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ABSTRACT

Context. Modern video conferencing systems work in different noise environments, so preservation of speech clarity and
provision of quick adaptation to changes in this environment are relevant tasks. During the development of embedded systems,
finding a balance between resource consumption, performance, and signal quality obtained after noise suppression is necessary.
Systems on a chip allow us to use the power of both processor cores available on the hardware platform and FPGAs to perform
complex calculations, which contributes to increasing the speed or reducing the load on the central SoC cores.

Objective. To conduct a comparative analysis of the noise suppression quality in audio signals by an adaptive filtering algorithm
and a filtering algorithm using machine learning based on the RNNoise neural network in noise suppression devices on the
technological platform SoC.

Method. Evaluation using objective metrics and spectrogram analysis using the Librosa library in Python. Neural network
training and model design are performed on the basis of Python and Torch tools. The Vitis IDE package was used for the neural
network implementation on the platform SoC.

Results. The analysis of two noise suppression methods using the adaptive Wiener filter and the RNNoise neural network was
performed. In the considered scenarios, it was determined that the neural network shows better noise suppression results according to
the analysis of spectrograms and objective metrics.

Conclusions. A comparative analysis of the effectiveness of noise suppression algorithms based on adaptive filters and a neural
network was performed for scenarios with different noise environments. The results of objective SIGMOS metrics were obtained to
evaluate the quality of the received audio signal. In addition, the possibility of running the RNNoise neural network on the
technological platform SoC ZYNQ 7000 was verified.

KEYWORDS: embedded systems, system-on-a-chip, FPGA, adaptive filtering, digital signal processing algorithms, noise
suppression algorithms, audio signals, machine learning, neural networks.

ABBREVIATIONS
ARM is an advanced RISC machine;
CNN is a convolutional neural network;
DNN is a deep neural network;
FPGA is a field programmable gate array;
FPS is frames per second;
GRU is a gated recurrent unit;

GTCRN is group temporal convolutional recurrent
network;

GZIP is a GNU’s not unix ZIP;

HLS is a high level synthesis;

ISP is an ITU;

ITU is an international telecommunication union;
LPF is a low pass filter;

MOS is a mean opinion score;

PESQ is a perceptual evaluation of speech quality;

SNR is a signal to noise ratio;

SoC is a system on a chip;

VAD is a voice activity detector;

VISQOL is a virtual speech quality objective listener;
VolIP is a Voice over Internet Protocol.

NOMENCLATURE
a,b are coefficients of the biquadratic filter;
Dy, 1s a set of signals to be investigated;
h(n) is a set of the corresponding coefficients for the

given filter;

i is an index of the input signal;

j is an index of the noise sample;

k is an index of the frequency domain bin;

k(n) is a noisy audio signal with n samples in it;
L is a number of signals to be tested;

POLQA is a perceptual objective listening quality
analysis;

PSTN is a public switched telephone network;

RNN is a recurrent neural network;
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M is a length of the window function;

N is a length of the input signal buffer;

n is a index of count/sample;

S is a maximum number of counts in the signal;
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w(k) is a window function;

X[k] is a frequency domain representation of the
signal;

x(n) is an input signal with speech and noise
environment;

x.(n) is an useful signal with » samples in it;

y(n) is an output signal.

INTRODUCTION

Currently, corporate video conferencing systems are
actively evolving, where the determining factors are
ensuring the reliability of information transmission,
improving the quality of the transmitted far-end and near-
end audio and video parts, and ensuring the reliability of
the communication device.

In the field of audio signal processing, one of the
improvement options of the quality and analysis is
adaptive filtering usage, which solves a wide range of
tasks. In particular, typical tasks are noise suppression
with the selection of human speech, dereverberation and
echo canceling, and signal separation. The different
nature of the suppressed noises complicates the design of
adaptive filters due to the need to constantly update the
coefficients and adjust to a specific type of noise.

In particular, it is worth noting that different noise
environments can have combined types of noise
(stationary and non-stationary), which makes the task of
adaptive filter design even more challenging.

Examples of such noise environments and their
combinations are office or street noise, industrial rooms
with ventilation. These types of noise are examples of
stationary noise and its combination with momentary
bursts in the spectrum, which can be from a keyboard (in
the case of an office) or different sources that have a
similar spectrum to human speech. Due to the different
nature of noise, the use of classical adaptive filtering
algorithms does not give a positive result for the user.

Machine learning algorithms based on neural
networks, which can determine the type of noise and
perform both Voice Activity determination (the presence
of a voice in an audio fragment) and noise suppression in
the resulting audio stream, have gained popularity in the
tasks of noise classification and separation. The use of
neural networks is a complex computational task that
cannot be solved on stationary hardware due to the need
for both a specialized software environment and
compliance with the time requirements set by the real
time audio streaming industry.

The main feature of using neural networks for
adaptive noise suppression is the ability to perform
training on a specific sample of noises, which improves
performance in a specific environment. Typical noise
suppression libraries for audio processing are RNNoise
and Speexdsp.

Deep learning is used in noise suppression tasks for
several key reasons, mainly because it allows significantly
improve results compared to traditional signal processing
methods. Traditional noise suppression methods are often
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based on linear models or statistical assumptions about
noise characteristics. Deep neural networks are able to
model complex non-linear dependencies between pure
signal and noise, which allows to more efficiently
separate the useful signal even in difficult conditions.
Deep learning models can adapt to different types of noise
and signals.

