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ABSTRACT 

Context. The practice of today’s problems actualizes the increase in requirements for the accuracy, reliability and completeness 
of the results of time series processing in many applied areas. One of the methods that provides high-precision processing of time 
series with the introduction of a stochastic model of measured parameters is statistical learning methods. However, modern ap-
proaches to statistical learning are limited, for the most part, to simplified polynomial models. Practice proves that real data most 
often have a complex form of a trend component, which cannot be reproduced by polynomials of even a high degree. Smoothing of 
nonlinear models can be implemented by various approaches, for example, by the method of determining the parameters of nonlinear 
models using the differential spectra balance (DSB) in the scheme of differential-non-Taylor transformations (DNT). The studies 
proved the need for its modification in the direction of developing a conditional approach to determining the structure of nonlinear 
mathematical models for processing time series with complex trend dynamics. 

Objective. The development of a method for determining the structure of nonlinear by mathematical models for processing time 
series using DSB in DNT transformations. 

Method. The paper develops a method for constructing nonlinear mathematical models in the DNT transformation scheme. The 
modification of the method consists in controlling the conditions for the formation of a certain system of equations in the DSB 
scheme to search for the parameters of a nonlinear model with its analytical solutions. If the system is indeterminate, the nonlinear 
model is supplemented by linear components. In the case of an overdetermined system, its solution is carried out using the least 
squares norm. A defined system is solved by classical approaches. These processes are implemented with the control of stochastic 
and dynamic accuracy of models in the areas of observation and extrapolation. If the results of statistical learning are unsatisfactory 
in accuracy, the obtained values of the nonlinear model are used as initial approximations of numerical methods. 

Result. Based on carried-out research, a method for determining the structure of nonlinear models for processing time series us-
ing BDS in the scheme of DNT transformations is proposed. Its application provides a conditional approach to determining the struc-
ture of models for processing time series and increasing the accuracy of estimation at the interval of observation and extrapolation. 

Conclusions. The application of the proposed method for determining the structure of nonlinear models for processing time se-
ries allows obtaining models with the best predictive properties in terms of accuracy. 

KEYWORDS: data science, statistical learning, time series, nonlinear models, numerical methods, least square method. 
 

ABBREVIATIONS 
ARMA – autoregressive moving average; 
ARIMA – autoregressive integrated moving average; 
DNT – differential-non-Taylor transformations; 
DS – differential spectrum; 
DSB – is a balance of differential spectra; 
EMA – exponential moving average; 
MA – moving average; 
OLS – ordinary least squares. 

 
NOMENCLATURE 

  – linear deviation of the model; 
  –OLS matrix algorithm; 

)(ti  – basis model functions. 

ia  – parameters of the nonlinear model; 

ic  – free polynomial coefficients e.g. in the format of 

a step basis; 
d  – distance control; 

),( atf  – nonlinear model; 

H  – segment of the argument on which the function 
is considered; 

k  – ordinal number of the discrete spectrum; 
n  – time series size (sample size); 

*}{
t

P   – direct differential transformation; 

2R  – determination coefficient of the model; 
t  – function argument; 
*t  – specific value of the argument at which the con-

version is performed; 

ny – n-th dimension (element of the time series – di-

mension); 
)(tz – polynomial model; 

)(tZ – discrete argument function ,2,1,0k ; 

)(ˆ tz – trained polynomial model; 

)(),(ˆ kFkZ – images of models. 
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INTRODUCTION 
One of the fastest growing areas in the field of modern 

information technology is undoubtedly Data Science. 
Currently, methods and technologies of data research play 
a key role in e-commerce software systems (trading, re-
tailing, aggregation), computer systems of automated and 
automatic control (unmanned systems, traffic control sys-
tems), etc. [1, 4]. These applied fields often operate with 
data in the time series format. Their processing is quite 
illustratively presented: approximation methods (Moving 
Average (MA) algorithms, Exponential Moving Average 
(EMA), autocorrelation algorithms such as ARIMA); sta-
tistical learning methods (smoothing) – Statistical Learn-
ing (Ordinary Least Square Method (OLS), Kalman filter-
ing, etc.); methods of deep learning using artificial neural 
networks [1–7]. 

