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ABSTRACT

Context. Significant challenges facing hardware developers of artificial intelligence systems force them to look for new non-
standard architectural solutions. One of the promising solutions is the transition from von Neumann’s classic architecture to neuro-
morphic architecture, which at the hardware level tries to imitate the work of the neural network of the human brain. A neuromorphic
processor built as hardware implementation of a spiking neural network consists of a large number of elementary electronic circuits
that structurally and functionally correspond to neurons. Thus, the design of hardware implementation of a spiking neuron as the
basic building element of a neuromorphic processor is of great scientific interest.

Objective. The goal of the work is to design an analog spiking neuron hardware implementation with digital control of input sig-
nals by binary synaptic weighting coefficients.

Method. Designing is performed at the logical/schematic and topological levels of the design flow using modern tools of elec-
tronic design automation. All proposed schematic and layout solutions are verified and simulated using computer aided design tools
to prove their functionality.

Results. The schematic and layout solutions have been developed and investigated for the hardware implementation of the spik-
ing analog neuron with digital control of input signals by binary synaptic weighting coefficients to be the basic building element of a
spiking neural network of the neuromorphic processor.

Conclusions. The proposed hybrid design of the spiking neuron hardware implementation benefits by combining the simplicity
of analog signal processing methods in the neuron with digital control of the state of the neuron using binary weighting coefficients.
The simulation results confirm the functionality of the obtained schematic/layout solutions and demonstrate the possibility of imple-
menting logical functions inherent in the perceptron. The prospects for further research may include the design of hardware imple-
mentation for a spiking neural network core based on the developed schematic and layout solutions for the spiking neuron.

KEYWORDS: neuromorphic processor, spiking neural network, neuron, synaptic coefficient, layout design.

ABBREVIATIONS INTRODUCTION

Al is artificial intelligence; The growing interest in building Al systems based on
ANN is an artificial neural network; neural networks prompts the search for new architectural
SNN is a spiking neural network; solutions for hardware, which would be more adequate to
VLSI is very large-scale integration; the methods of solving problems in the neural network
IC is integrated circuit; basis. It becomes clear that using arrays of graphics proc-
CAD is computer aided design; essors for the hardware of Al systems has significant limi-
EDA is electronic design automation; tations in terms of energy efficiency, autonomy, mobility,
DRC is design rule check; scalability, etc., and can only be considered as a tempo-
ERC is electrical rule check; rary solution. Therefore, in recent years, more and more
LVS is layout versus schematic; attention has been drawn to neuromorphic computer sys-
LIF is leaky integrate-and-fire; tems that are built and function similarly to the biological
STDP is spike timing dependent plasticity; neural network of the human brain. A neuromorphic
GPU is a graphics processing unit; processor in such a system is a VLSI circuit organized as
MOS is metal-oxide-semiconductor; a spiking neural network of computing elements that
Si-IPD is silicon-based integrated passive devices; functionally correspond to neurons. The design of neuro-
DC is a direct current. morphic processors, their basic elements and the hardware
implementation of neuromorphic calculations is an actual

NOMENCLATURE problem of modern computer engineering.
~ Voo is a positive power supply voltage for integrated The object of study is the process of signal process-
circuits; ing control in the hardware implementation of the analog

Venp is a zero voltage reference point in the circuit  gpiking neuron.
used as a baseline for measuring the voltage of other cir-
cuit components;

Vpase, 18 a reference voltage for the excitatory or inhibi-
tory circuits of the synaptic input;

Vosrser 1S @ decremental or incremental voltage for the
excitatory or inhibitory circuits of the synaptic input;

w; is a synaptic weighting coefficient of the i-th synap-
tic input of the neuron.

The subject of study is the methods for the design
and verification of the hardware implementation of the
analog spiking neuron for a neuromorphic processor neu-
ral network.

The purpose of the work is to develop and study
schematic and layout solutions for the hardware imple-
mentation of the analog spiking neuron with the digital
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control of input signals by binary synaptic weighting co-
efficients.