They can be trained on large data sets containing
examples of different recording conditions and noise
types, which makes them wuniversal in use. Unlike
traditional methods, which often require the manual
design of features for each specific application, deep
neural networks can automatically extract relevant
features from raw data. It dramatically reduces the need
for feature engineering and allows the creation of more
general models.

Thus, the object of the study is adaptive filtering
procedures in digital signal processing systems.

The subject of the study are models, methods and
procedures for designing adaptive digital filters on the
technological platform SoC using machine learning
methods.

The objective of the study is to perform a
comparative analysis of the noise suppression quality in
audio signals using an adaptive filtering algorithm and a
filtering algorithm using machine learning based on the
RNNoise neural network in noise suppression devices on
the technological platform SoC.

1 PROBLEM STATEMENT

Due to the above features and requirements, one of the
options to solve the problem of adaptive noise
suppression is the implementation of the specified
algorithms on a specialized hardware platform from the
SoC family. This provides an opportunity both to
implement the business-logic of the firmware, executed
on the device, and to design and use specialized hardware
accelerators to ensure the optimal distribution of the data
processing path in the SoC, taking into account limited
resources both for processing time, and for maximum
system power consumption as a whole.

Let’s use a set of audio signals containing different
types of noise and human speech. Each input signal from
the set includes a noise environment in a given ratio to
human speech. Thus, the signal-to-noise ratio and the
present noise environment type characterize each element
of the set.

Let’s denote a set of audio signals as Dy, where each
element is characterized by a noise environment and its
SNR.

The data set can be expressed as Dy, ={x,(n)}, where
i=1,2,...,L — the number of signals, n=0,1,2,...,5 — the
number of counts of the corresponding signal. Each i-th
signal is a combination of the useful signal x.(n) and the
Jj-th noise environment ki(n) in a given signal-to-noise
ratio.

Thus, the input sample of signals makes a set of

xi(m) = (i (m). k()
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corresponds to the index of the speech signal, j
corresponds to the index of the noise environment signal,
x/(n) corresponds to their combination with the given
SNR. In every noise suppression scenario, it is necessary
to suppress k;(n) as much as possible and obtain a clean
output signal y(n). According to the general filtering
equation y;(n)=h;(n)-x;(n), the final result of using
both a neural network and an adaptive filter is to find the
coefficients A(n) for each of the combinations of noise
environment and speech during the processing of the
input audio signal.

The main task of adaptive filtering for noise
suppression is the quick response of the filter to changes
in the noise environment, preservation of the dynamic
range of the input signal, and suppression of signal
fragments where there is no human speech, i.e., quick
selection of coefficients. Several filtering algorithms are
designed for noise suppression, among which the adaptive
Wiener filter, LMS filter, and RNNoise neural network
are known.

At the same time, the output signal after filtering is
characterized by a set of objective metrics of audio signal
quality, such as discontinuity, noiseiness, reverberation,
coloration, and overall quality assessment, which can be
used for the quality characteristics of the noise
suppression algorithm.

When using the RNNoise neural network, a 10-
millisecond-long input signal buffer at a sampling
frequency of 48 KHz must be provided to its input; that is,
the input buffer should contain 480 counts of the input
signal.

The main criterion for comparing different noise
suppression algorithms is the analysis of the obtained
objective metrics of the output signal and visual
observation of audio signal spectrograms before and after
noise suppression.

Thus, the tasks of the study are the selection of an
adaptive filtering algorithm and a machine learning
method based on a neural network for noise suppression,
the determination of metrics that can be used to evaluate
the result of noise suppression, and the performance of a
comparative analysis of the selected methods.

2 REVIEW OF THE LITERATURE

Paper [1] considers the possibility of using primitives
of modern C++ standards for high-level synthesis.
Features of the latest language standards and their features
during synthesis are given and considered. A comparative
analysis of Catapult HLS with Vitis HLS in terms of
support for modern C++ primitives during synthesis was
conducted. The hardware-accelerated matrix determinant
calculator was implemented using C++03 and C++17.

Paper [2] considered the features of using high-level
synthesis during the development of image processing
algorithms. The main points related to synthesized and
non-synthesized constructions of different variants of C-
code to get maximum performance are given. As an
example, the implementation of the Sobel filter algorithm
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with the analysis of performance changes from 10 to 388
FPS was used. Analysis of changes of IP-core main code
to obtain a necessary performance was done.

Paper [3] analyzes the process of developing a cluster
to implement GZIP compression using the ZedBoard
debugging board. A comparative analysis of the energy
efficiency of the obtained implementations and the
productivity of the obtained cluster was conducted based
on the Wordcount and Terasort benchmarks. According to
the conclusions, a two-fold improvement in the energy
consumption reduction of the cluster was obtained.

In modern models the speech enhancement based on
deep learning has made significant strides compared to
traditional methods, but it often requires a large number
of parameters and significant computing power, which
makes them difficult to use on resource-constrained
devices in real conditions. In paper [4], a GTCRN is
considered, which uses group strategies to effectively
simplify the competitive model of Dual-Path Convolution
Recurrent Network. In addition, it applies subband feature
extraction modules and temporal recurrent models to
improve performance. The obtained model requires low
computational resources, having only 23.7 thousand
parameters and 39.6 million accumulation operations per
second. Experimental results show that the proposed
model not only outperforms RNNoise, a typical
lightweight model with similar computational load, but
also exhibits competitive performance compared to
current baseline models that require significantly more
computing resources.

