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ABSTRACT

Context. With the contemporary development of topological optimization, and parametric and Al-guided design, the problem of
implicit surface representation became prominent in additive manufacturing. Although more and more software packages use implicit
modeling for design, there is no common standard way of writing, storing, or passing a set of implicit surfaces or curves over the
network. The object of the study is one of the possible ways of such representation, specifically: modeling implicit curves and sur-
faces using pseudo-Gaussian interpolation.

Objective. The goal of the work is the development of a modeling method that improved the accuracy of the implicit object rep-
resentation wothout significant increase in memory used or processing time spent.

Method. One of the conventional ways to model an implicit surface would be to represent its signed distance function (SDF)
with its values defined on a regular grid. Then a continuous SDF could be obtained from the grid values by means of interpolation.
What we propose instead is to store not SDF values but the coefficients of a pseudo-Gaussian interpolating function in the grid,
which would enable picking the exact interpolation points before the SDF model is written. In this way we achieve better accuracy in
the regions we’re interested the most in with no additional memory overhead.

Results. The developed method was implemented in software for curves in 2D and validated against several primitive implicit
curves of different nanture: circles, sqaures, rectangles with different parameters of the model. The method has shown improved ac-
cuaracy in general, but there were several classes of corner cases found for which it deserves further development.

Conclusions. Pseudo-Gaussian interpolation defined as a sum of radial basis functions on a regular grid with points of interpola-
tion defined in the proximity of the grid points generally allows to model an implicit surface more accurately than a voxel model
interpolation does. The memory intake or computational toll isn’t much different in these two approaches. However, the interpolating
points selection strategy and the choice of the best modeling parameters for each particular modeling problem remain an open quesi-
tion.

KEYWORDS: surface representation, curve representation, implicit representation, pseudo-Gaussian function, regular grid,
implicit surface modeling, implicit surface data format.

ABBREVIATIONS RBF is a radial basis function;
3MF is a data format called 3D Manufacturing For- SDF is a signed distance function;
mat; SOP is a Service-Object Pair.
DICOM is a data format called Digital Imaging and
Communications in Medicine; NOMENCLATURE
HDFS5 is a data format called Hierarchical Data For- k is a distance between grid points;
mat; M is a first dimension of a 3D or 2D grid;
HRBEF a a Hermite radial basis function; n is an order of the pseudo-Gaussian sum continuity;
NRRD is a data format called Nearly Raw Raster N is a second dimension of a 3D or 2D grid;
Data; P is a third dimension of a 3D grid,
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P(x) is an algebraic polynomial that models a Gaus-
sian function;

pg(x) is a presudo-Gaussian function of a single vari-
able;

pgri(x, y) is a radial basis function based on a pseugo-
Gaussian function;

r is a range of pseudo-Gaussian basis functions;

SDF(x, y) is a signed-distance fucntion representing an
implicit curve to model;

Spg(x, y) is a pseudo-Gaussian interpolating function;

(x4 Vp) 1s an interpolating point in 2D;

(x4 Vs zc) s an interpolating point in 3D;

(%, »;) is a point of a 2D grid;

(x;, ; z)) is a point of a 3D grid.

INTRODUCTION

With the contemporary development of topological
optimization, and parametric and Al-guided design, the
problem of implicit surface representation became promi-
nent in additive manufacturing. Although more and more
software packages use implicit modeling for design, there
is no common standard way of writing, storing, or passing
a set of implicit surfaces or curves over the network. The
straightforward way to represent an implicit surface
would be to write down all the operations necessary for its
signed distance function computation, but this would be
too tedious to formalize and implement, besides the pro-
ducer of the model design might not even want to disclose
its computation method as it might be by itself a trade
secret.

