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ABSTRACT 
Context. Fault diagnosis in rotating machinery, especially in aircraft, plays an important role in health monitoring systems. Early 

and accurate fault detection can significantly reduce the cost of repair and increase the lifetime of the mechanism. To detect the fault 
efficiently, intelligent methods based on traditional machine learning and deep learning techniques are used. The object of the re-
search is the process of detecting faults in aircraft based on vibration analysis. 

Objective of the work is the development of a deep learning method for fault diagnosis in rotating machinery with a high accu-
racy rate. 

Method. The proposed method employs Transformer architecture. The first stage of processing the vibration signal is the multi-
scale feature extractor. This stage allows the model to examine input signals in different scales and reduce the impact of the noise. 
The second stage is the Convolutional Transformer neural network. The convolution was introduced to the Transformer to combine 
locality and long-range dependencies feature extraction. The Self-attention mechanism of the Transformer was changed to Channel 
Attention, which reduces the number of parameters but maintains the strength of the attention. To maintain this idea, similar changes 
were made in the position-wise feed-forward network.  

Results. The proposed method is tested on the aircraft vibration dataset. Two conditions were chosen for testing: limited data and 
noisy environment. The limited data condition is simulated by selecting a small number of samples into the training set (a maximum 
of 10 per class). The noisy environment condition is simulated by adding Gaussian noise to the raw signal. According to the obtained 
results, the proposed method achieves a high average precision metric rate with a small number of parameters. The experiments also 
show the importance of the proposed modules and changes, confirming the assumptions about the process of feature extraction. 

Conclusion. The results of the conducted experiments show that the proposed model can detect faults with almost perfect accu-
racy, even with a small number of parameters. The proposed lightweight model is robust in limited data conditions and noisy envi-
ronment conditions. The prospects for further research are the development of fast and accurate neural networks for fault diagnosis 
and the development of limited data training techniques. 
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ABBREVIATIONS 
AP is an Average Precision; 
CA is a Channel Attention; 
CNN is a Convolutional Neural Network; 
DL is a Deep Learning; 
FD is a Fault Detection; 
FFN is a Feed-forward Network; 
HUMS is a Health and Usage Monitoring System; 
LMCT is a Lightweight Multi-scale Convolutional 

Transformer; 
MHSA is a Multi-head Self-attention; 
ML is a Machine Learning; 
MLP is a Multi-layer Perceptron; 

MSFE is a Multi-scale Feature Extractor; 
NLP is a Natural Language Processing; 
RNN is a Recurrent Neural Network; 
SNR is a Signal-to-noise Ratio. 

 
NOMENCLATURE 

T is a time-series sensor output; 
ti is a datapoint of sensor output; 
Y is a class label; 
D is a data set; 
M is a model; 
J is a classification metric; 
Ps is a signal power; 
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Pn is a noise power; 
Np  is a number of patches; 
fin is a set of input features to the network module; 
fout is a set of output features of the network module; 
favg is a set of features from the average pooling layer 

in CA module; 
fmax is a set of features from the max pooling layer in 

CA module; 
f* is a set of features from intermediate layers in net-

work modules. 
 

INTRODUCTION 
Rotating machinery is an integral part of mechanical 

systems. It finds its applications in many industrial sec-
tors, including aircraft, wind turbines, pumps, car engines, 
etc. In aircraft and helicopters, rotating components like 
bearings, rotors, and gearboxes are critical for efficient 
operations. HUMS are sensor-based systems designed to 
monitor the health and performance of critical compo-
nents as they are often subject to potential failure due to 
continuous mechanical stress (overload, overheating, lack 
of lubrication, etc). The early FD of these parts ensures 
the reliability and safety of the vehicle’s exploitation, 
reducing the risk of critical failures and the repair cost.  

