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ABSTRACT

Context. Modern technical objects (in particular vehicles) are extremely complex and place high demands on reliability. This re-
quires automation of condition monitoring and fault diagnosis of objects and their components. The predictive maintenance improves
operational readiness of technical objects. The object of study is a technical object health and usage monitoring process. The subject
of study is a methods of computational intelligence for data-driven model building and related data processing tasks for health and
usage monitoring system.

Objective. The purpose of the work is to formulate data processing problems, to form a data set for data-driven model building
and construct simple method for automatic diagnostic model building on example of helicopter health and usage monitoring system.

Method. The method is proposed for the mapping of multidimensional data into a two-dimensional space preserving local prop-
erties of class separation, allowing for the visualization of multidimensional data and the production of simple diagnostic models for
the automatic classification of diagnostic objects. The proposed method allows obtaining highly accurate diagnostic model with small
training samples, provided that the frequency of classes in the samples is preserved. A method for synthesizing diagnostic models
based on a two-layer feed-forward neural network is also proposed, which allows obtaining models in a non-iterative mode.

Results. A sample of observations of the state of helicopter gears was obtained, which can be used to compare data-driven diag-
nostic methods and data processing methods that solve the problems of data dimensionality reduction. The Software has been devel-
oped that allows displaying a sample from a multidimensional to a two-dimensional space, which makes it possible to visualize data
and reduces the dimensionality of the data. Diagnostic models have been obtained that allow automating the decision-making process
on whether the diagnosed object (helicopter gear) belongs to one of two classes of states.

Conclusions. The results of conducted experiments allow to conclude that the proposed method provides a significant reduction
in the data dimensionality (in particular, for the considered problem of constructing a model for helicopter gear diagnosis, it reduces
the data dimensionality due to the compression of features by 46876 times). As the results of the conducted experiments for ran-
domly selected instances in a two-dimensional system of artificial features obtained on the basis of the proposed method showed a
significant reduction of the sample for individual tasks may allow to provide acceptable accuracy. And taking into account individual
estimates of the instance significance will allow, even for small samples, to ensure the topological representativeness of the formed
sample in relation to the original sample.

The prospects for further research are to compare methods for constructing data-driven models, as well as methods for reducing
the dimensionality of data based on the proposed sample. Additionally, it may be of interest to study a possible combination of the
proposed method with methods for sample forming using metrics of the value of instances.

KEYWORDS: data-driven diagnosis, health and usage monitoring system, data dimensionality reduction, classification.

ABBREVIATIONS d(a, b) is a distance between points « and b;

DM is a diagnostic model; E is a model error function;

HUMS is a Health and Usage Monitoring System; fs a criterion (goal function);

MAE is a mean absolute error; F() is a diagnostic (recognition) model structure;

MSE is a mean squared error; F1s an i-th model structure;

SSE is a sum squared error. ) is a user criterion characterizing the argument qual-

ity relatively to the problem being solved,
NOMENCLATURE Jj is a feature number;

1 is a neural network layer number; K is a number of classes;

y™ is an activation function of i-th neuron of n-th M is a number of layers in neural network;
layer; N is a number of input features;

(p(”’i’ is a weight (postsynaptic) function of i-th neuron N'is a number of features in a reduced set (subsam-
of n-th layer; ple); . .

[ ]is a designation of a non-obligatory parameter; N, is a number of neurons in the n-th layer of neural

< > is a designation of a tuple; network;

C is a center relative to which the distance is deter- opt is an optimal (desired or acceptable) value of the
mined from the instances: functional f{) for the problem being solved,

C' is a sample center;’ Prorect 1s a correct decision making probability;

C™ is an average between class centers; Pincorrect 18 an incorrect decision making probability;

C is a g-th class center; Pincorect west 1S @ incorrect decision making probability

C% is a value of j-th coordinate (feature) of the g-th for a test set;
class center;
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Pincorrect train 18 @ Incorrect decision making probability
for a training set;

q is a class number;

S is a number of instances in the original sample;

s 18 an instance number;

S’is a number of precedents (examples) in a reduced
sample (subsample);

S is a number of exemplars of a sample belonging to
the g-th class;

Stest 1 @ volume of a test set;

