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ABSTRACT

Context. The practice of today’s problems actualizes the increase in requirements for the accuracy, reliability and completeness
of the results of time series processing in many applied areas. One of the methods that provides high-precision processing of time
series with the introduction of a stochastic model of measured parameters is statistical learning methods. However, modern ap-
proaches to statistical learning are limited, for the most part, to simplified polynomial models. Practice proves that real data most
often have a complex form of a trend component, which cannot be reproduced by polynomials of even a high degree. Smoothing of
nonlinear models can be implemented by various approaches, for example, by the method of determining the parameters of nonlinear
models using the differential spectra balance (DSB) in the scheme of differential-non-Taylor transformations (DNT). The studies
proved the need for its modification in the direction of developing a conditional approach to determining the structure of nonlinear
mathematical models for processing time series with complex trend dynamics.

Objective. The development of a method for determining the structure of nonlinear by mathematical models for processing time
series using DSB in DNT transformations.

Method. The paper develops a method for constructing nonlinear mathematical models in the DNT transformation scheme. The
modification of the method consists in controlling the conditions for the formation of a certain system of equations in the DSB
scheme to search for the parameters of a nonlinear model with its analytical solutions. If the system is indeterminate, the nonlinear
model is supplemented by linear components. In the case of an overdetermined system, its solution is carried out using the least
squares norm. A defined system is solved by classical approaches. These processes are implemented with the control of stochastic
and dynamic accuracy of models in the areas of observation and extrapolation. If the results of statistical learning are unsatisfactory
in accuracy, the obtained values of the nonlinear model are used as initial approximations of numerical methods.

Result. Based on carried-out research, a method for determining the structure of nonlinear models for processing time series us-
ing BDS in the scheme of DNT transformations is proposed. Its application provides a conditional approach to determining the struc-
ture of models for processing time series and increasing the accuracy of estimation at the interval of observation and extrapolation.

Conclusions. The application of the proposed method for determining the structure of nonlinear models for processing time se-
ries allows obtaining models with the best predictive properties in terms of accuracy.

KEYWORDS: data science, statistical learning, time series, nonlinear models, numerical methods, least square method.

ABBREVIATIONS H — segment of the argument on which the function
ARMA — autoregressive moving average; is considered;
ARIMA - autoregressive integrated moving average; k — ordinal number of the discrete spectrum;
DNT - differential-non-Taylor transformations; N — time series size (sample size);
DS — d1fferentlal spectrum; P{...}; —direct differential transformation;
DSB - is a balance of differential spectra;
EMA - exponential moving average; R? — determination coefficient of the model;
MA — moving average; t — function argument;
OLS — ordinary least squares. t - specific value of the argument at which the con-

version is performed;

A — linear deviaﬁglhggtlgg;OACEERE Yn — N-th dimension (element of the time series — di-
@ —OLS matrix algorithm; mension);
@i (t) —basis model functions. Z(t) — polynomial model;
a; — parameters of the nonlinear model; Z(t) — discrete argument function k =0,1,2,...;
¢; — free polynomial coefficients e.g. in the format of Z(t) - trained polynomial model;
a step basis; z (k), F (k) — images of models.

d - distance control;
f(t,a) —nonlinear model;
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INTRODUCTION

One of the fastest growing areas in the field of modern
information technology is undoubtedly Data Science.
Currently, methods and technologies of data research play
a key role in e-commerce software systems (trading, re-
tailing, aggregation), computer systems of automated and
automatic control (unmanned systems, traffic control sys-
tems), etc. [1, 4]. These applied fields often operate with
data in the time series format. Their processing is quite
illustratively presented: approximation methods (Moving
Average (MA) algorithms, Exponential Moving Average
(EMA), autocorrelation algorithms such as ARIMA); sta-
tistical learning methods (smoothing) — Statistical Learn-
ing (Ordinary Least Square Method (OLS), Kalman filter-
ing, etc.); methods of deep learning using artificial neural
networks [1-7].

Real data in the form of time series, as a rule, depends
on many factors that are difficult to describe. This intro-
duces errors into discrete measurements that are attributed
to the model randomness. Therefore, despite the success-
ful application of approximation and deep learning meth-
ods in practice, statistical learning methods are quite ef-
fective from the point of view of accuracy, reliability of
the result and productivity of calculations.

