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ABSTRACT

Context. Aircraft detection is an essential task in the military, as fast and accurate aircraft identification allows for timely re-
sponse to potential threats, effective airspace control, and national security. The use of deep neural networks improves the accuracy
of aircraft recognition, which is essential for modern defense and airspace monitoring needs.

Objective. The work aims to improve the accuracy of aircraft recognition in high-resolution optical satellite imagery by using
deep neural networks and a method of sequential boundary traversal to detect object contours.

Method. A method for improving the accuracy of aircraft detection on high-resolution satellite images is proposed. The first
stage involves collecting data from the HRPlanesv2 dataset containing high-precision satellite images with aircraft annotations. The
second stage consists of preprocessing the images using a sequential boundary detection method to detect object contours. In the third
stage, training data is created by integrating the obtained contours with the original HRPlanesv2 images. In the fourth stage, the
YOLOv8m object detection model is trained separately on the original HRPlanesv2 dataset and the dataset with the applied preproc-
essing, which allows the evaluation of the impact of additional processed features on the model performance.

Results. Software that implements the proposed method was developed. Testing was conducted on the primary data before pre-
processing and the data after its application. The results confirmed the superiority of the proposed method over classical approaches,
providing higher aircraft recognition accuracy. The mAP50 index reached 0.994, and the mAP50-95 index reached 0.864, 1% and
4.8% higher than the standard approach.

Conclusions. The experiments confirm the effectiveness of the proposed method of aircraft detection using deep neural networks
and the process of sequential boundary traversal to detect object contours. The results indicate this approach’s high accuracy and
efficiency, which allows us to recommend it for use in research related to aircraft recognition in high-resolution images. Further re-
search could focus on improving image preprocessing methods and developing object recognition technologies in machine learning.

KEYWORDS: machine learning, image and contour recognition, optical image preprocessing, high-resolution imagery, aircraft

detection.

ABBREVIATIONS
Al is an Artificial Intelligence;
CNN is a Convolutional Neural Network;
FP is a False Positive;
FN is a False Negative;
FPS is a Frames Per Second;
IoU is an Intersection Over Union;
ML is Machine Learning;
SAR is a Synthetic-Aperture Radar;
TN is a True Negative;
TP is True Positive;
UAYV is Unmanned Aerial Vehicle.

NOMENCLATURE
AP is an average precision for a single class;
MAP Is a mean average precision;
Precision is a is the fraction of TP detections among
all detections made at a particular IoU threshold;
Recall is the fraction of TP detections found among all
possible detections made at a particular threshold.
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INTRODUCTION

In the contemporary information landscape, character-
ized by an exponential growth in data, object recognition
tasks have gained immense prominence. Artificial intelli-
gence and machine learning have emerged as pivotal
technologies for addressing these challenges. Beyond
their widespread application in socioeconomic spheres,
these technologies hold immense significance in the mili-
tary domain. The proliferation of satellite imagery, cou-
pled with the surge in the utilization of unmanned aerial
vehicles (UAVs) of varying scales in military operations,
has generated a deluge of visual information far exceed-
ing the processing capabilities of human analysts.

Object recognition in the information age is a critical
task with far-reaching implications for both civilian and
military applications. Al and ML technologies offer a
promising approach to address the challenges posed by
the massive volume, complexity, and variability of visual
data.

The object of study is aircraft detection on high-
resolution satellite images using machine learning meth-

ods.
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The subject of study is the method for aircraft detec-
tion on high-resolution satellite images using machine
learning methods.

The purpose of the work is to increase the accuracy
of aircraft detection on high-resolution satellite images
using machine learning methods.

1 PROBLEM STATEMENT

The burgeoning availability of high-resolution satellite
imagery has opened a new frontier for automated aircraft
detection in diverse applications, from surveillance to
environmental monitoring. However, achieving high rec-
ognition accuracy remains a formidable challenge. This
challenge stems from the inherent complexities of satellite
imagery, including variable backgrounds, fluctuating il-
lumination conditions, and indistinct object edges in raw
images. These factors significantly impede the feature
extraction capabilities of deep learning models, often re-
sulting in the misidentification of aircraft. Consequently,
a critical need exists for novel methodologies that en-
hance the effectiveness of deep learning models for air-
craft detection in high-resolution satellite imagery. This
research addresses this gap by proposing a novel pre-
processing approach that leverages the power of contour
detection techniques. This method aims to improve the
performance of deep learning models in aircraft recogni-
tion tasks by strategically accentuating the boundaries of
aircraft objects and suppressing background clutter.

