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ABSTRACT

Context. Keystroke dynamics recognition is a crucial element in enhancing security, enabling personalized user authentication,
and supporting various identity verification systems. This study investigates the influence of data distribution on the performance of
one-class classification models in keystroke dynamics, focusing on the application of a nine-variate prediction ellipsoid. The object
of research is the keystroke dynamics recognition process. The subject of the research is a mathematical model for keystroke dynam-
ics recognition. Unlike typical approaches assuming a multivariate normal distribution of data, real-world keystroke datasets often
exhibit non-Gaussian distributions, complicating model accuracy and robustness. To address this, the dataset underwent normaliza-
tion using the multivariate Box-Cox transformation, allowing the construction of a more precise decision boundary based on the pre-
diction ellipsoid for normalized data.

The objective of the work is to increase the probability of keystroke dynamics recognition by constructing a nine-variate predic-
tion ellipsoid for normalized data using the Box-Cox transformation.

Method. This research involves constructing a nine-variate prediction ellipsoid for data normalized using the Box-Cox transfor-
mation to improve keystroke dynamics recognition. The squared Mahalanobis distance is applied to identify and remove outliers,
while the Mardia test assesses deviations from normality in the multivariate distribution. Estimates for parameters of multivariate
Box-Cox transformation are derived using the maximum likelihood method.

Results. The results demonstrate significant performance improvements after normalization, reaching higher accuracy and ro-
bustness compared to models built for non-normalized data. The application of the nine-variate Box-Cox transformation successfully
accounted for feature correlations, enabling the prediction ellipsoid to better capture underlying data patterns.

Conclusions. For keystroke dynamics recognition, a mathematical model in the form of the nine-variate prediction ellipsoid for
data normalized using the multivariate Box-Cox transformation has been developed, which enhances the probability of recognition
compared to models constructed for non-normalized data. However, challenges remain in determining the optimal normalization
technique and selecting the significance level for constructing the prediction ellipsoid. These findings underscore the importance of
careful feature selection and advanced data normalization techniques for further research in keystroke dynamics recognition.

KEYWORDS: keystroke dynamics recognition, multivariate Box-Cox transformation, prediction ellipsoid, normalizing trans-
formation.

ABBREVIATIONS Zjisa j-th Gaussian variable that is obtained by trans-
BCT is the Box-Cox transformation;
SMD is the squared Mahalanobis distance;
TP is true positives;
FP is false positives;
TN is true negatives; B, is a multivariate kurtosis;
FN is false negatives;
NGD is a prediction ellipsoid for non-Gaussian data;

forming the variable;
o is a significance level;

B, is a multivariate skewness;

X%,a is the chi-square distribution quantile with m

ND is a prediction ellipsoid for normalized data. degrees of freedom and significance level o ;

y is a vector of multivariate normalizing transforma-

NOMENCLATURE tion.

p is a number of variables;
m is a number of degrees of freedom,; INTRODUCTION
N is a number of data points; In recent years, keystroke dynamics, also known as
Sx is a sample covariance matrix for initial data; keystroke biometrics or typing biometrics, has emerged as
Sz is a sample covariance matrix for normalized data; a viable method for biometric authentication. It leverages
} is a non-Gaussian random vector; the unique patterns and rhythms individuals exhibit while
X is a vector of sample means of the X; variables; typing on a keyboard, capturing characteristics such as

keystroke duration and inter-key intervals [1]. These fea-
tures enable the creation of a distinctive typing profile for
Z is a Gaussian random vector; each user.

Z is a vector of sample means of the Z j variables; Unlike traditional biometric methods such as finger-
prints or facial recognition, keystroke dynamics offers a
non-intrusive and continuous form of user authentication
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[2]. This makes it particularly attractive for applications
in online banking, secure login systems, and access con-
trol. A low probability of authenticating individuals can
have negative consequences in terms of security and per-
sonalization. Therefore, there is a need to develop and
improve keystroke dynamics recognition methods.

A significant limitation of existing methods in key-
stroke dynamics recognition is their sensitivity to non-
normal data distribution. Many statistical and machine
learning techniques assume multivariate normality in the
underlying data, which is often not the case in real-world
keystroke dynamics datasets [4]. Non-normal distribu-
tions can adversely affect the performance of these tech-
niques, leading to suboptimal recognition results. There-
fore, it is necessary to enhance mathematical models to
accommodate deviations from the multivariate normal
distribution of data.

The object of study is the process of keystroke dy-
namics recognition.

The keystroke dynamics recognition process includes
several important steps to ensure accurate and reliable
user authentication. First, a suitable dataset containing
keystroke data, such as keypress and release times, is
identified. From this raw data, characteristics such as key
hold time and key spacing are extracted to represent the
unique typing patterns of individuals. Next, outlier detec-
tion is performed to identify and remove anomalous data
points that may skew the analysis [3]. This step is crucial
for refining the dataset and improving the accuracy of the
model. Finally, classification is carried out, with the accu-
racy and efficiency largely depending on the specific
model.