Sirain 1S @ volume of a training set;

w is a set of controlled (adjusted) parameters of a
model;

w' is a set of controlled (adjusted) parameters of a re-
duced model;

w ™ is a value of j-th adjustable parameter (or weight)
of j-th input of i-th node of n-th layer of a neural network;

w™ is a set adjustable parameters (or weights) of i-th
node of n-th layer of a neural network;

x'is a input features of reduced set of instances or fea-
tures;

x is a set of instances (examples, cases);

x; is a j-th input feature;

x';1s a j-th input feature is a reduced set;

X’ is an s-th instance of a sample;

x’; is a value of j-th input (descriptive) feature of s-th
instance;

xj(“"i) is a j-th input value of i-th neuron of n-th layer of
a neural network;

y is a set of values of output feature;

y' is an output feature for reduced set of instances;

' is a value of an output feature for s-th instance x’;

y*" is a calculated output feature value for the s-th in-
stance on the model output;

»; is a value of i-th output feature of s-th instance;

y("’i) is an output value of i-th neuron of n-th layer of a

neural network.

INTRODUCTION

Modern technical objects (in particular vehicles) are
extremely complex and place high demands on reliability.
This requires automation of condition monitoring and
fault diagnosis of objects and their components. The pre-
dictive maintenance improves operational readiness of
technical objects [1, 2].

The object of study is a technical object health and
usage monitoring process.

The process of technical object health and usage
monitoring involves measuring equipment characteristics,
processing measurement data and determining the equip-
ment state [3]. This may be provided by the HUMS,
which is a sensor-based system that measure the health
and performance of mission-critical components in diag-
nosed objects. It provides actionable information so that
maintainers can make data-informed decisions [1].

The HUMS are widely used for condition monitoring
of rotating equipment such as helicopters trucks or power
plants. Typically, for vehicles the sensors placed on the
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equipment such as the transmission or the engine and then
vibration measured and used to determine the state of the
equipment or it’s details [2].

The HUMS for helicopters may provide such benefits
as: reduction in inspection times, unneeded maintenance,
unscheduled and scheduled maintenance, unscheduled
flight cancellation, test flights, vibration related wear
damage and avionics removals, and increasing in safety,
sense of safety, performance, mission, confidence, ease of
troubleshooting, and morale [4].

The basis for automation of decision making in
HUMS is the use of DM. The DM is a formalized descrip-
tion of diagnosing object required to solve the problems
of diagnosis [3, 5].

To build diagnostic systems (particularly HUMS), it is
possible to use the paradigms of model-based diagnosis
(requires the presence of an analytical or physical model
of the diagnosed object) [5] or data-driven diagnosis
(based on the Al-model created on the set of observa-
tions) [6, 7].

Since vehicles are extremely complex systems that
operate in changing conditions of an aggressive environ-
ment and are characterized by variability, the creating
accurate analytical (physical) models for them is an ex-
tremely complex task. Therefore, in practice, the use of
data-driven diagnosis methods is more convenient.

The subject of study is a methods of computational
intelligence for data-driven model building and related
data processing tasks for HUMS.

Model building based on computational intelligence
[7] requires the availability of a sample of observations
containing instances (cases, exemplars) of good and de-
fective items or details.

The equipment faults are relatively rare in a practice.
So the class-imbalanced training dataset should be used to
train the model for fault detection.

The purpose of the work is to formulate data proc-
essing problems, to form a data set for data-driven model
building and construct simple method for automatic DM
building on example of helicopter HUMS.

1 PROBLEM STATEMENT

The instance (case, exemplar) is a set of data that de-
scribes the observation of an object (process) at a particu-
lar point in time. Instances are characterized by the values
of features (attributes, properties).

The training sample is a sample on the basis of which
the DM is built. The test sample is a sample used to test
the performance of the DM.

The input data for DM building is a training sample
<x, y> characterized by N features set {x;},j=1,2, ..., N,
consisting of § instances (examples, cases): x= {x'},
s=1,2, .., 8, each of which described by the feature val-
ues x'={x";}, where x; is a value of j-th input (descriptive)
feature of s-th instance, y={)"'} is a set of values of output
feature, where )’ is a value of an output feature for s-th
instance [7, 8].

The problem of dependency approximation: given:
recognized instance x°, model of the dependence y=f(x),
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find: )" the estimated value of output feature for x°. If the
output variable is continuous then the problem of depend-
ency approximation is a output real value estimation (re-
gression). If the output variable is discrete then the prob-
lem of dependency approximation is a classification (pat-
tern recognition).