1 PROBLEM STATEMENT

The key problem of neuromorphic computing is the
design and fabrication of neuromorphic chips based on
the hardware implementation of spiking neurons and spik-
ing neural networks as VLSI circuits [1, 2]. The spiking
neural network of a neuromorphic processor can be built
based on the use of analog or digital circuits [3—6]. Both
approaches have some advantages and drawbacks. But the
best option would rather be a hybrid circuit as a combina-
tion of analog and digital parts. The optimal choice for the
hardware implementation of a neuromorphic processor is
the LIF model of the spiking neuron. In [7, 8], a simple
implementation of the synapse of the LIF model of an
analog spiking neuron was proposed, which uses circuits
of parallel-connected MOS transistors that control the
current at the output of the synapse to weigh the input
signals. However, no method has been proposed to con-
trol the weighing of input signals based on the values of
the weighting coefficients. That is why the problem is to
design the hardware implementation of a spiking analog
neuron with digital control of input signals weighing
based on the synaptic input model described in [7]. The
hardware implementation of the hybrid spiking neuron
must be designed at the schematic and layout level of the
VLSI design flow using CAD tool Tanner EDA with ap-
propriate verification procedures.

2 REVIEW OF THE LITERATURE

Growing demands of modern Al systems reveal prob-
lems and limitation their hardware implementation based
on traditional architecture solutions. Using supercomput-
ers and GPU arrays as the hardware platform of Al sys-
tems results in the problems of huge energy consumption,
limited scalability, and the lack of autonomy. In recent
years, it has become obvious that the most promising way
to solve these problems would be the transition to neuro-
morphic systems. Such systems at the hardware level im-
plement the concept of spiking neural networks for the
organization of massive parallel processing of informa-
tion.

Spiking neural networks belong to the third generation
of neural networks. SNN is a type of artificial neural net-
work that mainly relies on methods of transmitting and
processing information in the form in which they exist in
the biological nervous system. As in its biological origi-
nal, in a SNN, information is transmitted through connec-
tions between neurons using short pulses — spikes, which
are generated by neurons when they are activated. In the
biological nervous system, a spike corresponds to a nerve
impulse.

An important feature of the SNN is the asynchronous
nature of the work of neurons, due to which there is no
constant flow of data across all synaptic connections be-
tween neurons, as in a conventional artificial neural net-
work. Each neuron in SNN works independently of the
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others, responding only to the arrival of a spike from one
of the pre-synaptic neurons by changing the membrane
potential. This event-driven and asynchronous nature of
the work makes it possible to build an energy-efficient
hardware implementation of a spiking neural network as a
neuromorphic chip.

The method of processing spikes in an artificial neu-
ron depends on the neuron model used in the spiking neu-
ral network. There are various models [9] of the neuron,
many of which have been implemented in hardware,
which can be divided into biologically plausible, biologi-
cally inspired, integrate-and-fire models, and derivatives
of the original McCulloch-Pitts model. Biologically plau-
sible models such as Hodgkin-Huxley model [10] try to
describe the physical processes in the biological neuron as
accurately as possible in terms of ion’s transferring
mechanism through the neuron cell membrane. Biologi-
cally inspired models are simplified variants of the Hodg-
kin-Huxley model, for example, Fitzhugh-Nagumo [11],
Hindmarsh-Rose [12] models, or the popular Izhikevich
spiking neuron model [13], which accurately model the
behavior of the biological neuron rather than its physical
activity. Although those models are more computation-
oriented and have a simpler hardware implementation
than for the Hodgkin-Huxley model, they are still too
complex to practically build neuromorphic systems based
on them.

Less biologically realistic and more computationally
simple are a set of integrate-and-fire models of the spik-
ing neuron. These models and their more advanced vari-
ant — Leaky Integrate-and-Fire model offer a balance be-
tween the accuracy of the description of the neuron’s be-
havior and the simplicity of calculations [14].

The dynamics of the LIF model of a neuron is illus-
trated in Fig. 1 [15]. Spikes from pre-synaptic neurons are
first modulated by the weights of synaptic inputs, then
currents at synaptic inputs are integrated into the mem-
brane potential of the neuron, which exponentially de-
creases over time due to leakage. If the membrane poten-
tial exceeds the threshold value, the neuron generates an
action potential in the form of a post-spike, after which
the membrane potential decreases to the level of the rest-
ing potential.
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Figure 1 — Dynamic of the LIF model

The behavior of LIF model accurately imitates bio-
logical neural network dynamic. That is why this model
of a spiking neuron is currently the most popular in the
hardware implementation of neuromorphic systems.