The subject of study is a mathematical model for
keystroke dynamics recognition. One of the frequently
employed methods in pattern recognition involves build-
ing decision rules based on prediction ellipsoids.

The purpose of the work is to increase the probabil-
ity of keystroke dynamics recognition by constructing a
nine-variate prediction ellipsoid for normalized data using
the multivariate Box-Cox transformation (BCT).

1 PROBLEM STATEMENT
Assume we have an original data sample set consist-
ing of nine keystroke timing features, with a multivariate
distribution that is not Gaussian. In this case, there exists
a bijective nine-variate normalizing transformation

Y= {\uy ,wl,wz,...,\v9}T that converts the non-Gaussian

Xo '
Z9}T is given by:

random vector X:{Xl,Xz,..., into a Gaussian

random vector Z = {Zl,Zz,...,

Z=y(X). (1)

It is required to build the prediction ellipsoid for nor-
malized data in the form:

J— T _ J—
(2-Z) s7(2-Z)=+3.. @)
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where

—ﬁ%(zi 7z, 7]

Also, it is required to construct a prediction ellipsoid
for keystroke dynamics recognition based on equation (2)
and the transformations (1).

2 REVIEW OF THE LITERATURE

Mathematical modeling methods are utilized in key-
stroke dynamics recognition, encompassing the process of
constructing and refining mathematical models to enhance
accuracy and reliability. Recent advancements in this field
have employed a range of techniques. Key methods in-
clude tree-based methods, such as random forests [5, 6],
build hierarchical models that classify data by learning
feature splits to effectively separate different classes; sup-
port vector-based approaches [7-9], establish optimal
decision boundaries by maximizing the margin between
classes; neural network-based models [10-12] capture
complex patterns in keystroke data through multiple lay-
ers of interconnected nodes and others classifiers.

However, in developing user authentication systems,
one-class classification is more typical for keystroke dy-
namics because it focuses on verifying whether a typing
pattern belongs to a known user [13]. The primary goal is
to create a model based on the unique typing patterns of
an individual, and the target class, and then identify
whether new typing patterns match this known profile.
This is especially useful for authentication, where the
system needs to continuously confirm that the current user
is indeed the registered individual, rather than distinguish-
ing between multiple users. One-class classification is
connected with outlier detection [14]. The model is
trained on data from a target class and does not have ex-
plicit knowledge of other classes. It identifies whether
new data fits within the learned target class pattern, flag-
ging deviations as potential outliers [15].

Popular approaches to one-class classification in key-
stroke dynamics recognition include one-class support
vector machine [16—18], which identifies a boundary that
separates target data from outliers; neural network-based
classifiers such as autoencoders [19, 20], which learn to
reconstruct input data and identify anomalies based on
reconstruction errors, and GANs [21], which use genera-
tive adversarial networks to model target data and detect
deviations. Currently, the mathematical modeling of pre-
diction ellipsoids is widely used for pattern recognition,
particularly in one-class classification systems [22, 23].
This technique employs statistical methods to define a
multivariate ellipsoid that encompasses the target data
points.

The construction of the ellipsoid is based on the as-
sumption that the data follows a multivariate normal dis-
tribution. One promising solution to address this limita-
tion is the application of normalizing transformations
[24-26]. In the study [27] it was observed that the predic-
tion ellipsoid for normalized data outperformed machine
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learning methods such as one-class SVM, isolation forest,
and autoencoder in one-class classification for face rec-
ognition tasks. We propose applying this mathematical
model to keystroke dynamics recognition systems.
Normalization techniques can convert non-normal da-
ta into a distribution that more closely approximates mul-
tivariate Gaussian distribution, thereby improving the
effectiveness of statistical analyses and machine learning
models. While univariate normalization techniques trans-
form each feature independently, multivariate normaliza-
tion techniques consider the relationships between multi-
ple features simultaneously. In this study, we employ the
multivariate BCT to normalize keystroke dynamics data,
aiming to enhance the overall recognition performance.

3 MATERIALS AND METHODS

In the context of keystroke dynamics-based recogni-
tion, the dataset used plays a pivotal role in the effective-
ness and accuracy of the algorithms. A keystroke dynam-
ics dataset typically consists of detailed records of an in-
dividual’s typing behavior, capturing various temporal
aspects of keystrokes such as the duration of key presses
and the intervals between key presses and releases.

The CMU keystroke dynamics dataset used in this
study provides a detailed record of typing from 51 sub-
jects, each of whom typed a static password string:
“.tieSRoanl”. The dataset includes various keystroke tim-
ing features, recorded in seconds, such as the duration a
key is held down and the time between key presses.

Data collection involved eight separate sessions per
subject, with at least one day between each session. Dur-
ing each session, subjects typed the password 50 times,
resulting in 400 repetitions per subject. This setup pro-
vides a comprehensive dataset with a total of 20,400 sam-
ples across all subjects.

