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ABSTRACT

Context. The problem of detecting deepfake audio has become increasingly critical with the rapid advancement of voice synthe-
sis technologies and their potential for misuse. Traditional audio processing methods face significant challenges in distinguishing
sophisticated deepfakes, particularly when tested across different types of audio manipulations and datasets. The object of study is
developing a deepfake audio detection model that leverages mel-spectrograms as input to computer vision techniques, focusing on
improving cross-dataset generalization capabilities.

Objective. The goal of the work is to improve the generalization capabilities of deepfake audio detection models by employing
mel-spectrograms and leveraging computer vision techniques. This is achieved by adapting YOLOVS, a state-of-the-art object detec-
tion model, for audio analysis and investigating the effectiveness of different mel-spectrogram representations across diverse data-
sets.

Method. A novel approach is proposed using YOLOVS for deepfake audio detection through the analysis of two types of mel-
spectrograms: traditional and concatenated representations formed from SincConv filters. The method transforms audio signals into
visual representations that can be processed by computer vision algorithms, enabling the detection of subtle patterns indicative of
synthetic speech. The proposed approach includes several key components: BCE loss optimization for binary classification, SGD
with momentum (0.937) for efficient training, and comprehensive data augmentation techniques including random flips, translations,
and HSV color augmentations. The SincConv filters cover a frequency range from 0 Hz to 8000 Hz, with a step size of approxi-
mately 533.33 Hz per filter, providing detailed frequency analysis capabilities. The effectiveness is evaluated using the EER metric
across multiple datasets: ASVspoof 2021 LA (25,380 genuine and 121,461 spoofed utterances) for training, and ASVspoof 2021 DF,
Fake-or-Real (111,000 real and 87,000 synthetic utterances), In-the-Wild (17.2 hours fake, 20.7 hours real), and WaveFake (117,985
fake files) datasets for testing cross-dataset generalization.

Results. The experiments demonstrate varying effectiveness of different mel-spectrogram representations across datasets. Con-
catenated mel-spectrograms showed superior performance on diverse, real-world datasets (In-the-Wild: 34.55% EER, Fake-or-Real:
35.3% EER), while simple mel-spectrograms performed better on more homogeneous datasets (ASVspoof DF: 28.99% EER, Wave-
Fake: 34.55% EER). Feature map visualizations reveal that the model’s attention patterns differ significantly between input types,
with concatenated spectrograms showing more distributed focus across relevant regions for complex datasets. The training process,
conducted over 50 epochs with a learning rate of 0.01 and warm-up strategy, demonstrated stable convergence and consistent per-
formance across multiple runs.

Conclusions. The experimental results confirm the viability of using YOLOVS for deepfake audio detection and demonstrate that
the effectiveness of mel-spectrogram representations depends significantly on dataset characteristics. The findings suggest that input
representation should be selected based on the specific properties of the target audio data, with concatenated spectrograms being
more suitable for diverse, real-world scenarios and simple spectrograms for more controlled, homogeneous datasets. The study pro-
vides a foundation for future research in adaptive representation selection and model optimization for deepfake audio detection.

KEYWORDS: deepfake detection, YOLOvV8, mel-spectrogram, generalization capabilities.

ABBREVIATIONS
CNN is a convolutional neural network;
YOLO is a You Only Look Once model;
LA is a logical access;
DF is a deepfake;
PAN is a path aggregation network;
FPN is a feature pyramid network;
SPP is a spatial pyramid pooling;
BCE is a binary cross-entropy loss;
SGD is a stochastic gradient descent;
EER is a equal error rate metric;
STFT is a short-time Fourier transform;
FAR is a false acceptance rate;
FRR is a false rejection rate;
FP is a false positive;
TN is a true negative;
FN is a false negative;
TP is a true positive;
TTS is a text-to-speech;

VC is a vocoder;
HSYV is a Hue, Saturation, and Value.

NOMENCLATURE
fis a frequency of a function;
v; is a velocity term accumulating past gradients for
momentum,;
p is a momentum coefficient for gradient updates;
0, is a model parameter at training step #;
1 is a learning rate parameter controlling step size;

VeL(O,,x(i),y(i)) is a gradient of the loss function L

with respect to the parameters 6, computed for a single
training sample x, y\”;

m is a mel scale value;

y is a ground truth label (0 for real audio, 1 for deep-
fake);

y is a predicted probability of the sample being a deep-

fake;
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X is a set of audio signals {xi, xy, ..., Xy};
Y is a set of corresponding labels {y1, y,, ..., yn}.