Paper [5] proposes an accelerator for the Markov
decision process, implemented in the Al-Toolbox public
library using high-level synthesis tools using the “tiger-
antelope” problem as an example. The proposed approach
shows an acceleration of more than 7 times compared to
the original version of the algorithm.

Hardware accelerators for deep learning algorithms is
a relevant topic in the scientific and engineering
environment. The use of FPGAs as embedded co-
processors to accelerate algorithms has gained wide
recognition.

Decision-making games are critical tasks where their
real-time accuracy and efficiency directly affect the result.
Traditional FPGA  development wusing hardware
description languages is associated with long
development cycles, high complexity, slow iterations, and
problems in fast responding to model algorithm updates.
In comparison, HLS-based design of FPGA provides an
appropriate  technology path to eliminate these
weaknesses.

Paper [6] considers the FPGA usage together with a
high-level synthesis to solve problems in the field of
decision-making algorithms design. A comparative
analysis of the algorithm implementation on the FPGA
with the software solution based on the x86 architecture is
carried out. A dedicated deep learning algorithm related
to decision making games was implemented, optimized
and deployed on FPGA using HLS. The FPGA is
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connected to the host PC via PCle as a co-processor.
Comparative testing with running the algorithm on an
eight-core ftd2000 CPU and an Intel 19-9900k processor
demonstrates that using the FPGA as a co-processor
significantly reduces the execution time of the algorithm,
resulting in a noticeable speedup effect.

Paper [7] presents an experimental study of the
implementation of a face mask detection system based on
the use of HLS and the concept of hardware and software
co-design. The target platform is a Xilinx PYNQ-Z2
FPGA board that connects to the host computer and acts
as a hardware accelerator for the face masks detection
task. To simplify the hardware implementation
complexity, the face mask detection algorithm uses the
ISP approach instead of complex CNN models. The
algorithm consists of color space transformation, skin
color detection, morphological operations, connected
component labeling and horizontal edge detection.
Implementation results show that the FPS for detection
can reach 18.

Deep neural networks are widely used to solve a
variety of tasks: from speech recognition to image
classification. Since DNNs require a lot of computing
power, their hardware implementation on FPGA or ASIC
has attracted significant attention. In turn HLS is widely
used because it significantly increases performance and
flexibility and requires minimal hardware knowledge.
Paper [8] proposes DeepFlexiHLS, a two-stage design
space exploration flow for searching a set of directives to
achieve minimum latency. The results form a Pareto
space from which the developer can choose whether his
FPGA resources are limited or should not be fully utilized
by the DNN module.

The growing trend of using deep learning techniques
for noise suppression has led to the creation of hybrid
noise suppression systems that combine classical signal
processing with deep learning. For example, paper [9]
focuses on expanding the RNNoise noise suppression
system by including additional features during the
training phase. The paper presents a detailed description
of the configuration process of the modified system and
the comparative results obtained from the performance
analysis using the existing version of RNNoise as a
benchmark.

Deep learning-based speech enhancement can provide
near-best performance when processing non-stationary
noise. Noise suppression methods, that combine classical
signal processing with a RNN, can be implemented in real
time due to their low complexity. However, in these
methods long-term speech information is missed during
features selection, which degrades the performance of
noise suppression. This paper extends the RNN-based
denoising method known as RNNoise by adding a long-
term spectral difference feature. The amount of noise
suppression is also limited to improve speech quality for a
better compromise between noise removal level and
speech distortion. The method proposed in [10]
outperforms the RNNoise algorithm by 0.12 MOS points
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on average according to the results of the subjective audio
test.

Background noise is a major source of quality
degradation in VoIP and PSTN calls. Recent studies have
shown the effectiveness of deep learning for noise
suppression, but the datasets used were relatively small
compared to other domains (e.g., ImageNet) and the
corresponding evaluations were more concentrated. To
better support deep learning speech enhancement
research, paper [11] presents a noisy speech dataset that
can scale to arbitrary sizes based on the number of
speakers, noise types, and SNR levels. Increasing the
dataset size shows the improvement of the noise
suppression performance as expected. To demonstrate the
data set and evaluation structure, subjective MOS with
objective quality measures such as SNR, PESQ, POLQA,
and VISQOL, was applied, and reasons of MOS relevance
were demonstrated.

In teleconferencing scenarios, the speech is usually
degraded by background noise, which reduces speech
intelligibility and quality. Therefore, it is extremely
important to improve speech in noisy environments. Paper
[12] investigates a real-time speech enhancement method
for a far-end signal based on an improved RNN with a
unit of controlled GRU. The ideal amplitude masking
values of the reverberated target speech are used as the
target values for RNN training. Feature normalization is
applied and subband normalization technology were
proposed to reduce feature differences, which contributes
to better RNN learning of long-term patterns. In addition,
to suppress the residual interharmonic pseudo-steady
noise due to subbanding, the work integrates RNN with
the optimal modified log-spectral amplitude algorithm.
Experimental results show that the proposed method
improves speech quality and reduces distortion with low
computational complexity for real-time operation.