Real data in the form of time series, as a rule, depends 
on many factors that are difficult to describe. This intro-
duces errors into discrete measurements that are attributed 
to the model randomness. Therefore, despite the success-
ful application of approximation and deep learning meth-
ods in practice, statistical learning methods are quite ef-
fective from the point of view of accuracy, reliability of 
the result and productivity of calculations. 

Traditionally, Statistical Learning methods use linear 
models in the form of power polynomials. But the reality 
is that most of the studied processes are non-linear in na-
ture, thus a priori limiting the possibility of using this 
approach. That is why approximation and deep learning 
methods are sometimes preferred, which, in fact, repro-
duce the stochastic process. There are quite a few ap-
proaches that allow us to partially solve the problem of 
nonlinear smoothing (linearization, numerical methods) 
[1–3]. Most of them consist in simplifying a nonlinear 
model to a set of linear components or require initial con-
ditions for starting iterative processes of “fitting” the pa-
rameters of nonlinear models to the data. However, in 
practice, such models lose both most of their nonlinear 
information and their own predictive value. 

Therefore, the task of developing an approach to de-
termining the parameters of a nonlinear model based on 
the data of the time series format using statistical learning 
methods is relevant. 

The object of study is the process of determining the 
structure of nonlinear mathematical models for processing 
time series. 

The subject of study is methods of processing time 
series with nonlinear models in terms of parameters  

The purpose of the work is to develop a methodol-
ogy for determining the structure of nonlinear mathemati-
cal models for processing time series using DSB in DNT 
transformations. 

 

1 PROBLEM STATEMENT 
Suppose while observing a certain process, a time se-

ries is  y obtained that is described as: 
 

},,,,{ 210 nyyyyy  . (1)

This data may be heterogeneous, contaminated, and 
have anomalous measurements, but all this must be ad-
dressed at the data preparation stage. Therefore, we fur-
ther assume that the time series (1) is homogeneous, and 
its values are normally distributed with standard deviation 
  (base random error). 

The general form of the nonlinear approximating func-
tion is known: 

 

mi aaaaaatf ,,,,,),,( 10  , (2)

 
which with a high degree of adequacy describes the proc-
ess under study, represented by a set of discrete dimen-
sions (1). The task of processing the time series (1) by 
statistical learning methods is to determine the parameters 
a  of the nonlinear model (2) with the requirement to re-
duce the random measurement error (1). The result is a 
nonlinear mathematical model, consistent – “trained” 
from measurements (1), which describes the law of trend 
change of the process under study with reduction – 
smoothing of the random error of the input data [12]. 

However, classical methods of statistical learning are 
based on the use of linear models – polynomials. The 
nonlinearity of such approaches is reproduced by adding 
high-stage components to the structure of the model. This 
approach shows good results within the measurement 
sample (1), but the predictive properties in terms of accu-
racy (point and interval) and the forecast interval are not 
the best. Nonlinear in terms of parameters models (2) 
overcome these disadvantages of polynomial forms [7, 
10, 11]. 

To determine the parameters of a nonlinear model, it 
is proposed, first, to use OLS to train a polynomial 
model )(ˆ tz : 

 
)()(ˆ ytz  , (3)

   m
i ii tctz 0 )()( , (4)

 

So, we have two models ),( atf  and )(ˆ tz  are, respec-

tively, theoretical and experimental, and the parameters of 
the second are known. To determine the parameters of the 
theoretical nonlinear model, it is necessary to perform its 
approximation to the experimental one. That is, to transfer 
the properties of one to the other: the certainty of the pa-
rameters )(ˆ tz , which are obtained from sample (1), on a 

nonlinear model that is uncertain in terms of parameters 
),( atf . One method to accomplish this is DSB. 

The balance of differential spectra is based on the dif-
ferential transformations described in [7]. In general, they 
can be presented as: 

 

** ]
)(

[
!

)}({)(
tk

kk

t dt

tzd

k

H
tzPkZ  , (5)
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
 0 )()()( k

k kZ
H

t
tz . (6)

 

Expression (5) provides the ability to get an image 
)(kZ  from its original )(tz  (direct transformation). In-

verse conversion (6) provides the ability to restore the 
original )(tz . Differential image )(kZ  is called the dif-

ferential spectrum (DS) or a P-spectrum, and the value of 
the )(kZ  for specific values of the argument – DS dis-

cretes (P-discretes). The reconstruction of the original is 
reduced to the summation of the discrete P-spectrum in 
the form of a segment of the Taylor series. ex. (6) (basic 
or differential-Taylor (DT) transformations). If the resto-
ration of DS is carried out on an arbitrary (non-Taylor) 
basis, such transformations are called differential-non-
Taylor (DNT). It is possible to implement DNT by equat-
ing the discrete of the same name to the original function 

)(kZ  and functions from the selected basis, e.g. ),( atf . 