Vibration-based analysis is a common FD technique 
in rotating machinery. Traditional ML methods often em-
ploy hand-crafted features combined with statistical-based 
algorithms like SVM [1], kNN [2], or decision trees [3]. 
While these methods can be used for fault prediction, they 
still struggle to capture complex features and require the 
complicated process of manual feature engineering. Re-
cently, DL methods have gained popularity in the field of 
vibration analysis in FD [4], showing promising results in 
solving this task. The main advantage is the ability of DL-
based models to capture complex data patterns and learn 
features of the input data, which eliminates the need for 
extensive feature engineering. (MLP [5] are commonly 
used in classification, CNNs [6–8] and RNNs [9, 10]. 
Also, a combination of CNN and RNN can be used [11, 
12] to better analyze both local and temporal features of 
the sensor data. The recent popularity of the Transformer 
architecture [13] in solving sequence-based problems 
(including sensor data) stimulates the development of the 
Transformer-based FD methods. 

Despite the exceptional performance of the DL-based 
methods for FD, these methods often need a large number 
of layers and parameters to extract comprehensive fea-
tures, which can significantly increase the size of the 
model, training, and inference time and make the usage 
inefficient under limited resource conditions. 

Moreover, one of the main issues with fault diagnosis 
is the limited amount of data. Usually, the number of 
positive samples (containing the fault) in the dataset is 
much smaller than the number of negative samples 
(healthy condition). This imbalance can significantly re-
duce the accuracy of the classification model, making 
predictions unreliable. To address this issue, techniques 
like zero-shot [14], few-shot [15], or transfer training can 
be used. 

The object of the research is the process of detecting 
faults in aircraft health monitoring systems. 

The subject of the research is the deep learning 
method to detect faults using vibration-based analysis. 

The purpose of the research is to develop and evalu-
ate an efficient deep learning model to classify sensor 
data from aircraft health monitoring systems. 

 
1 PROBLEM STATEMENT 

Let T = {ti | i = 1…n} be a vector of real values ti of a 
time-series sensor data. A class label Y ϵ {0,1} represents 
either an absence or a presence of a fault. Let D = {(Ti, Yi) 
| i = 1…N} be a labeled dataset that contains ordered pairs 
(Ti, Yi). The objective is to choose such model architecture 
M that reaches the maximum classification accuracy, i.e., 
J(Yi, M(Ti)) → max for each (Ti, Yi) ϵ D. 
 

2 REVIEW OF THE LITERATURE 
DL methods are widely used in rotating machinery FD 

tasks and have proven advantages over traditional ML 
methods [16]. Among them, CNNs play a significant role. 
Due to their strong feature extraction capabilities and lo-
cal receptive field, CNNs can be successfully applied to 
solve vibration-based classification. As a vibration signal 
is one-dimensional data, 1D CNNs are the common 
choice. Vibration signals or other sensor data often con-
tain localized patterns that indicate anomalies and faults, 
and by sliding 1D filters across the time-series data, 1D 
CNNs can effectively capture local, time-dependent 
changes that may signal an occuring fault. WDCNN 
method [17], for example, uses 1D CNN with wide ker-
nels in convolutional layers, which helps to reduce noise 
and extract features from the input signal. DSNR method 
[18] employs deep residual architecture with soft thresh-
olding (shrinkable function) to suppress redundant fea-
tures and reduce the effect of the noise. Zhang et al. [19] 
also use a deep residual 1D CNN model to extract local 
data features to analyze faults. Here, residual learning 
helps to design deeper architectures to extract more com-
plicated features. The authors of the AMMFN method 
[20] proposed the use of multi-sensor input data (vibration 
and current) processed by the 1D CNN model with the 
special attention-based fusion module that helps to extract 
features at different hierarchical levels and correlation 
information between sensors’ signals.  

Some methods combine 1D CNN with RNNs [11, 12]. 
This synthesis can improve the overall model perform-
ance by leveraging the strengths of each model type. This 
hybrid approach allows the network to capture both local 
patterns (via the CNN) and long-term dependencies (via 
the RNN) in time-series data. While these methods can 
achieve promising results, they require more training time 
due to the sequential nature of the RNNs.  

Two-dimensional CNNs can also be used for sensor 
data analysis. To do this, the 1D signal is converted from 
the time domain to the time-frequency domain, and the 
obtained 2D spectrogram is used for further processing by 
the network. Verstraete et al. [21] proposed the use of 2D 
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CNN to analyze the Short-time Fourier Transform repre-
sentation of the vibration signal. Pham et al. [22] em-
ployed the VGG16 model to analyze faults under incon-
sistent working conditions, showing excellent results. 
Although 2D CNN shows good performance, they require 
more samples to train in order to defeat overfitting. More-
over, 2D CNN usually requires more layers to extract 
deep features, which increases the model’s size and infer-
ence time.  