Paper [13] considers the implementation of the
Librosa software package for the analysis of audio data
and operations on it. The Librosa library is widely used in
research and development in digital signal processing and
machine learning for audio data processing. The main
capabilities and functions of Librosa are considered, such
as loading and saving audio files, spectrogram
calculation, mel-spectrograms and mel-frequency cepstral
coefficients, as well as methods for tonal analysis,
segmentation and extraction of sound features. Special
attention is paid to functions for pre-processing of audio
signals, including normalization, noise reduction and
changes in playback speed.

Paper [14] considers the implementation of the
Pyroomacoustics  package, designed for rapid
development and testing of audio signal processing
algorithms using microphone arrays. The package
contains three main components: an object-oriented
interface on Python that allows quickly create various
simulation scenarios involving multiple sound sources
and microphones in 2D and 3D rooms; a fast C-
implementation of a source image model for general
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multifaceted rooms that efficiently generates room
impulse characteristics and models sound propagation
between sources and receivers; reference implementations
of popular algorithms for beamforming, direction
determination and adaptive filtering. Together, these
components form a package that significantly reduces the
time to implement new algorithms, reducing overhead at
the performance evaluation stage.

Paper [15] considers the problem of single-channel
speech enhancement in stationary conditions and proposes
the use of a Wiener filter with a recursive noise estimation
algorithm. The Wiener filter is a linear estimator and
minimizes the root mean square error between the original
and enhanced speech. The algorithm is implemented in
the frequency domain and it depends on the transfer
function of the filter, which varies from sample to sample
based on the statistics of the speech signal, in particular
the local mean and local dispersion. A recursive noise
estimation approach is used for noise estimation. In this
approach, noise estimation is performed based on past and
present spectral power values using a smoothing
parameter. The value of the smoothing parameter is
chosen in the range from 0 to 1. To evaluate the
effectiveness of the proposed speech enhancement
algorithm, objective evaluations and informal listening of
sentences from the NOIZEUS corpus, spoken by male
and female voices, distorted by white and pink noise at
different levels of the signal/noise, are conducted. SNR,
segmental SNR and perceptual assessment of speech
quality are used for objective measurements. The
measurement results prove that speech, enhanced by the
proposed algorithm, is more pleasing to the human ear
under both noise conditions, compared to traditional
speech enhancement methods.

3 MATERIALS AND METHODS

In the tasks of digital signal processing, the classic
solution for noise suppression is the use of adaptive
filters, which mostly work on the principle of minimizing
the root mean square error between the signal with a noise
component and the restored signal. Variations of Wiener
adaptive filter [15] can include the analysis of harmonics
in the signal, the use of VAD to determine the presence of
speech. The main disadvantages of using adaptive filters
are the need to determine the exact noise model and its
stationarity. In many real-world situations, these
characteristics can be unknown or difficult to estimate. In
real conditions, signals and noise are often non-stationary,
which can significantly reduce the effectiveness of the
adaptive filter.

This study uses the RNNoise neural network, which is
a RNN designed to work in environments with limited
computing power. Neural network training and model
design is performed on the basis of Python and Torch
tools on a PC with x86 architecture, after which the
interference (launch) of the model is performed in the
environment, developed on C. The interference part of the
trained model is performed on the ARM part of the SoC
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ZYNQ 7000 using the appropriate set of tools for bare-
metal launch. The architecture of the RNNoise neural
network is shown in Fig. 1.
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Figure 1 — General architecture of RNNoise neural network

Each block represents a layer of neurons, the number
of which is indicated in parentheses. Dense layers: dense
(24) and dense(1), are fully connected layers which are
not repeated. One of the network outputs is a set of gains
that are applied at different frequencies (gain outputs
(22)). Another result is the probability of the voice
activity that is not used for noise suppression, but is a
useful by-product of the network, which can be further
used to implement automatic signal level control after
noise suppression. According to this strategy, the level
equalization is performed taking into account the VAD
data, which allows for additional noise suppression
between speech fragments.

Note that, in general, filtering due to the use of an
adaptive filter can be represented by the equation (1):

y(n)=h(n)-x(n). M

At the same time, in the case of using the RNNoise
neural network, stages related to the preparation of data
for processing by the neural network and data conversion
from the frequency range to the time range are added to
the signal processing path. RNNoise performs processing
on audio frames equivalent to 10 milliseconds of audio
stream with a sampling frequency of 48KHz. Signal
processing includes a biquad filter, convolution with a
window function and fast Fourier transform computation.

In general, the process of preprocessing of the input
signal can be expressed as follows. Let’s consider an
input signal buffer that contains 10 milliseconds of input
data stream. In general, the input signal buffer can be
represented as a one-dimensional vector with a given
number of elements: X=[x(0), x(1), x(2),..., x(N-1)].

If the input signal is represented as a vector x(¢) and
the biquadratic filter has coefficients b = [b,, b;, b,] and
a = [1, —a;, —a,], where a, is usually equal to 1, then
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signal filtering using a biquadratic filter can be defined as

2):
xp[n]= box[n]+ byx[n = 1]+ byx[n - 2]- ayy[n —1]- ayy[n - 2] 2)

where y[n] — the output value of the filter, »(0...2) and
a(1...2) — filter coefficients, x[n] — the value of the input
signal at the corresponding time.