The dataset is structured with a subject identifier, ses-
sion number, repetition number, and a total of 31 timing
features. It includes columns with specific naming con-
ventions to represent various keystroke timing metrics.
Columns labeled as H.key indicate the hold time for a
particular key, capturing the duration from when the key
is pressed to when it is released. DD.key1.key2 columns
represent the time interval between pressing two consecu-
tive keys, known as keydown-keydown time. Similarly,
UD.keyl.key2 columns denote the keyup-keydown time,
which measures the interval between releasing one key
and pressing the next. It is important to note that UD
times can sometimes be negative, and the sum of H times
and UD times corresponds to the DD time for a given
digraph.

To simplify the model, it was decided to focus on 9
key properties, so the feature vector takes the form:
X={Ht Hi,He,H5 HR,Ho,H.a, Hn, H1}.

After extracting feature vectors, the next crucial step is
outlier detection. Identifying and removing anomalies is
essential because they can significantly skew the analysis
and degrade the accuracy of the recognition model. By
detecting outliers, the dataset is refined, ensuring that the

© Prykhodko S. B., Trukhov A. S., 2025
DOI 10.15588/1607-3274-2025-1-9

98

model is trained on data that truly represents typical user
behavior.

One popular method for anomaly detection is based on
the squared Mahalanobis distance (SMD). A known
limitation of the SMD method is its reliance on the
assumption that the data follows a multivariate Gaussian
distribution. To address this, it is essential to first evaluate
the data’s normality using statistical tests such as the
Mardia test.

The Mardia test is employed to assess whether a data-
set adheres to multivariate normality, which is crucial for
methods assuming a multivariate Gaussian distribution.
This test also applied in the study [27], evaluates two key
dimensions of normality: multivariate skewness B; and
multivariate kurtosis ;.

Skewness measures the asymmetry of the data distri-
bution. When skewness is scaled by N/6, it follows a chi-
square distribution with p(p+1)(p+2)/6 degrees of free-
dom, where p is the number of variables and N is the
sample size.

Kurtosis assesses the tailedness of the distribution or
the extent to which the tails differ from those of a normal
distribution. The Mardia test calculates kurtosis coeffi-
cients and compares them to a normal distribution with a
mean of p(p+2) and a variance of 8p(p+2)/N.

If the data deviates significantly from multivariate
normality, it is imperative to apply a normalizing
transformation (1) on a non-Gaussian random vector

X= {Xl, Xoyeen X9}T to convert it into a Gaussian ran-

dom vector Z = {Z],Zz,...,ZQ}T .

Normalizing transformations are essential tools in
statistical analysis and machine learning, primarily
because they help stabilize variance, reduce skewness,
and align data more closely with a multivariate Gaussian
distribution. This process is particularly critical for
methods that rely on the assumption of multivariate
normality, as such transformations can greatly enhance
the validity and interpretability of the results. There are
two main types of normalizing transformations: univariate
and multivariate.

Univariate transformations include methods like the
logarithm and the univariate BCT. The logarithm is
commonly employed to stabilize variance, especially in
data with positive skewness. On the other hand, the
univariate BCT offers greater flexibility by addressing
both positive and negative skewness through the selection
of an optimal parameter A. However, this method can be
more complex to implement due to the need for parameter
estimation, which may also be sensitive to outliers.

In contrast, multivariate transformations, such as the
multivariate BCT, overcome the limitations of univariate
methods by considering the interrelationships between
multiple variables. While univariate transformations are
more straightforward, they can fall short in situations
where the interdependencies among variables are
significant. Multivariate transformations provide a more

OPEN a ACCESS




p-ISSN 1607-3274 PagioenexktpoHika, iHpopMaTuka, ynpasminsas. 2025. Ne 1
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. Ne 1

comprehensive approach but come with increased
computational complexity.

The multivariate BCT builds on the principles of the
univariate BCT approach but extends its application to

multiple variables simultaneously.

}L.
X —1| /i, n =0;
zjszj%:( j )/ R (3)
(x;[ ;=0
This transformation maintains the correlations

between variables while normalizing their distributions,
making it especially effective for multivariate data.
However, applying this transformation demands
considerable effort due to the complexity of the required
parameter estimation. A widely used approach for
estimating parameters for each feature in a set involves
maximizing the log-likelihood of the transformed data, as
described in the study [27].

Applying the multivariate BCT can greatly improve
the approximation of the data’s distribution to normality.
After normalization, it’s crucial to run the Mardia test
again to assess the transformation’s success. If the test
confirms that the data now follows a multivariate normal
distribution, the dataset is ready for further analysis. If
not, further adjustments or alternative methods may be
necessary to meet the assumptions required for
subsequent statistical procedures.