During the process of DM building we typically need
to address some of the following problems.

The problem of feature selection [9]: given: <x, y>,
find: <x', y>, x' € {x;}, N<N, §'=8, A<x', y>, <x,y>)—opt.

The feature extraction problem (construction of artifi-
cial features): given: <x, y>, find: <x', y>, x={x"},
x,i = F,({x,}), S’:S:f(<x,’ y>9 <x9 y>) - Opt'

The instance selection problem [9]: given: <x, y>,
find: <x’, y'>, x'€ {x'}, y={x’ €x'}, §'<S, N'=N, fi<x’,
y'>, <x, y>) — opt.

The problem of DM synthesis (model building) [8]:
given: <x, y>, find: <F(), w>: y*" = F(w, x°), AF(), w,
<x, y>) — opt.

Particularly, for the case of feed-forward neural or in-
tegrated feed-forward neuro-fuzzy network basis the

<F(), w> defined as <M, {N,}, { ™) (™)) 1> and de-

scribed by the yf = pMD (G MLD WD sy
=12, Ny, W = 10y O =y = N =N,

j7
A =%, i=1,2,0, N,y =120 M, j=1,2,0 N,

Here {V(Tl,i) :W(Tl,l')((p(ﬂ,i))} and w= {W(n,i)} - {Wg_ﬂ,i)} are

structural blocks and parameters of DM based on neural
network, respectively.

The problem of DM simplification: given: [<x, y>],
<F(), w>, find: <F'(), w™>: A<F(O)w>, <FO)w>,
[<x, y>])— opt.

The problem of DM additional training: given:
<x',y™>, <x, y>, <F(), w>, find: <F'),w™>: A<F'(), w™>,
<F(), w>,<x', y*>, <x, y>) — opt.

For each problem considered above, it is possible to
use a wide range of criteria for DM quality (performance)
estimation [10, 11].However, in practice, criterion f usu-
ally defined on the base of model error function E.

In general case (for discrete and continuous outputs) we
can use:

— MSE:
1 S S
E=Ly (v -re)f
Ss:l
—SSE:
S
E=} (ys —F(xs))2 ;
s=1
— MAE:

1 S

E-<3

s=1

ys _F(xs) )
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In case of discrete output feature we can use an error
formula:

S
E=Y{1]y* # F(x*)} - min.

s=1

For binary and discrete output features we can com-
pute the probability estimates of decisions:

— of incorrect decision making: Pjcorrect = E/S;

— of correct decision making: Peorect = 1 — Pincorrect-

2 REVIEW OF THE LITERATURE

The generalized system of technical diagnostics (in
particular, HUMS) [1, 5, 6] is shown on the Fig. 1.

The signals from the diagnosed object are measured
by the measurement devices and transformed into data in
the computer memory through the input devices.

For example, in the tasks of diagnosing helicopter
gears, the data set of observations is a large vibration data
set.

The signal processing is performed and object’s state
is determined.

There are two main paradigms for the object’s state
determination. They are model-based diagnosis [5] and
data-driven diagnosis [6].

Since the analytical (physical) model of the diagnosed
object state is absent in many practical cases or is not
enough accurate due to the lack of expert knowledge, the
data-driven diagnostics [6] has become widely used in
practice. It is used a sample of observations and based on
constructing a model of diagnosed object state using ma-
chine learning methods and models (statistical [12], metric
[13], soft computing [14, 15], logical [16], rule-based [17],
and others). A comparative characteristics description of
machine learning methods for constructing data-driven
diagnostic models is given in Table 1. Here, for each com-
parison criterion, cells with the best content are highlighted
with a green background, cells with the worst content are
highlighted with a red background, and cells with average
content are highlighted with a yellow background.

As can be seen from Table 1, there is no group of
data-driven methods that would be the best by all criteria.
Therefore, for each specific task, based on its characteris-
tics and available resources, it is necessary to specifically
solve the problem of selecting applicable methods, as well
as the problem of choosing the best method among them.

Additionally, the optimization methods (hybrid, ge-
netic [18], swarm [19], classic direct search and gradient
methods [20]) have particular interest for different ma-
chine learning problems. These methods have a strong
impact on the speed and accuracy of problem solving in
the process of constructing a diagnostic model.

