p-ISSN 1607-3274 PagioenexktpoHika, iHpopMaTuka, ynpasiinss. 2025. Ne 1
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. Ne 1

HEWUPOIH®OPMATHUKA
TA IHTEJEKTYAJIBHI CUCTEMM

NEUROINFORMATICS
AND INTELLIGENT SYSTEMS

UDC 004.93

LIGHTWEIGHT MULTI-SCALE CONVOLUTIONAL TRANSFORMER
FOR AIRCRAFT FAULT DIAGNOSIS USING VIBRATION ANALYSIS

Didenko Andrii Y. — Postgraduate student of the Department of Software Tools, National University “Zaporizhzhia
Polytechnic”, Zaporizhzhia, Ukraine.

Didenko Artem Y. — Postgraduate student of the Department of Software Tools, National University “Zaporizhzhia
Polytechnic”, Zaporizhzhia, Ukraine.

Subbotin S. A. — Dr. Sc., Professor, Head of the Department of Software Tools, National University “Zaporizhzhia
Polytechnic”, Zaporizhzhia, Ukraine.

ABSTRACT

Context. Fault diagnosis in rotating machinery, especially in aircraft, plays an important role in health monitoring systems. Early
and accurate fault detection can significantly reduce the cost of repair and increase the lifetime of the mechanism. To detect the fault
efficiently, intelligent methods based on traditional machine learning and deep learning techniques are used. The object of the re-
search is the process of detecting faults in aircraft based on vibration analysis.

Objective of the work is the development of a deep learning method for fault diagnosis in rotating machinery with a high accu-
racy rate.

Method. The proposed method employs Transformer architecture. The first stage of processing the vibration signal is the multi-
scale feature extractor. This stage allows the model to examine input signals in different scales and reduce the impact of the noise.
The second stage is the Convolutional Transformer neural network. The convolution was introduced to the Transformer to combine
locality and long-range dependencies feature extraction. The Self-attention mechanism of the Transformer was changed to Channel
Attention, which reduces the number of parameters but maintains the strength of the attention. To maintain this idea, similar changes
were made in the position-wise feed-forward network.

Results. The proposed method is tested on the aircraft vibration dataset. Two conditions were chosen for testing: limited data and
noisy environment. The limited data condition is simulated by selecting a small number of samples into the training set (a maximum
of 10 per class). The noisy environment condition is simulated by adding Gaussian noise to the raw signal. According to the obtained
results, the proposed method achieves a high average precision metric rate with a small number of parameters. The experiments also
show the importance of the proposed modules and changes, confirming the assumptions about the process of feature extraction.

Conclusion. The results of the conducted experiments show that the proposed model can detect faults with almost perfect accu-
racy, even with a small number of parameters. The proposed lightweight model is robust in limited data conditions and noisy envi-
ronment conditions. The prospects for further research are the development of fast and accurate neural networks for fault diagnosis
and the development of limited data training techniques.

KEYWORDS: fault detection, deep learning, rotating machinery, signal processing, transformer, neural networks.

ABBREVIATIONS MSFE is a Multi-scale Feature Extractor;

AP is an Average Precision; NLP is a Natural Language Processing;
CA is a Channel Attention; RNN is a Recurrent Neural Network;
CNN is a Convolutional Neural Network; SNR is a Signal-to-noise Ratio.
DL is a Deep Learning;
FD is a Fault Detection,; NOMENCLATURE
FFN is a Feed-forward Network; T is a time-series sensor output;
HUMS is a Health and Usage Monitoring System; tj is a datapoint of sensor output;
LMCT is a Lightweight Multi-scale Convolutional Y is a class label;

Transformer; D is a data set;
MHSA is a Multi-head Self-attention; M is a model;
ML is a Machine Learning; J is a classification metric;
MLP is a Multi-layer Perceptron; Ps is a signal power;
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P, is a noise power;

N, is a number of patches;

fin is a set of input features to the network module;

fout is a set of output features of the network module;

favg 1 a set of features from the average pooling layer
in CA module;

fnax 18 @ set of features from the max pooling layer in
CA module;

f" is a set of features from intermediate layers in net-
work modules.