This is the essence of the DSB method. 
Combining the properties of an experimental model 
)(ˆ tz  and a nonlinear model ),( atf  according to the DSB 

in the DNT scheme is carried out according to the model: 
 

).,()(ˆ

)],()},({[

)](ˆ)}(ˆ{[

*

*

akFkZ

akFatfP

kZtzP

t

t




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 (7)

 

Determination of the parameters a  of a nonlinear 
model ),( atf  is implemented by forming and solving a 

system of equations: 
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The processes described represent the essence of the 
method of constructing nonlinear mathematical models in 
the DNT transformation scheme [7]. 

The problem of the practical application of the DSB is 
the need to comply with a number of requirements: DS 

)(ˆ tz  and ),( atf  must give a definite system of equations 

(8); model )(ˆ tz  must be adequate to the dynamics of data 

changes (1); model ),( atf  should not have zero discrete 

for at the interval of existence of the DS model )(ˆ tz . 

Such requirements can only be met in partial cases. 
Therefore, the paper proposes the development of a 

method for constructing nonlinear mathematical models 
in the DNT transformation scheme by developing a condi-
tional approach to determining the structure of nonlinear 
models for processing time series. 

2 REVIEW OF THE LITERATURE 
The focus of the analysis of existing approaches to 

the processing of time series with nonlinear models is 
placed on the methods of statistical learning. It should 
be noted that we will consider nonlinear models where the 
reproduction of the nonlinearity (seasonality, fluctuations, 
etc.) of the trend is ensured by introducing a nonlinear 
function into the structure of the model – exponential, 
logarithmic, trigonometric, differential components, etc. 
In this case, nonlinear operations are implemented on the 
parameters of the model, and the models are nonlinear in 
terms of parameters. Otherwise, the models will be con-
sidered linear in parameters, although capable of repro-
ducing nonlinear time series. The advantage of nonlinear 
models over linear ones is the smaller number of struc-
tural components of the former. That is, the reproduction 
of the nonlinearity of data is assumed by a nonlinear func-
tion, and not a significant number, for example, of high-
degree polynomial elements. 

Currently, there are quite a few approaches to repro-
ducing nonlinear models, but they can be divided into 
three classes: linearization; calculation of parameters by 
iterative numerical methods; operator methods. The best 
efficiency was proved by methods based on operator 
transformations. In this direction, [4, 6, 10, 11] proposes 
an approach to determining the parameters of nonlinear 
models using the method of differential transformations 
[7]. However, its shortcomings lead to the possibility of 
effective application to a rather narrow range of partial 
cases. 

This determines the formed goal of research on the 
development of an approach that will unify the use of 
operator methods to determine the parameters of nonlin-
ear models consistent with the time series of the format 
(1). 

 
3 MATERIALS AND METHODS 

The use of DSB to determine the parameters of a 
nonlinear model implements the transfer of properties 
of a simplified polynomial model to a complex nonlin-
ear model. This means a priori that in the observation 
area, or in the provided time series, this polynomial 
must adequately describe the process itself sufficiently, 
otherwise the transfer of low-quality characteristics 
will be performed. That is, within the time series (1), the 
characteristics of the curvature of the trend must be com-
parable with the radius of convergence of the polynomial 
of the selected order, otherwise it simply cannot cope with 
the nonlinearity of the process under study. Or vice versa, 
for a time series with significant nonlinearity of trend and 
volume, one should have a polynomial of comparable 
radius of convergence, which is not always possible. Be-
cause in this case, the number of calculation operations 
for statistical training will increase and random errors of 
polynomial coefficients will accumulate. It should be 
noted that the indicators of the radius of convergence will 
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have a wide range of variation depending on the shape 
and physical essence of the process under study. For as-
ymptotic processes, the convergence of the model will be 
supported by small degrees of the polynomial (up to the 
third and fourth orders) trained on relatively small sam-
ples. For processes with seasonal repetitions, periodic 
polynomials and polynomials with significant nonlinear-
ity that are acceptable due to computational complexity 
will not give adequate processing results. 