One of the usual ways to represent a signed distance
function (SDF) of an implicit surface would be to write
down its values defined on a regular grid. This is some-
times called a 3D image, a 3D bitmap, or a voxel model.
Then a continuous SDF could be obtained from the grid
values by means of interpolation. What we propose in-
stead is to store not SDF values but the coefficients of a
pseudo-Gaussian interpolating function, which allows us
to pick the exact interpolation points before the SDF
model is written. In this way we achieve better accuracy
in the regions we’re the most interested in (see Fig. 1.)
with no additional memory overhead.

Figure 1 — An SDF of a circle, its model with values set on a
regular grid, its model with interpolation points adjusted

The object of study is the modeling of implicit curves
and surfaces with data on regular grids.

The subject of study is the pseudo-Gaussian interpo-
lation in the context of implicit curves and surfaces mod-
eling.
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The purpose of the work is to increase the accuracy
of implicit surface modeling while not increasing the
memory intake of the model.

1 PROBLEM STATEMENT

Let SDF(x, y, z) be a function that represents an im-
plicit surface SDF(x, y, z) = 0. The value of the function,
when not zero, is the signed distance to the abovemen-
tioned implicit surface.

Suppose we have a regular grid of points (x; y; z),
where j =1..M, i=1..N, [ =1..P. Let distance between the
closest grid points be k, and the cooridnate-wise minimal
point of the grid: (xo, ¥, Zo)-

The problem of the implicit surface modeling SDF(x,
¥, z) = 0 with pseudo-Gaussian interpolation would be to
define a pseudo-Gaussial inteprpolation function Spg(x,
y, z) that is close to the SDF(x, y, z) within some range of
tolerance on the 3D range [xo, xo + (M=1)k]x[yo, yo + (N—
1)k]><[Zo, Z()J" (P—l)k]

2 REVIEW OF THE LITERATURE

Since normally storing or transmitting the whole com-
putation path of an implicit surface’s SDF is impractical,
the computation may even require going beyond the alge-
bra of real numbers [1], we have to resort to some sort of
an SDF model instead. The common way to represent an
SDF with an easily serializable homogeneous data struc-
ture fit for transmission would be to use a voxel grid, also
known as 3D-image, where each voxel is assigned a value
or a set of values that help the receiving side model the
initial surface. In this case, the problem of representation
concerns the voxel access optimization [2] or the specific
data assigned to each voxel, which can not only be an
SDF value in a point but a gradient of the SDF in that
very point as well [3].

In recent times, another common approach for implicit
surface modeling is using a neural network trained to rec-
reate the surface [4], [5]. For this approach, the problem
of representation is then reduced to the problem of repre-
sentation of the model’s coefficients. It is not a solved
problem, different networks allow users to balance the
model precision and the model size differently.

We propose to use an approach that, in a way, com-
bines the previous two. We store the coefficients of the
model, but the model is not a neural network but an inter-
polating function, consisting of weighted radial functions,
defined on the regular grid, similar to a voxel grid.

Using radial functions is a common practice in another
adjacent problem — the problem of implicit surface recon-
struction from a point cloud. For instance, a meta-analysis
of implicit surface reconstruction via RBF interpolation
methods performed by Mo Jiahui, Shou Huahao, and
Chen Wei in 2022 [6] lists 125 published sources. A
comparative analysis of RBF approximations has also
been performed by Majdisova and Skala [7].

Often, along with the values of modeled functions to
approximate, RBFs also take a function’s gradient into
account. In this case, we usually refer to them as Hermite
radial basis functions (HRBF) [8], [9].
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In this work, we use a very specific sort of RBF ap-
proximation — Gaussian interpolation [10], [11]. How-
ever, to enable localized computation, and thus enable
practical application of the global interpolating function,
we must resort to a substitution. In this work, we’ll use
pseudo-Gaussian functions instead of Gaussian functions.

3 MATERIALS AND METHODS
Let’s define a pseudo-Gaussian function as a symmet-
ric function pg(x) of a real argument such as:

rg(0)=1;

prg(r)=0;

pg(M\V =0,i=1.n; (1)
pg(x)=0,x<-r;

pg(x)=0,x>r.