In recent years, Transformer-based models have be-
come popular in many fields, including NLP [13], Com-
puter Vision [23], Time-series analysis [24], FD [25], etc., 
outperforming common deep learning techniques. The 
main idea of Transformers lies behind the attention mech-
anism that allows focusing on the most relevant features 
and learning long-range dependencies more effectively. 
For example, the TST method [26] uses a 1D Transformer 
to directly analyze raw vibration signal data without pre-
processing, showing high accuracy. The other studies [27] 
use 2D Transformers, called Vision Transformers [23], to 
analyze the spectrogram representation of the signal time-
frequency domain. For example, ECTN [28] combines 
CNN and 2D Transformer to efficiently extract local and 
global information of the input signal. Integrated ViT 
model [29] decomposes the input signal with a Discrete 
Wavelet Transform and then applies soft voting to com-
bine preliminary results.  

Despite the advantages of the Transformers, they also 
have several notable disadvantages, including quadratic 
complexity of the attention mechanism and lack of intrin-
sic inductive bias [30], which makes them difficult to 
train. To address this issue in FD, the convolution can be 
introduced to Transformers [28, 31]. TWC method [32] is 
used in aircraft engine bearing FD and applies convolu-
tional feature extraction layers to obtain features from raw 
input signal before passing it to the Transformer back-
bone. In TCN [33], a combined model of convolution and 
Transformer is trained with transfer learning technique. 

Usually, the changes in vibration signal that refer to 
faults can vary in scale. Thus, using single-scale signal 
analysis, the fault can be easily overlooked. Multi-scale 
analysis can be used with different DL models. MCF-
1DViT [25] uses a Multi-scale Convolution Fusion Layer 
to extract features at different time scales and pass them 
to the Transformer. AM-CNN [34] employs a Multi-scale 
convolutional block with CNN for the same purpose. 
Chen et al. [35] proposed MCNN-LSTM model with low-
frequency and high-frequency feature extraction branches. 
Saghi et al. [11] developed CNN with three-scale branch-
es followed by a bidirectional GRU model. These studies 
show that multi-scale feature extraction can effectively 
capture more information at different scales and enhance 
the overall performance of the method.  

Recent studies demonstrate the potential of DL-based 
methods for FD in rotating machinery. However, further 
improvements are needed to reduce model complexity 
and the amount of noise in the input signal, achieve scale 
invariance, and improve local and global feature extrac-
tion, emphasizing the relevance of the proposed method. 

3 MATERIALS AND METHODS 
To solve the above challenges, the novel FD method 

called LMCT was developed. The proposed method main-
ly consists of two parts: MSFE and Transformer encoder. 
Fig 1. depicts the overall architecture of the neural net-
work. 

 

 
Figure 1 – Architecture of the proposed method 

 
Both MSFE and Transformer encoder employ CA 

[36]. CA allows model to adjust the importance of each 
channel, by helping it to focus more on the informative 
ones while paying less attention to those that contribute 
less. The architecture of the CA module is show in Fig 2. 

 

 
Figure 2 – Architecture of CA 

 
Formally, the CA block used in this method is the fol-

lowing (1–3): 
 

)))(((( inavg fAvgPoolConvRELUConvf  , (1)

 
)))((((max infMaxPoolConvRELUConvf  , (2)

 

inavgout fffSigmoidf  )( max . (3)

 
The MSFE (Fig. 3) module extracts preliminary fea-

tures from the input signal at different scales, which 
makes the model more invariant to changes in the scale of 
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fault occurrence. Inspired by [25], it consists of 3 branch-
es, each enhanced by CA. The kernel sizes of each branch 
Bn in MSFE are: 301, 401, 501. Wide kernels help to re-
duce the influence of the noise that might be present in 
the input signal. The outputs of the branches are then con-
catenated and processed by the convolutional layer to 
effectively merge important information. 