Such a limitation is critical for the DSB (7) and a pri-
ori makes it impossible to use some models that do not 
have enough non-zero components in the differential 
spectrum to form a certain system of equations (8). An 
example of this is nonlinear models: 

 

)cos()sin().( 1210 taataaatf  , (9)
taeataaatf 3

210),(  . (10)
 

For models (9), (10) we have only three unknown pa-
rameters },,{ 210 aaa , i.e., for a defined system of type 

(8), three discrete DSs are sufficient and, accordingly, it is 
sufficient to have a third-order polynomial. But such a 
polynomial is effective only for a limited time interval 
and trend curvature of a time series characterized by 
models (8), (7). 

 

)(ˆ

),(

tz

ty

 

t  
Figure 1 – Periodic function charts: ideal )(ty  and with 

polynomial models )(ˆ tz , trained according to the OLS  

algorithm 
 
Thus, the DSB in the DNT scheme (7) limits the re-

quirements for structural optimization of the approxima-
tion model with control of the concordance coefficient, 
linear deviation, and high-order derivatives [1]. It is gen-
erally characteristic of periodic processes/functions to 
have many cycles, and they can be represented within an 
empirically assembled time series (1) as a superposition 
of many processes (factors). 

Fig. 1 shows graphs of reproduction of periodic time 
series [8] by polynomial models trained by the OLS algo-
rithm. The periodic series was modeled as a perfect trend. 

The presented results clearly demonstrate the obvious 
consequences. Increasing the order of the polynomial 
model to a certain value provides an increase in its ade-

quacy (according to absolute deviation   and concor-

dance coefficient 2R  – see Table 1). 
 

Table 1 – Results of model adequacy assessment 

n  2 3 4 5 6 7 

  1.439 1.169 0.835 0.394 0.198 0.064 
2R  9.050 0.500 0.559 0.927 0.983 0.998 

 
At the same time, a significant increase in the struc-

ture of the polynomial model leads to a decrease in the 
rate of improvement in the results of the use of OLS. This 
is due to a decrease in the absolute value of the high-
degree coefficients of the polynomial, which gives “sensi-
tive” solutions from the standpoint of the accumulation of 
calculation errors, the number of calculation operations 
and the influence of random errors of input data. There-
fore, for a time series with any trend complexity, includ-
ing a periodic structure, it is potentially possible to deter-

mine the optimal (with a minimum   and maximum 2R  
and with acceptable estimates of accuracy) structure of a 
polynomial model. For example, the optimal order of the 
model 6m . 

However, such a decision on the order of a polynomial 
on the example of a nonlinear model with transcendental 
functions (9) that reproduce the periodic properties of the 
time series contradicts with the requirements of the DBS. 
That is, the number of significant (all non-zero – seven) 
discrete DSs of a polynomial model is greater than the 
number of necessary and sufficient (three) discrete mod-
els (9). The loss of discrete DSs of a polynomial optimal 
in terms of structure will lead to the negligence of the 
positive properties of the nonlinear model in terms of pa-
rameters. Thus, we have a redefined system of equations 
of the form (7). 

These statements are explained by the following cal-
culations. 

 

)}7(ˆ,),1(ˆ),0(ˆ{)(ˆ)}(ˆ{ * ZZZkZtzP
t

 , (11)

)},7(,),,1(),,0({

),()},({ *

aFaFaF

akFatfP
t




, (12)

),0()0(ˆ{ aFZ  . (13)

 
To solve the redefined system of equations (11), it is 

proposed to use an OLS with a numerical approximation 
algorithm, which in general has a norm for minimizing 
the quadratic residual: 

 

  m
i ii aiFiZ1

2 min)],()(ˆ[ . (14)

 
Minimization of the quadratic form (14) with respect 

to the parameters of the nonlinear model (see general 
form of (2) and specific examples (9), (10) considering 
the known parameters of the polynomial model (see (3), 
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(4)) proposed to be carried out using the Leverberg-
Marhardt algorithm [2]. This algorithm is presented in 
most software libraries with an interface for a wide range 
of modern high-level programming languages. Impor-
tantly, the Leverberg-Marhardt algorithm gives stable 
solutions of minimization forms (14) for approximation 
models of any complexity. To establish initial approxima-
tions, it is proposed to choose the solution of the system 
of equations (12), (13) with the constraints of the DSB 
(7), (8). That is, as a solution for models (9), (10) of a 
definite system of form (7) from three equations. 