In turn, the next stage with the convolution of the
signal with a window function can be defined as (3):

An]= 30 b= k) - wik). 3)

And accordingly, the fast Fourier transform using the
Kiss_fft library is generally defined as (4):

2mtkn

X[k]:z’]::.lx[n]-e_ N

“)

After that, signal analysis in the frequency domain,
band gain calculation for opus frequency bands and
inverse Fourier transformation are performed.

Several examples of signal and noise combinations
were chosen for the study, namely road noise, street noise
and crowd noise. The SNR was chosen to be 5.10 dB and
15dB, respectively.

Processing with the help of the Wiener filter was
performed using the Pyroomacoustics package and its
module Denoise [14].

4 EXPERIMENTS

For effective study of noise suppression with the help
of the selected algorithms, the test signals of crowd noise,
road noise and street noise were selected in ratios with the
useful signal SNR5/SNR10/SNRI15.

Spectrograms of some of the received resulting signals

and a comparative table of all conducted experiments are
given in the paper. As an example for further
consideration, we will use an input signal composed of
fragments of male and female speech with intervals
between replicas about 0.8 seconds. The spectrogram of
the input signal without noise is shown in Fig. 2.
An experimental study of the obtained processing speed
was performed on the hardware platform ZYNQ Zedoard
[16]. The analysis of spectrograms and the obtained
results of noise suppression in the study were performed
with the help of developed utilities based on libraries
Librosa, Libsndfile, Pyroomacoustics, Pyloudnorm,
Numpy and Matplotlib for the development and analysis
of DSP algorithms on an ARM-based PC.
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Figure 2 — Spectrogram of the input signal without noisy
environment

To obtain objective signal metrics before and after
processing, the SIGMOS package [17, 18] was used to
determine  discontinuity, noisenes, reverberation,
coloration, and overall quality assessment. Objective
metrics allow us to determine quickly the quality of the
received signal processing results and compare algorithm
implementations with each other.

During the research, objective metrics were obtained
for the input signal, for the signal with noise suppression
based on the adaptive Wiener filter, and for the signal
with noise suppression based on the RNNoise neural
network. SIGMOS metrics are calculated using a neural
network that was developed to evaluate echo and noise
suppression algorithms in  telecommunications
environments. The quality of the received signal is
measured in the SIG according to ITU-T P.804
(subjective diagnostic test method for conversational
speech quality analysis). SIGMOS evaluates sound
quality parameters according to P.804. This model was
trained using subjectively annotated data from P.804 to
simulate human perception of sound quality.

5 RESULTS

For each example of an input signal and noise
combination, objective metrics were obtained and the
resulting spectrogram of the signal was analyzed before
and after noise suppression. Taking into account the
characteristics of the subject field, it is appropriate to
consider the ratio of SNRS and SNR15 between the useful
signal and the noisy environment.

In the following experiments, noise of a certain type
(mixed/combined) will be added to this signal and it will
be suppressed by different types of filters.

The following diagrams show the results of the
obtained objective metrics for the input and cleaned
signal, obtained using Librosa. The order of the
spectrograms for each test scenario is as follows: the input
signal, the signal after processing by the Wiener filter,
and the signal processed by the neural network.

Fig. 3 shows the input speech signal with added road
noise with the ratio SNR5 (Fig. 3a). Second spectrogram
shows the result of noise suppression using the Wiener
filter (Fig. 3b), and the third shows noise suppression
using a neural network (Fig. 3c).

QOPEN 8&CCESS m



p-ISSN 1607-3274 PagioenexrpoHika, iHpopmaTuka, ynpasiainss. 2024. Ne 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. Ne 4

Hz Source signal: car_5 dB

time

a

= Adaptive Wiener filter: car 5 dB

Amalgamed RNNoise neural network:
car SdB

Figure 3 — Spectrograms of road noise suppression results with
SNRS: a — input signal; b — noise suppression using the Wiener
filter; ¢ — noise suppression using neural network

The analysis of the second spectrogram (Fig. 3b)
shows that the Wiener filter in this case worked as a LPF
and slightly suppressed the fragments where there is no
speech. Spectrum leaks between 15 and 30 seconds in the
form of short-term high-frequency bursts are also visible.

During the analysis of the results of the objective
metrics calculation, it was found out that absence of noise
(namely Noiseness), is the best in the case of using a
neural network. It is advisable to display the results of the
SIGMOS calculation in the form of a histogram.

The data will be grouped into groups of three
elements. Each group contains the results of one of the
calculated MOS parameters for the input signal, the signal
after processing using the Wiener filter and for the signal
after processing with the RNNoise neural network. The
result of objective metrics evaluation SIGMOS for the
selected scenario is shown in Fig. 4.

The next stage was the analysis of noise suppression
with a signal-to-noise ratio of 15dB. In this case, the
neural network also performed better, which is evident
from the given comparative spectrograms and objective
metrics, obtained for input and output audio streams. The
spectrograms of the input signal, the signal after cleaning
using a Wiener filter and a neural network are represented
in Fig. 5.
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Figure 4 — SIGMOS objective metrics obtained for the
corresponding human speech scenario with added road noise

with SNRS
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Figure 5 — Spectrograms of the the input signal for the scenario

of human speech with added road noise with SNR15: a — input

signal; b — noise suppression using the Wiener filter; ¢ — noise
suppression using neural network

It is appropriate to define that fragments are clearly
visible, where there is no speech and only the noise
component is present on the spectrogram after processing
by the neural network. In the objective metrics for this
recording, a trend with the best result of noise suppression
using RNNoise, similar to the previous one, is observed.
However, it should be noted that a small variation is
present in the results for Loudness and Discontinuity
between the input and output signals. The obtained
SIGMOS objective metrics for the corresponding scenario
with added road noise is shown in Fig. 6.