2 REVIEW OF THE LITERATURE

Deep learning techniques, especially convolutional
neural networks (CNNs), have proven highly effective in
object recognition and classification tasks in recent years.
Researchers actively apply these approaches to analyze
aerospace imagery obtained from uncrewed aerial vehi-
cles, satellites, and other remote sensing platforms. These
tasks have gained significant importance in a wide range
of applications, including object detection in autonomous
vehicles [1], facial recognition [2], medical image analy-
sis [3], and remote sensing [4].

Machine learning techniques have notably advanced
remote sensing applications, particularly in automatically
extracting water bodies from satellite imagery. In work
[5], machine learning methods for water body detection
using Sentinel-2 imagery were investigated, showing sig-
nificant improvements in the accuracy and efficiency of
remote sensing techniques. Specifically, the paper [6]
proposed an enhancement to the YOLOVS architecture,
resulting in a 3.5% improvement in model accuracy.

Also, in another paper [7], authors proposed a frame-
work that tackles small object detection in high-resolution
remote sensing images. It utilizes a deconvolutional mod-
ule to refine feature maps and recover spatial information
lost during pooling layers. Additionally, a squeeze-and-
excitation attention mechanism focuses on informative
features crucial for small object detection. This combina-
tion achieves high accuracy in detecting small aircraft
within complex backgrounds.
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RefineContourNet is a ResNet-based multi-path re-
finement CNN specifically designed for object contour
detection [8] could be explored for refining aircraft object
boundaries after initial detection by deep learning models.

In another study [9], authors developed an algorithmic
technique for aircraft segmentation based on fuzzy logic
that achieves an accuracy of 92.5%.

YOLO-extract algorithm [10] shows faster conver-
gence speed and reduces the calculation amount by
45.3GFLOPs and a number of parameters by 10.526 mil-
lion. At the same time, the algorithm increases mAP by
8.1% and detection speed by 3 times in aircraft detection
compared to YOLOVS.

The YOLO-class model [11] represents an enhanced
version of the YOLO-extract model, incorporating modi-
fications to the network architecture. These changes sig-
nificantly improved detection accuracy, increasing from
0.608 to 0.704, and in FPS, rising from 36.16 to 39.598,
when compared to the original YOLO-extract.

YOLO architecture can be used and improved for air-
craft detection using SAR data [12]. By adding Attention-
Efficient Layer Aggregation Network-Head (A-ELAN-H)
module that prioritizes essential features for improved
accuracy authors increased mAP50 by 2.1% and mAPS50-
95 by 1.9%.

The current body of research has predominantly con-
centrated on one of two approaches: object detection or
contour detection. While these methods have achieved
notable success individually, their integration remains an
underexplored area of research.

3 MATERIALS AND METHODS

The aircraft detection technology proposed in the pa-
per consists of four stages, as shown in Fig. 2.

The first stage consists of downloading the
HRPlanesv2 [13] dataset the second iteration of HRPlanes
dataset. It contains 2120 very high-resolution Google
Earth images, with a total of 14335 aircraft labeled. The
dataset has been divided into three parts: 70% for training,
20% for validation, and 10% for testing.

The second stage is retrieving contours using OpenCV
contour detection. A technique, based on the border fol-
lowing algorithm [14], for identifying and analyzing con-
nected regions within an image that exhibit similar inten-
sity or color characteristics. It analyzes the binary image
to identify connected components, where all pixels share
the same intensity (white in our case) and are adjacent to
each other. These connected components represent the
object boundaries or contours. These regions often corre-
spond to distinct shapes or objects present in the image.

The four boundaries of an image are referred to as its
frame. An image with width w and height h can be repre-
sented as a matrix of order N x W, composed of individ-
ual pixels. The rows 1 and h, and the columns 1 and w,
form the image frame. A pixel with a gray value of zero is
defined as a zero pixel, while a pixel with a gray value of
one is termed a one pixel. In this algorithm, the frames of
the binarized image are treated as zero pixels. If the frame
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of the input image contains any one pixel, they are con-
verted to zero pixels.

An example of Suzuki’s algorithm is shown in Fig. 1,
where pixels with the same absolute value are associated
with the same boundary. The relationships between each
boundary are illustrated on the right side of the figure. In
this context, ob refers to the outer border, hb denotes the
hole border, and the parent border indicates that the outer
layer acts as the parent of the inner layer.
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Figure 1 — Example diagram of border-following algorithm [15]

The circled pixel points in (a—e) correspond to the
border descriptions for each link on the right.