The next step is the construction of the prediction el-
lipsoid. A prediction ellipsoid is a tool in multivariate
analysis used to determine whether a data point belongs to
a specific target class. This method involves calculating
the squared Mahalanobis distance for each point, which
corresponds to the left side of the comparison. This
distance is then compared against a critical value from the
chi-square distribution, representing the right side of the
equation:

(X _i)T X (X - §)= 15, 0.005 4)
where

=ﬁ§& ~X)x; -XJ .

The SMD follows a chi-square distribution with
degrees of freedom equal to the number of features in the
data, in our case is 9. This connection allows the
determination of a critical value based on the desired
significance level, for one-class classification tasks, a
common choice is 0.005. Specifically, if a data point’s
SMD exceeds the critical value from the chi-square
distribution, it is classified as an anomaly (an instance of
another class). Conversely, if the distance is below the
critical value, the data point is classified as an instance of
the target class.
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In cases where the data is non-normal, following the
normalization process, a nine-variate prediction ellipsoid
is constructed based on (4):

(Z - Z)T Sz (Z - Z) = 13.0.005 - Q)

The chi-square distribution quantile value is 23.59 for
9 degrees of freedom at a significance level of 0.005. If
the SMD falls below the chi-square critical value, the
point is considered to lie within the ellipsoid, indicating
its membership in the target class.

4 EVALUATION METRICS

In one-class classification, where the goal is to distin-
guish between target and anomaly instances, evaluation
metrics such as accuracy, specificity, precision, recall,
and the F1 score play an important role in evaluating
model performance [28]. These metrics are derived from
classification outcomes categorized as true positives (TP),
false positives (FP), true negatives (TN), and false nega-
tives (FN).

In this context, true positives (TP) indicate correctly
identified anomalies, while false positives (FP) represent
cases mistakenly classified as anomalies or false alarms.
True negatives (TN) denote correctly identified target
instances, and false negatives (FN) reflect cases where
actual anomalies were incorrectly classified as targets.

Accuracy measures the overall correctness of the clas-
sification, considering both target instances and anoma-
lies: Accuracy=(TP+TN)/(TP+TN+FP+FN).

Specificity evaluates the model’s capacity to correctly
classify target instances. It measures the proportion of
identified target instances relative to all target instances:
Specificity=TN/(TN+FP).

Precision focuses on the reliability of the model when
identifying anomalies, showing the proportion of true
anomalies among all instances that the model classified as
anomalies: Precision=TP/(TP+FP).

Recall (sensitivity) assesses the model’s ability to de-
tect all actual anomalies, it measures the proportion of
true anomalies that were correctly identified out of all
existing anomalies: Recall=TP/(TP+FN).

The F1 score offers a balanced evaluation by calculat-
ing the harmonic mean between precision and recall:
F1 score=2*(Precision*Recall)/(Precision + Recall).

5 EXPERIMENTS

Data with the identifier s015 was randomly selected to
construct the prediction ellipsoid. Meanwhile, s004 was
employed in testing to verify the recognition of keystroke
dynamics from a different individual.

It is essential to identify and remove outliers, which
requires verifying whether the data follows a multivariate
normal distribution. The Mardia test indicated that the set
with the identifier sO15 shows deviations from multivari-
ate normality, as the test statistic for multivariate skew-
ness Nf;/6 measuring 391.54, exceeds the chi-square dis-
tribution threshold of 215.53 for 165 degrees of freedom
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at a significance level of 0.005. Similarly, the test statistic
for multivariate kurtosis B, with a value of 113.32, sur-
passes the normal distribution quantile of 102.62, given a
mean of 99, variance of 1.98, and 0.005 significance lev-
el. Suggesting that further normalization is needed before
proceeding with analysis.

The initial step in normalization involves determining
the optimal parameters. Through the application of the
maximum likelihood method, the following parameter

estimates were obtained: il =0.9939, 712 =1.3605,
Ay =12202, hg =1.7521, Ag =2.2965, iy =1.0447,

Ay =1.6466, Ag = 1.3512, hg =2.0599.

After applying the nine-variate BCT, the resulting set
with components (3) was analyzed using the Mardia test.
The test statistic for multivariate skewness Nf,/6, which
is 212.07, is below the chi-square distribution’s critical
value of 215.53 for 165 degrees of freedom at a 0.005
significance level. However, the test statistic for multi-
variate kurtosis 3,, with a value of 109.01, remains above
the normal distribution quantile of 102.62, given a mean
of 99, variance of 1.98, and 0.005 significance level.
Despite the transformation, the set still exhibits non-
normality, primarily due to the influence of outliers, that
distort the distribution and prevent normalization.
Nevertheless, using the normalized set is preferable, as it
brings the distribution closer to multivariate normality,
improving the performance of the Mahalanobis distance
method.

Next, the SMD is computed for each feature vector to
identify potential outliers. The calculated distances are

compared against the chi-square distribution critical value
of 23.59 for 9 degrees of freedom at a significance level
of 0.005. Any vectors exceeding this threshold are
considered outliers. In this iteration, the vector with
number 295 with the maximum SMD of 37.44 is removed
from the set.