INTRODUCTION

Detecting deepfake audio has become increasingly
critical as the technology to create synthetic and altered
speech has evolved. Deepfake audio can convincingly
imitate human voices, often with the intention to deceive
or manipulate, posing significant risks in areas such as
security, media integrity, and public trust. Traditional
audio processing methods face challenges in distinguish-
ing deepfakes, particularly when tested across different
types of audio manipulations and datasets.

One promising approach to address these challenges
involves converting audio signals into visual representa-
tions, such as mel-spectrograms, which capture the
sound’s time-frequency features [2]. By transforming
audio into images, computer vision models, which are
highly effective at image recognition tasks, can be applied
to detect patterns indicative of deepfake audio. CNN and
other computer vision architectures can then analyze these
spectrograms to detect anomalies or characteristics that
differentiate genuine audio from deepfake audio. This
method provides a novel and powerful approach to im-
prove the accuracy of deepfake audio detection.

The object of study is developing a deepfake audio
detection model that leverages mel-spectrograms as input
to computer vision techniques.

Building such models requires significant computa-
tional resources, as training a network on large datasets of
audio data is time-intensive. A major challenge in deep-
fake detection is ensuring that the model generalizes well,
meaning it performs effectively not only on the dataset it
was trained on but also on entirely new and unseen data-
sets. Many models perform well within their training en-
vironment but falter when encountering novel types of
deepfakes, generalizing a key objective for practical de-
ployment.

The subject of study is using mel-spectrograms in
combination with computer vision models to enhance
deepfake audio detection, focusing on improving the
model’s generalization across diverse datasets.

Current approaches to deepfake audio detection face
significant challenges in generalization. Many models
perform well on their training datasets but struggle when
encountering new types of deepfakes or audio from dif-
ferent sources [2—27]. This limitation is particularly prob-
lematic given the rapid evolution of deepfake technolo-
gies. Mel-spectrograms offer a promising solution by
transforming audio data into a visual format that can be
analyzed using advanced computer vision techniques.
These techniques have shown remarkable speed and accu-
racy in various image recognition tasks, but their full po-
tential in deepfake audio detection via mel-spectrograms
remains to be explored [28-29]. By investigating this ap-
proach, there is an opportunity to address the critical chal-
lenge of cross-dataset generalization in deepfake audio
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detection, potentially leading to more robust and versatile
detection systems.

The purpose of the work is to improve the generali-
zation capabilities of deepfake audio detection models by
employing mel-spectrograms and leveraging computer
vision techniques. By training the model on one dataset
and testing it on others, this study aims to develop a more
robust detection system that is effective across different
types of deepfake audio.

1 PROBLEM STATEMENT

Suppose we are given an audio dataset represented as
a set of instances <X, Y>, where X={xy, x5, ..., x5} is the
set of audio signals, and Y={y,, y», ..., yn} represents the
corresponding labels, where y~=1 for real audio and y=0
for fake audio. For each audio signal x;, we convert it into
a mel-spectrogram representation S(x;), such that the
problem of deepfake detection can be transformed into an
image classification problem using the mel-spectrograms.

Given this set of mel-spectrograms <S(X), Y>, the task
is to train a computer vision model F(0, S(x;)), where 0
represents the set of model parameters, to predict whether
an audio sample is real or fake. The objective is to mini-
mize a loss function L(F(0, S(x;)), y;) — opt, where opt
represents the optimal performance in terms of classifica-
tion accuracy.

In addition, the problem of cross-dataset generaliza-
tion is of primary interest. Specifically, for a model
trained on a dataset <S(X,4in), Yiain>, We aim to evaluate
its performance on a distinct test set <S(Xies), Yies, Where
XiesitEXwain and the distribution of deepfake techniques
may differ. The challenge is ensuring that the trained
model generalizes well across diverse datasets, maintain-
ing high accuracy on unseen data and addressing the limi-
tations of dataset-specific detection methods.