Next, a noise suppression analysis was performed for
the scenario of added street noise to the speech with

SNRS5 and SNR15.
OPEN 8&::555 m
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MOS_COL MOS DISC MOS LOUD MOS NOISE MOS REVERB MOS_SIG MOS_OVRL
Figure 6 — SIGMOS objective metrics obtained for the
corresponding human speech scenario with added road noise
with SNR15

During the result analysis of obtained spectrograms, a
similar trend of the Wiener filter in suppressing the high-
frequency component is visible, but without detecting
fragments where there is no speech. According to the
obtained objective metrics, the neural network shows the
best results in this scenario, compared to the Wiener filter.
Fig. 7 shows the received spectrograms for the input
signal, for the result of Wiener filter and RNNoise neural
network processing. The results of objective metrics
calculation for the scenario with added street noise with
SNRS is shown in Fig. 8.
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Figure 7 — Spectrograms of the obtained results for the scenario
with added street noise with SNRS: a — input signal; b — noise
suppression using the Wiener filter; ¢ — noise suppression using
neural network
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Figure 8 — SIGMOS objective metrics obtained for a human
speech scenario with added street noise at SNRS

In the result of the analysis, tables, respectively, for
the adaptive Wiener filter and the RNNoise neural
network using Pandas tools were formed.

The obtained statistics of the objective metrics
SIGMOS according to the experiment are shown in
Table 1 and Table 2.

Metrics indicate the following characteristics of the
received signal:

— MOS COL (or MOS COLORATION) is an
indicator of audio coloration distortion. In the context of
audio, coloration refers to a change in the sound timbre
that can occur due to certain processing or
recording/playback conditions;

— MOS_DISC (or MOS_DISCONTINUITY) is an
indicator that characterizes the presence and degree of
audio signal continuity;

— MOS_ LOUD (or MOS LOUDNESS) is an
indicator that characterizes the volume level of an audio
signal. It evaluates as much as an audio volume matches
the expected or desired level;

—MOS NOISE is an indicator that evaluates the level
of noise in an audio signal. It determines the degree of
presence of background noise in the audio stream;

— MOS_REVERB (or MOS_REVERBERATION) is
an indicator that characterizes the level of reverberation in
an audio signal;

— MOS SIG is an indicator that characterizes the
quality of the audio signal itself without taking into
account noise, reverberation or other distortions;

— MOS_OVRL (or MOS _OVERALL) is an overall
indicator that reflects the overall quality of the audio,
taking into account all the main aspects such as sound
clarity, presence of noise, reverberation, signal continuity
and other factors.

This is an integral indicator that combines all the other
individual scores (MOS_COL, MOS_DISC,
MOS _LOUD, MOS NOISE, MOS REVERB,
MOS _SIG) to obtain a single value that reflects the
overall quality of the audio signal.

SIGMOS/MOS has an absolute scale from 0 to 5,
where a higher value indicates a better result for the
selected metric, for example, for MOS NOISENESS a
higher value is a sign of the absence/suppression of noise.
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Table 1 — Statistics of results for the adaptive Wiener filter
MOS_COL | MOS_DISC | MOS_LOUD | MOS_NOISE | MOS REVERB | MOS_SIG | MOS_OVRL

count 10 10 10 10 10 10 10
mean 2.648 2.974 3.178 2.939 3.764 2.687 2.214
std 0.246 0.407 0.332 0.603 0.326 0.185 0.195
min 2.178 2.436 2.720 2.178 3.224 2.365 1.998
25% 2.56 2.648 2.89 2.579 3.586 2.583 2.079
50% 2.606 2.891 3.182 2.842 3.668 2.687 2.155
75% 2.836 3.288 3.420 3.096 3.988 2.751 2.309
max 3.021 3.674 3.672 4.359 4.236 3.046 2.651

Table 2 — Statistics of results for the RNNoise neural network
MOS _COL MOS_DISC MOS _LOUD MOS NOISE MOS _REVERB MOS_SIG MOS_OVRL

count 10 10 10 10 10 10 10
mean 3.514 3.715 3.691 4.347 4.377 3.208 2.839
std 0.432 0.388 0.282 0.209 0.313 0.557 0.543
min 2.893 3.130 3.211 4.026 3911 2.300 2.052
25% 3.219 3.552 3.526 4.199 4.076 2.920 2.561
50% 3.454 3.738 3.735 4.344 4.485 3.265 2.845
75% 3.766 3.883 3.905 4.453 4.589 3.383 2.965
max 4.350 4.478 4.077 4.757 4.800 4.348 4.049

The 25% and 75% values correspond to the first (Q1) and
third (Q3) quartiles, respectively. These quartiles are part of
descriptive statistics that show the distribution and central
tendency of the data.