 

 
Figure 3 – Architecture of MSFE module 

 
MSFE module is defined as follows (4): 
 

 )))();();((( 321 inininout fBfBfBconcatBNGELUf  . (4)
 
After the processing by MSFE, the signal is split into 

Np patches before passed to the Encoder. First, each patch 
is encoded with convolutional embedding module to en-
rich them with more information. Then, positional encod-
ings are added to the patches to preserve the information 
about the relative position of each patch. After that, the 
information is passed to the Encoder blocks. 

The Encoder block (Fig. 4) follows the standard archi-
tecture [13] but with several changes. MHSA was re-
placed with CA, which treats each patch as a channel. It 
allows to significantly reduce the number of parameters 
while keeping the attention mechanism in the model. Po-
sition-wise FFN (Fig. 5) was made fully convolutional 
containing depth-wise convolution. These changes also 
reduce the complexity of the model while fusing the in-
formation from each patch. 

 

 
Figure 4 – A comparison of the vanilla Transformer block (left) 

and the proposed Transformer block (right) 

 
Figure 5 – Architecture of Position-wise FFN 

 
Mathematically, the whole proposed Transformer 

block is defined as follows (5–6): 
 

niin ffBNCAf  ))((* , (5)

 

.))(( ** ffBNDconvFFNfout   (6)

 
Inspired by [31], the output of the Encoder is then 

passed through an average pooling layer and classification 
head to predict the type of the signal (healthy or faulty). 

Table 1 describes the selected hyperparameters of the 
model that was used in the experiments. 

 
Table 1 – The description of proposed model hyperparameters 

 

Parameter Value 
Input size 1024 
Np 16 
Patch embedding channels 64 
Number of encoder blocks 6 
FFN convolutional channels 64 
Number of multi-scale branches 3 
Branches’ kernel sizes (301, 401, 501) 

 
4 EXPERIMENTS 

To evaluate the performance of the proposed model, 
the aircraft fault dataset was used. This dataset contains 
1158 samples of vibration signal, divided into two clas-
ses: 0 (healthy state) and 1 (fault). The amount of healthy 
and fault states is 865 and 293, respectively. Each sample 
is a vibration signal that contains 93752 datapoints. For 
training and testing, each sample was divided into chunks 
of length 1024 without overlapping, thus each sample 
provides 91 chunks. Each sample was scaled into the 
range of (–1, 1) before splitting into chunks. 

To analyze the performance of the proposed module 
under limited data constraints, the number of samples in 
the training set was chosen to be much smaller than in the 
test set. More precisely, several training sets were created 
with 1, 2, 5, and 10 vibration signal samples of each class. 
The rest of the data was split between validation and test-
ing sets. The information about created datasets is shown 
in Table 2. For example, the subset “Train 10” contains 
20 randomly selected samples (10 samples for the positive 
class and 10 samples for the negative). Each sample was 
divided into chunks of 1024 datapoints, thus “Train 10” 
subset split contains 1820 chunks in total. 
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Table 2 – The distribution of the created data subsets 
Dataset split Samples Classes (0/1) Chunks 

Train 1 2 1/1 182 
Train 2 4 2/2 364 
Train 5 10 5/5 910 
Train 10 20 10/10 1820 
Validation 113 89/24 10283 
Test 1025 766/259 93275 

 

To compare the proposed model with the existing 
methods, several models were chosen: MCNN-LSTM 
[35], WDCNN [17], MSCNN [37], MRACNN [38], 
MA1DCNN [39], ResNet18 (1D) [40]. 

Each model was trained for 30 epochs in 5 independ-
ent runs. After that, the results of each run were averaged. 
The batch size of the training phase is 128. AdamW was 
chosen as an optimization algorithm with a learning rate 
of 0.001. The loss function is binary cross-entropy. 

To evaluate the accuracy of the proposed method un-
der a noisy environment, the Gaussian white noise was 
added to the raw signal to get the signal with different 
SNR (7) values. In these experiments, noise with SNR 
from –9dB to 9dB with the step of 3dB was added. 