The use of numerical methods gives an approximate 
and partial solution – the accuracy of which depends on 
the computational costs of iterative calculation processes. 
Therefore, such a solution is not productive, especially for 
high-stage models and for large information arrays. 

Consequently, the determination of the optimal poly-
nomial structure by the properties of the time series with 
the control of the indicators in Table 1 is not always ac-
ceptable from the standpoint of the computational com-
plexity of the solution of the system of equations (12), 
(13). Moreover, the goal of processing the time series in 
the presented studies is a high-precision nonlinear model 
(2), where the polynomial (3) is an intermediate result and 
a means to achieve the goal [11]. At the same time, it is 
possible to assume that the shortcomings of the polyno-
mial model (stochastic and dynamic errors) in transferring 
its properties to a nonlinear model in the DSB scheme (7), 
(8) can be partially compensated by the minimizing form 
of OLS (14). Therefore, it is important to control not so 
much the adequacy indicators of the polynomial model   

and 2R , how many indicators of adequacy of a nonlinear 
model in terms of parameters [12]. However, to imple-
ment such an operation, it is necessary to investigate, 
identify and prove the dependence of the indicators of 

adequacy of models ),( atf , )(ˆ tz  –   and 2R : 

 

  


 n
i ii yy

n 0
2)ˆ(

1

1
, (15)

  


 n

i
ii

ii

yy

yy
R 0 2

2
2

)(

)ˆ(
1  . (16)

 
Research conditions. To obtain the time series, an ad-

ditive mixture of an ideal trend with random noise is im-
plemented [9]. To model an ideal trend, nonlinear models 
with the following parameters were used: 

– Trigonometric: 
– model: )01.0sin(2.2)( ttf  ; 

– sample size: 1000 times; 
– random noise parameters: normal law of dis-
tribution, standard deviation ..2.0 uc  
 

 

 

– Exponential: 

– model: tettf 0001.0001.0)(  ; 

– sample size: 10000 times; 
– random noise parameters: normal law of distri-
bution, standard deviation ..5 uc  

 
The processing of time series was carried out by con-

structing nonlinear mathematical models in the DNT 
scheme of transformations according to the DSB [6]. 

The dependencies of indicators (15), (16) for polyno-
mial models of form (4) and nonlinear models (9), (10) 
were studied. The latter have an infinite DC, which makes 
it possible to test polynomial models of any degree. 

The research results are presented in Figs. 2–4 [8]. 
Fig. 2. The curves and realizations of dependencies 

between indicators (15) and (16) for the polynomial 
model (4) and the nonlinear transcendental model (9) are 
depicted. On the axis y  metrics are given for the non-

linear, and on the axis x  for a polynomial model. For 
research by the Monte Carlo method, 100 implementa-
tions of the method for determining nonlinear by mathe-
matical models for using DSB in the DNT scheme were 
carried out. The result is the dispersion of the dependence 
of indicators (15), (16) with a clear correlation. 

Analogous dependencies for the nonlinear exponential 
model (10) are shown in Fig. 3. 

The above graphs clearly demonstrate the presence of 
a correlation between the structural properties of the 
polynomial and nonlinear models. The variation that is 
present in the results is due to random errors in the data. 
The graphs also show: the horizontal line is the median of 
the scattering, and the arc corresponds to the quadratic 
approximation of the resulting correlation dependence. 
The latter visualizes the nature of the dependence of indi-
cators (15), (16), polynomial (4) and nonlinear models 
(9), (10). 

Analysis of the graphs of Figs. 2, 3 proves that the 
structure of the nonlinear model under study affects the 
stochastic properties of scattering, i.e. the size of the con-
fidence domain. 

Compared to the transcendental models (9), the expo-
nential model (10) demonstrates a high correlation be-
tween parameters (15), (16) (see Fig. 3 for a linear trend 
with a slope) and a relatively small confidence interval of 
scattering (concentration of realizations relative to the 
linear trend from the comparison of Figs. 2, 3). In prac-
tice, this gives and explains the stability of the solution of 
the DSB system in the DNT, including in the presence of 
random measurement errors. 