In this way, the function is non-zero on (-, r), zero
elsewhere, and it has its first n derivatives in — and 7,
specified as 0 too.

The function is symetric and, as such, mimics the
Gaussian function near 0 (see Fig. 2).

Gaussian and pseudo-Gaussian

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0
X

Figure 2 — A Gaussian function (dotted) and a pseudo-Gaussian
with n =4, r =1 (solid)

The amount of non-zero derivatives on (—r, r) that also
become 0 in r and — condition the continuity class C" of
the pseudo-Gaussian sum and therefore the smoothness
degree of the implicit surface (or a contour in 2D) that
we’re aiming to model.

To specify a pseudo-Gaussian pg(x) for any given r
and n, we can use a polynomial representation. A poly-
nomial that represents pg(x) will be a symmetrical poly-
nomial, so it will only consist of even degrees of x, and its
degree then should be at least 2(n+2). To obtain all the
coefficients of a minimal degree polynomial that satisfy
the conditions from above, we should comprise a system
of equations:

P(0)=1,
P(r)=0,
P (r)=0,

P'(r)=0, @

P (r)=0.
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Since r and n are known constants and we only need
to determine the coefficients of the polynomial, the sys-
tem is linear. We can use any solver to get the coefficients
for any degree # and any r.

Interestingly, we might not even have to solve the sys-
tem at all. The coefficients of the polynomial regardless
of r seem to follow the binomial coefficients. For in-
stance, here are the generalized formulas for the P,(x) for
n=1.4:

2xr Xt
pg1(xX) =1-—-+—, (3)
r r
3x2 3x* xO
pgr(x)=1-—+——-—, 4)
7"2 r4 1”6
4x?  ext ax® i
pg3(x)=1- + - +—, (5)
1”2 1”4 r6 1”8
5x2 10x* 10x% sxd x10
pga()=l-——F-t——-——+——-—5- (0
r r r r r

The core difference between the Gaussian and the
pseudo-Gaussian function is that the latter is localized,
meaning that all non-zero values of pg(x) lie within the
(-, r) interval. Since we’re planning to use this function
as a basis radial function determined on a regular grid,
this means that for any point in space, we can compute the
sum of all the functions in the whole grid by only comput-
ing the ones that are defined in the proximity of the point.
Every RBF defined further than » from the point of com-
putation will be 0 by definition and, therefore will not
contribute to the sum.

This allows us to use a global interpolation function —
the pseudo-Gaussian interpolation function — such as it
would have been local.

A pseudo-Gaussian interpolating function is a
weighted sum of pseudo-Gaussian radial functions deter-
mined in all the points of a finite regular grid.

Let’s now focus on 2D space for brevity. If we have a
grid of size M xN that starts at a point (xo, )p), and has a
constant distance k between adjacent points (x;1, ;) and
(v, y;) as well as between (x;, ;1) and (x;, y;) for all i =
0..N=2, j = 0..M=2, then the points of this grid would be
defined as:

(xj,3)) = (xo + jk,yo +ik),i=0.N-1,j=0.M—1. @)
Let’s say we have defined pseudo-Gaussian-based ra-

dial basis functions pgr;(x, y) for all i = 0..n—1, j = 0..m—
1:

pgrij(x,y) = pgp(|(x, )= (x;,»,)]) - (®)

And their respective coefficients a;. The pseudo-
Gaussian interpolating function will then look like this:
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n—lm-1

Spg(x,y) =D D a; pgry(x,y) . 9)
i=0 j=0

Although here we present a formula as a full sum of
all the weighted functions, remember, we don’t have to do
the full computation for all the basis functions every time
we want to compute the Spg(x, y) at a point. Given that
the pseudo-Gaussians pg(x) we choose have an effective
range of non-zero values 7, meaning that pg(x) = 0 when x
<-rand x > r, to compute the interpolating function at a
point (x, y) we only need to account for the radial basis
functions that are defined in the nodes (x; y;) where |[x, y]
— [x; »]| < r. This means that in order to compute an
Spg(x, y) at any point, only a relatively small and prede-
fined number of basis functions should be computed,
which reduces the computation complexity of such a
computation from O(N?) to O(1).