Classical ANN training methods based on the back-
propagation algorithm, are hardly applicable to spiking
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neural networks, since the SNN is digital in nature, and in
addition, backpropagation does not comply with the prin-
ciple of biological plausibility. That is why there are two
approaches to train SNN. First one is the method of Spike
Timing Dependent Plasticity [16] based on the principle
of locality [17]. According to this method the synapses
which activate the post-synaptic neuron shortly after re-
ceiving spikes increase their weight, while the synapses
that received spikes shortly after post-synaptic neuron
activation decrease their weights. The STDP method is
ready for the hardware implementation of learning
mechanisms and makes it possible to train SNN directly
on the neuromorphic chip. The second approach [18,19]
applies the method of out-of-chip training that implies the
construction of the classical ANN as a continuous ana-
logue of the SNN and teaching this auxiliary network
using backpropagation method with a host computer. Af-
ter training, obtained synaptic weight coefficients are
translated into synaptic memory on the neuromorphic
chip.

For more than two decades of research in the field of
neuromorphic systems and computing, there have been
several significant projects, most of which continue to this
day [17]. One of the first projects was SpiNNaker,
launched in 2011 at the University of Manchester and
continued as a part of the European Human Brain Project
on the SpiNNaker 2 hardware platform [20]. The SpiN-
Naker is not a neuromorphic processor but it is rather a
massively parallel computing system that was specially
built for simulating a spiking neural networks to model
human brain structures. The first industrially produced
neuromorphic chip was the TrueNorth chip [21], created
in 2014 by IBM under the auspices of the DARPA SyN-
APSE program. The spiking neurons of the chip cores
were built as simplified digital circuits that allow only
addition and subtraction operations to be performed. Syn-
aptic weight coefficients were coded with 2-bit values,
that is why only out-of-chip training was possible using a
different hardware platform with the translation of weight
coefficient values obtained as training results into synap-
tic memory of the TrueNorth chip. The first neuromorphic
chip with the ability to learn directly on the chip was the
Liohi chip [22] created by Intel in 2018 using a 14 nm
technological process, and the Liohi 2 chip that was pre-
sented in 2021 and was already made by a 7 nm technol-
ogy. Synaptic weights in the Liohi chip can already be
encoded with 8-bit values, which makes it possible to
perform on-chip training. Synaptic weights are modified
in the process of local training according to the rule of
synaptic plasticity, which is formulated in the form of a
simple formula with only addition and multiplication op-
erations implemented in a set of microprograms. The
Tianjic neuromorphic chip presented by Beijing Xinhua
University in 2019 became the first hybrid chip that com-
bines the architecture of the classical artificial neural net-
work and the spiking neural network in one neuromorphic
system. [23,24]. The Tianjic chip is not designed for on-
chip training. Therefore, training is carried out on the
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platform of graphic processors, and the results of training
are implemented in the synaptic memory of the chip.

There are other successful projects in the field of de-
velopment of neuromorphic systems and their number is
constantly increasing. The commercial success of artifi-
cial intelligence systems that we have observed in recent
years and the apparent inability to support this success
with adequate hardware platforms leads to the need for
further research in the field of neuromorphic systems and
their hardware implementation.

3 MATERIALS AND METHODS

Let’s consider the block diagram of an analog spiking
neuron shown in Fig. 2. The neuron circuit contains a
Schmidt trigger that implements the threshold function of
activation and a ring oscillator that generates spikes. A
leaky integrator forms the membrane potential of the neu-
ron, ensuring the accumulation of the potential to a
threshold value upon the arrival of input signals and its
gradual reduction to the resting potential in the absence of
input spikes. The addition of input signals in the analog
neuron is carried out as the usual sum of currents in an
electric circuit.

Excitatory Weights
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Figure 2 — Block diagram of an analog spiking neuron with two
synaptic inputs [25]

But the most significant components of the neuron are
the synaptic inputs, which produce weighted input signals
that are amplified or attenuated according to the values of
the synaptic weights. To weigh the input signal, the hard-
ware implementation of the synapse has been proposed in
[7,8] which uses excitation and inhibition circuits consist-
ing of several MOS transistors connected in parallel, as
shown in Fig. 3.
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Figure 3 — Circuit diagram for_the synaptic input [7]
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By changing the voltage levels on the gates of the
transistors in the excitation and/or inhibition circuits, the
input signal can be weighted. This can be done by alter-
nately switching these transistors to the subthreshold
mode of operation, which allows us to gradually increase
or decrease the current at the synapse output. Regardless
of the number of transistors in the circuits, it is sufficient
to use two voltage levels — Vi, and Ve, where Vpp >
Viase™ Vorret for the excitation circuit, and Vonp < Viase <
Voiser for the inhibition circuit, which are alternately ap-
plied to the gates and switch the transistors one by one in
the subthreshold mode of operation. Three MOS transis-
tors in the excitation and inhibition circuits, as shown in
Fig. 3, provide a possibility to obtain four levels of cur-
rent at the synapse output and, accordingly, four levels of
the post-synaptic potential at the leaky integrator.