2 REVIEW OF THE LITERATURE

The rapid advancement of artificial intelligence has
led to the proliferation of deepfake audio, posing signifi-
cant challenges to audio authenticity and security. Deep-
fake audio detection methods can be broadly categorized
into pipeline approaches and end-to-end detectors [2—5].
Pipeline approaches involve a two-step process of feature
extraction and classification. At the same time, end-to-end
detectors aim to learn the detection task in a single step
using deep neural networks.

Feature extraction techniques are crucial in capturing
discriminative characteristics present in fake audio. These
include short-term and long-term spectral features, pro-
sodic features, and features derived from deep learning
[6-8]. Short-term spectral features like Short-Time Fou-
rier Transform effectively detect abrupt changes in audio
signals [9], while prosodic features help uncover irregu-
larities in speech pitch, intonation, and rhythm [10-11].

Recent advancements have incorporated self-
supervised learning models like Wav2Vec, Wav2Vec2
XLS-R, and Hubert into the feature extraction process
[12—15]. These models learn discriminative features from
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raw audio without explicit labeling, potentially enhancing
detection efficacy. However, a key challenge is ensuring
these features generalize well across different types of
deepfake attacks and audio datasets.

Traditional classifiers such as Support Vector Machines,
Gaussian Mixture Models, and Logistic Regression have
been employed in deepfake audio detection [16—18]. While
these methods offer simplicity and efficiency, they often
struggle to capture the intricate patterns introduced by so-
phisticated deepfake audio generation techniques, limiting
their effectiveness against evolving attacks.

Deep learning approaches have shown significant prom-
ise in detecting subtle manipulations within audio data.
CNN, particularly Light CNN, has performed excellently in
deepfake audio classification tasks [19]. Residual Networks
(ResNet) and its variants have also achieved promising re-
sults [20-21]. However, these models often require large
amounts of training data and may not generalize well to un-
seen attack types. More advanced architectures like Res2Net
[22], RawNet2 [23], and Squeeze-and-Excitation Networks
[24] have been proposed to capture finer-grained audio fea-
tures. Graph Neural Networks, such as RawGAT-ST, have
improved performance in detecting a broad spectrum of
spoofing attacks [25]. While these models offer enhanced
feature learning capabilities, they often come at the cost of
increased computational complexity and reduced interpret-
ability.

A critical challenge in deepfake audio detection is the
model’s ability to generalize across different datasets and
attack types. In [26], the authors observed that while their
SincNet-based model performed well on known attacks, it
struggled with attacks significantly different from those in
the training set. This highlights the importance of diverse
training data and robust evaluation protocols to ensure mod-
els can detect a wide range of deepfake techniques.

Transformer-based models like Rawformer have demon-
strated improved performance and generalization across dif-
ferent datasets. The SE-Rawformer demonstrated good gen-
eralization, performing well on both ASVspoof 2019 LA and
ASVspoof 2021 LA datasets [27]. However, the rapid evolu-
tion of deepfake technologies means that models must con-
tinuously adapt to new attack vectors, posing ongoing chal-
lenges for generalization.

While most research has focused on audio-specific archi-
tectures, the potential application of YOLOvVS to deepfake
audio detection via mel-spectrogram transformation presents
an interesting avenue for exploration. YOLOVS’s efficiency
in processing images could potentially translate to fast analy-
sis of mel-spectrograms, enabling real-time deepfake audio
detection. Its localization capabilities could be leveraged to
identify specific segments of audio that have been manipu-
lated. However, adapting YOLO from image detection to
audio analysis may present challenges in capturing temporal
dependencies and audio-specific features.

In the realm of deepfake video detection, YOLO-based
approaches have shown promising results. The authors in
[28] proposed a YOLO-CRNN-based deepfake detection
approach that combines YOLO-Face for face detection with

EfficientNet-B5 and Bi-LSTM for spatial-temporal feature
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extraction, achieving 89.38% accuracy and outperforming
state-of-the-art methods on the CelebDF-FaceForensics++
(c23) dataset. Similarly, in [29] developed a YOLO-based
framework for detecting manipulated faces in videos, dem-
onstrating good generalization across different datasets.
These successes in video deepfake detection suggest poten-
tial for adapting YOLO-based approaches to the audio do-
main, although careful consideration of the unique chal-
lenges in audio processing will be necessary.