OpenCV Contour Detection ‘ @

Preprocessed image

Input: Digital image

The circled pixel points in (a—e) correspond to the
border descriptions for each link on the right.

The third stage is data pre-processing by combining
contours with the original image. During the fourth stage,
we opted to train the YOLOv8m object detection model.
The architecture of the model is shown in Fig. 3.

Model selection was motivated by its favorable bal-
ance between model complexity (295 layers and 25.9 mil-
lion parameters) and reported performance. This charac-
teristic allowed us to balance object detection accuracy
and computational efficiency.

The YOLOVS architecture adheres to a modular de-
sign principle and can be divided into two primary com-
ponents: the backbone and the head.

The backbone network serves as the foundation for
feature extraction. It consists of 53 convolutional layers
enhanced with cross-stage partial connections. YOLOvVS8
offers flexibility by employing a variety of backbone op-
tions, including CSPDarknet53 and EfficientDet. This
selection allows for a trade-off between the capability to
extract informative features and the associated computa-
tional complexity.

The head generates predictions based on the features
extracted by the backbone network and the neck architec-
ture. It predicts bounding box coordinates, objectness
scores, and class probabilities for each anchor box associ-
ated with a grid cell. The architecture uses anchor boxes
to predict objects of different shapes and sizes efficiently.

4 EXPERIMENTS

In the paper, we tested the proposed method on the
HRPlanesv2 dataset and compared different contour de-
tection techniques:

1. Canny edge detection. A multi-stage algorithm de-
signed for robust edge extraction in images. It achieves a
balance between high edge detection rates, accurate local-
ization of edges, and minimal false positives. The algo-
rithm employs a series of steps, including noise reduction
through Gaussian filtering, calculation of image gradients,
non-maximum suppression for thinning edges, and hys-
teresis thresholding for robust edge selection.

®

YOLOvB Object
Detection

Output: Aircraft bounding boxes

Figure 2 — Diagram of the proposed method
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Figure 3 — YOLOVS architecture [16]

2. Border following algorithm for contour detection.

3. The Laplacian. A mathematical operator is em-
ployed in image processing for edge detection and image
sharpening. It calculates the second derivative of the im-
age intensity, highlighting regions with rapid intensity
changes, which frequently correspond to edges. Positive
Laplacian values signify regions where intensity brightens
towards the center (convex regions), while negative val-
ues indicate regions where intensity darkens (concave
regions). A zero value indicates flat areas or edges where
the direction of intensity changes flips.

4. The Sobel filter. A fundamental tool used for edge
detection in image processing. It approximates the image
gradient, representing the direction and magnitude of in-
tensity change within the image. The filter utilizes two
small kernels, one designed to detect horizontal edges and
another for vertical edges, to estimate these gradients. The
Sobel filter plays a crucial role in edge detection and fea-
ture extraction and serves as a building block for the
Canny edge detection algorithm.

5. Canny and Laplacian operators applied sequen-
tially.

Since YOLO measures the model’s accuracy in terms
of its ability to identify and locate objects of interest in an
image accurately, the mMAP was used. MAP is a combina-
tion of precision and recall values calculated over multi-
ple confidence thresholds, also called the Intersection
over Union threshold. Varying the IoU threshold will re-
sult in different True Positives and False Positives.

Precision is the fraction of TP detections among all
detections made at a particular IoU threshold by the for-
mula (1):

TP

Precision= ———
TP+FP

Q)
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Recall by the formula (2) is the fraction of TP detec-
tions found among all possible detections made at a par-
ticular threshold:

TP

Recall= ———
TP+FN

2

The general formula for calculating MAP is shown in
formula (3):

| N
mAP=—>" AR, (3)
anl

where N is the number of object classes, and AP; is the
average precision for the i-th class. It’s common to denote
what IoU thresholds are used with digits following the
MAP, e.g. MAP50-95 uses a range of loU thresholds from
0.5 to 0.95 with a 0.05 step size while mAP95 uses a IoU
threshold of 0.95.