INTRODUCTION

Rotating machinery is an integral part of mechanical
systems. It finds its applications in many industrial sec-
tors, including aircraft, wind turbines, pumps, car engines,
etc. In aircraft and helicopters, rotating components like
bearings, rotors, and gearboxes are critical for efficient
operations. HUMS are sensor-based systems designed to
monitor the health and performance of critical compo-
nents as they are often subject to potential failure due to
continuous mechanical stress (overload, overheating, lack
of lubrication, etc). The early FD of these parts ensures
the reliability and safety of the vehicle’s exploitation,
reducing the risk of critical failures and the repair cost.

Vibration-based analysis is a common FD technique
in rotating machinery. Traditional ML methods often em-
ploy hand-crafted features combined with statistical-based
algorithms like SVM [1], kNN [2], or decision trees [3].
While these methods can be used for fault prediction, they
still struggle to capture complex features and require the
complicated process of manual feature engineering. Re-
cently, DL methods have gained popularity in the field of
vibration analysis in FD [4], showing promising results in
solving this task. The main advantage is the ability of DL-
based models to capture complex data patterns and learn
features of the input data, which eliminates the need for
extensive feature engineering. (MLP [5] are commonly
used in classification, CNNs [6-8] and RNNs [9, 10].
Also, a combination of CNN and RNN can be used [11,
12] to better analyze both local and temporal features of
the sensor data. The recent popularity of the Transformer
architecture [13] in solving sequence-based problems
(including sensor data) stimulates the development of the
Transformer-based FD methods.

Despite the exceptional performance of the DL-based
methods for FD, these methods often need a large number
of layers and parameters to extract comprehensive fea-
tures, which can significantly increase the size of the
model, training, and inference time and make the usage
inefficient under limited resource conditions.

Moreover, one of the main issues with fault diagnosis
is the limited amount of data. Usually, the number of
positive samples (containing the fault) in the dataset is
much smaller than the number of negative samples
(healthy condition). This imbalance can significantly re-
duce the accuracy of the classification model, making
predictions unreliable. To address this issue, techniques
like zero-shot [14], few-shot [15], or transfer training can
be used.
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The object of the research is the process of detecting
faults in aircraft health monitoring systems.

The subject of the research is the deep learning
method to detect faults using vibration-based analysis.

The purpose of the research is to develop and evalu-
ate an efficient deep learning model to classify sensor
data from aircraft health monitoring systems.

1 PROBLEM STATEMENT

Let T= {t;|i=1...n} be a vector of real values tjof a
time-series sensor data. A class label Y € {0,1} represents
either an absence or a presence of a fault. Let D = {(T;, Yj)
| i=1...N} be a labeled dataset that contains ordered pairs
(Ti, Yi). The objective is to choose such model architecture
M that reaches the maximum classification accuracy, i.c.,
J(Yi, M(T;)) — max for each (Tj, Y;) € D.

2 REVIEW OF THE LITERATURE

DL methods are widely used in rotating machinery FD
tasks and have proven advantages over traditional ML
methods [16]. Among them, CNNs play a significant role.
Due to their strong feature extraction capabilities and lo-
cal receptive field, CNNs can be successfully applied to
solve vibration-based classification. As a vibration signal
is one-dimensional data, 1D CNNs are the common
choice. Vibration signals or other sensor data often con-
tain localized patterns that indicate anomalies and faults,
and by sliding 1D filters across the time-series data, 1D
CNNs can effectively capture local, time-dependent
changes that may signal an occuring fault. WDCNN
method [17], for example, uses 1D CNN with wide ker-
nels in convolutional layers, which helps to reduce noise
and extract features from the input signal. DSNR method
[18] employs deep residual architecture with soft thresh-
olding (shrinkable function) to suppress redundant fea-
tures and reduce the effect of the noise. Zhang et al. [19]
also use a deep residual 1D CNN model to extract local
data features to analyze faults. Here, residual learning
helps to design deeper architectures to extract more com-
plicated features. The authors of the AMMFN method
[20] proposed the use of multi-sensor input data (vibration
and current) processed by the 1D CNN model with the
special attention-based fusion module that helps to extract
features at different hierarchical levels and correlation
information between sensors’ signals.