Traditionally, Statistical Learning methods use linear
models in the form of power polynomials. But the reality
is that most of the studied processes are non-linear in na-
ture, thus a priori limiting the possibility of using this
approach. That is why approximation and deep learning
methods are sometimes preferred, which, in fact, repro-
duce the stochastic process. There are quite a few ap-
proaches that allow us to partially solve the problem of
nonlinear smoothing (linearization, numerical methods)
[1-3]. Most of them consist in simplifying a nonlinear
model to a set of linear components or require initial con-
ditions for starting iterative processes of “fitting” the pa-
rameters of nonlinear models to the data. However, in
practice, such models lose both most of their nonlinear
information and their own predictive value.

Therefore, the task of developing an approach to de-
termining the parameters of a nonlinear model based on
the data of the time series format using statistical learning
methods is relevant.

The object of study is the process of determining the
structure of nonlinear mathematical models for processing
time series.

The subject of study is methods of processing time
series with nonlinear models in terms of parameters

The purpose of the work is to develop a methodol-
ogy for determining the structure of nonlinear mathemati-
cal models for processing time series using DSB in DNT
transformations.

1 PROBLEM STATEMENT
Suppose while observing a certain process, a time se-
ries is Y obtained that is described as:

Y=1{Y0,Y1>Y25--->¥Yn} - (1)
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This data may be heterogeneous, contaminated, and
have anomalous measurements, but all this must be ad-
dressed at the data preparation stage. Therefore, we fur-
ther assume that the time series (1) is homogeneous, and
its values are normally distributed with standard deviation
o (base random error).

The general form of the nonlinear approximating func-
tion is known:

f(t,a),a=ap,a),...,8j,-.-,8m » )

which with a high degree of adequacy describes the proc-
ess under study, represented by a set of discrete dimen-
sions (1). The task of processing the time series (1) by
statistical learning methods is to determine the parameters
a of the nonlinear model (2) with the requirement to re-
duce the random measurement error (1). The result is a
nonlinear mathematical model, consistent — “trained”
from measurements (1), which describes the law of trend
change of the process under study with reduction —
smoothing of the random error of the input data [12].

However, classical methods of statistical learning are
based on the use of linear models — polynomials. The
nonlinearity of such approaches is reproduced by adding
high-stage components to the structure of the model. This
approach shows good results within the measurement
sample (1), but the predictive properties in terms of accu-
racy (point and interval) and the forecast interval are not
the best. Nonlinear in terms of parameters models (2)
overcome these disadvantages of polynomial forms [7,
10, 11].

To determine the parameters of a nonlinear model, it
is proposed, first, to use OLS to train a polynomial

model Z(t) :

2(t) = D(y), 3)
2t) =Y cioi (1) “)

So, we have two models f(t,a) and Z(t) are, respec-

tively, theoretical and experimental, and the parameters of
the second are known. To determine the parameters of the
theoretical nonlinear model, it is necessary to perform its
approximation to the experimental one. That is, to transfer
the properties of one to the other: the certainty of the pa-
rameters 2(t), which are obtained from sample (1), on a
nonlinear model that is uncertain in terms of parameters
f(t,a) . One method to accomplish this is DSB.
The balance of differential spectra is based on the dif-

ferential transformations described in [7]. In general, they
can be presented as:

HX d*z)

200 = PO = 1= )
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2= 7 () 2(0). ©)

Expression (5) provides the ability to get an image
Z(k) from its original z(t) (direct transformation). In-

verse conversion (6) provides the ability to restore the
original z(t). Differential image Z(k) is called the dif-
ferential spectrum (DS) or a P-spectrum, and the value of
the Z(k) for specific values of the argument — DS dis-

cretes (P-discretes). The reconstruction of the original is
reduced to the summation of the discrete P-spectrum in
the form of a segment of the Taylor series. ex. (6) (basic
or differential-Taylor (DT) transformations). If the resto-
ration of DS is carried out on an arbitrary (non-Taylor)
basis, such transformations are called differential-non-
Taylor (DNT). It is possible to implement DNT by equat-
ing the discrete of the same name to the original function
Z (k) and functions from the selected basis, e.g. f(t,a).
This is the essence of the DSB method.

Combining the properties of an experimental model
2(t) and a nonlinear model f(t,a) according to the DSB

in the DNT scheme is carried out according to the model:
[P{2(t)} = Z(K)]=
=[P{f(t,a)};» = F(k,a)] (7)
— Z(k)=F(k,a).
Determination of the parameters a of a nonlinear

model f(t,a) is implemented by forming and solving a
system of equations:

Z(0)-F(0,a,)=0,
Z()-F(l,ay) =0,
Z(2)-F(2,a3) =0, (8)

Z(k)—F(k,ap)=0.

The processes described represent the essence of the
method of constructing nonlinear mathematical models in
the DNT transformation scheme [7].