The coefficients a;; are exactly the data that character-
ize the Spg(x, y) function. To make the pseudo-Gaussian
sum interpolate an arbitrary function we want to model:
SDF(x, y), we should select exactly M xN points (x, )
where @ = 1.M, b = 1..N such as they are all defined
within the range of the corresponding radial functions
meaning that |(x,, y»)—(x; y;)| < r. Then for the defined
grid and defined values SDF(x,, y;), we can define a sys-
tem of equations:

Spg(xy,yp) =SDF (x4, yp) - (10)

In regard to the coefficients a; the system is linear.
Moreover, for N > r/d and M > r/d, which is expected
given the presumed application of this interpolation func-
tion, the system will appear sparse. Methods of solution
for these types of systems are well known. By solving the
system with a chosen method we get the array of a;; coef-
ficients each defined for a grid point (x; ;) and for its
radial basis function respectively.

The pseudo-Gaussian interpolation function general-
izes easily to 3D. We still use the same radial basis func-
tions, it’s only now there are 3 arguments in the function,
and the grid is, of course, also 3-dimensional.

If we have a grid of size M xNxP that starts at a point
(x0, o, z0), and has a constant distance & between adjacent
points (x4, ¥ z;) and (x;, y; z), as well as between (x;,
Yirs, z1) and (x;, y; z), and now also (x;, y; z+) and (x;, y;
z)), for all i = 0.N=2, j = 0.M=2, [ = 0..P-2 then the
points of this grid would be:

(xj,yl-,Zl):(XO +jk,y0 +ik,ZO "rlk),

(11)
i=0.N-1,j=0.M-1/=0..P—1.
The radial basis functions:
pg’ijl(xsysz)=pgn((x$yez)_(xj’yiszl))' (12)
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And the pseudo-Gaussian interpolating function will
then be:

n—1m-1p-1

Spg(xayaz) = Z Z Zaljlpgrljl (x’yaz) .
i=0 j=0/=0

(13)

The interpolation points are then defined as (x,, y», z.),
wherea =1.M,b=1.N,c=1..P.

And the system to get the coefficients a;; is:

Spg(xa’yb)=SDF(xasyb)' (14)

Note that in both 2D and 3D, the interpolation points
may or may not be equal to the grid points. In this work,
we argue that selecting interpolation points different from
the grid points is a valuable feature we get by storing in-
terpolation function coefficients instead of SDF values.

In both 2D and 3D, the result of interpolation relies
heavily on the choice of the interpolation points (x,, y,) or
(x4 yi zc) respectively. Of course, other factors impact the
interpolation result too: the length of the non-zero range
of the pseudo-Gaussian function pg(x), the distance be-
tween the grid points &, and the order of continuity of the
basis functions sum #. Still, while all these parameters
shape the resulting function differently, and as such de-
serve studying on their own, they mostly help balance the
computational complexity and the accuracy of the model.
The interpolation points choice, however, is crucial for
successful SDF modeling.

As we mentioned before, we can forfeit the choice to
the default and set interpolation points equal to the points
of the grid: (x, y) = (x;, ¥)).

Let’s take a 2D SDF of a rotated square (Fig. 3), and
show how the result of its interpolation looks like when
the interpolation points coincide with the points of the
grid (Fig. 4).