Some methods combine 1D CNN with RNNs [11, 12].
This synthesis can improve the overall model perform-
ance by leveraging the strengths of each model type. This
hybrid approach allows the network to capture both local
patterns (via the CNN) and long-term dependencies (via
the RNN) in time-series data. While these methods can
achieve promising results, they require more training time
due to the sequential nature of the RNNss.

Two-dimensional CNNs can also be used for sensor
data analysis. To do this, the 1D signal is converted from
the time domain to the time-frequency domain, and the
obtained 2D spectrogram is used for further processing by
the network. Verstraete et al. [21] proposed the use of 2D
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CNN to analyze the Short-time Fourier Transform repre-
sentation of the vibration signal. Pham et al. [22] em-
ployed the VGG16 model to analyze faults under incon-
sistent working conditions, showing excellent results.
Although 2D CNN shows good performance, they require
more samples to train in order to defeat overfitting. More-
over, 2D CNN usually requires more layers to extract
deep features, which increases the model’s size and infer-
ence time.

In recent years, Transformer-based models have be-
come popular in many fields, including NLP [13], Com-
puter Vision [23], Time-series analysis [24], FD [25], etc.,
outperforming common deep learning techniques. The
main idea of Transformers lies behind the attention mech-
anism that allows focusing on the most relevant features
and learning long-range dependencies more effectively.
For example, the TST method [26] uses a 1D Transformer
to directly analyze raw vibration signal data without pre-
processing, showing high accuracy. The other studies [27]
use 2D Transformers, called Vision Transformers [23], to
analyze the spectrogram representation of the signal time-
frequency domain. For example, ECTN [28] combines
CNN and 2D Transformer to efficiently extract local and
global information of the input signal. Integrated ViT
model [29] decomposes the input signal with a Discrete
Wavelet Transform and then applies soft voting to com-
bine preliminary results.

Despite the advantages of the Transformers, they also
have several notable disadvantages, including quadratic
complexity of the attention mechanism and lack of intrin-
sic inductive bias [30], which makes them difficult to
train. To address this issue in FD, the convolution can be
introduced to Transformers [28, 31]. TWC method [32] is
used in aircraft engine bearing FD and applies convolu-
tional feature extraction layers to obtain features from raw
input signal before passing it to the Transformer back-
bone. In TCN [33], a combined model of convolution and
Transformer is trained with transfer learning technique.

Usually, the changes in vibration signal that refer to
faults can vary in scale. Thus, using single-scale signal
analysis, the fault can be easily overlooked. Multi-scale
analysis can be used with different DL models. MCF-
1DVIT [25] uses a Multi-scale Convolution Fusion Layer
to extract features at different time scales and pass them
to the Transformer. AM-CNN [34] employs a Multi-scale
convolutional block with CNN for the same purpose.
Chen et al. [35] proposed MCNN-LSTM model with low-
frequency and high-frequency feature extraction branches.
Saghi et al. [11] developed CNN with three-scale branch-
es followed by a bidirectional GRU model. These studies
show that multi-scale feature extraction can effectively
capture more information at different scales and enhance
the overall performance of the method.

Recent studies demonstrate the potential of DL-based
methods for FD in rotating machinery. However, further
improvements are needed to reduce model complexity
and the amount of noise in the input signal, achieve scale
invariance, and improve local and global feature extrac-
tion, emphasizing the relevance of the proposed method.
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3 MATERIALS AND METHODS
To solve the above challenges, the novel FD method
called LMCT was developed. The proposed method main-
ly consists of two parts: MSFE and Transformer encoder.
Fig 1. depicts the overall architecture of the neural net-
work.
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Figure 1 — Architecture of the proposed method

Both MSFE and Transformer encoder employ CA
[36]. CA allows model to adjust the importance of each
channel, by helping it to focus more on the informative
ones while paying less attention to those that contribute
less. The architecture of the CA module is show in Fig 2.
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Figure 2 — Architecture of CA

Formally, the CA block used in this method is the fol-
lowing (1-3):

favg = Conv(RELU (Conv(AvgPool( fiy))), (1)
fmax = Conv(RELU (Conv(MaxPool( fjy))) , )
fout = Sigmoid (fayg + frmax) - fin - 3)

The MSFE (Fig. 3) module extracts preliminary fea-
tures from the input signal at different scales, which
makes the model more invariant to changes in the scale of
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fault occurrence. Inspired by [25], it consists of 3 branch-
es, each enhanced by CA. The kernel sizes of each branch
B, in MSFE are: 301, 401, 501. Wide kernels help to re-
duce the influence of the noise that might be present in
the input signal. The outputs of the branches are then con-
catenated and processed by the convolutional layer to
effectively merge important information.