The problem of the practical application of the DSB is
the need to comply with a number of requirements: DS
2(t) and f(t,a) must give a definite system of equations

(8); model Z(t) must be adequate to the dynamics of data
changes (1); model f(t,a) should not have zero discrete
for at the interval of existence of the DS model Z(t).
Such requirements can only be met in partial cases.

Therefore, the paper proposes the development of a
method for constructing nonlinear mathematical models
in the DNT transformation scheme by developing a condi-
tional approach to determining the structure of nonlinear
models for processing time series.
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2 REVIEW OF THE LITERATURE

The focus of the analysis of existing approaches to
the processing of time series with nonlinear models is
placed on the methods of statistical learning. It should
be noted that we will consider nonlinear models where the
reproduction of the nonlinearity (seasonality, fluctuations,
etc.) of the trend is ensured by introducing a nonlinear
function into the structure of the model — exponential,
logarithmic, trigonometric, differential components, etc.
In this case, nonlinear operations are implemented on the
parameters of the model, and the models are nonlinear in
terms of parameters. Otherwise, the models will be con-
sidered linear in parameters, although capable of repro-
ducing nonlinear time series. The advantage of nonlinear
models over linear ones is the smaller number of struc-
tural components of the former. That is, the reproduction
of the nonlinearity of data is assumed by a nonlinear func-
tion, and not a significant number, for example, of high-
degree polynomial elements.

Currently, there are quite a few approaches to repro-
ducing nonlinear models, but they can be divided into
three classes: linearization; calculation of parameters by
iterative numerical methods; operator methods. The best
efficiency was proved by methods based on operator
transformations. In this direction, [4, 6, 10, 11] proposes
an approach to determining the parameters of nonlinear
models using the method of differential transformations
[7]. However, its shortcomings lead to the possibility of
effective application to a rather narrow range of partial
cases.

This determines the formed goal of research on the
development of an approach that will unify the use of
operator methods to determine the parameters of nonlin-
ear models consistent with the time series of the format

).

3 MATERIALS AND METHODS

The use of DSB to determine the parameters of a
nonlinear model implements the transfer of properties
of a simplified polynomial model to a complex nonlin-
ear model. This means a priori that in the observation
area, or in the provided time series, this polynomial
must adequately describe the process itself sufficiently,
otherwise the transfer of low-quality characteristics
will be performed. That is, within the time series (1), the
characteristics of the curvature of the trend must be com-
parable with the radius of convergence of the polynomial
of the selected order, otherwise it simply cannot cope with
the nonlinearity of the process under study. Or vice versa,
for a time series with significant nonlinearity of trend and
volume, one should have a polynomial of comparable
radius of convergence, which is not always possible. Be-
cause in this case, the number of calculation operations
for statistical training will increase and random errors of
polynomial coefficients will accumulate. It should be
noted that the indicators of the radius of convergence will
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have a wide range of variation depending on the shape
and physical essence of the process under study. For as-
ymptotic processes, the convergence of the model will be
supported by small degrees of the polynomial (up to the
third and fourth orders) trained on relatively small sam-
ples. For processes with seasonal repetitions, periodic
polynomials and polynomials with significant nonlinear-
ity that are acceptable due to computational complexity
will not give adequate processing results.

Such a limitation is critical for the DSB (7) and a pri-
ori makes it impossible to use some models that do not
have enough non-zero components in the differential
spectrum to form a certain system of equations (8). An
example of this is nonlinear models:

f (t.a) = ay sin(at) + a, cos(at), )

f(t,a)=ay+at+ae® . (10)

For models (9), (10) we have only three unknown pa-
rameters {a,,a,a,}, i.e., for a defined system of type
(8), three discrete DSs are sufficient and, accordingly, it is
sufficient to have a third-order polynomial. But such a
polynomial is effective only for a limited time interval

and trend curvature of a time series characterized by
models (8), (7).

y(t)’
i s

o 500 1000 1500 2000

t
Figure 1 — Periodic function charts: ideal y(t) and with

polynomial models Z(t) , trained according to the OLS

algorithm

Thus, the DSB in the DNT scheme (7) limits the re-
quirements for structural optimization of the approxima-
tion model with control of the concordance coefficient,
linear deviation, and high-order derivatives [1]. It is gen-
erally characteristic of periodic processes/functions to
have many cycles, and they can be represented within an
empirically assembled time series (1) as a superposition
of many processes (factors).

Fig. 1 shows graphs of reproduction of periodic time
series [8] by polynomial models trained by the OLS algo-
rithm. The periodic series was modeled as a perfect trend.