1.5 1.5
1.2
1.0
0.9
0.5 9
0.6
0.0 0.3
0.0
-0.5
=0.3
-1.0
-0.6
-1.5 -0.9

-1.0 -0.5 0.0 0.5 1.0 15
Figure 3 — An SDF of a square rotated by 45 degrees, and a
regular 13x13 grid
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Figure 4 — Pseudo-Gaussian interpolation of the SDF values
in grid points

This interpolation models the SDF and we already can
store the coefficients of the interpolating function in a 2D
image instead of SDF values. The resulting image will
take exactly as much memory as the 2D image of SDF
values, but we wouldn’t have to compute the coefficients
afterward.

But if we define each point of interpolation (x,, y;) as
the point of the isoline SDF(x, y) = z, nearest to the grid
point (x;, ¥;), where z = zy,,q, g is integer, and the isoline
step zy,, <= k, then with this choice of interpolation
points, we make our model much more precise around the
select isolines, and, what’s even more important, around
the isoline SDF(x, y) = 0 that represents the entity we
want to model (see Fig. 5).

L5 A

1.0 4

0.5 A

0.0

=0.5

_1.0 4

_1_5 4

15 -10 -05 00 05 10 15
Figure 5 — Model of the rotated square SDF with interpolat-
ing points defined on SDF(x, y) = 0.25¢

The points (x; y;) where the radial functions are de-
fined remain intact for every possible choice of the inter-
polating points (x, y,). Of course, the choice affects the
model, it affects its coefficients a;, but not the way the
interpolating function is computed from these coeffi-
cients, so this choice of points brings no impact on the
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computational complexity of the whole function computa-
tion either.

The proposed method of selecting the interpolation
points has not been extensively tested in real-world cases.
It rather illustrates the idea of point selection itself than
serves as a practical guide. The idea itself is interesting
since the very possibility of point selection extends our
possibilities for more precise modeling of implicit con-
tours in 2D and surfaces in 3D, and doesn’t add any
memory toll to the resulting data structure.

4 DISCUSSION

With our approach, we can define the interpolating
point in any point in between grid points but there are
limitations to this too. Any point (x, y,) should be no
further from the grid point (x; y;) than ». But what’s more
important, the total number of these points still can’t ex-
ceed nm for the regular grid of size m xn. In the context of
storing and transmitting SDF models, this means that we
can make our model of SDF more accurate in some re-
gions only by forfeiting accuracy in others. This works
well with implicit surface (and contour in 2D) representa-
tion where we want to focus on the isoline SDF(x) = 0,
but not necessary in the more general context.

In a way, this reflects how the lossy compression
works. We accentuate the important information, and by
letting the less important details go, use less data to store
essentially the same object as with lossless compression.
But what’s important and what’s not depends solely on
the context of the application, not on the information, or
the model, itself.

For instance, the consistency of the SDF is important
for contouring — turning the SDF into a set of polylines in
2D and triangle meshes in 3D. Common contouring
methods like marching cubes, surface nets, or double con-
touring — all rely on the linearity of the SDF. Marching
cubes often use linear interpolation to determine the verti-
ces’ positions, and dual contouring also requires Hermite
data, so it requires the gradient of the SDF to be consis-
tent with the distance function too.

Another example of a practical problem where the ac-
curacy of the SDF model is equally important as on the
isoline SDF(x) = 0 as everywhere else is the offset model-
ing. Signed distance functions, as their name hints are
perfect for offset modeling since all you have to do to
build an offset of an SDF is to subtract the offset distance
from the SDF. Offsets are routinely used in 3D printing
both in 3D for solving positioning and supporting prob-
lems, and in 2D, to generate toolpaths from the contours
of the sliced model. Although our approach allows us to
put modeling focus into multiple isolines, we don’t neces-
sarily know beforehand which isolines will be used for
offsetting so we can’t exploit this information to make our
model more accurate for the offseting specifically.

The interpolation points selection is a valuable option,
but it’s not omnipotent. We can make our model more
accurate for some applications, but there will always be
counterexamples when this rearrangement of data points

backfires.
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The other problem is that the control over interpolat-
ing points doesn’t necessarily grant control over the shape
of the modeled body. The exact shape of the surface or
contour we achieve doesn’t necessarily coincide with the
initial shape let alone our expectations. In Fig. 6 you can
see an SDF and the pseudo-Gaussian interpolation of this
points

SDF  with interpolation defined on

SDF(x, y) = 0.25¢.