The selection of the post-synaptic potential level is
carried out by switching the gates of the transistors in the
excitation and/or inhibition circuits with one of two power
sources — Vi O Vogrer. TO control this selection for exci-
tation and inhibition circuits consisted of three MOS tran-
sistors, 2-bit values can be used acting as synaptic weight-
ing coefficients.

The circuit diagram for digital control of voltage on
the gates of MOS transistors in the excitation and inhibi-
tion circuits is shown in Fig. 4, with voltage switches
built on two transmission gates [26].

Figure 4 — Circuit diagram for the digital control of voltage

The layout design of the voltage control circuit is
demonstrated in Fig. 5.
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Figure 5 — Layout design of the voltage control circuit

The circuit diagram of the synaptic input with two
blocks of digital control with excitatory and inhibitory
weighting coefficients is shown in Fig. 6. Unlike a bio-
logical neuron, this hardware implementation allows us to
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use both excitatory and inhibitory weighting coefficients,
which adds additional functional flexibility to such a neu-
ron implementation.

Figure 6 — Circuit diagram for the synaptic input with the digital
control of input signal by synaptic weights

The advantage of the analog implementation of the
neuron is the simplicity of adding new synaptic inputs to
the neuron, since the summation of weighted input signals
occurs naturally according to Kirchhoff’s law as the sum
of currents.

For the hardware implementation of the threshold ac-
tivation function, a Schmitt trigger is used, based on the
circuit on MOS transistors, as shown in Fig. 7. The
Schmitt trigger converts the analog input signal of the
membrane potential into a digital output signal that acti-
vates a spike generator if the membrane potential of the
neuron exceeds the threshold level. A classic ring oscilla-
tor consisting of an odd number of inverters arranged in a
ring is used as a spike generator.

Figure 7 — Circuit diagram of the Schmitt trigger

The layout design of the neuron activator based on the
Schmitt trigger and the generator of spikes based on the
ring oscillator are shown in Fig. 8 and Fig. 9, respectively.

Based on the developed components of the spiking
neuron, a neuron circuit with two synaptic inputs was
designed in accordance with the block diagram shown in
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Fig. 2. The layout design of the neuron with two synaptic
inputs and the digital control of input signals weighing by
binary synaptic weighting coefficients is shown in Fig.
10. It should be noted that capacitive and resistive ele-
ments of the leaky integrator are formed on the back side
of the silicon wafer using 3D Silicon-based Integrated

Passive Devices (Si-IPD) technology and through-silicon
vias used to integrate passive components such as induc-
tors, resistors and capacitors on a chip. The characteristics
of those elements were directly added to the netlist ex-
ported from the neuron layout for its verification.

uT

Fiétllre 10 — Layout design of the analog spiking neuron with wo synaptic inputs and digital control of input signals weighing

4 EXPERIMENTS

The spiking analog neuron hardware implementation
is designed using Tanner EDA software which is a pro-
fessional standard in the field of VLSI design. The Tanner
EDA provides a complex software solution for the design
and verification at the schematic and layout levels of the
design flow for full-custom analog and mixed signal inte-
grated circuits. The design flow can be demonstrated us-
ing the diagram shown in Fig. 11.
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After defining circuit specifications, a logic/transistor
circuit is designed at schematic level using S-Edit compo-
nent of Tanner EDA. To simplify the design of larger
structures, a symbolic designation (Symbol) is created and
associated with the circuit. Simulation of the circuit at the
schematic level is carried out to determine its functional-
ity and, in case of errors, the circuit is revised. The veri-
fied circuit is exported to the netlist of schematic level.
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Figure 11 — Design flow diagram

According to the transistor circuit, a topological draw-
ing (Layout) of the placement of diffusion areas of tran-
sistors, gates, interconnects, power buses, etc. on a silicon
crystal is developed using L-Edit component of Tanner
EDA. Layout verification is carried out for compliance
with design rules and technological standards using De-
sign Rule Check, (DRC) and Electrical Rule Check
(ERC) procedures. If non-compliance with the design
rules is detected, the layout design is corrected.