The presented results clearly demonstrate the obvious
consequences. Increasing the order of the polynomial
model to a certain value provides an increase in its ade-
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quacy (according to absolute deviation A and concor-

dance coefficient R> — see Table 1).

Table 1 — Results of model adequacy assessment

n 2 3 4 5 6 7
A 1.439 1.169 0.835 0.394 0.198 0.064
R2 9.050 0.500 0.559 0.927 0.983 0.998

At the same time, a significant increase in the struc-
ture of the polynomial model leads to a decrease in the
rate of improvement in the results of the use of OLS. This
is due to a decrease in the absolute value of the high-
degree coefficients of the polynomial, which gives “sensi-
tive” solutions from the standpoint of the accumulation of
calculation errors, the number of calculation operations
and the influence of random errors of input data. There-
fore, for a time series with any trend complexity, includ-
ing a periodic structure, it is potentially possible to deter-

mine the optimal (with a minimum A and maximum R?
and with acceptable estimates of accuracy) structure of a
polynomial model. For example, the optimal order of the
model m=6.

However, such a decision on the order of a polynomial
on the example of a nonlinear model with transcendental
functions (9) that reproduce the periodic properties of the
time series contradicts with the requirements of the DBS.
That is, the number of significant (all non-zero — seven)
discrete DSs of a polynomial model is greater than the
number of necessary and sufficient (three) discrete mod-
els (9). The loss of discrete DSs of a polynomial optimal
in terms of structure will lead to the negligence of the
positive properties of the nonlinear model in terms of pa-
rameters. Thus, we have a redefined system of equations
of the form (7).

These statements are explained by the following cal-
culations.

P2t} = Z(k) = {Z(0),Z(D),...,Z(D)} (11)
P{f(t,a)}t* = F(k,a)=
, (12)
={F(0,a),F(1,a),....,F(7,a)}
{Z(0)=F(0,a). (13)

To solve the redefined system of equations (11), it is
proposed to use an OLS with a numerical approximation
algorithm, which in general has a norm for minimizing
the quadratic residual:

m.2 . . 2 .
Zi=1[zi(')_ Fi(i,a)]” > min. (14)

Minimization of the quadratic form (14) with respect

to the parameters of the nonlinear model (see general

form of (2) and specific examples (9), (10) considering
the known parameters of the polynomial model (see (3),
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(4)) proposed to be carried out using the Leverberg-
Marhardt algorithm [2]. This algorithm is presented in
most software libraries with an interface for a wide range
of modern high-level programming languages. Impor-
tantly, the Leverberg-Marhardt algorithm gives stable
solutions of minimization forms (14) for approximation
models of any complexity. To establish initial approxima-
tions, it is proposed to choose the solution of the system
of equations (12), (13) with the constraints of the DSB
(7), (8). That is, as a solution for models (9), (10) of a
definite system of form (7) from three equations.

The use of numerical methods gives an approximate
and partial solution — the accuracy of which depends on
the computational costs of iterative calculation processes.
Therefore, such a solution is not productive, especially for
high-stage models and for large information arrays.

Consequently, the determination of the optimal poly-
nomial structure by the properties of the time series with
the control of the indicators in Table 1 is not always ac-
ceptable from the standpoint of the computational com-
plexity of the solution of the system of equations (12),
(13). Moreover, the goal of processing the time series in
the presented studies is a high-precision nonlinear model
(2), where the polynomial (3) is an intermediate result and
a means to achieve the goal [11]. At the same time, it is
possible to assume that the shortcomings of the polyno-
mial model (stochastic and dynamic errors) in transferring
its properties to a nonlinear model in the DSB scheme (7),
(8) can be partially compensated by the minimizing form
of OLS (14). Therefore, it is important to control not so
much the adequacy indicators of the polynomial model A
and R?, how many indicators of adequacy of a nonlinear
model in terms of parameters [12]. However, to imple-
ment such an operation, it is necessary to investigate,
identify and prove the dependence of the indicators of

adequacy of models f(t,a), Z(t) — A and R?:
A= 3 - 9?
- n—l i=0 yl yl >

f 12
R2-p-yn Wiz¥i) 16
iy 5 (o

)

Research conditions. To obtain the time series, an ad-
ditive mixture of an ideal trend with random noise is im-
plemented [9]. To model an ideal trend, nonlinear models
with the following parameters were used:

— Trigonometric:

—model: f(t)=2.2sin(0.01t);

— sample size: 1000 times;

— random noise parameters: normal law of dis-
tribution, standard deviation o =0.2c.u.
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— Exponential:
—model: f(t)=0.001t +e%0%01t;

— sample size: 10000 times;
— random noise parameters: normal law of distri-
bution, standard deviation ¢ = 5c.u.