The average precision for a given class is determined
by first sorting all detected objects in descending order
based on their confidence scores, then calculating the pre-
cision and recall at each threshold, and finally finding the
area under the precision-recall curve by integrating it
across all possible thresholds, as outlined in formula (4):

1
Average Precision (AP) = I p(r)dr
r=0
In machine learning and computer vision, a confusion
matrix is an essential tool for evaluating the performance
of classification models. This matrix provides a clear
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visualization of classification results, helping to assess the
model’s accuracy. It records the number of correct and
incorrect classifications for each category. Specifically,
TP refers to correctly classified positive instances, while
TN denotes correctly classified negative cases. FP repre-
sents instances incorrectly classified as positive, and FN
refers to instances mistakenly classified as negative.

5 RESULTS

Table 1 summarizes the accuracy metrics the object
detection model achieved on datasets that underwent
various pre-processing techniques. The presented metrics
provide insights into the effectiveness of different pre-
processing methods in enhancing the model’s ability to
detect objects within the datasets.

The original, unprocessed dataset achieved the highest
Recall value and the second-highest mMAP50-95. This sug-
gests that the raw images already contain sufficient in-
formation for the model to identify a significant portion of
aircraft present.

Its superior performance in Precision, mMAPS50, and
MAPS50-95 demonstrates this. The results suggest that the
extracted contours significantly improve the model’s abil-
ity to accurately detect and distinguish aircraft from back-
ground elements. Consequently, this technique was cho-
sen for the proposed method.

The Laplacian operator and Sobel filter pre-processing
techniques demonstrated descent performance, but sig-
nificantly lower than the original dataset and border-

following contour detection. However, these methods led
to a considerable loss of information compared to the
original images. This indicates that, although they may
emphasize potential edges, they could introduce artifacts
or climinate essential details needed for accurate object
detection.

The Canny edge detection algorithm produced the
lowest performance across all metrics. This could be at-
tributed to the presence of noise or inconsistencies in the
high-resolution satellite imagery.

The combined Canny-Laplacian approach yielded av-
erage results, falling between the single Canny and Lapla-
cian pre-processing performance. While it outperformed
Canny alone, it remained less effective than Laplacian
pre-processing. This suggests that the combined approach
might not have effectively leveraged the strengths of both
techniques, potentially introducing redundant or conflict-
ing information for the model.

These findings highlight the importance of selecting
appropriate pre-processing techniques for specific image
datasets and tasks. While edge detection can enhance fea-
ture extraction, the choice of method needs to balance
edge delineation with information preservation to achieve
optimal performance in deep learning models for object
recognition.

The confusion matrix, presented in Fig. 4, illustrates
the performance of the classification models by display-
ing the number of correctly and incorrectly classified ob-
jects across each category.

Table 1 — Aircraft detection accuracy metrics

Pre-processing type Precision Recall mAP50 mAPS50-95
None 0.990522 0.981679 0.991079 0.831246
Canny 0.902949 0.782908 0.859798 0.592251
Border-following 0.996403 0.975793 0.994272 0.863925
Laplacian 0.951500 0.885149 0.958168 0.713322
Sobel 0.965968 0.958904 0.982615 0.809901
Canny + Laplacian 0.948966 0.827006 0.897425 0.654177
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Figure 4 — Confusion matrix for: a — original dataset; b — a dataset with the proposed technology

The results shown in Fig. 4 demonstrate the compari-
son of confusion matrices for two approaches: using the
original dataset (Fig. 4a) and the modified dataset using
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the proposed technology (Fig. 4b). In the original dataset,
the number of correctly classified objects in the “airplane”
class was 2,521, with 71 false positives and 34 false nega-
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tives. After implementing the proposed method, the num-
ber of false positives dropped to 31, reflecting an im-
provement in accuracy. However, the false negatives in-
creased to 45, which means a specific decrease in com-
pleteness. Thus, the proposed technology improves the
accuracy of classifying objects of the “airplane” class, but
this is achieved at the expense of a slight decrease in the
completeness index.
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Fig. 5 illustrates the detection outcomes for the origi-
nal dataset without pre-processing (a) and the dataset after
applying the border-following contour detection method
(b). In both images, cyan bounding boxes indicate ground
truth annotations, while blue bounding boxes show the
detections made by the respective model.
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Figure 5 — Results of proposed technology: a — original dataset [14]; b — dataset with proposed technology
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6 DISCUSSION

The proposed aircraft detection technology, leveraging
edge detection pre-processing in a four-stage pipeline
(Fig. 2), improved recognition accuracy compared to a
baseline model trained on raw images. By incorporating
pre-processed images with accentuated aircraft bounda-
ries, the model is better equipped to distinguish aircraft
from background clutter, improving recognition perform-
ance.