15 -09 -15+
-15 -l10 -05 00 05 10 15 -15 -10  -05 00 05 10 15

Figure 6 — An SDF of a rotated square and its pseudo-Gaussian
interpolation gone wrong

Please note, that 0.25 is the same isoline step as before
(see Fig. 5). We also use the same basis functions and the
same grid. In Fig. 5 we have shown a similar square ro-
tated slightly differently, and the same strategy for inter-
polation points selection worked there well.

The result of the modeling depends on four factors:

1. The non-zero range of pseudo-Gaussian basis func-
tions 7.

2. The order of the pseudo-Gaussian sum continuity 7.

3. The distance between grid points k.

4. And the choice of interpolation points (y;, ;).

How exactly these factors affect the result of the mod-
eling has not been yet extensively studied. We have run a
series of experiments modeling implicit curves in 2D to
determine how r, n, and k affect the model’s shape but the
results have been inconclusive so far.

Sometimes, when a model of an implicit curve loses
its original shape, meaning that there are extra contours in
between interpolation points as in Fig. 6, increasing the
non-zero range of the pseudo-Gaussian function may help
establish its original contour. But for some SDFs, this is
not the case. We haven’t found the specific pattern here.
Also, note that enlarging the r raises the computation cost
of the interpolation function since for each point we com-
pute it at, we have to take more basis functions into ac-
count. In other words, we can’t raise » too much, as this
will hinder the applicability of the whole approach.

Also, since at every point the resulting model depends
on the contribution of all the radial functions defined
within radius » from the point of computation, it is highly
recommended to define the interpolating grid in a way
that it bounds the zero polyline with at least »/d wide
margin (see Fig. 7).
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Figure 7 — An extra margin of only one cell helps preserve
the shape

Surprisingly, raising the order of pseudo-Gaussian
sum continuity # may also help keep the shape of the
modeled curve closer to the original although within lim-
its. E. g. if the shape is lost with n = 2, raising n to 3 or 4
might help. But if the shape is still lost, adding more
members to the pseudo-Gaussian function will most likely
elevate the computational cost with no additional benefit.
We haven’t tested this extensively so far, so this requires
further investigation. It might even be worth considering
not only experimenting with #, but taking completely dif-
ferent kinds of radial basis functions, or perhaps not even
radial, into test.

Managing the distance between points k or, which is
the same, regulating the grid density is the common way
of trading computational speed and memory footprint for
accuracy with traditional voxel-based modeling. Nor-
mally, but not necessarily, it works the same with our
interpolation-based approach too. The problem is, with
linear interpolation, the value between two interpolation
points lies in between their respective values. With
pseudo-Gaussian interpolation, this is not a given. Be-
sides, the whole point of storing interpolation coefficients
instead of SDF values was to increase model precision in
the important area without adding extra grid points there.
Raising the grid density too much diminishes this advan-
tage.

So while selecting different », n, and £ may or may not
help us ensure that the shape of the model is consistent
with its original, the only consistent way to do so is by
choosing the interpolation points. Moreover, this is the
only choice that doesn’t affect the computational speed or
the memory footprint of the resulting model. Also, this is
the only approach that has so far shown itself robust in the
experiments.