GELU
A BN

Concat

A

|k=301 k=401 |k=501
branch1  branch2 branch3

Figure 3 — Architecture of MSFE module

MSFE module is defined as follows (4):
fout = GELU (BN (concat[B, (fin); By (in):B3(fin)))-  (4)

After the processing by MSFE, the signal is split into
N, patches before passed to the Encoder. First, each patch
is encoded with convolutional embedding module to en-
rich them with more information. Then, positional encod-
ings are added to the patches to preserve the information
about the relative position of each patch. After that, the
information is passed to the Encoder blocks.

The Encoder block (Fig. 4) follows the standard archi-
tecture [13] but with several changes. MHSA was re-
placed with CA, which treats each patch as a channel. It
allows to significantly reduce the number of parameters
while keeping the attention mechanism in the model. Po-
sition-wise FFN (Fig. 5) was made fully convolutional
containing depth-wise convolution. These changes also
reduce the complexity of the model while fusing the in-
formation from each patch.
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Figure 4 — A comparison of the Ivanilla Transformer block (left)
and the proposed Transformer block (right)
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Figure 5 — Architecture of Position-wise FFN

Mathematically, the whole proposed Transformer
block is defined as follows (5-6):

f* = CABN(fin)+fin, (5)

fout = DCONVFFN(BN(f 7)) +f". (6)

Inspired by [31], the output of the Encoder is then
passed through an average pooling layer and classification
head to predict the type of the signal (healthy or faulty).

Table 1 describes the selected hyperparameters of the
model that was used in the experiments.

Table 1 — The description of proposed model hyperparameters

Parameter Value
Input size 1024
N, 16
Patch embedding channels 64
Number of encoder blocks 6
FFN convolutional channels 64
Number of multi-scale branches 3
Branches’ kernel sizes (301,401, 501)

4 EXPERIMENTS

To evaluate the performance of the proposed model,
the aircraft fault dataset was used. This dataset contains
1158 samples of vibration signal, divided into two clas-
ses: 0 (healthy state) and 1 (fault). The amount of healthy
and fault states is 865 and 293, respectively. Each sample
is a vibration signal that contains 93752 datapoints. For
training and testing, each sample was divided into chunks
of length 1024 without overlapping, thus each sample
provides 91 chunks. Each sample was scaled into the
range of (-1, 1) before splitting into chunks.

To analyze the performance of the proposed module
under limited data constraints, the number of samples in
the training set was chosen to be much smaller than in the
test set. More precisely, several training sets were created
with 1, 2, 5, and 10 vibration signal samples of each class.
The rest of the data was split between validation and test-
ing sets. The information about created datasets is shown
in Table 2. For example, the subset “Train 10” contains
20 randomly selected samples (10 samples for the positive
class and 10 samples for the negative). Each sample was
divided into chunks of 1024 datapoints, thus “Train 10”
subset split contains 1820 chunks in total.
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Table 2 — The distribution of the created data subsets

Dataset split Samples Classes (0/1) Chunks
Train 1 2 1/1 182
Train 2 4 2/2 364
Train 5 10 5/5 910
Train 10 20 10/10 1820
Validation 113 89/24 10283
Test 1025 766/259 93275

To compare the proposed model with the existing
methods, several models were chosen: MCNN-LSTM
[35], WDCNN [17], MSCNN [37], MRACNN [38],
MAIDCNN [39], ResNet18 (1D) [40].

Each model was trained for 30 epochs in 5 independ-
ent runs. After that, the results of each run were averaged.
The batch size of the training phase is 128. AdamW was
chosen as an optimization algorithm with a learning rate
0f 0.001. The loss function is binary cross-entropy.