Our investigation into various edge detection tech-
niques yielded valuable insights. The border-following
algorithm, implemented in OpenCV, emerged as the most
effective. Intriguingly, the combined Canny-Laplacian
approach showed promise, suggesting potential for further
optimization in future research to explore potential syner-
gies between different techniques. While the proposed
method demonstrates a clear advancement in aircraft de-
tection using high-resolution satellite imagery, there are
limitations to consider. The evaluation was conducted
using a single dataset (HRPlanesV2). Future work should
expand upon these findings by incorporating a broader
range of datasets encompassing diverse image characteris-
tics and backgrounds. This will provide a more compre-
hensive understanding of the generalizability and robust-
ness of the proposed approach across different scenarios.
Additionally, exploring alternative deep learning models
with architectures specifically designed for high-
resolution image recognition tasks could potentially yield
further improvements. Furthermore, investigating even
more advanced edge detection techniques, leveraging
recent advancements in deep learning for image process-
ing, could be a fruitful avenue for future research.

In conclusion, this research effectively demonstrates
the value of incorporating edge detection pre-processing
into the aircraft detection pipeline. The proposed method
achieved superior performance in recognizing aircraft
within high-resolution satellite imagery. The findings
pave the way for further exploration and refinement, ulti-
mately contributing to developing increasingly accurate
and robust automated aircraft detection systems.

CONCLUSIONS

This study investigated the impact of pre-processing
techniques on the performance of a deep-learning model
for aircraft detection in high-resolution imagery.

Our results show that pre-processing techniques can
significantly improve a model’s precision in object detec-
tion tasks. The findings emphasize how pre-processing
enhances the model’s ability to extract critical features
from the data, leading to greater detection accuracy. Addi-
tionally, the study highlights the importance of under-
standing the interaction between pre-processing methods
and the selected deep-learning model architecture.

The scientific novelty o of the obtained results is that,
for the first time, a method is proposed to improve the
accuracy of aircraft recognition on high-resolution satel-
lite images, combining deep neural networks with the
technique of sequential boundary traversal to detect object
contours. The developed approach allows automating the
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process of aircraft detection and provides high recognition
accuracy, which is a significant improvement over the
existing classical method. The implementation of this
method allows for efficient image processing, increasing
the accuracy of object detection by optimizing the use of
preprocessing and modern machine-learning algorithms.

The practical significance lies in developing soft-
ware that implements the proposed method. The experi-
ments have confirmed the effectiveness of the new ap-
proach for recognizing aircraft on satellite images. The
research results suggest using this method for practical
airspace monitoring and aviation security tasks. Further
improvement of image preprocessing methods and object
recognition technologies can increase the efficiency of
these systems in various practical applications.

Prospects for further research are to improve image
preprocessing methods. In addition, it is advisable to ex-
plore the possibilities of expanding the functionality of
the developed software by integrating new neural network
architectures and advanced machine learning algorithms
to improve the accuracy and speed of real-time object
recognition. It also promises to apply the proposed ap-
proach to other objects and images, which can expand its
practical application and increase its versatility in various
fields.
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AHOTAIIA

AKTyanbHicTh. Po3mi3HaBaHHS JiTaKkiB € BaXJIMBOIO 33/1aUei0 y BiMiCEKOBIH cdepi, OCKIIBKM HIBUAKA Ta TOYHA iAEHTU]IKAIis
JITaNBHMX arapariB JO3BOJISIE CBOEYACHO pearyBaTd Ha MOTEHIIHHI 3arpo3u, e(peKTHBHO KOHTPOJIIOBATH MOBITPSHUIT IPOCTIp 1 mif-
TPUMYBATH HalliOHAJIbHY Oe3neKy. BUKOpHUCTaHHS TIMOOKHX HEHPOHHHX MEpEXkK MiABHUILYE TOYHICTh PO3Mi3HABAHHS JIITAKIB, L0 €
Ba)KJIMBHUM JUIS Cy4acHHX MOTPed 000POHU Ta MOHITOPHHTY MOBITPSIHOTO ITPOCTOPY.

Meta po00TH — MiJBHUICHHS TOYHOCTI PO3IMi3HABAHHS JITAKiB Ha ONTHYHMX KOCMIYHHUX 3HIMKAaX BHUCOKOI PO3ALIBHOI 34aTHOCTL
3a JOIIOMOTOI0 TIIMOOKUX HEHPOHHMX MEPEX Ta METOLY HOCIITOBHOTO 00X0AY MEX ISl BUSABJIICHHS KOHTYPiB 00’ €KTIB.