At the same time, the transcendental model (10) is 

relatively unstable in terms of 2R (see Fig. 2b). 
As a result, we have the final confirmation of the in-

formativeness and the conditioned properties of indicators 
(15), (16), which are suitable for the formation of the 
structure of models for DBS in the DNT, as a requirement 

for minimization and maximization of 2R . 
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)),(( atf   )),((2 atfR   

 ))(ˆ( tz   ))(ˆ(2 tzR  
a  b  

Figure 2 – Depiction of the dependence of model parameters from DSB in DNT: a – indicator (15) for models (4) and (9),  
b – indicator (16) for models (4) and (9) 

)),(( atf  
 )),((2 atfR   

 ))(ˆ( tz   ))(ˆ(2 tzR  

a  b  
Figure 3 – Depiction of the dependence of model parameters from DSB in DNT: a – indicator (15) for models (4) and (10),  

b – indicator (16) for models (4) and (10) 

Thus, optimization of the structure of the polynomial 
model with the control of indicators (15), (16) improves 
the properties of the nonlinear model determined from the 
DSB in the DNT scheme. However, optimization of a 
polynomial model is possible, albeit with big data, but on 
a limited time series (1). That is, the volume of the time 
series through the composition of nonlinear oscillations 
(seasonality) directly determines the order of the polyno-
mial. Therefore, it is worth investigating the influence of 
the sample size (1) – the time series interval on the prop-
erties of the polynomial model. 

Fig. 4 shows the results of studies of the dependence 
of the indicator (15) – control of the dynamic error of the 
model on the time series interval n  for a polynomial of 

the 6th (Fig. 4a) and 10th (Fig. 4b) orders. A perfect 
(without random errors) sample generated by the follow-
ing model was subject to modeling: )00.0sin(2.2)( ttf  . 

The choice of indicator (15) is due to its sensitivity to the 
relationship between the structure of the model and the 
sample size, while indicator (16) is responsible for the 
probabilistic ratio – relative to the stochastic component 
of accuracy. 

We have the following local results. For a 6th-order 
polynomial, the minimum ))(ˆ( tz  is achieved for 

780n , and for a polynomial of degree 10 – for 
2100n . Therefore, the values of indicators (15) and 

(14) should be correlated with the size of the time series. 

))(ˆ( tz   ))(ˆ( tz   

 n   n  
a  b  

Figure 4 – Graph of the indicator   dependence on the size of the model the polynomial rank: a – 6th, b – 10th 
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Based on the results of the research, it is possible to 
formalize the methodology for determining the structure 
of nonlinear models for processing time series using DSB 
in DNT transformations. 

1. Form a polynomial model (4), the order of which is 
equal to the number of unknown parameters of the 
nonlinear model (2). 

2. Based on the results of step 1, using the classical 
OLS, determine the parameters of the polynomial model 
(3) from the input time series (1) and evaluate its indica-
tors (15), (16). 

3. Repeat step 2 of the methodology for the polyno-
mial model above in the order specified in step 1, with the 
control of indicators (15), (16). If the distance d  (see 
(17)) between its indicators and the previous ones (ob-
tained in step 2 of the methodology) decreases – continue 
to increase the order of the model until the distance begins 
to increase. 

 

.|)()(|

|))(ˆ)(ˆ(|
2

1
2

1

tRtR

tztzd

ii

ii








 (17)

 
Distance control (17) – indirectly allows you to con-

sider the volume of the time series. 
4. If the polynomial model obtained under the condi-

tions of step 3 has an order equal to the number of pa-
rameters of the nonlinear model (3), then a system of 
equations of the form (7) should be formed, which is 
solved analytically with respect to the desired parameters 
of the nonlinear model. 

5. If the polynomial model obtained under the condi-
tions of step 3 is of an order of magnitude higher than the 
number of parameters of the nonlinear model (3), then a 
system of equations of the form (12), (13) is formed, 
which is solved by the chosen numerical method. To es-
tablish initial approximations, a system of equations (7) 
with DSB constraints is formed. 

6. To implement the formation of a nonlinear model 
(3) from the parameters specified in step 4 or 5. 

7. To apply the nonlinear model (3) (because of step 6 
of the methodology) to estimate the parameters of the 
stochastic time series (1) in the observation area and in 
the forecasting interval – the formation of the current and 
forecast trend. 