The processing of time series was carried out by con-
structing nonlinear mathematical models in the DNT
scheme of transformations according to the DSB [6].

The dependencies of indicators (15), (16) for polyno-
mial models of form (4) and nonlinear models (9), (10)
were studied. The latter have an infinite DC, which makes
it possible to test polynomial models of any degree.

The research results are presented in Figs. 2—4 [8].

Fig. 2. The curves and realizations of dependencies
between indicators (15) and (16) for the polynomial
model (4) and the nonlinear transcendental model (9) are
depicted. On the axis y metrics are given for the non-

linear, and on the axis X for a polynomial model. For
research by the Monte Carlo method, 100 implementa-
tions of the method for determining nonlinear by mathe-
matical models for using DSB in the DNT scheme were
carried out. The result is the dispersion of the dependence
of indicators (15), (16) with a clear correlation.

Analogous dependencies for the nonlinear exponential
model (10) are shown in Fig. 3.

The above graphs clearly demonstrate the presence of
a correlation between the structural properties of the
polynomial and nonlinear models. The variation that is
present in the results is due to random errors in the data.
The graphs also show: the horizontal line is the median of
the scattering, and the arc corresponds to the quadratic
approximation of the resulting correlation dependence.
The latter visualizes the nature of the dependence of indi-
cators (15), (16), polynomial (4) and nonlinear models
9), (10).

Analysis of the graphs of Figs. 2, 3 proves that the
structure of the nonlinear model under study affects the
stochastic properties of scattering, i.e. the size of the con-
fidence domain.

Compared to the transcendental models (9), the expo-
nential model (10) demonstrates a high correlation be-
tween parameters (15), (16) (see Fig. 3 for a linear trend
with a slope) and a relatively small confidence interval of
scattering (concentration of realizations relative to the
linear trend from the comparison of Figs. 2, 3). In prac-
tice, this gives and explains the stability of the solution of
the DSB system in the DNT, including in the presence of
random measurement errors.

At the same time, the transcendental model (10) is

relatively unstable in terms of R? (see Fig. 2b).

As a result, we have the final confirmation of the in-
formativeness and the conditioned properties of indicators
(15), (16), which are suitable for the formation of the
structure of models for DBS in the DNT, as a requirement

for minimization A and maximization of RZ.
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Figure 2 — Depiction of the dependence of model parameters from DSB in DNT: a — indicator (15) for models (4) and (9),
b — indicator (16) for models (4) and (9)
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Figure 3 — Depiction of the dependence of model parameters from DSB in DNT: a — indicator (15) for models (4) and (10),
b — indicator (16) for models (4) and (10)

Thus, optimization of the structure of the polynomial
model with the control of indicators (15), (16) improves
the properties of the nonlinear model determined from the
DSB in the DNT scheme. However, optimization of a
polynomial model is possible, albeit with big data, but on
a limited time series (1). That is, the volume of the time
series through the composition of nonlinear oscillations
(seasonality) directly determines the order of the polyno-
mial. Therefore, it is worth investigating the influence of
the sample size (1) — the time series interval on the prop-
erties of the polynomial model.

Fig. 4 shows the results of studies of the dependence
of the indicator (15) — control of the dynamic error of the
model on the time series interval n for a polynomial of

A(Z(1)
100 4 .
.: \..
099 oo
.
[]
0381 o ...
aa7 . i
0964 oy * J b
- ,ﬁ
W
095 Fd -.
0 500 1000 1500 2000 n
a

the 6th (Fig. 4a) and 10th (Fig. 4b) orders. A perfect
(without random errors) sample generated by the follow-
ing model was subject to modeling: f (t) =2.2sin(0.00t) .
The choice of indicator (15) is due to its sensitivity to the
relationship between the structure of the model and the
sample size, while indicator (16) is responsible for the

probabilistic ratio — relative to the stochastic component
of accuracy.

We have the following local results. For a 6th-order
polynomial, the minimum A(Z(t)) is achieved for
n=780, and for a polynomial of degree 10 — for
n=2100. Therefore, the values of indicators (15) and
(14) should be correlated with the size of the time series.

A(2(1))

‘&
0.99 ‘.
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097 o)
.
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Figure 4 — Graph of the indicator A dependence on the size of the model the polynomial rank: a — 6th, b — 10th
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Based on the results of the research, it is possible to
formalize the methodology for determining the structure
of nonlinear models for processing time series using DSB
in DNT transformations.