To evaluate the accuracy of the proposed method un-
der a noisy environment, the Gaussian white noise was
added to the raw signal to get the signal with different
SNR (7) values. In these experiments, noise with SNR
from —9dB to 9dB with the step of 3dB was added.

SNR :IOIOgIO%. (7)

n

For comparing results, AP was chosen as a metric. AP
is a metric commonly used in binary classification, espe-
cially when dataset is highly imbalanced. It is essentially
the area under the precision-recall curve, providing a sin-
gle score that summarize the precision-recall trade-off
across various thresholds. The range of AP metric values
is (0—1), where 1 means errorless classification.

5 RESULTS

Table 3 shows the results on the test dataset of differ-
ent methods. Each model is trained on datasets with a
different number of vibration samples to evaluate the per-
formance in limited data conditions. Also, the number of
parameters of each model is included. The results repre-
sent the value of AP metric. The results show that the
proposed method (LMCT) trained on a subset of 20 sam-
ples (“Train 10”) outperforms the chosen existing meth-
ods (AP 0.9941) while having a relatively small number
of parameters (0.097M).

Table 3 — The prediction results of selected methods trained on different
dataset sizes

N samples per class N

Method 1 2 5 10 p‘”}ﬁ;‘s
MCNN-LSTM | 0.3154 | 0.4016 | 0.4342 | 0.5421 0.093
WDCNN 0.3455 | 0.6399 | 0.8322 | 0.9216 0.041
MSCNN 0.3337 | 0.7790 | 0.7998 | 0.9511 13.78
MRACNN 0.3372 | 0.5732 | 0.9182 | 0.9699 0.599
MAIDCNN 0.3174 | 0.8043 | 0.8626 | 0.9094 0.323
Resnetl8 (1D) | 0.3346 | 0.6631 | 0.8982 | 0.9556 3.84
LMCT 03133 | 0.7314 | 0.9105 | 0.9941 0.097
(proposed)

Note that these results represent the performance of
the models on the dataset that is collected from samples’
chunks. To analyze the whole vibration sample, the aver-
age prediction of each chunk can be used.
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Table 4 shows the ablation study results to evaluate
the performance and the importance of proposed changes,
especially the MSFE module and new Convolutional
Transformer Encoder block. The baseline model, the 1D
Transformer, follows the standard Transformer architec-
ture. The hyperparameters in the baseline were chosen to
make it as close to the proposed method as possible.

Table 4 — The ablation study of the effect of proposed improvements
N samples per class

Method 1 2 5 10
1D Transformer 0.3122 | 0.2976 | 0.2963 | 0.3919
1D Transformer + MSFE 0.3122 | 0.3904 | 0.4869 | 0.6063
LMCT w/o MSFE 0.3137 | 0.6335 | 0.7523 | 0.8056
LMCT 0.3133 | 0.7314 | 0.9105 | 0.9941

Figure 6 shows the results (AP) of the selected models
under noisy environment conditions (SNR from -9 to 9).
For that, models that were trained on 20 samples (subset
“Train 10”) were chosen.
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Figure 6 — The results under different SNRs of Gaussian noise

The visualization of the learnt features (featurs from
the last layer of the network) using t-SNE method is show
in the Fig. 7.
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Figure 7 — Distribution of features visualized with t-SNE
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6 DISCUSSION

The results from Table 3 show that the proposed mod-
el achieves almost ideal accuracy (AP 0.9941). Moreover,
the number of parameters of the proposed model is rela-
tively small (0.091M) compared to the existing ap-
proaches, which means that a small model is able to
achieve good results in vibration-based FD tasks. This can
be explained by the fact that the proposed methods em-
ploy a combination of convolution and attention mecha-
nisms, which allows the model to examine local features
as well as long-term dependencies.

The results of the ablation study in Table 4 suggest the
importance of the proposed modules. The MSFE module
significantly improves the performance, which means that
it is able to extract valuable deep features from the input
signal. The Transformer backbone is able to process these
features more accurately than the raw input signal. Also,
the vanilla Transformer model is not able to accurately
classify aircraft sensor vibration signals. It can be explained
by the fact that each signal can contain local patterns that
can influence the overall prediction results. To extract these
patterns, the strength of convolutional inductive locality
bias is needed.