For the model in Fig. 6 specifically, we have con-
ducted the following computational experiment. We
didn’t change the method of interpolation points selection
itself, we still chose the closest point on isoline
SDF(x, y) = Zyuepq. Using numerical optimization, how-
ever, we found the isoline step value where the difference
between the original SDF and its interpolated model is
minimal. It was shown that for this particular model, the
best zy.,, computed up to the 6th decimal sign after the
decimal point, equals 0.081384. See Fig. 8.
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Figure 8 — A model of the square SDF with interpolating points
defined on SDF(x, y) = 0.081384¢q

The experiment shows that the interpolation points se-
lection is crucial for every modeling problem in particular.
The fact that the optimal z, for the model in the experi-
ment is so low hints that it could be that for this case we
need another method of points selection. Something that
puts more data into the main isoline SDF(x, y) = 0 and not
necessarily SDF(x, y) = Zyep, Where g # 0.

CONCLUSIONS

Pseudo-Gaussian interpolation defined as a set of ra-
dial basis functions on a regular grid with points of inter-
polation defined in the proximity of the grid points allows
us to model an implicit surface more accurately than a
voxel model interpolation. At the same time, the memory
or computational toll isn’t much different in these two
approaches. Let’s summarize.

Due to the pseudo-Gaussian radial basis function lo-
calization, the computational complexity of the whole
interpolation function doesn’t depend on the grid size and
thus can be evaluated as O(1).

Given that the interpolation function is a weighted
sum of the radial basis functions defined in the known
grid points, and to define such a function we only need to
compute, store, and, if necessary transmit, its weight coef-
ficients — 1 per grid point — the memory footprint of this
model is exactly the same as a footprint of a voxel grid
with SDF values.

At the same time, we retain an option to choose the
points of interpolation before the weight coefficients are
composed. This allows us to model select isolines more
accurately than any generic interpolation of a voxel grid
can.

Additionally, since the data structure of the pseudo-
Gaussian interpolation function is compatible with a
voxel grid, we can already store this type of data in any
existing data format that allows voxel grids (also known
as 3D images or grey-value floating point images). This
includes 3MF, HDFS5, NRRD, and even, with the intro-
duction of a user-defined SOP extension, DICOM.

At the same time, the three mechanisms to balance the
performance and accuracy of the modeling: selecting the
non-zero range of pseudo-Gaussian basis functions 7,
picking the order of the pseudo-Gaussian sum continuity
n, and choosing the distance between grid points & — all
deserve additional studying.
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But the most important is the problem of the interpo-
lating points selection. The method we proposed in this
paper brings only illustrative not practical value. The key
to turning the pseudo-Gaussian grid interpolation into a
robust technology for implicit surface storage and trans-
mission lies in discovering the best interpolating points
selection strategy.
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AHOTAUNIA

AKTyaJIbHICTB. [3 Cy4acHUM PO3BHTKOM METOJIB TOMOJIOTIYHOT ONTHMI3allii, MapaMeTPUIHOTO MPOCKTYBAaHHS 1 MPOSKTYBaHHS
Ha OCHOBI IUNTYYHOTO iHTEJNEKTY, MpobieMa 3anucy iMIUTIIUTHUX TTOBEPXOHb y 3agadax 3D-mpyKy cTaiga HaJBaXKIMBOIO. Xoda Bce
OlnTbIIIe TPOTrpaMHKUX MPOAYKTIB BUKOPUCTOBYIOTH IMIDTIIUTHI MOJENI Y MPOEKTYBaHHI, €MHOTO CTAaHAAPTY IS 3alHCy, a 3HAYHTH 1
Jutst 30epeKeHHs Ta Iepefadi TaKuX Mojeneil 3acobaMu KOMIT IOTEpHUX Mepex, He icHye. O6’€KTOM IIbOro JOCIHIKEHHS € OfUH 3
MOXJIMBUX CIOCOOIB TaKOTO 3aIHCY, a caMe — MOJCIIIOBAHHS IMIUTIIUTHUX KPHUBUX 1 HOBEPXOHbB 13 BUKOPUCTaHHIM IICEBIOrayCOBOI
IHTEePIOJIALLL.