1. Form a polynomial model (4), the order of which is
equal to the number of unknown parameters of the
nonlinear model (2).

2. Based on the results of step 1, using the classical
OLS, determine the parameters of the polynomial model
(3) from the input time series (1) and evaluate its indica-
tors (15), (16).

3. Repeat step 2 of the methodology for the polyno-
mial model above in the order specified in step 1, with the
control of indicators (15), (16). If the distance d (see
(17)) between its indicators and the previous ones (ob-
tained in step 2 of the methodology) decreases — continue
to increase the order of the model until the distance begins
to increase.

d = AZi (1) - Z; () [ x

1
x| R%i_1(t) - R%i(b)]. {17

Distance control (17) — indirectly allows you to con-
sider the volume of the time series.

4. If the polynomial model obtained under the condi-
tions of step 3 has an order equal to the number of pa-
rameters of the nonlinear model (3), then a system of
equations of the form (7) should be formed, which is
solved analytically with respect to the desired parameters
of the nonlinear model.

5. If the polynomial model obtained under the condi-
tions of step 3 is of an order of magnitude higher than the
number of parameters of the nonlinear model (3), then a
system of equations of the form (12), (13) is formed,
which is solved by the chosen numerical method. To es-
tablish initial approximations, a system of equations (7)
with DSB constraints is formed.

6. To implement the formation of a nonlinear model
(3) from the parameters specified in step 4 or 5.

7. To apply the nonlinear model (3) (because of step 6
of the methodology) to estimate the parameters of the
stochastic time series (1) in the observation area and in
the forecasting interval — the formation of the current and
forecast trend.

8. Evaluate indicators (15), (16) of the nonlinear
model.

9. If the results of step 8 do not meet the established
efficiency requirements — modify the structure of nonlin-
ear models (3) by adding polynomial and / or nonlinear
components with control of the fulfillment of one of the
conditions of steps.4 and 5. Repeat steps 1-8 of the meth-
odology for determining the parameters of the nonlinear
model.

10. If the results of step 9 are unsatisfactory, use the
results of steps 4 and 5 as initial approximations for any
numerical methods for solving nonlinear problems of time
series approximation.
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4 EXPERIMENTS

Evaluation of the effectiveness of the proposed ap-
proach was carried out by methods of mathematical mod-
eling. The time series was generated according to model
(9). Samples of different sizes were studied, which en-
sures the variability of the composition of seasonal
changes (fluctuations) [9]. Simulation configuration:

—model: f(t)=2.2sin(0.01t) + cos(0.03t) ;

— random noise parameters: normal law,6=0.2;

— training sample sizes: 500, 1000, 1500;

— the time series is generated from the training (ob-
servation area) and test (forecasting area) parts with a
volume of [0,n] and [n,2n]— respectively.

— nonlinear model for processing the form (9),
polynomial structure was used in accordance with the
results of the proposed technique.

5 RESULTS

The results of the research are presented in Fig. 5 and
Table 2.

The graphs of Fig. 5 contain: training data (blue);
ideal trend, relative to which the indicators given in Table
2 are calculated (orange); Trend restored using the pro-
posed technique (green color).

Table 2 contains data on model quality indicators (15),
(16) and standard deviations of the results of processing
the input time series with random noise. Characteristics of
the degree of the polynomial — record the result of the
proposed technique.

The results of the studies demonstrate the obvious
properties of statistical learning results — an increase in
seasonality in the data gives an increase in dynamic and
stochastic error. However, the discrepancy between the
estimation results, compared to the ideal trend, is com-
mensurate with the confidence interval of the forecasting
error. This confirms the compliance of the proposed solu-
tions with the basic provisions of the methods of process-
ing time series.

In favor of the proposed solutions should be attributed
the useful prognostic properties of nonlinear models,
which were obtained entirely by the methods of analytical
synthesis of the structure of nonlinear models in terms of
parameters and determination of their parameters. This is
ensured using positive properties of differential transfor-
mations in the proposed technique [4, 5].

6 DISCUSSION

In this paper the method of constructing nonlinear
mathematical models in the DNT transformation scheme
was further developed. The modification of the method
consists in controlling the conditions for the formation of
a certain system of equations in the DSB scheme to find
the parameters of a nonlinear model with its analytical
solutions. If the system is uncertain, the nonlinear model
is supplemented with components that are linear in pa-
rameters. In the case of an overdetermined system, its
solution is carried out using the least Squares. A defined
system is solved by classical approaches. These processes
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are implemented with the control of stochastic and dy-
namic accuracy of models in the areas of observation and
extrapolation. If the results of statistical learning are un-
satisfactory in terms of accuracy, the obtained parameters
of the nonlinear model are used as initial approximations
of numerical methods.