This iterative process continues until all outliers are
removed from the set. After removing 6 outliers, the test
statistic for multivariate kurtosis of the normalized set,
according to the Mardia test, falls below the critical value.
This highlights the significant impact of outliers on the
set’s distribution.

Table 1 presents the SMDs and corresponding indices
for each outlier that was removed. This iterative process
continued until no further significant outliers remained,
resulting in a dataset that was more refined and less
influenced by extreme values.

Table 1 — Removed outliers

Ne SMD Index Ne SMD Index
1 37.44 295 6 26.963 323
2 36.962 160 7 26.868 45
3 30.742 306 8 25.776 263
4 28.833 388 9 24.515 294
5 28.662 214 10 23.972 204

As a result of the iterative outlier removal, the set with

the vector of means X = {0.07525; 0.07022; 0.07823;
0.063; 0.06911; 0.08829; 0.08605; 0.07505; 0.0751} was
retrieved. The covariance matrix of the final set is pro-
vided in Table 2.

Table 2 — The covariance matrix of the set after removal of outliers

0.0°19 | 0.026 | 0.0'54 | 0.0°13 | 0.0°49 | 0.0°12 | 0.026 | —0.0°6 | —0.0*17
0.026 | 0.021 | —0.0°19 | 0.0°51 | 0.0°82 | 0.0°14 0.04 | —0.01 | 0.0°14
0.0'50 | —0.0"19 | 0.0°25 0.0°1 0.0°35 | 0.0°11 | —0.026 | 0.0%27 0.0°1
0.0°13 | 0.0°51 0.0°1 0.0°19 | 0.0'16 | —0.0°52 | 0.0*31 | -0.0*18 | —0.0°57
0.049 | 0.0°82 | 0.0°35 | 0.0%16 | 0.0°13 | 0.0°14 | —0.0°62 | 0.0°56 | 0.0°48
0.0°12 | 0.0'14 | 0.0°11 | —0.0°52 | 0.0°14 | 0.0°12 | —0.0°36 | 0.0°36 | 0.0°86
0.026 0.0'4 | —0.0%26 | 0.0°31 | —0.0°62 | —0.0°36 | 0.0°35 | —0.0°38 | 0.0°19
-0.0°6 | -0.0'1 | 0.027 | -0.0"18 | 0.0°56 | 0.0°36 | —0.0'38 | 0.0°27 0.0°7
-0.0*17 | 0.0°14 0.0°1 | —0.0°57 | 0.0°48 | 0.0°86 | 0.0°19 0.0°7 0.0%2

The resulting sample was randomly shuffled to ensure
that the data points were distributed evenly across the
training and test sets, reducing any potential bias due to
the order of the data. After shuffling, the dataset was split
into training and test sets, each containing 50% of the
data, equating to 195 vectors per set. The training set is
used to construct the prediction ellipsoid, allowing the
model to learn patterns and relationships from the data.
The test set, on the other hand, is used to evaluate the
model’s performance on a distinct subset of the data that
was not seen during training. This approach helps in
achieving a representative evaluation of the model’s per-
formance by providing an unbiased assessment of how
well the model generalizes to new, unseen data.
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Table 3 displays the covariance matrix of the training

set, which has a vector of means X = {0.07635; 0.07052;
0.07875; 0.06254; 0.06955; 0.08806; 0.08752; 0.07447,
0.07495}.

Based on the Mardia test results, the multivariate dis-
tribution of the training sample shows deviations from
multivariate normality. The test statistic for multivariate
skewness NB;/6 is 286.99, which exceeds the critical val-
ue of 215.53 from the chi-square distribution for 165 de-
grees of freedom at a 0.005 significance level. The test
statistic for multivariate kurtosis B, is 105.43, which ex-
ceeds the critical value of 104.19 for a normal distribution
with a mean of 99, a variance of 4.062, and a significance

level of 0.005.
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Table 3 — The covariance matrix of the training set

0.0%2 0.0'16 | 0.0%2 | 0.0%42 | 0.0°53 | 0.0°71 | 0.0'38 | 0.0°14 | -0.0°75
0.0'16 | 0.021 | -0.0*19 | —0.0°26 | —0.0°35 | 0.0*14 | 0.0%62 | -0.0'1 | 0.0°15
0.0%62 | —0.0°19 | 0.0°26 | —0.0°84 | 0.0°11 | 0.0°71 | —0.0°51 | 0.0°99 | 0.0*17
0.0%42 | —0.0°26 | —0.0°84 | 0.0°21 | 0.0%24 | —0.0°75 | 0.0'37 | -0.028 | —0.0°87
0.0°53 | —0.0°35 | 0.0°11 | 0.024 | 0.0°13 | 0.0'12 | —0.0°36 | —0.0°53 | 0.0°72
0.0°71 | 0.0°14 | 0.0°71 | —0.0°75 | 0.0°12 | 0.0°12 0.0°1 0.0°16 | 0.018
0.0'38 | 0.0'62 | —0.0'51 | 0.0'37 | —0.0°36 | 0.0"1 0.0°36 | —0.0%1 | 0.0°69
0.0°14 | —0.0°1 | 0.0°99 | —0.0"28 | —0.0°53 | 0.0°16 | —0.0%1 | 0.0°27 | 0.023