A significant impact on simplifying and accelerating
the process of diagnostic model constructing, as well as
reducing the complexity of the model and increasing its
interpretability can be exerted by methods of data dimen-
sionality reduction [21] applied to the sample before the

model constructing.
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Methods of data dimensionality reduction include
methods of the in formativeness estimation and select-
ing informative features (feature selection) [22, 23],
methods of artificial features forming (feature extrac-
tion) [24, 25] including locality-sensitive hashing [26,
27], significance estimation and selection of instances
(sample forming) [28, 29]. In addition, methods of
digital processing and signal analysis (Fourier and
wavelet transformation, statistical, spectral, cepstral
analysis, etc.) [30-33] can be used to reduce the di-
mensionality of data.

Information about the structure of samples, useful
for constructing models and solving related problems,
can be provided by cluster analysis methods [34]. Clus-
ter analysis or clustering is the task of grouping a set of
objects (instances) in such a way that objects in the
same group (called a cluster) are more similar (in some
sense) to each other than to those in other groups (clus-
ters).

Additional information can also be provided by
data mapping and visualization methods. Known data
visualization methods [35] seem to be extremely com-
putationally complex and their application to large vol-
umes of data can be difficult.

This paper considers the problem of creating a sim-
ple heuristic method for data mapping and visualiza-
tion, data dimensionality reduction and DM building,
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Recommendations,

Figure 1 — Schema of ge-r-lerallzed system of technical diagnostics

that does not require solving optimization problems and
complex calculations.

3 MATERIALS AND METHODS

Since generally the data sample is multidimensional and
the number of features is much greater than three, its visu-
alization is an extremely difficult task. The use of various
data transformation methods will also require extremely
large computational resources. And the process of building a
model will also be extremely resource-intensive.

Therefore, it is proposed to use a combined approach to
solving the problem, combining a simple transformation of
data from a multidimensional space to a two-dimensional
one, which will allow, on the one hand, to visualize a data
sample, and, on the other hand, will significantly reduce the
dimensionality of the data and will significantly simplify and
speed up the process of building diagnostic models, as well
as reduce their complexity and the number of adjustable
parameters. The model simplifying will also improve their
interpretability and generalizing properties.

Let consider a heuristic approach that involves mapping
the sample from the original space of N features into a two-
dimensional space of artificial features. These features will
essentially be similar to locality-sensitive hashes defined
without solving the optimization problem, based on the hy-
pothesis of compactness of the arrangement of classes.
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Table 1 — Comparative characteristics of the groups of data-driven methods of diagnosis

Separation Based on soft computing Based on as-
in the sumption of Rule-based
Group of methods Statistical Metrical | Neural |Neuro-fuzzy|Fuzzy mod- ption o Logical expert
feature class of decision
networks | networks els systems

space functions

Input data required for
IDM synthesis:

| training set

- human expert knowl-
edge

|- model architecture

I other

Specific requirements to
the task

The requirement for
compactness of classes
IProcessing of complex
symbolic data
|Applicability to large-
scale feature space prob-
lems
|Applicability poorly
studied subject areas
Interoperability of DM
|Automatic generalization|
of data
The level of automation
of DM building
|Adaptiveness
The need for a large
amount of observations
The computational com-
lexity of DM building
The use of local searc
in the DM construction

For the given training sample <x, y>, where y € {0, 1},
find coordinates of class centers (etalons as averaged in-
stances representing corresponding classes):

13 — as a cosine of angle between vectors:
Cl=—> {51y =q,j=1,2,..,N,¢q=0,1,
J Sq o J

NN
PIPIE= Cj
i=1j=1

N N N N :
JZZX?X}JZZC,-C,-

i=1j=1 i=1 j=1

as well as the sum by the coordinates: d’(x*,C) =

13 ,
(o =Ez{xj-}, j=1,2,.,N,
s=l1 Here as C we conventionally note the center relative to
which the distance is determined.

and the average of the class centers: There are many other methods of determining dis-
tances that can be used.

avg C? + C}- L Map the sample {<{x";}, )’ >} to the tow-dimensional

o =T: J=1L2, ., N coordinate system: {<d&*(C"), d'(CY), y*>}, where )" used

as class label to marking instances.