Next, the layout is exported to the netlist of the layout
level and is verified by comparing the netlists of the
schematic and layout levels using Layout versus Sche-
matic Check (LVS) component. When inconsistencies are
detected, the layout design is redone. At the final stage of
design flow, Post Layout Simulation is carried out at the
layout level to compare with that of schematic level.
Simulation results at schematic and layout levels are ob-
tained as waveform probing of signals at reference nodes
of the circuit.

5 RESULTS

It is well known that a neuron with two inputs is an
elementary perceptron capable of implementing simple
logical functions. Let’s investigate the functionality of
proposed schematic solutions using the example of calcu-
lating logical functions.

We will apply periodic signals to the pre-synaptic in-
puts of the neuron, which provide all four binary combi-
nations possible for a device with two inputs. Waveforms
probing is registered at some reference nodes of the neu-
ron as input signals, membrane potential of the neuron,
activation signal and output signal of the neuron. Since
synaptic weighting coefficients are two-bit binary values,
it is easy to estimate the effect of all possible combina-
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tions of weighting coefficients of the synaptic inputs on
the output signal of the neuron. Assume that the input
signals are affected only by the excitatory weighting coef-
ficients of the synaptic inputs. Then, for a neuron with
two synaptic inputs, we have sixteen possible combina-
tions of two-bit weighting coefficients w; and w,.

Some simulation results for combinations of excita-
tory synaptic weighting coefficients which provide the
implementation of different logical functions are shown in
Fig. 12 as signal waveforms at reference nodes of the neu-
ron.

The generalized result of modeling the neuron’s proc-
essing of input signals for sixteen combinations of excita-
tory synaptic weighting coefficients with interpretation in
terms of logical functions is shown in Table 1 where A
and B stand for signals at the pre-synaptic inputs.

Table 1 — Logical functions generated at neuron’s output

Wy Wy Neuron Output
00 00 0

00 01 A ANDB
00 10 A

00 11 A

01 00 A AND B
01 01 A AND B
01 10 A

01 11 A

10 00 B

10 01 B

10 10 AORB
10 11 AORB
11 00 B

11 01 B

11 10 AORB
11 11 AORB

To implement the logical NOT function, it is neces-
sary to use inhibitory weighting coefficients. The input
signal to be inverted is applied to the first synaptic input
of the neuron, while at the same time the second input is
applied with DC signal whose level corresponds to Vpp
value. The signal at the first synaptic input is affected by
inhibitory weighting coefficient only while the signal at
the second synaptic input is neither amplified nor inhib-
ited. The signal waveforms at the reference nodes of the
neuron are shown in Fig. 13 for inhibitory weighting coef-
ficient of the first synaptic input w,=10 while the others
weighting coefficients are zero.

Thus, the designed circuit of an analog neuron with
digital control of input signals weighing using binary syn-
aptic coefficients acts as an elementary perceptron and
can implement logical functions AND, OR and NOT.
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Figure 12 — Signal waveforms at reference nodes of the neuron for some combinations of weighting coefficients:
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Figure 13 — Logical NOT function implementation using
inhibitory weighting coefficient w;=10
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—w;=01, w,=01, Out = A AND B; b —w;=11, w,=11, Out = A OR B; ¢ — w;=10, w,=01, Out = A; d —w,=01, w,=10, Out =B

6 DISCUSSION

The spiking neuron is a node of a spiking neural net-
work that forms a neuromorphic chip. That is why the
spiking neuron can be considered as a basic building ele-
ment for the neuromorphic processor. The main results of
the paper are schematic and layout solutions for the hard-
ware implementation of an analog spiking neuron with
digital control of input signals weighing. Analog nature of
the neuron allows us to simplify signal processing imple-
mentation, but the state of the neural network should be
saved as digital values of weighting coefficients in dis-
tributed memory devices. This fact determines require-
ments to provide the digital control of input signals
weighing using binary values of weighting coefficients.