3 MATERIALS AND METHODS

This study employs YOLOv8 [30], a state-of-the-art
object detection model, for the task of deepfake audio
detection. YOLOVS, known for its efficiency and accu-
racy in image recognition tasks, has been adapted to proc-
ess mel-spectrograms derived from audio signals. The
YOLO family of models has been at the forefront of real-
time object detection, and YOLOVS represents the latest
iteration with significant improvements in both speed and
accuracy.

YOLOVS introduces several key enhancements over
its predecessors, utilizing a new backbone network,
CSPDarknet53 [31], which employ a cross-stage partial
network to better balance accuracy and computational
cost. The backbone of YOLOVS is divided into four sec-
tions, each containing a single convolution layer followed
by a C2f module [32]. It also integrates a PAN and a FPN
for feature fusion, along with SPP to increase the recep-
tive field. These architectural improvements allow
YOLOVS to capture multi-scale features, which are cru-
cial for detecting deepfake artifacts in mel-spectrograms.
The overall architecture thus comprises the backbone for
feature extraction, the neck for fusing those features, and
a head that generates bounding boxes and class predic-
tions.

For our deepfake audio detection task, we adapt the
YOLOvVS8 model to use BCE loss as the primary loss func-
tion [33]. The BCE loss is defined as:

BCE(y,;)=—[y-log(§)+(1—y)-10g(1—;)} (1)

where y is the ground truth label (0 for real audio, 1 for
deepfake) and y is the predicted probability of the sample
being a deepfake. The BCE loss function is chosen for our
deepfake audio detection task due to its ability to handle
binary classification problems effectively. It measures the
difference between the predicted probability and the ac-
tual label, guiding the model towards more accurate pre-
dictions.

For optimization, we employ SGD [34], which up-
dates the model parameters by following the gradient of
the loss function. The parameter update rule for SGD is
mathematically defined as:

0, =6, —nVeL(Gt,x(i),y(i)). 2)
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In SGD, the gradients are computed using individual
training samples or small batches of samples, which re-
sults in faster updates and more frequent parameter ad-
justments compared to full-batch gradient descent.

The learning rate 1 plays a crucial role in determining
how large each update step is. A smaller learning rate
provides more stable but slower convergence, while a
larger learning rate speeds up training but risks overshoot-
ing the optimal parameter values.

We also introduce momentum to accelerate conver-
gence and avoid oscillations during training. The momen-
tum update rule modifies SGD as:

Verl =W+ nVeL(Gtax(i),y(i) ), 3)

0741 =0, =V

To adapt YOLOvVS for deepfake audio detection, we
modify the final layers to output binary classifications
(real or fake) instead of multiple object classes. To use
audio signals with YOLOvVS, we employ a multi-step ap-
proach. First, we convert the audio signals into mel-
spectrograms. We then organize these mel-spectrograms
into appropriate directory structures for YOLO training
and create annotation files in YOLO format, specifying
each spectrogram’s class (real or fake).

The mel-spectrogram transformation is a critical step
in our methodology, converting audio data into a visual
format that can be analyzed by computer vision tech-
niques. Mel-spectrograms represent the short-term power
spectrum of sound based on a nonlinear frequency scale
that approximates the human auditory system’s response.
This transformation allows us to capture temporal and
frequency information in a format our adapted YOLOv8
model can effectively process.

The process of creating a mel-spectrogram involves
several steps. First, the audio signal is divided into short,
overlapping frames. We compute the STFT for each
frame, which gives us the magnitude spectrum. This spec-
trum is then mapped onto the mel scale using a filterbank.
The mel scale is a perceptual scale of pitches judged by
listeners to be equal in distance from one another. The
conversion from frequency f to mel scale m is given by
the equation:

f
=2595-1 1+—.
m ogm( - )

This transformation emphasizes lower frequencies,
which are more perceptually significant in human hearing,
and compresses higher frequencies. The resulting mel-
spectrogram provides a compact representation of the
audio signal that captures important features for deepfake
detection.

Fig. 1 shows an example of a mel-spectrogram gener-
ated from an audio sample. The x-axis represents time,
the y-axis represents mel frequency bands, and the color
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intensity indicates the energy level in each time-frequency
bin. This visual representation allows our YOLOv8 model
to identify patterns and anomalies that may indicate deep-
fake audio.