MeTta po6otu. Lk po6oTH MOJIATae y CTBOPEHHI criocoba MOJCTIOBAHHS IMILTIIIUTHUX KPUBUX 1 TIOBEPXOHb, 13 TOKPAIICHHOO
TOYHICTIO O€3 3HAUHHX BUTPAT IaM’sITi UM 4acy OOUNCICHHS.

Metoa. OnnuM i3 3araJbHONPUIHATHX crtoco0iB 3amucy ¢yHKIil 3HakoBoi Bincrani (P3B) € 3anmc i1 3HaYeHb HA peryJsApHIiN
citmi. Takwuii cnoci6 me HazuBaeThest 3D-300paxenns, 3D-0iTman, abo BokcenpHa Mozenb. Hemepepsaa @3B Moxe OyTu oTpuMana
i3 3amMcaHWX 3HAYCHb 3a JOTOMOrOI0 iHTeprmorinii. HaToMicTh TMpONOHYyeThcs 3amucyBaTH He 3HadeHHS O3B, a 3HadeHHS
Koe(IIi€HTIB TICEBJIOraycoBoi iHTepHoNAmiiHOT (YHKII, IO M03BOJsE OOMpAaTH TOUYKH IHTEPHOISIIl N0 3amucy Koe(ilieHTiB
Mozeri. TakuM YHHOM MOJKHA JOCSTTH OLTBII TOYHOTO MOJEIIOBAHHS y HaWBaXIIMBIIIMX perioHax (AWB. pUCYHOK 1) 6e3 BHKOpH-
CTaHHsI I0JATKOBOI I1aM sITi.

Pe3yabTaTn. 3anpornoHoBaHuii croci6é OyB iMIUIEMEHTOBAHHI y BHIJISI KOMII' IOTEPHOI NPOTrpaMy JUIsi MOACTIOBaHHS IUIACKUX
IMIUTIIUTHAX KPUBHX 1 MPOBAJTIJOBAHUI Ha JAEKUIBKOX MPUMUTHBHUX MOJEISIX PI3HOTO IMOXOMKEHHS: KOJiax, KBajparax, MpSIMOKYT-
HUKax, — i3 Pi3HUMH MapamMeTpaMu Mojei. Biiinomy, nopsBHsHO i3 iHTepronsoBaHuMHK 3HaYeHHIMH O3B y Toukax peuriTku, MeTos
MOKa3ye Kpalry TOYHICTb, aJie Pa3oM i3 THM Ma€ AeKiJIbKa TPaHUYHUX CTaHIB, Y SIKHX BiH HOTpeOy€e MOAANBIIOr0 BUBYCHHS.

Bucnosku. [IcepmoraycoBa iHTepmosnsiis, BU3HAYEHA SK CyMa palialbHUX 0a3ucHUX (DYHKIIN HA PEryJApHIN CITHi i3 TOUYKaMH
IHTEpIOJALI] BU3SHAYCHUMH Y HEHYJIHOBOMY OKOJIi TOUOK CITKH B 3arajlbHOMY BHIIAQJAKY J03BOJISIE€ MOAETIOBATH IMILUTILUTHI KPHBI i
MIOBEPXHi TOYHIIIE HIX IHTEPIOJAIIS BOKCceNbHOI Mojemi. PasoM 3 THM, onTHManbHA CTpaTeris BH3HAUCHHS TOYOK iHTEpIIOIMii i
IHIMX mapaMeTpiB MOAEII JUIs IPUKJIAJHOTO 3aCTOCYBAHHS JIMIIAETHCS BIIKPUTOIO MPOOIEMOIO.

KJIOYOBI CJIOBA: mnpexacraBieHHs IIOBEPXOHb, IPEACTAaBICHHS KPHBUX, IMIIIMTHE NPEICTaBICHHS, ICEBIOTraycoBa
(byHKLIS, peryJisipHa CiTka, MOJCIIOBAHHS IMIUTIIUTHAX HOBEPXOHb, (OPMAT JAaHUX JUIS IMIUTIIUTHUX TOBEPXOHB.
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