All these modifications are based on empirically
proven interdependencies of quality indicators of poly-
nomial models at the level of linear deviation and prob-

y, f(®

ideal
—— nonline

-2

0 500 1000 1500 2000 2500 3000 t

a

y, f(®

ability of approximation with the quality of the results of
synthesis and application of nonlinear models in terms of
parameters.

The proposed solutions are based on the analytical
synthesis of the structure of nonlinear models and the
determination of their parameters due to the positive
properties of the method of differential transformations.

y(@®. f ()

] 250 500 750 1000 1250 1500 1750 2000 t

b

ideal

600 800 1000 t

Figure 5 — Research results of the proposed methodology for samples: a — 1500, b — 1000, ¢ — 500

Table 2 — Results of the model experiment

Sample size Polynomial degree A R2 c
train 500 4 0.12747 0.98981 1.26074
test 500 4 0.13555 0.9643 0.71604
train 1000 5 0.23514 0.97291 1.42798
test 1000 5 0.71622 0.73303 1.3848
train 1500 7 0.46893 0.91643 1.62107
test 1500 7 0.9894 0.62647 1.61779

Practical processing of the synthesized data proved the
high predictive properties of the proposed approaches to
the construction of nonlinear models.

The practice of applying the proposed approaches is
possible in e-commerce software systems (trading, retail-
ing, aggregation), computer systems of automated and
automatic control (unmanned systems, traffic control sys-
tems) in the medical field and in other industries where
there are large amounts of data in the time series format.
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CONCLUSIONS

In this paper a conditional approach to analytical syn-
thesis and determination of parameters of nonlinear mod-
els is proposed. The obtained solutions are an alternative
and complement to the methods of numerical solution of
nonlinear problems for processing time series and belong
to the class of statistical machine learning methods.

The scientific novelty. The method of constructing
nonlinear mathematical models in the DNT transforma-
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METOJUKA BUSHAYEHHSI CTPYKTYPH HEJIHIMHUAX 3A TAPAMETPAMM MOJIEJIEN 1151 OBPOBKH
YACOBHX PANIB

IMucapuyk O. O. — 1-p TexH. HayK, npodecop, npodecop kadeapu 00UNCITIOBATIBHOI TEXHIKH, (aKynpTeTy iHpopMaTHKU Ta 00-
yucmoBanbHoi TexHiku, KIII im. Irops Cikopcskoro, Kui, Ykpaina.

Tyrancbkux O. A. — acnipasnT kadenpu 00UNCITIOBANBHOI TEXHIKH, (aKyIpTeTy iHpopMaTHku Ta obuncmoBanbHOl TexHiku KIII
im. Irops Cixopcerpkoro, Kuis, Ykpaina.

Bapan JI. P. — acnipanT kadenpu obumciioBanbHOI TeXHIKH, (akynabreTy iHGopMmaTHku Ta obuucmroBansHOI TexHikm KIII
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AHOTAIIS

AxTyanbHicTh. [IpakTrka 3a1a4 CbOrOJCHHS aKTyali3ye IMiJABUIICHHS BUMOT 10 TOYHOCTI, TOCTOBIPHOCTI i MOBHOTH pe3yJibTa-
TiB 00pOOKH YacoBUX psAiB B Oararbox mpukiagHux chepax. OIHUM i3 METOAIB, M0 3abe3redye BUCOKOTOYHY OOpOOKY 4acOBHX
PAAIB 13 BOPOBAKEHHAM CTOXaCTHYHOI MO BUMIPSIHUX MapaMeTpiB € METOAM CTATUCTUYHOrO HaB4YaHHA. OIHAK, CydacHI mixxo-
I 10 CTATUCTUYHOTO HABYAHHA 0OMEKYIOTHCS, 30e0LIBIIOr0, CIPOICHUMH — JIIHIHHUMHE 3a MapaMeTpaMy HOTiHOMIATEHIMHA MOJIe-
nsMu. [IpakTika JOBOAWTH, IO peanbHi JaHi HaidacTille MaloTh CKIagHy GopMy TPEHIOBOI CKIIaJOBOI, siIka HE MOXKe OyTH BiITBO-
peHa NOJIIHOMaMH HaBiTh BUCOKOTO CTyIeHs. 3IJIaJUKyBaHHS HENHIHHNX 3a ITapaMeTpaMy Mojeliell MOXKIMBO pealizyBaTH Pi3HUMHU
IiIX0JaM¥, HAaIIPUKJIAl METOAOM BH3HAUCHHS MapaMeTpiB HeNIHIHHUX Mojeneil 3 BUKOPUCTaHHAM OajlaHCy nudepeHIiabHUX CIIeK-
1piB (BJIC) B cxemi audepeHuiansHo-HeTenopiBcbkux nepersopens (JAHT). JocmimkenHs 1oBenu HeoOXiqHicTh Horo Moaugikanii
B HaNpsMKY PO3pOOKH 00YyMOBJICHOTO MiJXO/y 10 BU3HAYEHHS CTPYKTYPH HENiHIHHUX 3a TapaMeTpaMi MaTeMaTHYHUX MoJeneil ais
00pOOKH 4aCOBHX PSIIB i3 CKIIaJHOIO0 AUHAMIKOIO TPEHIY.