Figure 6 shows that the proposed model can be used in
noisy environments effectively. The proposed model
achieves AP of 0.9783, 0.9821, and 0.9842 at SNR values
of 3dB, 6dB, and 9dB, respectively. When SNR is higher
than 0, it means that the energy of the original signal is
higher than the energy of the added noise and vice versa. In
cases when the energy of the noise is higher than the en-
ergy of the original signal, classification is difficult to per-
form. The results, obtained under different SNR values,
indicate that wide kernels in MSFE help the model to re-
duce the impact of the noise in the signal.

Figure 7, which shows the 2D representation of ex-
tracted features, suggests that the model is able to learn the
feature distribution by extracting patterns and dependencies
between similar entries. The fault features and healthy fea-
tures are clustered, which means that model can separate
between both clusters.

CONCLUSIONS

In this paper, the problem of fault diagnosis of aircraft
rotating machinery is being solved by applying deep
learning method.

The scientific novelty. The conducted experiments
show that proposed method can achieve high accuracy
having small number of parameters. The proposed chang-
es made to Transformer architecture significantly increase
model's performance while reducing it's size. Moreover,
the results show that FD methods can be effectively
trained with limited size of the data which is important in
the field of aircraft FD where fault data samples are ex-
tremely rare.

The practical significance. The obtained model al-
lows diagnosing faults in aircraft with high accuracy and
can be applied to other rotating machinery FD tasks that
use vibration-based analysis.
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The prospects for further research lie in developing
more efficient model and testing with other limited data
training techniques like zero-shot or few-shot learning.
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JIETKOBICHMIA BAFﬁ&TOMAC].HTAEHPIfI 3rOPTKOBUI TPAHC®OPMEP JJISI JIATHOCTHUKH
HECHPABHOCTEM JITAJTBHIUX AITAPATIB 3A JJOIIOMOT OO BIBPAIIITHOT'O AHAJII3Y

Hdinenko Anapiii €. — acnipanT kadenpu nporpaMHuX 3aco0iB HaI[lOHAIBEHOTO yHiBepcHTeTy «3amopi3bka IloniTexHika», 3a-
nopixoksi, YkpaiHa.

Hinenko Aptem €. — acmipant kadenpu NporpaMHuX 3aco0iB HAIIOHAIBHOTO yHiBepcHTETy «3amopisbka [lomitexHikay, 3a-
nopixoksi, YkpaiHa.

Cy66otin C. O. — 1-p TexH. HayK, npodecop, 3aBigyBad kadeapu mporpaMHUX 3aco0iB HaliIOHAIBHOTO YHIBEPCHTETY «3aropi-
3bka [lomitexHikay, 3anopixoks, YKpaiHa.

AHOTAIIA

AxTyanbHicTh. /liarHOCTHKA HECTIpaBHOCTEH 00E€pTOBUX MeEXaHi3MiB, 0COOJMBO B aBiamii, BiJlirpae BaXJIMBY POJIb B CHCTEMax
MOHITOpHHTY cTaHy. CBO€yacHe i TOUHE BUSBJICHHS HECIIPaBHOCTEH MOXKE 3HAYHO 3HM3UTH BAPTICTh PEMOHTY i 30UIBIIUTH TEPMiH
ciryx6u MexaHizMy. sl eeKTHBHOTO BHSIBICHHS HECIIPAaBHOCTEH BHKOPHCTOBYIOTHCS IHTEIEKTYalIbHI METOMH, sIKi 0a3ylOThCsl Ha
TPaJULiHHUX METOAaX MAIIMHHOIO Ta TIMOMHHOro HaBuaHHA. OO0'€KTOM JIOCIIIDKEHHS € INpOLEC BHSBJICHHS HECIPAaBHOCTEH B
aBialiffHUX amapaTax Ha OCHOBI aHai3y BiOpaLliii.

MeTto10 po60oTH € po3poOKa METOAY TTHOMHHOT HABYaHHS IJIS AIarHOCTUKU HECHPAaBHOCTEH 00EPTOBUX MAIUH 3 BUCOKOIO TOY-
HICTIO.