MeToa. 3anpornoHOBaHO METOX JUIS MiJABUIICHHS TOYHOCTI PO3IIi3HaBAHHS JITAKiB Ha CYIlyTHUKOBHX 3HIMKaX BHCOKOI PO3/LIb-
Hoi 31atHOcTi. Ha mepmomy erarmi 3ailicHIoeTses 30ip manHux i3 Habopy HRPlanesv2, mo MiCTHTh BUCOKOTOYHI CYITyTHHKOBI 300pa-
JKCHHS 3 aHOTallisIMK JiTakiB. Jpyruii eran nependavae monepeaHo 00poOKy 300paKeHb 3a TOMOMOTOK METO.Y MOCIiIOBHOTO 00-
XO/y MEX JUISl BUSBJICHHS KOHTYpIB 00’€kTiB. Ha TpeTboMy eTami CTBOPIOIOThCS HAaBYAJbHI JaHi IUISIXOM iHTEerpamii oTpuMaHuX
KOHTYPIB 3 opuriHanbHuMH 300paxenusmu HRPlanesv2. Ha yerBepromy etami mojenp BusiBieHHs 06’ extiB YOLOv8m Tpenyerbcest
OKpeMo Ha opuriHajgbHOMY Habopi nannx HRPlanesv2 Ta Ha Habopi 1aHUX i3 32CTOCOBAHOIO MONEPEIHBOI0 0OPOOKOIO, 1110 T03BOJISIE
OIIIHUTH BIUTUB TOJATKOBUX OOPOOJICHUX XapaKTEPHUCTHK HA MPOAYKTHBHICTH MOJEII.

PesyabTaTu. Po3pobiieHo mporpaMHe 3a0e3leueHHs, SKe pealli3ye 3alpOolOHOBaHUN MeToA. TecTyBaHHS MPOBOAMIOCA SIK Ha
MIEPBUHHMX JTAaHHUX JI0 IOIepeaHb01 00poOKY, Tak i Ha JaHUX MICIs i1 3acTOCyBaHHS. Pe3yibpTaTy MiATBEpAMIN IIepeBary 3arpornoHo-
BaHOT'O METOJY HaJ| KIIACHYHHMH ITiJIX0JjaMH, 32a0€3Meuy0Ur BUIIly TOYHICTh po3Mi3HaBaHHs JiTakiB. [Tokazank mAPS0 mocsr 0.994,
a mAP50-95 — 0.864, o Ha 1% i 4,8% BiAMOBiIHO, BUIIIE, HIX Y CTAHIAPTHOTO MiIXOY.

BucHoBku. [IpoBesieHi eKCIIEPUMEHTH MiATBEPIUKYIOTh €(EKTHBHICTh 3alPOIIOHOBAHOIO METOJY PO3IIi3HABAHHS JIITAaKiB 3a J0-
HOMOT'O0 I'TMOOKUX HEHPOHHHUX MEPEX Ta METOJY IIOCI]IiI0OBHOTO 00XOLy MEX IUIs BUSBJICHHS KOHTYDIB 00’€KTiB. Pe3ynbraTn BKa-
3yIOTh Ha BHCOKY TOYHICTh i €(eKTHUBHICTh L[HOTO MiJXO[y, IO JO3BOJISIE PEKOMEHIYBaTH HOro A BUKOPUCTAHHS B 3ajadax,
OB’ AI3aHMX 13 PO3Mi3HABAHHSIM JITaKiB Ha 300paKEHHIX BHCOKOI PO3IiIBHOT 30aTHOCTI. [Toganpiri JocTiKeHHs MOKYTh 30CEepeIH-
THCSI Ha BIOCKOHAJICHHI METOIIB MOMEPeIHB0I 0OPOOKH 300paXeHb 1 pO3BUTKY TEXHOJOTIH pO3Mi3HABaHHA 00’ €KTIB Y MAIIHHHOMY
HaBYaHHI.

KJIIOYOBI CJIOBA: mamuHHEe HaBYaHHS, PO3Ii3HaBaHHS 00pa3iB Ta KOHTYPIB, HONepenHs o0poOKka ONTHIHUX 300paKeHB,
3HIMKH BHCOKOI PO3JIiIbHOT 3JaTHOCTI, PO3Mi3HABAHHSI JITAKiB.
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