Amplitude

Mel-frequency

o [ @8 X3 A0 TS 100 123 180 108

"I:|.|"ne Time
Figure 1 — Transformation of audio signal into
mel-spectrogram

In addition to traditional mel-spectrograms, we also
form mel-spectrograms as concatenated images from
SincConv filters (Fig. 2) [35-36]. This approach allows
us to leverage the benefits of learnable bandpass filters in
the first layer of our neural network.
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Figure 2 — SincConv filters

SincConv, or Sinc-based Convolutional Neural Net-
works, is a method introduced in [35] that uses sinc func-
tions to implement band-pass filters in the first layer of a
CNN. The SincConv layer learns the low and high cutoff
frequencies of band-pass filters, which can be interpreted
in the mel-scale, making it particularly suitable for our
audio processing task.

The mathematical formulation of a SincConv filter is
as follows:

hsinc(t) :%j;ft)' (5)

The SincConv layer applies these filters to the raw au-
dio waveform, effectively learning to extract relevant
frequency information. The output of this layer is then
processed to form mel-spectrograms. Figure 3 illustrates
concatenated mel-spectrograms formed by using Sinc-
Conv filters. The image shows how 15 individual mel-
spectrograms, each representing the output of a different
SincConv filter, are combined into a single image. This
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representation allows our YOLOv8 model to analyze mul-
tiple frequency bands simultaneously, potentially improv-
ing its ability to detect subtle artifacts in deepfake audio.

e ——— S ————

Mel-frequency

Fa——

Time

Figure 3 — Concatenated mel-spectrogram

By incorporating both traditional mel-spectrograms
and those derived from SincConv filters, we provide our
YOLOvVS8 model with rich, multi-dimensional representa-
tions of the audio signals. This approach aims to enhance
the model’s capacity to distinguish between genuine and
deepfake audio by capturing a wider range of spectral and
temporal features.

To evaluate the performance of our YOLOv8-based
model, we use the EER metric [37]. EER provides a bal-
anced measure of false positive and false negative errors,
making it particularly suitable for assessing the effective-
ness of deepfake detection models. The EER is calculated
as the point where the false acceptance rate (FAR) equals
the false rejection rate (FRR):

EER = FAR = FRR (6)
where FAR = P and FRR = N . FP
(FP+1N) (FN +1TP)

represents False Positives, TN represents True Negatives,
FN represents False Negatives, and TP represents True
Positives. In practice, the EER is often determined by
plotting the FAR and FRR curves and finding their inter-
section point. The lower the EER, the better the perform-
ance of the model.

4 EXPERIMENTS

Our methodology aims to address the critical chal-
lenge of cross-dataset generalization in deepfake audio
detection. In this research we plan to train the YOLOvV8
model on mel-spectrograms derived from one dataset and
testing it on others, we seek to develop a more robust de-
tection system that can effectively identify deepfakes
across various audio sources and manipulation tech-
niques. This approach has the potential to significantly
enhance the practical applicability of deepfake audio de-
tection in real-world scenarios.

© Zbezhkhovska U. R., 2025
DOI 10.15588/1607-3274-2025-1-14

To further explore the impact of different input repre-
sentations on detection performance, we plan to train two
YOLOVS medium-size models. The first model will be
trained using traditional mel-spectrograms, while the sec-
ond will use concatenated mel-spectrograms formed from
the output of SincConv filters. These SincConv filters
cover a frequency range from 0 Hz to 8000 Hz, with a
step size of approximately 533.33 Hz per filter. This
comparison aims to assess whether the added frequency
information provided by the SincConv-based mel-
spectrograms enhances the model’s ability to detect deep-
fakes across datasets.

Our study employs multiple datasets to ensure robust
performance across various audio types and deepfake
techniques. We primarily train our models on the AS-
Vspoof 2021 LA dataset [6], which serves as a key
benchmark in audio spoofing detection, introducing more
advanced TTS and VC methods for synthetic speech gen-
eration. The LA partition contains 25,380 genuine and
121,461 spoofed utterances in the training set.