-0.0°74 | 0.0°15 | 0.0°17 | —0.0°87 | 0.0°72 | 0.0°18 | 0.0°%9 | 0.023 | 0.0°22

The training set is normalized using a nine-variate
BCT. Optimal parameters for this transformation are de-
termined through the maximum likelihood method:

A =13676, Ay =14807, Ay =1.078, i, =17393,
hs =2.1004, A =1.1498, Ay =1.566, ig =1.1685,

As a result of applying the BCT to the training set
with components (3), the resulting sample has a vector of
means: Z = {0.70932; 0.66184; 0.86764; —0.57016; —
0.47427; 0.81642; 0.62417; —0.81443; —0.47084}. The
covariance matrix of the normalized sample is presented
in Table 4.

Ao =2.1146.
Table 4 — The covariance matrix of the normalized set

0.029 | 0.0°14 0.02 0.0%2 0.0°13 | 0.0°21 | 0.0°39 | 0.0773 | —0.0768

0.0°14 | 0.0'16 | —0.048 | —0.0'21 | 0.0771 | 0.0°27 | 0.0°43 | —0.0°16 | 0.0731

0.02 | —0.048 | 0.0°18 | —0.0%42 | 0.0°43 | 0.0°42 | —0.0*11 | 0.0°51 | 0.0%5

0.02 | —0.021 | —0.0°42 | 0.0°31 | 0.0°15 | —0.0°15 | 0.0°14 | —-0.0°2 | —0.0"32

0.0°13 | 0.071 | 0.0°43 | 0.0°15 | 0.0°33 | 0.0°58 0.0% | —0.0°17 | 0.0°13

0.0°21 | 0.027 | 0.0°42 | —0.0°15 | 0.0°58 | 0.0°55 | 0.0°15 | 0.0°92 | 0.0°72

0.0°39 | 0.0°43 | —0.0°11 | 0.0°14 0.0°8 0.0°15 | 0.0'22 | -0.0'1 | 0.012

0.0’73 | —0.0°16 | 0.0°51 | -0.02 | —0.0°17 | 0.0°92 | —0.0°1 | 0.0°11 | 0.0°89

—-0.0’68 | 0.0731 | 0.0°66 | —0.0732 | 0.013 | 0.0°72 | 0.0712 | 0.0°89 | 0.0°57

According to the Mardia test, the normalized training 6 RESULTS

set conforms to the multivariate normal distribution. The
test statistic for multivariate skewness NB1/6 is 175.47,
which is below the critical value of 215.53 from the chi-
square distribution with 165 degrees of freedom at a 0.005
significance level. Additionally, the test statistic for mul-
tivariate kurtosis f2 is 99.76, which does not exceed the
critical value of 104.19 for a normal distribution with a
mean of 99, a variance of 4.062, and a significance level
of 0.005.

After applying the normalization, nine-variate predic-
tion ellipsoids were constructed for both the non-Gaussian
data (NGD) (4) and the normalized data (ND) (5). The
computer program implementing the constructed models
was developed to conduct experiments. The program was
written in the Python language.

Table 5 presents a comparative analysis of the per-
formance metrics for prediction ellipsoid models in one-
class classification.

Table 5 — The covariance matrix of the training set

Model | Accuracy | Specificity
NGD 0.9412 0.9795
ND 0.9782 0.9949

The metrics for the nine-variate prediction ellipsoids
for non-Gaussian data reflect good performance, which is
likely attributed to the effective keystroke dynamics rec-
ognition. However, the nine-variate prediction ellipsoid
for normalized data significantly outperforms it. Normali-
zation has led to better detection of anomalies, reduced
false positives, and improved overall classification per-
formance. The results highlight the importance of apply-
ing normalization techniques to achieve a more reliable
and accurate model for keystroke dynamics recognition.

© Prykhodko S. B., Trukhov A. S., 2025
DOI 10.15588/1607-3274-2025-1-9

Precision | Recall | FI score

0.9893 0.9225 0.9547

0.9974 0.9700 | 0.9835
7 DISCUSSION

The results demonstrate that applying the nine-variate
BCT significantly improved the model’s performance,
underscoring the importance of normalization in address-
ing non-Gaussian data distributions. Choosing the appro-
priate normalization technique is vital, as it significantly
affects the model’s effectiveness and reliability. Multi-
variate normalization methods capture complex variable
relationships, enhancing prediction ellipsoid accuracy and
providing a more precise representation of data patterns.