The proposed solutions are based on the synaptic input
schematic described in [7] which is the closest analogue
to the considered hardware implementation. In [7], au-
thors discus simple approach to weigh input signals using
the excitation and inhibition circuits consisted of parallel
connected p-type and n-type MOS transistors. But any
methods to control the amplification and attenuation of
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input signals using synaptic weighting coefficients have
not been proposed. In the presented research for the syn-
aptic input the schematic solution is developed to digitally
control voltage on the gates of MOS transistors in the
excitation and inhibition circuits. This allows us to control
input signals of the neuron using binary values of the syn-
aptic weighting coefficients.

The practical significance of the research is related to
the layout design of the analog spiking neuron. This de-
sign can be used as the basic building block of a semicon-
ductor intellectual property core to produce a neuromor-
phic chip as an application-specific integrated circuit.

The schematic solutions for all neuron blocks and the
neuron as whole are verified by the simulation using CAD
tools with obtaining waveforms of signals at reference
nodes of circuits. The layout solutions are verified with
DRC, ERC, LVS checks and post-layout simulations.

The simulation results obtained for all combinations
of two-bit weighting coefficients demonstrate how the
neuron processes input signals to calculate logical func-
tion which is the classical problem for the perceptron. The
weighting coefficients for a specific problem can be found
as the result of off-line learning and then translated to
two-bit binaries.

The advantage of the proposed hybrid solution for the
spiking neuron consists in the simplicity of neuron circuit
scaling by adding new synaptic input blocks. The sche-
matics of the neuron core and synaptic input blocks re-
main the same with adding new inputs to the neuron. That
allows us to easily build neuron circuits with multiple
inputs for a spiking neuron network of the neuromorphic
processor.

The simplicity of scaling the neuron schematic and
layout solutions opens up prospects for further research in
the direction of developing spiking neural network struc-
tures of a neuromorphic processor.

CONCLUSIONS

The problem of controlling the weighing of input sig-
nals for an analog spiking neuron using binary synaptic
weighting coefficients has been solved.

The scientific novelty of obtained results is that the
digital method of controlling the weighing of input sig-
nals for an analog spiking neuron is proposed. The hybrid
design of the neuron improves the previously developed
schematic of the synaptic input making possible to control
input signals of the analog neuron using binary values of
weighting coefficients. This allows us to use analog na-
ture of signal processing by neurons while the state of
neurons is determined by binary values of weighting coef-
ficients stored in memory devices.

The practical significance of obtained results is that
the layout is designed for the analog spiking neuron with
digital controlling the weighing of input signals by binary
synaptic weighting coefficients. This layout design can be
used as the SIP core basic building block to produce a
spiking neural network of a neuromorphic chip.

Prospects for further research are to develop and

study structures of SNN for a neuromorphic processor
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DOI 10.15588/1607-3274-2024-4-9

based on the designed spiking analog neuron with the
digitally controlled weighing of input signals.
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ATIAPATHA PEAJIIBAIISL AHAJIOTOBOT'O IMITYJIbCHOI'O HEMPOHA
3 TUO®POBUM KEPYBAHHSAM 3BAKYBAHHSAM BXITHUX CUTHAJIIB

I'nnnenko O. B. — xann. ¢i3.-Mar. HayK, JOLEHT, JOLUECHT KadeapH eNeKTPOHHUX O0UYHCIIIOBAIbHUX MallvH JHITPOBCHKOTO Ha-
LioHaJBHOTO yHiBepcuTeTy iMeHi Onecs ['onuapa, Jlninpo, Ykpaina.

AHOTAIIA

AKTyanbHicTh. 3HaYHI BUKJIMKY, [0 NOCTAIOTh Hepe]] pO3pOOHHKAaMH arapaTHOTO 3a0e3NeYeHHs] CUCTEM IITYYHOTO iHTENIEKTY,
3MYLIYIOTh LIYKaTH Ul peaji3alil Takux CHCTeM HOBI HECTaHAAPTHI apXiTeKTypHi pimeHHs. OTHUM i3 TaKHX MEPCICKTUBHUX Pi-
IICHb € Mepexil Bif kiacudHoi apxitektypu (on Heilimana 1o HeiipoMop(hHOT apXiTeKTypH, sika Ha amapaTHOMY PiBHI HAMAara€ThCst
iMiTYBaTH poOOTY HEHPOHHOI MEpPEXi JTIOICHKOro MO3Ky. Hefipomopduuii mpouecop, moOyaoBaHMi SK amapaTHa peaji3amis iMITyIb-
CHOi HEMPOHHOT Mepexi, CKIaaeThCs 3 BENUKOI KUTBKOCTI €JIEMEHTapHUX EJIEKTPOHHUX CXeM, SIKi CTPYKTYPHO Ta (YHKIIOHAIBHO
BiANOBigal0Th HeifipoHam. ToMy, MPOEKTYBaHHS arnapaTHol peari3alil iMITyJIbCHOIO HEHpOHa SIK OCHOBHOT'O Oy/iBEIBHOIO €JIEMEHTY
HelipoMopdHOro npouecopa mnpeacrasise o600 3HAYHHI HAYKOBHUI Ta MPaKTHYHHUHN iHTEpeC.