After training on the ASVspoof 2021 LA dataset, we
assess model generalization by testing on the ASVspoof
2021 DF evaluation set and other datasets. One of these
additional datasets is the “In-the-Wild” dataset [38],
which contains fakes of politicians and public figures,
sourced from publicly accessible platforms. This dataset
includes 17.2 hours of fake audio clips and 20.7 hours of
real audio clips. By incorporating real-world deepfakes,
this dataset exposes the model to more diverse manipula-
tion techniques, providing valuable insights into how well
the model performs in uncontrolled environments.

We also test our models on the Fake-or-Real Dataset
[39], which includes 111,000 real utterances sourced from
open datasets, TED Talks, and YouTube, alongside
87,000 synthetic utterances generated by various TTS
techniques. This dataset offers a broad variety of accents,
recording conditions, and speech synthesis methods, ena-
bling us to evaluate the model’s performance under dif-
ferent scenarios. The diversity of real and fake utterances
in this dataset further strengthens the evaluation by simu-
lating a wide range of conditions that our model might
encounter.

Additionally, we utilize the WaveFake dataset [40],
which is composed entirely of synthetic speech generated
by several TTS and VC architectures, including MelGAN,
ParallelWaveGAN, HiFi-GAN, and WaveGlow. This
dataset contains 117,985 fake audio files amounting to
196 hours of generated content. Though limited to a sin-
gle speaker, WaveFake provides a focused evaluation of
the model’s ability to detect audio generated by modern
speech synthesis techniques.

The training method parameters were set as follows:
the number of epochs — 50, the loss function — BCE, and
the learning rate — 0.01. SGD was employed as the opti-
mizer, with a momentum of 0.937 and a weight decay of
0.0005. SGD was chosen for its simplicity and effective-
ness in avoiding local minima, especially when combined
with momentum, which accelerates convergence and
helps the model navigate through flat regions of the cost
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function. A warm-up learning rate strategy was applied,
with a warm-up bias learning rate of 0.1 for the first 3
epochs to ensure smoother convergence.

To enhance generalization and model robustness, var-
ious data augmentation techniques were applied, inspired
by methods like those in [41]. These included random
flips, with a 50% probability of vertical flipping, and hor-
izontal flipping disabled. Small translations and scaling
were introduced, with values set to 0.1 for translation and
0.5 for scaling. HSV color augmentations were used, al-
tering hue by 0.015, saturation by 0.7, and value by 0.4,
reflecting potential variations in spectrogram images de-
rived from different audio conditions. Additionally, the
model applied mixup with a probability of 0, mosaic with
a probability of 1.0, and random erasing with a probabil-
ity of 0.4 to further diversify the training data. These
techniques helped the model become more resilient to
variations in audio spectrograms, improving its ability to
generalize across different datasets.

After training, each model was evaluated on various
test datasets, including the ASVspoof 2021 DF evaluation
set, the “In-the-Wild” dataset, the Fake-or-Real dataset,
and the WaveFake dataset. For each dataset, we computed
the EER as the primary performance metric, which pro-
vided a balanced measure of false acceptance and false
rejection rates.

To gain further insight into the model’s behavior, we
visualized feature extraction maps after each model layer.
This visualization allowed us to observe how the model
processed mel-spectrograms and concatenated representa-
tions from SincConv filters, providing deeper understand-

ASVspoof
real audio

ASVspoof

fake audio Wavefake

fake audio

Wavefake
real audio

Layer 2: C2f

La|er 2: C2f

Layer 4: C2f Layer 4: C2f

Layer 4: C2f

La|er 4: C2f

Layer 5: Conv

Layer 5: Conv Layer 5: Conv

Layer 5: Conv

Figure 4 — The feature map of specific layers of YOLOVS trained on simple mel-spectrograms
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ing into how it distinguished between real and fake audio
signals during detection.

5 RESULTS

We present the results of our YOLOvS-based deep-
fake audio detection model, including visualizations of
feature extraction maps and performance metrics.

Fig. 4 and Fig. 5 display the feature extraction maps
from the most informative layers of the model when proc-
essing traditional mel-spectrograms and concatenated
mel-spectrograms respectively. These visualizations high-
light how the model captures essential low-level features
and identifies key frequency patterns and temporal chang-
es crucial for recognizing deepfake audio artifacts.