MeTo10 po60oTH € po3poOKa METOAWKHA BU3HAYCHHS CTPYKTYPH HENIHIMHUX 32 MaTeMaTHYHUX MOAened At 0OpoOKH 4acoBUX
psniB 3 BukopuctansasaMm BJIC B JIHT nepeTBopeHHSX.

Mertona. B crarTi oTpuMaB po3BHTOK MeTO OOYIOBH HENIIHIHHMX 3a IMapaMeTpaMu MaTeMaTuaHux Mozenei B cxemi JJHT mepe-
TBOpeHb. Momudikariss MeToy Hoysirac y KOHTpOJi yMOB (opMyBaHHS BU3HA4eHOI cucTeMH pPiBHSAHB B cxeMi BJIC mis momryky
napaMeTpiB HENiHIiHOT Mojemi 3 T aHATITUYHUM PO3B’si3KkaM. SIKIO cucTeMa HeBH3HAYCHA — HEJiHIHA MOJICIb JOMOBHIOETHCS Ji-
HIMHMMY 3a MapamMeTpamMy KOMIOHEHTaMH. Y BHIAJIKy HMEepeBU3HAYEHO! CHCTEMH — i PO3B’SI30K 3IIHCHIOETHCS 3 BUKOPUCTAHHIM
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HOPMH HalMEHIUUX KBaapaTiB. Bu3Ha4yeHa cucTeMa — po3B’sI3yeThCs KIACHYHUMHE MMiIX0aMHU. 3a3Ha4yeHi MpoLecH peai3yroThes i3
KOHTPOJIEM CTOXAaCTHYHOI Ta JIMHAMIYHOI TOYHOCTI MOJIeJIeH J1a AUISHKAaX CIIOCTEPEKEHHs Ta eKCTPANosLii. SIKIIo pe3ynpTaT cTa-
THUCTUYHOTO HAaBYAHHS € HE3aJOBUIBHUMM 33 TOUHICTIO — OTPHMAaHi 3HaYEHHs HEJIiHIHHOT MOZENi BUKOPUCTOBYIOTECS SIK ITOYATKOBI
HaOJIMKEHHS YHCEIIbHUX METOJIB.

Pesyabrart. Ha mifcraBa nmpoBefeHHX JOCHIIKEHb 3alPONOHOBAHO METOAMKY BH3HAYCHHS CTPYKTYypH HENiHIHHUX 3a mapamerT-
pamu Moperteit 1 06pobKu yacoBuX psziB 3 BukopuctanaaM BJIC B cxemi JIHT neperBopens. 11 3acTocysanns 3abe3nedye oGymo-
BJICHWH MiAXiJ O BU3HAYCHHS CTPYKTYPH MOJENEH i1 00poOKM YacOBUX PAIB Ta MiABUIIECHHS TOYHOCTI OLIHIOBAHHS Ha 1HTEpBai
CIIOCTEPEIKESHHS Ta eKCTPAIIOJISAIII.

BucHOBKH. 3aCTOCYBaHHS 3alPOIIOHOBAHOI B CTaTTi METOIMKU BHU3HAUCHHS CTPYKTYPH HENIHIHHMX 3a MapaMmeTpaMu Moelel
JU1s1 0OpPOOKH YaCOBHX PSJIB JO3BOJISIE OTPUMATH MOJIENI i3 KPaIlMU, 32 TOKa3HUKOM TOYHOCTI, IPOTHOCTHYHUMU BJIACTHBOCTSIMH.

KJIFOYOBI CJIOBA: Hayka mpo JaHi, CTATUCTUYHEC HABYAHHS, YACOBI MOCIIJOBHOCTI, HEMiHIAHI MOJEN, YUCEIbHI METOH,
METOJl HaliMEHIIIMX KBAAPATiB.
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