25% (first quartile, Q1) represents the value below which
25% of the data lies. This is the median of the lower half of
the data set. This metric is useful for understanding the lower
bound of the central 50% of the data.

75% (third quartile, Q3) represents the value below
which 75% of the data lies. This is the median of the upper
half of the data set, which is useful for understanding the
upper bound of the central 50% of the data.

According to the Tables 1, 2, it is noticeable that the
average value for all metrics of the neural network is higher,
as well as both minimum and maximum. It is also noticeable
that the noise suppression metric MOS_NOISE is 1.5 times
higher than the results after filtering with an adaptive Wiener
filter, which proves the effectiveness of using a neural
network to suppress noise in different noisy environments, as
well as MOS_COL, which indicates the coloration of the
signal and the absence of tonal distortions.

Also, as part of the study, the RNNoise neural network
was launched on the ARM part of the hardware platform
ZYNQ. In particular, the necessary software finalizations of
the source code were determined for the compilation of the
interference part for the bare-metal environment. With the
use of cross-compilation tools and refinement of the source
code, the model execution time on the hardware platform
was obtained, which allows us to perform the next stage of
its performance analysis in the case of the development of a
separate IP block using the Vitis-HLS toolkit.

6 DISCUSSION
Within the framework of this study, two approaches to
filter the noise in an audio signal based on SoC were
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considered: adaptive filters and neural networks. Models
with different bursts at random moments of time (non-
stationary noise models) were used as a noise
environment. Implemented adaptive filter and neural
network for filtering signals with non-stationary noise and
human speech in a given ratio were verified. The
simulation results showed that both methods have
significant potential for solving filtering problems, but
show different results in terms of evaluation criteria.

Adaptive filters (the Wiener filter was considered) are
relatively easy to implement (C, VHDL/Verilog), are
effective for uniform noise, echo suppression due to the
ability to achieve stable signal filtering without significant
degradation in a relatively small number of counts. But, if
the signal contains a non-stationary component (which is
usually the real conditions of use), then the efficiency of
the adaptive filter is significantly reduced.

A neural network can be implemented
programmatically using both built-in accelerators, which
are often found in SoCs, and with partial transfer of
complex computing components to FPGA. Simulations
have shown that neural networks can handle complex
nonlinear dependencies much better than adaptive filters.
For example, in the tasks of road and street noise filtering,
where the noises had a complex structure, the RNNoise
network showed a significantly better filtering result
according to the objective metrics and the obtained
spectrograms. Neural networks are effective in processing
real-time changing signals and can also extract important
features of the signal, which can reduce the need for
manual tuning and data pre-processing unlike an adaptive
filter. However, their implementation requires more
computing resources and training time.

QOPEN 8&CCESS m

171



p-ISSN 1607-3274 PagioenexrpoHika, iHpopmaTuka, ynpasiainss. 2024. Ne 4
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2024. Ne 4

The results of the study show that the choice between
adaptive filters and neural networks depends on the nature
of the task. In systems, where stationary noise types
predominate, adaptive filters are an appropriate choice.
Their simplicity, transparency and adaptability make them
suitable for processing audio signals with a relatively
simple noise structure. Neural networks are appropriate
for tasks where there are complex, non-linear noises and a
high quality of noise suppression with maximum
preservation of the useful signal is necessary. Also, their
implementation in the SoC is possible due to the potential
distribution of calculations between system components
and due to the presence of hardware -calculations
accelerators, specific for neural networks, in some SoCs.

Also, it is necessary to consider the possibility of
using during real-time processing of the audio stream
objective metrics calculation and parallel processing in
the situation, where combined approaches are possible,
that is using adaptive filters and neural networks together
to achieve maximum efficiency. For example, hybrid
systems can use adaptive filters for primary signal
processing, and neural networks — for more accurate
filtering of complex noises in the second stage. Further
research can be aimed at neural networks optimization for
real-time operation and reduction of their requirements
for computing resources and data volume.

Thus, the final choice between the specified filtering
methods should be based on a detailed analysis of the
specific task requirements, available computing resources,
and power consumption limitations.

CONCLUSIONS

During the study two methods of noise suppression using
the adaptive Wiener filter and the RNNoise neural network,
considered in different noisy environments, were analyzed.
The spectrograms of the output signals and the results of the
objective SIGMOS metrics for the received topologies of
signal transmission were obtained. During the analysis of the
received spectrograms it was discovered that in scenarios
with different noise environments, the Wiener filter works in
a similar way to a low-pass filter, which can be partly used to
suppress the high-frequency component or for restriction of
the frequency range of the signal.

Better results were found in the case of using the
RNNoise neural network in noise suppression tasks for
typical scenarios with a noisy environment due to a fast
response time to its change. According to the received
statistical data, formed in table 1 and table 2, it was found
that on average RNNoise shows the best results of
coloration, noisiness and discontinuity.

The scientific novelty is that the method of adaptive
filtering and noise suppression of the audio signal due to the
predetermination of adaptive filtering coefficients in the
process of machine learning based on neural networks has
been further developed, which made it possible to improve
the quality of noise suppression by an average of 20% for
specific types of noise and increase the quality of noise
suppression in different noise environments.