 

n

s

P

P
SNR 10log10 . (7)

 

For comparing results, AP was chosen as a metric. AP 
is a metric commonly used in binary classification, espe-
cially when dataset is highly imbalanced. It is essentially 
the area under the precision-recall curve, providing a sin-
gle score that summarize the precision-recall trade-off 
across various thresholds. The range of AP metric values 
is (0–1), where 1 means errorless classification. 

 

5 RESULTS 
Table 3 shows the results on the test dataset of differ-

ent methods. Each model is trained on datasets with a 
different number of vibration samples to evaluate the per-
formance in limited data conditions. Also, the number of 
parameters of each model is included. The results repre-
sent the value of AP metric. The results show that the 
proposed method (LMCT) trained on a subset of 20 sam-
ples (“Train 10”) outperforms the chosen existing meth-
ods (AP 0.9941) while having a relatively small number 
of parameters (0.097M). 

 

Table 3 – The prediction results of selected methods trained on different 
dataset sizes 

 N samples per class 

Method 1 2 5 10 

N 
params 

(M) 
MCNN-LSTM 0.3154 0.4016 0.4342 0.5421 0.093 
WDCNN 0.3455 0.6399 0.8322 0.9216 0.041 
MSCNN 0.3337 0.7790 0.7998 0.9511 13.78 
MRACNN 0.3372 0.5732 0.9182 0.9699 0.599 
MA1DCNN 0.3174 0.8043 0.8626 0.9094 0.323 
Resnet18 (1D) 0.3346 0.6631 0.8982 0.9556 3.84 
LMCT 
(proposed) 

0.3133 0.7314 0.9105 0.9941 0.097 

 

Note that these results represent the performance of 
the models on the dataset that is collected from samples’ 
chunks. To analyze the whole vibration sample, the aver-
age prediction of each chunk can be used. 

Table 4 shows the ablation study results to evaluate 
the performance and the importance of proposed changes, 
especially the MSFE module and new Convolutional 
Transformer Encoder block. The baseline model, the 1D 
Transformer, follows the standard Transformer architec-
ture. The hyperparameters in the baseline were chosen to 
make it as close to the proposed method as possible. 
 

Table 4 – The ablation study of the effect of proposed improvements 
 N samples per class 

Method 1 2 5 10 
1D Transformer 0.3122 0.2976 0.2963 0.3919 
1D Transformer + MSFE 0.3122 0.3904 0.4869 0.6063 
LMCT w/o MSFE 0.3137 0.6335 0.7523 0.8056 
LMCT 0.3133 0.7314 0.9105 0.9941 

 

Figure 6 shows the results (AP) of the selected models 
under noisy environment conditions (SNR from –9 to 9). 
For that, models that were trained on 20 samples (subset 
“Train 10”) were chosen.  

 

 
Figure 6 – The results under different SNRs of Gaussian noise 

 

The visualization of the learnt features (featurs from 
the last layer of the network) using t-SNE method is show 
in the Fig. 7. 

 

 
Figure 7 – Distribution of features visualized with t-SNE 
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6 DISCUSSION 
The results from Table 3 show that the proposed mod-

el achieves almost ideal accuracy (AP 0.9941). Moreover, 
the number of parameters of the proposed model is rela-
tively small (0.091M) compared to the existing ap-
proaches, which means that a small model is able to 
achieve good results in vibration-based FD tasks. This can 
be explained by the fact that the proposed methods em-
ploy a combination of convolution and attention mecha-
nisms, which allows the model to examine local features 
as well as long-term dependencies. 

The results of the ablation study in Table 4 suggest the 
importance of the proposed modules. The MSFE module 
significantly improves the performance, which means that 
it is able to extract valuable deep features from the input 
signal. The Transformer backbone is able to process these 
features more accurately than the raw input signal. Also, 
the vanilla Transformer model is not able to accurately 
classify aircraft sensor vibration signals. It can be explained 
by the fact that each signal can contain local patterns that 
can influence the overall prediction results. To extract these 
patterns, the strength of convolutional inductive locality 
bias is needed. 