The choice of significance level is an important factor
in constructing the prediction ellipsoid. In this study, a

OPEN a ACCESS




p-ISSN 1607-3274 PagioenexktpoHika, iHpopMaTuka, ynpasminsas. 2025. Ne 1
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. Ne 1

significance level of 0.005 was selected, aligning with
common practices in one-class classification and outlier
detection tasks [29].

Despite these advantages, using the prediction ellip-
soid for normalized data comes with some disadvantages.
It is generally considered essential to have at least 100
instances for building a high-quality model. Additionally,
selecting the appropriate normalization transformation
can be challenging, particularly for sets that have complex
distributions or many outliers. The last is the need to
choose a significance level that affects the efficiency and
reliability of the prediction ellipsoid.

Since 10 data points were removed as outliers, the
model might miss some underlying patterns. This limita-
tion might be addressed with a more complex normaliza-
tion, such as the Johnson transformation, which could
better handle the nuances of the data distribution and im-
prove the model’s ability to represent all relevant data
points.

CONCLUSIONS

The study examined the influence of data distribution
on keystroke dynamics recognition, with a particular fo-
cus on the application of a nine-variate prediction ellip-
soid for normalized data using the multivariate BCT.

The research evaluated the transformation’s impact on
performance by comparing it with a prediction ellipsoid
model developed for non-Gaussian data. The findings
demonstrated that applying the BCT significantly im-
proved model performance. Normalizing the data led to a
more accurate and robust prediction ellipsoid, outper-
forming the non-normalized model across various evalua-
tion metrics. The nine-variate BCT not only enhanced
overall model performance but also offered deeper in-
sights into feature relationships by accounting for correla-
tions. This underscores the critical importance of selecting
an appropriate normalization technique when dealing with
non-Gaussian distributions.

Despite the benefits of normalization, the study also
identified disadvantages, particularly in determining the
optimal normalization transformation. Additionally, se-
lecting an appropriate significance level is important, as it
directly impacts the reliability and effectiveness of the
prediction ellipsoid.

The scientific novelty of the obtained results is that
the nine-variate prediction ellipsoid for normalized data
for solving keystroke dynamics recognition tasks is first
built using the nine-variate BCT. The application of a
constructed prediction ellipsoid for normalized data al-
lowed to increase accuracy.

The practical significance of the obtained results is
that the software implementing the constructed ellipsoid
is developed in the Python language. The experimental
results allow us to recommend the constructed model for
use in practice.

Prospects for further research could explore alterna-
tive normalization techniques, such as the Johnson trans-
formation, to further refine model performance. Addition-

ally, investigating the effects of model complexity and
© Prykhodko S. B., Trukhov A. S., 2025
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feature selection could provide valuable insights into im-
proving methods for keystroke dynamics recognition.
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PO3MI3BHABAHHSA KJIABIATYPHOI'O IIOYEPKY 3A IOIIOMOT' OO JIEB’AITUBAMIPHOT' O EJIITICOIIA
INPOTHO3YBAHHS VIS1 HOPMAJII3OBAHUX JTJAHUX

Hpuxoabko C. b. — 1-p TexH. HayK, mpodecop, 3aBigyBad kadeapu mporpaMHoro 3abe3neueHHs] aBTOMaTH30BaHuX cucteM Ha-
LIOHAIBHOTO YHIBEpCUTETY KOpabieOymyBaHHs iM. anmipana Makaposa, MukonaiB, Ykpaina.

TpyxoB A. C. — acnipanT kadeznpu mporpamMHOro 3a0e3redeHHs] aBTOMaTH30BaHUX cucTeM HamioHambHOTO yHIBEpCHTETY KOpa-
6neOynyBaHHs iM. agMipana MakapoBa, Mukoinais, YkpaiHa.

AHOTAIIIA

AKTyasbHicTh. Po3mi3HaBaHHs KJIaBiaTypHOT0 NOYEPKY € BaXKJIMBUM EJIEMEHTOM Y IiIBHIICHHI O€3MeKH, 110 103BOJIsIE peaisy-
BaTH IEPCOHAI30BaHy aBTEHTU(]IKAIII0 KOPUCTYBAYiB Ta MiATPUMYE Pi3HI CHCTEMH TepeBipku ocobucrocti. e nocmimkeHHs BH-
BYA€ BIUIMB PO3MOALUTY JaHUX Ha €(EKTUBHICTH MOJENICH OMHOKIACcOBOI Kiacu(ikalii B 3aJadax po3Mi3HABaHHS KJIABIaTypHOTO IO-
YepKy, 30CepeKYIOUH yBary Ha 3aCTOCYBaHHI J€B’ ITUBUMIPHOTO ellirncoina mporao3yBaHHs. O0’€KTOM JOCHTIKEHHS € TPOLEC PO3-
Ti3HaBaHHS KJIaBiaTypHOTo Ho4Yepky. IIpeaMeToM DOCIiKEHHs € MaTeMaTHYHI MOJEN U1 PO3ITi3HABaHHS KIIaBiaTypPHOTO MOYEPKY.
Ha BigMiHy Bif THIOBUX IiIXOAIB, IO Iepea0avaloTh 0araTOBUMIpHHNA HOPMATGHUN PO3MOLT TaHUX, pealbHi HAOOPH JaHHUX YacTo
BIJIXWUJIAETHCS BiJI HBOTO, 110 YCKIIAJHIOE IOOYAOBY TOYHHX 1 HamaiitHuX mMonenei. J{is BupimieHHs 1iei mpodiaeMu aaHi Oyinu HopMma-
Ji30BaHi 32 JOIOMOro0 OaraToBUMipHOTO mepeTBopeHHs bokca-Kokca, 110 J03BOJIMIIO MOKpALIMTH BipOTiIHICTH PO3Mi3HABAHHS
KJIaBiaTypHOTO OYEPKyY 3a JOIOMOIOI0 3aCTOCYBaHHS €JIICOia IPOrHO3yBaHHS A1 HOPMaJli30BaHUX JIAHUX.