The practical significance of the study consists of
running the RNNoise neural network on the ARM part of the

© Shkil A. S., Filippenko O. 1., Rakhlis D. Y., Filippenko I. V., Parkhomenko A. V., Korniienko V. R., 2024

DOI 10.15588/1607-3274-2024-4-16

172

hardware platform ZYNQ Zedboard using Vitis-IDE tools
and obtaining objective signal metrics before and after
processing using the SIGMOS package. Also, the hardware
implementation of various adaptive filtering algorithms made
it possible to prove the advantages of a filter based on the
neural network for noise suppression in audio signals with
different parameters.

Prospects for further research are related to the
analysis of the possibility of the weight coefficients database
formation of trained neural networks, which implement
adaptive filtering for the corresponding types of noise. The
computationally complex part of the neural network can be
implemented using high-level synthesis and adapted for
loading into the SoC. This will significantly reduce the noise
suppression devices’ design time and allow novice designers
to use optimized and verified technical solutions for their
specific tasks.
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AHOTALIA

AxTtyanbHicTh. CydacHi cHCTeMH Bileo KOH(EPEHIIHHOro 3B’A3Ky MPAIOIOTh y PI3HOMAHITHOMY IIyMOBOMY OTOYEHHI, TOMY
aKTyaJIbHIMH 3aBJaHHSIMH € 30€peKeHHs 4iTKOCTI MOBJICHHS Ta 3a0€3MeUeHHs IBUIKOI aIanTalil 10 3MiHH [[bOT0 O0TO4eHHs. [Ipu po3poOii
BOYZIOBaHMX CHCTEM BHHHKAa€ HEOOXiHICTh 3HAUTH OajaHC MIXK CITOKMBAHHIM PECYpCiB, IPOJYKTHBHICTIO Ta SIKICTIO CHTHAJY, OTPUMaHOTO
micisi npuaylieHHs 1myMy. CHCTeMH Ha KPHCTali JO3BOJISIOTH BHKOPHCTOBYBATH IIOTYXHICTH SIK NPOLIECOPHUX sIEp, MOCTYIHHX Ha
anapatHiii mardopmi, Tak i FPGA, a1 BUKOHAHHS CKJIAHHX OOYHCIIEHb, 1[0 CHPHUSE MMiJBHIICHHIO MIBUAKOMAII a00 3MEHIICHHIO
HaBaHTa)KCHHs Ha OCHOBHI siipa SoC.

Mera. IIpoBesieHHsI MOPIBHJIBHOTO aHaNi3y SKOCTI HPHIYIICHHS IIyMy Yy ayaio CHTHAjlaX aJrOpuTMOM aJanTHBHOI (inbTparii ta
IrOPUTMOM (iTbTpaLil 3 BAKOPUCTAHHSIM MAIIMHHOTO HAaBYaHHS Ha OCHOBI HEHPOHHOI MEpEeXi rnnoise B MPUCTPOSX HPHAYLICHHS IIyMy Ha
TexHoJori4HiH miatdopmi SoC.

Metoa. OuiHka 3a 10MOMOror 00’€KTHBHUX METPHK, aHaJli3 CIIEKTPOrpaM 3 BUKOpHCTaHH:IM 0ibmioTekn Librosa Ha Python. HaBuanus
HelipoMepeki Ta MPOEKTYBaHHS MOJEINi BUKOHYETbCS Ha OCHOBI iHcTpyMmeHTiB Python Ta Torch. [lns peanizawuii HelipoHHOT Mepexi Ha
wiatdopmi SoC BukopucroBysascs makeT Vitis IDE.

PesyabraTn. BukoHaHO aHanmi3 JABOX METOAIB NMPHIYIICHHS IIYMy 3 BHKOPHUCTaHHSAM aaanTuBHOro (inbTpy BeitHepa Ta HeitpoHHOT
Mmepexi RNNoise. YV po3risHyTux ciieHapisx 0yJio BU3HAUESHO 1110 HEHPOHHA Mepexa IMoKa3ye Kpallli pe3y IbTaTH NPUIYIISHHS IyMy 3TiJHO
JI0 aHaJi3y CIEKTPOTrpaM Ta 00’ €KTHBHHUX METPHK.

BucHoBku. Y poboti Oyn0 BUKOHAHO MOPIBHSJIBHUII aHami3 e(EeKTUBHOCTI aJrOPUTMIB MPHUIYIICHHS IIyMy Ha 0a3i aganTHBHUX
(binbTpiB 1 HEHPOHHOI MEPEXi Y CLEHApIsAX 3 PI3HUM LIYMOBHUM OTOYEHHsSM. bynu otpumani pesynbrati 00’ ekTBuX MeTpuk SIGMOS mmst
OIIIHKU SIKOCTiI OTpHMaHOro ayjiocursany. JlomatkoBo Oyia BHKOHaHa IepeBipka MOXIIMBOCTI 3aiycKy HeipoHHOI Mepexxi RNNoise Ha
TexHouoriuHii miardopmi SoC ZYNQ 7000.

KJIFOYOBI CJIOBA: BOynoBani cucremu, cucteMd Ha kpucrtami, FPGA, agantuBHa Qinbrpartisi, aaroputMu mudpoBoi oOpoOku
CHTHAJIB, aJITOPUTMH MPUAYILICHHS LIYMY, ay/Ji0 CHTHAJIM, MalllMHHE HABYaHH:;, HeWPOHHI MEpexi.
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