8. Evaluate indicators (15), (16) of the nonlinear 
model. 

9. If the results of step 8 do not meet the established 
efficiency requirements – modify the structure of nonlin-
ear models (3) by adding polynomial and / or nonlinear 
components with control of the fulfillment of one of the 
conditions of steps.4 and 5. Repeat steps 1–8 of the meth-
odology for determining the parameters of the nonlinear 
model. 

10. If the results of step 9 are unsatisfactory, use the 
results of steps 4 and 5 as initial approximations for any 
numerical methods for solving nonlinear problems of time 
series approximation. 

 

4 EXPERIMENTS 
Evaluation of the effectiveness of the proposed ap-

proach was carried out by methods of mathematical mod-
eling. The time series was generated according to model 
(9). Samples of different sizes were studied, which en-
sures the variability of the composition of seasonal 
changes (fluctuations) [9]. Simulation configuration: 

– model: )03.0cos()01.0sin(2.2)( tttf  ; 

– random noise parameters: normal law, 2.0 ; 
– training sample sizes: 500, 1000, 1500; 
– the time series is generated from the training (ob-

servation area) and test (forecasting area) parts with a 
volume of ],0[ n  and ]2,[ nn – respectively. 

– nonlinear model for processing the form (9), 
polynomial structure was used in accordance with the 
results of the proposed technique. 

 
5 RESULTS 

The results of the research are presented in Fig. 5 and 
Table 2. 

The graphs of Fig. 5 contain: training data (blue); 
ideal trend, relative to which the indicators given in Table 
2 are calculated (orange); Trend restored using the pro-
posed technique (green color). 

Table 2 contains data on model quality indicators (15), 
(16) and standard deviations of the results of processing 
the input time series with random noise. Characteristics of 
the degree of the polynomial – record the result of the 
proposed technique. 

The results of the studies demonstrate the obvious 
properties of statistical learning results – an increase in 
seasonality in the data gives an increase in dynamic and 
stochastic error. However, the discrepancy between the 
estimation results, compared to the ideal trend, is com-
mensurate with the confidence interval of the forecasting 
error. This confirms the compliance of the proposed solu-
tions with the basic provisions of the methods of process-
ing time series. 

In favor of the proposed solutions should be attributed 
the useful prognostic properties of nonlinear models, 
which were obtained entirely by the methods of analytical 
synthesis of the structure of nonlinear models in terms of 
parameters and determination of their parameters. This is 
ensured using positive properties of differential transfor-
mations in the proposed technique [4, 5]. 

 
6 DISCUSSION 

In this paper the method of constructing nonlinear 
mathematical models in the DNT transformation scheme 
was further developed. The modification of the method 
consists in controlling the conditions for the formation of 
a certain system of equations in the DSB scheme to find 
the parameters of a nonlinear model with its analytical 
solutions. If the system is uncertain, the nonlinear model 
is supplemented with components that are linear in pa-
rameters. In the case of an overdetermined system, its 
solution is carried out using the least Squares. A defined 
system is solved by classical approaches. These processes 
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are implemented with the control of stochastic and dy-
namic accuracy of models in the areas of observation and 
extrapolation. If the results of statistical learning are un-
satisfactory in terms of accuracy, the obtained parameters 
of the nonlinear model are used as initial approximations 
of numerical methods. 

All these modifications are based on empirically 
proven interdependencies of quality indicators of poly-
nomial models at the level of linear deviation and prob-

ability of approximation with the quality of the results of 
synthesis and application of nonlinear models in terms of 
parameters. 

The proposed solutions are based on the analytical 
synthesis of the structure of nonlinear models and the 
determination of their parameters due to the positive 
properties of the method of differential transformations. 

 

)(),( tfty   )(),( tfty   

 t   t  
a  b  

 )(),( tfty   

 

 t  
c  

Figure 5 – Research results of the proposed methodology for samples: a – 1500, b – 1000, c – 500 

Table 2 – Results of the model experiment 

 Sample size Polynomial degree   2R    

train 500 4 0.12747 0.98981 1.26074 

test 500 4 0.13555 0.9643 0.71604 

train 1000 5 0.23514 0.97291 1.42798 

test 1000 5 0.71622 0.73303 1.3848 

train 1500 7 0.46893 0.91643 1.62107 

test 1500 7 0.9894 0.62647 1.61779 

 
Practical processing of the synthesized data proved the 

high predictive properties of the proposed approaches to 
the construction of nonlinear models. 