Such a two-dimensional coordinate system will allow
to visualize data sample and to estimate complexity of a
problem.

If the separation of classes in a two-dimensional coor-
dinate system be close to linear, then it seems possible to

For each s-th instance of a sample, s = 1, 2, ..., S, de-
termine the distance from it to the sample center C* or to
the center of each class CY, ¢=0, 1, or to the average of
class centers:

— as an Euclidean distance:
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use a modification of the metric classification method
based on class centers.

The basic metric classification method assumes that at
the training stage, class centers are defined in the system
of original features as average coordinates of instances of
the corresponding classes, and at the recognition stage,
the recognized instance is assigned to the class whose
distance to the corresponding class center from the given
instance is the smallest.

Unlike the basic method, the initial set of features
(signal acquisitions) is proposed to be replaced by dis-
tances in a two-dimensional coordinate system. This will
significantly reduce the dimensionality of the data set, as
well as make the model extremely simple.

The modified metric classification method can be
formulated as such set of stages.

Phase of model training.

Stage 1. Initialization. Give a training data set <x, y>
in original N-dimensional set of features. Specify the
method of C and d computing.

Step 2. Model Building. Using given data set <x, y>
compute class centers {C?} as a DM parameters.

Phase of recognition.

Stage 1. Initialization. Give data set <x, y> in original
N-dimensional set of features and. Provide DM parame-
ters (C coordinates) and d computing method.

Stage 2. Data Mapping. Using specified method of C
computing map the sample {<{x";}, y™>} to the two-
dimensional coordinate system: {<d’(C), &*(CY), y*>}.

Step 3. Decision Making. For each recognized in-
stance x* the decision on it’s classifying can be computed
using the formula:

¥ =argmin(d® (x*,CP),d* (x*,C%))
p-q

or the same in other form:
V= {pld(,CP) < d (6", ¢

Such idea may be used also for a feed-forward neural
network building. Simple shallow two-layer feed-forward
neural network (Fig. 2) [36] may be constructed and
trained in a non-iterative mode using following method.

Figure 2 — Schema of the two-layer
feed-forward neural network
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The network input is a set of original N features {x;}.
Each i-th neuron of a n-th layer of a network perform

computation: y(™) =y (M)

The first hidden layer of a network is represented by
two neurons mapping instances from the original feature
space to the two dimensional space. Each neuron has dis-
criminative (postsynaptic) function Euclidean distance:

N 4
o1 =Dy —wih? L i= 12,
=

and transfer (activation) function Gaussian:
L), 2 2
v (a?) = exp(-a®),

or sigmoid:

D (gy =1
V@) 1+exp(—a)’
or pure linear:
v @)=a

First neuron compute distance from the recognized
object to the C” and the second neuron computes distance
to the C'. So weights of first neuron will be equal to the
values of C” coordinates, and the second neuron weights
will be equal to the values of C' coordinates:

Wi =C, j=1,2,., N3i=1,2.

The second layer of a network contains one neuron,
which separates classes in a two-dimensional space of
distance coordinates. This neuron use weighted sum as
discriminative (postsynaptic) function:

2 .
2D = 2D 4 32Dy
=
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and hard-lim (Heaviside step) function as a transfer func-
tion:

0,a <0;
(2,1) _ ) )
Vi@ {l,a >0,

or as a sigmoid function:

1

@D, = .
V@ 1+exp(—a)

The weights of this neuron may be evaluated using the
formula:
— for the case, when first layer neurons use Gaussians:

0,7=0;
Wil =01 =1;
_l’j = 2a

— for the case, when first layer neurons use sigmoid or
pure linear:

0,/=0;
WP =i-1, ) =1;
1,j=2.

After network creation it is possible to adjust it’s pa-
rameters to improve it’s accuracy, if needed, or for addi-
tional training, when additional set of training instances
should be used. For this purpose, the steepest descent
method [20] with a backpropagation technique [37] or
evolutionary search methods may be used.

4 EXPERIMENTS

Let’s consider a real problem of constructing a diag-
nostic model for diagnosing helicopter gears.

Detection of gear faults is challenging. Undetected
gear faults can result in catastrophic gearbox failures,
which depending on the criticality of the application, can
be life threatening. For vibration monitoring, it is identify-
ing a feature within the background noise of a gearbox
which is indicative of fault. For critical system, the risk is
a missed detection that allows a mission to proceed when
it should be aborted.