MeTo10 poGoTH € IiBHIICHHS IMOBIPHOCTI PO3Mi3HABAHHSI KJIaBIaTypHOTO MOYEPKY LUISIXOM MMOOYAOBHU J€B’ATHBUMIPHOTO €JIi-
ICOia MPOTHO3YBAHHS IS HOPMATi30BaHUX JaHUX 13 BAKOPHCTaHHSIM 0araToBHMipHOTO nepeTBopeHHs bokca-Kokca.

Merton. [JocmimkeHHS BKIIOYae MoOyI0BY NI€B’AITHBHMIPHOTO €JIiIICOia MPOTHO3YBAHHS sl JaHUX, HOPMaTi30BaHHUX 32 JIOTIO-
Moroto neperBopeHHst bokca-Kokca. KBanpart Bincrani Maxanano6ica 3aCTOCOBYEThCS ISl BUSIBIICHHS Ta BUAJICHHS BUKU/IB, @ TECT
Mapnia oniHioe BiIXWICHHS 0araTOBUMIPHOTO PO3HNOALTY BiJg HopMaisHOro. OIHKK IMapamMeTpiB 6araToOBUMiIpHOTO IEPETBOPCHHS
Bokca-Kokca oTprMaHi METOIOM MaKCHUMAIILHOI MPaBIOOIIOHOCTI.

Pe3yabTaTn. PesynbraTu 1mokasyloTh 3Ha4YHE ITiIBULICHHS BIpOTiJHOCTI PO3Mi3HaBaHHS ITiCJIsl HOpMati3anii, 1o mojsrae y 30i-
JIBLICHI TOYHOCTI Ta HAAIMHOCTI MOPIBHSAHO 3 MOJIEISAMH, MOOYAOBaHUMH [UIsi HEHOPMANi30BaHHUX JAHUX. 3aCTOCYBaHHS JICB’SITH-
BUMIipHOTO nepeTBopeHHs bokca-Kokca 103BoniiIo Kpalie BpaxyBaTH KOPEJALil MiXK 03HAKaMH, 10 JO3BOJMIIO EIINCOiay HPOrHO-
3yBaHHS Kpallle 3aXOIUIIOBATH CKIIaIHI 3aKOHOMIPHOCT] JaHUX.

BucHoBku. {7151 po3mizHaBaHHS KJIaBiaTypHOTO MOYEpKy Oyna po3pobieHa MaTeMaTHdHa MOAETb Y (opMi JIeB’ATHBHMIPHOTO
eJtincoina NporHo3yBaHHs /Ul JaHWX, HOPMAII30BaHHX 13 BUKOPUCTaHHAM OaratoBHMipHOro neperBopeHHs bokca-Kokca, 1o mia-
BHIIY€E IMOBIPHICTH PO3Ii3HABAHHS B IOPIBHSHHI 3 MOZCIISIMH, 00y I0BAHHMH /Il HCHOPMali3oBaHUX JaHuX. OJJHAK 3aJIHIIAI0ThCS
TpyIHOIII y BU3HAYEHHI ONTUMAIEHOTO METOY HOpMaJti3amii Ta BHOOpi piBHS 3HAUYIIOCTI JUIs TOOYIOBH €INCOia MPOrHO3yBaHHS.
L1i BUCHOBKH MiJKPECITIOIOTh BaXJIMBICTh PETEIBHOI0 BHOOPY O3HAK Ta 3aCTOCYBAHHS BJIOCKOHAJICHUX METOZIB HOpMalliauii JaHuX
JUISL TOJIAJIBIINX TOCHIKEHb y cdepi po3ni3HaBaHHS KJIaBiaTypHOI'O MOYEPKY.

KJIFOYOBI CJIOBA: po3mi3HaBaHHs KiaBiaTypHOro 1o4uepky, bararoBumipte neperBopents bokca—Kokca, emincoin mporao-
3yBaHH:, HOPMaJIi3ylo4e ePEeTBOPEHHS.
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