The practice of applying the proposed approaches is 
possible in e-commerce software systems (trading, retail-
ing, aggregation), computer systems of automated and 
automatic control (unmanned systems, traffic control sys-
tems) in the medical field and in other industries where 
there are large amounts of data in the time series format. 

CONCLUSIONS 
In this paper a conditional approach to analytical syn-

thesis and determination of parameters of nonlinear mod-
els is proposed. The obtained solutions are an alternative 
and complement to the methods of numerical solution of 
nonlinear problems for processing time series and belong 
to the class of statistical machine learning methods. 

The scientific novelty. The method of constructing 
nonlinear mathematical models in the DNT transforma-
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tion scheme was further developed. The modification of 
the method consists in controlling the conditions for the 
formation of a certain system of equations in the DSB 
scheme to search for the parameters of a nonlinear model 
with its analytical solutions. 

The practical significance of the proposed methodol-
ogy is to obtain an analytical solution to the problem of 
determining the parameters of nonlinear models, which 
increases the predictive accuracy and productivity of sta-
tistical training methods on time series. 

Prospects for further research. Extension of the 
proposed solutions to approximate methods into an alter-
native to DBS, creation of a program script in the format 
of a specialized library of nonlinear statistical learning. 
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АНОТАЦІЯ 
Актуальність. Практика задач сьогодення актуалізує підвищення вимог до точності, достовірності і повноти результа-

тів обробки часових рядів в багатьох прикладних сферах. Одним із методів, що забезпечує високоточну обробку часових 
рядів із впровадженням стохастичної моделі виміряних параметрів є методи статистичного навчання. Однак, сучасні підхо-
ди до статистичного навчання обмежуються, здебільшого, спрощеними – лінійними за параметрами поліноміальними моде-
лями. Практика доводить, що реальні дані найчастіше мають складну форму трендової складової, яка не може бути відтво-
рена поліномами навіть високого ступеня. Згладжування нелінійних за параметрами моделей можливо реалізувати різними 
підходами, наприклад методом визначення параметрів нелінійних моделей з використанням балансу диференціальних спек-
трів (БДС) в схемі диференціально-нетейлорівських перетворень (ДНТ). Дослідження довели необхідність його модифікації 
в напрямку розробки обумовленого підходу до визначення структури нелінійних за параметрами математичних моделей для 
обробки часових рядів із складною динамікою тренду. 

Метою роботи є розробка методики визначення структури нелінійних за математичних моделей для обробки часових 
рядів з використанням БДС в ДНТ перетвореннях. 

Метод. В статті отримав розвиток метод побудови нелінійних за параметрами математичних моделей в схемі ДНТ пере-
творень. Модифікація методу полягає у контролі умов формування визначеної системи рівнянь в схемі БДС для пошуку 
параметрів нелінійної моделі з її аналітичним розв’язкам. Якщо система невизначена – нелінійна модель доповнюється лі-
нійними за параметрами компонентами. У випадку перевизначеної системи – її розв’язок здійснюється з використанням 
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норми найменших квадратів. Визначена система – розв’язується класичними підходами. Зазначені процеси реалізуються із 
контролем стохастичної та динамічної точності моделей да ділянках спостереження та екстраполяції. Якщо результати ста-
тистичного навчання є незадовільними за точністю – отримані значення нелінійної моделі використовуються як початкові 
наближення чисельних методів. 

Результат. На підстава проведених досліджень запропоновано методику визначення структури нелінійних за парамет-
рами моделей для обробки часових рядів з використанням БДС в схемі ДНТ перетворень. Її застосування забезпечує обумо-
влений підхід до визначення структури моделей для обробки часових рядів та підвищення точності оцінювання на інтервалі 
спостереження та екстраполяції. 

Висновки. Застосування запропонованої в статті методики визначення структури нелінійних за параметрами моделей 
для обробки часових рядів дозволяє отримати моделі із кращими, за показником точності, прогностичними властивостями. 

КЛЮЧОВІ СЛОВА: наука про дані, статистичне навчання, часові послідовності, нелінійні моделі, чисельні методи, 
метод найменших квадратів. 
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