The data set provided by GPMS Inc., USA contains
1158 raw vibration signals measured for helicopter gears.
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The roughly two-thirds of these instances are nominal
data while the other third have a gear fault. Each sample
instance provided as an input signal represented by 93752
acquisitions (discrete counts) associated with a value of
the output binary variable representing class of the in-
stance: good (nominal) or bad (having a gear fault).

The examples of graphs for good and bad gear signals
and their parameters are shown at Fig. 3. As can be seen
from Fig. 3, the signal parameters [2] can be used to con-
struct a decision-making model for the signal belonging to
one of two classes. However, determining these parame-
ters requires significant computational resources and re-
quires solving the problem of selecting informative fea-
tures among the signal parameters.

Therefore, we will use the method proposed in this
paper, which maps instances into a two-dimensional space
with subsequent construction of a DM for a two-
dimensional data sample.

As a main indicator for method or model performance
evaluation we should use a model error probability estima-
tion (percent of incorrect decisions) or model correct deci-
sion probability estimation (percent of correct decisions).

5 RESULTS

The fragment of the results of conducted experiments
is presented at Fig. 4-Fig. 9. Here the C" designated as C,
and C"*® designated as C".

As it can be seen from Fig. 4-Fig. 9, the proposed
method allows map multidimensional data into two-
dimensional space, ensuring linear separability of classes
in a two-dimensional space. On the one hand, it allows
visualizing data and getting view on the number and
shape of clusters, as well as the significance of instances,
and, on the other hand, clearly confirms the possibility of
using the proposed method for constructing a DM in the
problem of diagnosing helicopter gears.

For the experimental study of the applicability of the
proposed method for DM building the training and test
samples were formed from the initial sample by randomly
selecting instances of each class, maintaining the ratio of
the shares of classes in the initial sample. Then for the
obtained training samples, DM were constructed based on
the proposed method, which were tested on the corre-
sponding test samples. The results of experiments are
given in Table 2.

Table 2 — Results of experiments on constructing DM based

on the proposed method
Slrain Slesl Vi incorrect train P, incorrect test
10 1148 0 0/0043
50 1108 0 0.0009
100 1058 0 0
250 908 0 0
500 658 0 0

As can be seen from Table 2, the proposed method al-
lows obtaining highly accurate DM even with small train-
ing samples, provided that the frequency of classes in the

samples is preserved.
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Figure 3 — Examples of graphs for good and bad gear signals and their parameters
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6 DISCUSSION

The results of conducted experiments allow to con-
clude that the proposed method provides a significant
reduction in the data dimensionality (in particular, for the
considered problem of constructing a DM for helicopter
gear diagnosis, it reduces the data dimensionality due to
the compression of features by 46876 times).

Additionally, it may be of interest to study a possible
combination of the proposed method with methods for
sample forming using metrics of the value of instances.
As the results of the conducted experiments for randomly
selected instances in a two-dimensional system of artifi-
cial features obtained on the basis of the proposed method
showed a significant reduction of the sample for individ-
ual tasks may allow to provide acceptable accuracy. And
taking into account individual estimates of the instance
significance will allow, even for small samples, to ensure
the topological representativeness of the formed sample in
relation to the original sample.

CONCLUSIONS

The urgent problem of data-driven diagnostic model
constructing for decision-making automation in health
and usage monitoring process is considered in the paper.

The scientific novelty of obtained results is that a
method is proposed for the mapping of multidimensional
data into a two-dimensional space preserving local prop-
erties of class separation, allowing for the visualization of
multidimensional data and the production of simple diag-
nostic models for the automatic classification of diagnos-
tic objects. A method for synthesizing diagnostic models
based on a two-layer feed-forward neural network is also
proposed, which allows obtaining models in a non-
iterative mode.

The practical significance of obtained results is that a
sample of observations of the state of helicopter gears was
obtained, which can be used to compare data-driven diag-
nostic methods and data processing methods that solve the
problems of data dimensionality reduction. Mathematical
support has been developed that allows displaying a sam-
ple from a multidimensional to a two-dimensional space,
which makes it possible to visualize data and reduces the
dimensionality of the data. Diagnostic models have been
obtained that allow automating the decision-making proc-
ess on whether the diagnosed object (helicopter gear) be-
longs to one of two classes of states.