Mertona. 3anpornoHOBaHUI METO BUKOPUCTOBYE apXiTeKTypy TpaHcdopmepa. [lepmmm eranom o6pobku curnary Bibpamii € 6a-
raromaciuTabHe BUIyYeHHs o3Hak. Lleif eram 103BoJIsi€ MO PO3IJIAAaTH BXi/(HI CHTHAIM B Pi3HUX MacliTabax i 3MEHIINTH BILIH-
BY 1IyMy. Jlpyruii etan — 3ropTKoBa HEHpOHHA Mepexa 3 TpaHCOpMepoM. 3ropTka Oyina JozxaHa 10 TpaHcdopmepy, mo0 noeaHaTH
JIOKJIBHICTD 1 BUJIyYCHHS O3HAK JAJeKUX 3aJIe)KHOCTeH. MexaHi3M caMoyBaru TpaHcopmepy OyJio 3MiHEHO Ha MEXaHi3M KaHaJbHOI
yBaru, 110 3MEHIIy€e KUTbKICTh HapaMeTpiB, aje 36epirae cuny yBaru. 1106 miacumuTy 1o ifero, aHanoriyxi 3Minu Oy 3pobieHi B
MO3UIIHHINA MEpeXi MPSIMOTo MOLIUPEHHSL.

Pe3ysibTaTi. 3anponoHOBaHUI METOI MPOTECTOBAaHO HAa HA0Opi JaHUX 3 BiOpauisMu aBiamiitHoro amapaty. [l TectyBaHHS Oy-
710 00paHo IBi YMOBH: OOMEXKEHICTh 00CATY JaHHX Ta 3allymieHe cepenoBuiie. OOMEKeHICTh 00CATY JaHHUX IMITYy€ThCS HUITXOM
BHUKOPHCTAHHS HEBEJOI KIJIbKOCTI BUOIPOK /IO HaBYAILHOrO Habopy maHmx (MakcumyM 10 Ha Ki1ac). YMOBa 3alIyMIJICHOTO CEpeso-
BHIIA IMITYEThCS IIUISIXOM JOJIaBaHHS rayCcCiBChKOTO IIYMY JI0 BHXiJHOrO CUTHaNY. 3TiJHO 3 OTPHMAaHHMH PE3yJIbTaTaMH, 3alpoIo-
HOBaHUH METOJI J0Csrae BUCOKOI CepeTHbOI TOYHOCTI MPH HEBEJMKil KiIbKOCTI TapamerpiB. ExcriepiMeHTH Takok MOKa3yIoTh BaX-
JIMBICTH 3aIIPOIIOHOBAHHMX MOJYJIB i 3MiH, MIITBEPKYIOUHN MIPUITYIIEHHS PO MPOIIEC BUIIyYESHHS O3HaK.

BucHoBKkH. Pe3ysbTaTi NpoBeICHHX €KCHEPUMEHTIB MOKa3yI0Th, 110 3allPONOHOBAHA MOJENIb MOXKE BHSBIIATH HECIIPABHOCTI 3
Maiike i1eaabHOI0 TOYHICTIO, HAaBiTh TP HEBENHUKIiH KIBKOCTI mapaMeTpiB. 3anpornoHoBaHa JISTKOBICHA MOJIEITb € CTIHKOI0 B YMOBax
00MEKEHOTo 00CSTY IaHUX Ta 3alllyMJIEHOTO cepeoBHILa. [IepcreKTHBaMU MOAANBIINX JAOCII/DKeHb € pO3po0Ka MBUAKUX 1 TOYHHX
HEHPOHHHUX MEPEeX VIS TIarHOCTHKH HECIIPaBHOCTEH Ta po3poOKa METO/IiB HaBYaHHS HAa 0OMEXKEHHX 00csATax JaHuX.

KJIFOYOBI CJIOBA: ananiz HecnpaBHOCTEH, TTHOMHHE HAaBYaHHsI, 00EPTOBI MeXaHi3MH, 00poOKa CHTHAJIB, TpaHchopmep,
HEWPOHHI MepexKi.
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