ERC, LVS checks and post-layout simulations. 

The simulation results obtained for all combinations 
of two-bit weighting coefficients demonstrate how the 
neuron processes input signals to calculate logical func-
tion which is the classical problem for the perceptron. The 
weighting coefficients for a specific problem can be found 
as the result of off-line learning and then translated to 
two-bit binaries.  

The advantage of the proposed hybrid solution for the 
spiking neuron consists in the simplicity of neuron circuit 
scaling by adding new synaptic input blocks. The sche-
matics of the neuron core and synaptic input blocks re-
main the same with adding new inputs to the neuron. That 
allows us to easily build neuron circuits with multiple 
inputs for a spiking neuron network of the neuromorphic 
processor. 

The simplicity of scaling the neuron schematic and 
layout solutions opens up prospects for further research in 
the direction of developing spiking neural network struc-
tures of a neuromorphic processor.  

 
CONCLUSIONS 

The problem of controlling the weighing of input sig-
nals for an analog spiking neuron using binary synaptic 
weighting coefficients has been solved. 

The scientific novelty of obtained results is that the 
digital method of controlling the weighing of input sig-
nals for an analog spiking neuron is proposed. The hybrid 
design of the neuron improves the previously developed 
schematic of the synaptic input making possible to control 
input signals of the analog neuron using binary values of 
weighting coefficients. This allows us to use analog na-
ture of signal processing by neurons while the state of 
neurons is determined by binary values of weighting coef-
ficients stored in memory devices.   

The practical significance of obtained results is that 
the layout is designed for the analog spiking neuron with 
digital controlling the weighing of input signals by binary 
synaptic weighting coefficients. This layout design can be 
used as the SIP core basic building block to produce a 
spiking neural network of a neuromorphic chip.  

Prospects for further research are to develop and 
study structures of SNN for a neuromorphic processor 

based on the designed spiking analog neuron with the 
digitally controlled weighing of input signals. 
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Гниленко О. Б. – канд. фіз.-мат. наук, доцент, доцент кафедри електронних обчислювальних машин Дніпровського на-

ціонального університету імені Олеся Гончара, Дніпро, Україна. 
 

AНОТАЦІЯ 
Актуальність. Значні виклики, що постають перед розробниками апаратного забезпечення систем штучного інтелекту, 

змушують шукати для реалізації таких систем нові нестандартні архітектурні рішення. Одним із таких перспективних рі-
шень є перехід від класичної архітектури фон Неймана до нейроморфної архітектури, яка на апаратному рівні намагається 
імітувати роботу нейронної мережі людського мозку. Нейроморфний процесор, побудований як апаратна реалізація імпуль-
сної нейронної мережі, складається з великої кількості елементарних електронних схем, які структурно та функціонально 
відповідають нейронам. Тому, проєктування апаратної реалізації імпульсного нейрона як основного будівельного елементу 
нейроморфного процесора представляє собою значний науковий та практичний інтерес.  

Мета роботи. Метою роботи є розробка апаратної реалізації аналогового імпульсного нейрона з цифровим керуванням 
зважуванням вхідних сигналів двійковими синаптичними ваговими коефіцієнтами. 

Метод. Проєктування виконується на схемотехнічному та топологічному рівнях наскрізного маршруту проєктування ін-
тегральних схем з використанням сучасних засобів автоматизації проєктування електронних пристроїв. Для підтвердження 
функціональності усіх запропонованих схемотехнічних та топологічних рішень проведено їх верифікацію та моделювання 
засобами автоматизованого проєктування,.  

Результати. Розроблено та досліджено схемотехнічні та топологічні рішення для апаратної реалізації аналогового імпу-
льсного нейрона з цифровим керуванням зважуванням вхідних сигналів двійковими синаптичними ваговими коефіцієнтами 
як основного елемента побудови імпульсної нейронної мережі нейроморфного процесора.  

Висновки. Запропонована гібридна конструкція апаратної реалізації імпульсного нейрона має переваги завдяки поєд-
нанню простоти аналогових методів обробки сигналів в нейроні з цифровим керуванням станом нейрона за допомогою 
двійкових вагових коефіцієнтів. Результати моделювання підтверджують функціональність отриманих схемотехнічних та 
топологічних рішень і демонструють можливість реалізації логічних функцій, притаманних персептрону. Перспективи по-
дальших досліджень можуть включати розробку апаратної реалізації ядра імпульсної нейронної мережі нейроморфного 
процесора на основі розроблених схемотехнічних та топологічних рішень для імпульсного нейрона..  

КЛЮЧОВІ СЛОВА: нейроморфний процесор, імпульсна нейронна мережа, нейрон, синаптичний коефіцієнт, топологі-
чне проєктування.  
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