The prospects for further research are to compare
methods for constructing data-driven models, as well as
methods for reducing the dimensionality of data based on
the proposed sample. Additionally, it may be of interest to
study a possible combination of the proposed method
with methods for sample forming using metrics of the
value of instances.
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MOBYJIOBA TIATHOCTHYHOI MOJIEJ, KEPOBAHOI IAHUMM,
JJISI MOHITOPHUHI'Y CITIPABHOCTI TA BUKOPUCTAHHS CIIOPSIJIKEHHSA I'EJIIKOIITEPIB

Cy660Ttin C. O. — 1-p TexH. HayK, npogecop, 3aBigyBad kadeapu nporpaMHUX 3aco6iB HallioHaIEHOTO yHIBEPCUTETY «3amopi-
3bKa MOJITEXHiKay, 3aIopixoKs, YKpaiHa.
Bekroedep E. — noxrop dinocodii, renepansuuii gupexrop ta 3acHoBHUK GPMS Inc., Criomyueni Illtatn Amepuku.

AHOTAIIA

AxTyanbHicTh. Cy4acHi TexHiYHI 00’€kTH (30KpeMa TPaHCIOPTHI 3aco0M) € HaA3BHYAHO CKIAIHUMHU Ta BHUCYBAIOTh BEIHKI
BUMOTH /10 HaxiitHocTi. Lle moTpedye aBToMaTn3awii MOHITOPHUHTY CTaHy Ta JiarHOCTYBAaHHs HECIIPaBHOCTEH 00’€KTIB Ta IX CKIIano-
Bux. IIpornos3ne o6ciyroByBaHHS MiIBHIIYE SKCIUTyaTalliiHy FOTOBHICTh TEXHIYHUX 00’€KkTiB. O0’€KTOM MOCIIIKEHHS € MPOoLec
MOHITOPHHTY CHPABHOCTI Ta BUKOPHUCTAHHS TeXHIUYHUX 00’ekTiB. [IpeaqmMeToM MOCiiHKEeHHS € METOIN OOYHCITIOBANEHOTO 1HTEIEKTY
IUTs TOOYJOBH KEPOBAaHOI TaHMMHU MOJEJNI Ta BiJIIOBi/IHI 3aBIaHHS ONpAIIOBaHHS JaHUX Ul CUCTEMH MOHITOPHHTY Mpare31aTHOCTI
Ta BUKOPHUCTaHHS.

Meta. Meta po6oTH — copMymoBaTy 3aga4i 00poOKH JaHuX, chopMyBaTh Habip JaHUX JUIs HOOYJOBH KEPOBAHOI JaHUMH MO-
Jierti Ta moOyAyBaTH IPOCTUH METO aBTOMATHYHOI TOOYIOBH AiarHOCTUYHHMX MOJEINEH Ha MPUKIIAaIi CHCTEMU MOHITOPHHTY CTaHy Ta
BHUKOPUCTAHHS T'eJIIKONITEPiB.

MeToa. 3anponoOHOBaHO METO IS BiJOOpaKeHHsT 6araTOBUMIPHHUX JaHHUX Y JBOBUMIPHHUH MPOCTIp i3 30epeIKSHHSIM JIOKAIbHHUX
BJIACTUBOCTEH MOALTY KJaciB, IO J03BOJISIE Bi3yaslidyBaTu OaraTOBHUMIpHI JaHi Ta CTBOPIOBATH MPOCTI AiarHOCTHUYHI MOJEINi ISt
aBTOMAaTHYHOI Kiacu@ikamii 00’€KTiB AiarHOCTYBaHHA. 3alpONOHOBAHUA METOJ IO3BOJISIE OTPHUMATH BHCOKOTOUYHY AiarHOCTHUYHY
MOJIENTb 3 MaJMMH HaBUAIGHIMHU BHOIpKaMH 32 YMOBH 30€peXeHHs YaCTOTH KJIaciB y BHOIpKax. 3alpornoOHOBAHO TaKOX METOJ CHH-
Te3y AiarHOCTUYHHX MOJeJell Ha OCHOBI JABOIIApOBOI HEHPOHHOI Mepexki MPSIMOro IMOLUIMPEHHS, 10 JO3BOJISIE OTPUMYBATH MOJIEII B
HEITepaTUBHOMY PEXHUMI.