Meta podoTu. Metoro po6oTH € po3pobka anapaTHoi peanizalii aHaJIOroBOTO iIMITyJILCHOI'O HeHpoHa 3 HU(POBUM KepyBaHHIM
3Ba)KyBaHHSIM BXiJHUX CUTHAJIIB JBINKOBUMH CHHAITHYHHUMH BarOBUMH Koe(ilieHTaMHU.

MeTtoa. [IpoexTyBaHHS BUKOHYETbCS HAa CXEMOTEXHIYHOMY Ta TONOJIONIYHOMY PIiBHAX HACKPi3HOTO MapIIPYyTY NPOEKTYBAHHS iH-
TErpaJbHUX CXEM 3 BUKOPHCTAHHSM Cy4acHHX 3ac00iB aBTOMATH3allii NPOEKTYBAHHS €JIEKTPOHHUX MPUCTPOIB. i MmiaTBEpIDKEHHS
(DYHKIIOHANBHOCTI yCiX 3allPOMIOHOBAHMUX CXEMOTEXHIYHHX Ta TOIMOJIOTIYHHX PIlICHb MPOBEACHO iX BepUQiKalilo Ta MOAETIOBAHHS
3aco0aMH aBTOMATH30BAHOT'O TIPOEKTYBAHHS,.

Pe3yabsTaTn. Po3pobieHo Ta 1oCiimKeHO CXeMOTEXHIYHI Ta TOMOJIOTIYHI PIllIeHHs JUTS arnapaTHOI peasti3amnii aHaJIoroBOTo iMITy-
JIbCHOT'O HEHpOHa 3 U(PPOBUM KEpyBaHHIM 3Ba)KyBaHHIM BXiJHHUX CUTHAIIIB JBIHKOBHMH CHHAITHYHUME BaroBUMH KoedillieHTaMu
SIK OCHOBHOTO €JIEMECHTA MOOYI0BH iIMITYJIbCHOI HEMPOHHOT MEpexki HelpoMOopdHOTO Tporecopa.

BucnoBkn. 3anpornoHoBaHa riOpHaHa KOHCTPYKIIS anapaTHol peanizalii iMITyJIbCHOrO HeHpoHa Mae MepeBary 3aBJSIKH MOEN-
HAaHHIO [POCTOTH AHAJIIOTOBUX METOIIB OOpPOOKM CHIHAB B HEHPOHi 3 LM(POBUM KEpyBaHHSAM CTAHOM HEHpOHA 3a JIOIOMOrOI0
JBIMKOBHX BaroBux Koe(ilieHTiB. Pe3ynbraTu MOJCNIOBAHHS MiATBEPKYIOTh (YHKIIOHAIBHICTE OTPUMAHHUX CXEMOTEXHIUHHMX Ta
TOTIOJNIOTIYHHX PIIICHb 1 IEMOHCTPYIOTh MOKIIMBICTE peaji3amii JIOTiYHUX (QYHKIIH, MpUTaMaHHUX mepcenTpony. [lepcnekTruBu mo-
JAIBIINX JOCTIIKEHb MOXKYTh BKJIIOUaTH PO3pOOKy amapaTHOi peamizamii sipa iMITyJIbCHOI HEHPOHHOI Mepexi HelpomMopdHOTO
IIporecopa Ha OCHOBI PO3POOJICHIX CXEMOTEXHIYHHX Ta TOIIOJOTIYHUX PIlIeHb IS IMITYJIBCHOTO HEHPOHA..

KJIIOYOBI CJIOBA: netipomophHHit Tpomiecop, iMITyIbcHa HepOHHA Mepexa, HeHpOH, CHHANTHYHUH Koe(illieHT, TOIoJIoTi-
YHE HPOEKTYBAHHS.
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