Figure 6 shows that the proposed model can be used in 
noisy environments effectively. The proposed model 
achieves AP of 0.9783, 0.9821, and 0.9842 at SNR values 
of 3dB, 6dB, and 9dB, respectively. When SNR is higher 
than 0, it means that the energy of the original signal is 
higher than the energy of the added noise and vice versa. In 
cases when the energy of the noise is higher than the en-
ergy of the original signal, classification is difficult to per-
form. The results, obtained under different SNR values, 
indicate that wide kernels in MSFE help the model to re-
duce the impact of the noise in the signal. 

Figure 7, which shows the 2D representation of ex-
tracted features, suggests that the model is able to learn the 
feature distribution by extracting patterns and dependencies 
between similar entries. The fault features and healthy fea-
tures are clustered, which means that model can separate 
between both clusters. 

 
CONCLUSIONS 

In this paper, the problem of fault diagnosis of aircraft 
rotating machinery is being solved by applying deep 
learning method.  

The scientific novelty. The conducted experiments 
show that proposed method can achieve high accuracy 
having small number of parameters. The proposed chang-
es made to Transformer architecture significantly increase 
model's performance while reducing it's size. Moreover, 
the results show that FD methods can be effectively 
trained with limited size of the data which is important in 
the field of aircraft FD where fault data samples are ex-
tremely rare. 

The practical significance. The obtained model al-
lows diagnosing faults in aircraft with high accuracy and 
can be applied to other rotating machinery FD tasks that 
use vibration-based analysis. 

The prospects for further research lie in developing 
more efficient model and testing with other limited data 
training techniques like zero-shot or few-shot learning. 
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НЕСПРАВНОСТЕЙ ЛІТАЛЬНИХ АПАРАТІВ ЗА ДОПОМОГОЮ ВІБРАЦІЙНОГО АНАЛІЗУ 
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AНОТАЦІЯ 

Актуальність. Діагностика несправностей обертових механізмів, особливо в авіації, відіграє важливу роль в системах 
моніторингу стану. Своєчасне і точне виявлення несправностей може значно знизити вартість ремонту і збільшити термін 
служби механізму. Для ефективного виявлення несправностей використовуються інтелектуальні методи, які базуються на 
традиційних методах машинного та глибинного навчання. Об'єктом дослідження є процес виявлення несправностей в 
авіаційних апаратах на основі аналізу вібрацій. 

Метою роботи є розробка методу глибинног навчання для діагностики несправностей обертових машин з високою точ-
ністю.  

Метод. Запропонований метод використовує архітектуру трансформера. Першим етапом обробки сигналу вібрації є ба-
гатомасштабне вилучення ознак. Цей етап дозволяє моделі розглядати вхідні сигнали в різних масштабах і зменшити впли-
ви шуму. Другий етап – згорткова нейронна мережа з трансормером. Згортка була додана до трансформеру, щоб поєднати 
локальність і вилучення ознак далеких залежностей. Механізм самоуваги трансормеру було змінено на механізм канальної 
уваги, що зменшує кількість параметрів, але зберігає силу уваги. Щоб підсилити цю ідею, аналогічні зміни були зроблені в 
позиційній мережі прямого поширення. 

Результати. Запропонований метод протестовано на наборі даних з вібраціями авіаційного апарату. Для тестування бу-
ло обрано дві умови: обмеженість обсягу даних та зашумлене середовище. Обмеженість обсягу даних імітується шляхом 
використання невелої кількості вибірок до навчального набору даних (максимум 10 на клас). Умова зашумленого середо-
вища імітується шляхом додавання гауссівського шуму до вихідного сигналу. Згідно з отриманими результатами, запропо-
нований метод досягає високої середньої точності при невеликій кількості параметрів. Експерименти також показують важ-
ливість запропонованих модулів і змін, підтверджуючи припущення про процес вилучення ознак.  

Висновки. Результати проведених експериментів показують, що запропонована модель може виявляти несправності з 
майже ідеальною точністю, навіть при невеликій кількості параметрів. Запропонована легковісна модель є стійкою в умовах 
обмеженого обсягу даних та зашумленого середовища. Перспективами подальших досліджень є розробка швидких і точних 
нейронних мереж для діагностики несправностей та розробка методів навчання на обмежених обсягах даних. 

КЛЮЧОВІ СЛОВА: аналіз несправностей, глибинне навчання, обертові механізми, обробка сигналів, трансформер, 
нейронні мережі. 
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