PesyasTaTn. OtpuMaHo BUOIpKY CIIOCTEpEKEHb CTaHy MEXaHi3MiB BEPTOJIBOTA, SIKY MOXKHA BUKOPUCTOBYBATH JUISl IOPIBHSIHHS
METOJIB J[IarHOCTYBaHHs, KEPOBAHOI'O JTAHUMH, Ta METOJIB OIPALIFOBAHHS JJAHUX, SKi BHPILIYIOTH 3aJadi CKOPOUSHHS PO3MiIpHOCTI
nanux. Po3pobiieHo mporpamHe 3a0e3mnedeHHs, sike 03BOIsIE BigoOpakaT BUOIpKy 3 0araToOBUMIpHOTO MPOCTOPY B JBOBUMIpHHIA,
1110 J]a€ 3MOTY Bi3yauli3yBaTH JIaHi Ta 3MEHILYE PO3MipHICTh AaHUX. OTpUMaHO IiarHOCTHYHI MOJIEN, SIKi T03BOJISIFOTH aBTOMATH3YyBa-
TH TPOLIEC TPUHHATTA PIIICHHS MPO HAJEKHICTh A1arHOCTOBAHOTO 00’€KTa (CHOPSIHKEHHS BEPTONHOTA) O OTHOTO 3 JBOX KJIACiB
CTaHiB.

BucnoBkn. Pe3ynbrati npoBefeHNX €KCIEPHMEHTIB JO3BOJISIOTH 3pOOHTH BUCHOBOK, II[O 3alIpOIIOHOBAHMI MeTo] 3abe3nedye
CYTT€BE 3HIDKEHHS PO3MIPHOCTI JaHHX (30KpeMa, sl PO3TIITHYTOl 3a/adi o0y IOBM MOAENII JIIarHOCTYBaHHS BEpPTOJITHOTO 00Jal-
HaHHs 3MEHIIY€E PO3MIPHICTh JaHUX 3a PaxXyHOK CTUCHEHHs 03HaK y 46876 pa3ziB). OCKiJIbKU pe3yabTaTH MPOBEICHUX EKCIIEPHMEH-
TIiB JUIS BUIAIKOBO BUOPAHUX €K3EMIULIPIB y JIBOBUMIPHII CHCTEMI IITYYHHX O3HAK, OTPMMAHUX Ha OCHOBI 3aIIPOIIOHOBAHOT'O METO-
1y, TTOKa3aJI 3Ha4HEe CKOPOUYESHHsI BUOIPKHM /TSI OKPEMUX 3aB/aHb, L€ MOXe JO3BOJIUTH 3a0€3M1eUUTH IPUHHATHY TOYHICTb. A Bpaxy-
BaHHS iHJMBIAyalbHUX OLIHOK 3HAYYIIOCTI €K3EMILIAPIB 103BOJIMUTH HABITH AJIsl MAMX BHOIPOK 3a0€3eYHTH TOHOJIOTIUHY perpese-
HTATHBHICTh c()OPMOBaHOI BUOIPKH 10 BiHOIICHHIO JI0 BUXiAHOI BUOIPKH.

[lepcnexTHBY MOAANBIINX AOCIIIKEHD MOJATAIOTh Y TOPIBHAHHI METOIB OOYA0BH MOJIENIEi, KEPOBAaHUX JaHUMH, a TAKOXK Me-
TOJIB 3MEHIIICHHS PO3MIPHOCTI JaHUX Ha OCHOBI 3alponoHOBaHO1 BHOipku. KpiM TOro, MOXKe CTaHOBHUTH iHTEPEC TOCTIIHKEHHS MOXK-
JIMBOTO TO€IHAHHS 3aIIPOIIOHOBAHOTO METOY 3 MeToAaMU (hOpPMyBaHHS BUGIPKH 3 BUKOPHCTAHHSIM METPUK 3HAYCHHS CK3EMILISPIB.

KJIIOYOBI CJIOBA: niarHocTyBaHHS Ha OCHOBI IaHHX, CHCTEMa MOHITOPHHTY IIPAlle3AaTHOCTI Ta BUKOPUCTaHHS, 3MEHILICHHS
PO3MIpPHOCTI IaHUX, KiacuikaIris.
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