The performance of the YOLOVS model was evalu-
ated using the EER across different test datasets for both
traditional and concatenated mel-spectrograms. The EER
is a crucial metric for assessing the model’s effectiveness
in distinguishing between real and fake audio, providing a
balanced measure of false acceptance and false rejection
rates. The results are summarized in Table 1.

Table 1 — EER in % of YOLOv8 with different input mel-
spectrograms

Model YOLOVS with simple YOLOvV8 with con-

mel-spectrograms catenated mel-

Dataset spectrograms
ASVspoof DF 28.99 29.67
Fake or Real 39.58 35.3
In-the-wild 51.06 34.55
Wavefake 34.55 43.55

The fake or real The fake or real In the wild In the wild

real audio fake audio real audio fake audio

Laler 2: C2f

Layer 4: C2f

Layer 1: Conv

La‘er 2: C2f

Layer 4: C2f

AL
—

B
Layer 2: C2f Layer 2: C2f

Layer 4: C2f Layer 4: C2f

Layer 5: Conv Layer 5: Conv Layer 5: Conv Layer 5: Conv
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Figure 5 — The feature map of specific layers of YOLOvVS trained on concatenated mel-spectrograms

6 DISCUSSION

The results in Table 1, combined with the visualiza-
tions in Figures 4 and 5, offer valuable insights into how
different input representations — simple versus concate-
nated mel-spectrograms — affect YOLOVS’s ability to
detect deepfake audio across various datasets. Comparing
the results highlights the impact of input type on detection
effectiveness, particularly when considering the unique
characteristics of each dataset.

For the ASVspoof DF dataset, the EER with simple
Mel-spectrograms was slightly lower (28.99%) than with
concatenated spectrograms (29.67%). This minor differ-
ence suggests that the concatenated input does not add
substantial value for ASVspoof DF, where simpler input
captures most of the distinguishing features. Figures 4 and
5 support this observation; feature maps generated from
both input types appear similar, indicating that YOLOvV8
can recognize key deepfake patterns in ASVspoof DF
equally well, regardless of input complexity. In this case,
concatenated spectrograms do not provide any significant
advantage, suggesting that simpler inputs may be suffi-
cient for datasets with clear, identifiable deepfake charac-
teristics.

In the Fake or Real dataset, however, concatenated
spectrograms significantly improve performance, reduc-
ing the EER from 39.58% with simple spectrograms to
35.3%. This improvement likely stems from the model’s
ability to capture additional temporal and spectral infor-
mation, as concatenation provides a richer context for
identifying subtle deepfake cues. Figures 4 and 5 reflect
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this difference visually: the feature maps for concatenated
spectrograms in Figure 5 show more detailed attention to
distinctive regions, highlighting YOLOvVS8’s enhanced
ability to focus on nuanced patterns that simple spectro-
grams might overlook. This suggests that concatenated
spectrograms are beneficial for datasets with higher vari-
ability, where added context helps distinguish genuine
from fake samples.

The In-the-wild dataset shows the most substantial
improvement with concatenated spectrograms, lowering
the EER from 51.06% to 34.55%. This dataset is the most
challenging due to its uncontrolled recording conditions
and varied deepfake manipulations. Figures 4 and 5 illus-
trate how the model’s focus is more effectively distributed
across relevant regions when using concatenated spectro-
grams, which allows YOLOVS to capture more complex,
multi-dimensional features indicative of deepfake audio.
In Figure 5, the feature maps reveal a more coherent and
extensive focus across critical regions, demonstrating the
model’s improved capability to manage complex acoustic
environments. This marked improvement with concate-
nated inputs underscores the importance of enhanced
spectral-temporal representations when dealing with un-
predictable, real-world data.

On the Wavefake dataset, in contrast, simple Mel-
spectrograms produced a lower EER (34.55%) compared
to concatenated spectrograms (43.55%), suggesting that
the additional context from concatenated inputs may in-
troduce noise rather than clarity. The homogeneity of the
Wavefake dataset likely renders the additional informa-
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tion unnecessary, and the model may perform best with a
simpler, more focused input. Figures 4 and 5 further illus-
trate this difference, as feature maps in Figure 4 display a
more targeted focus on specific regions for simple spec-
trograms, while the concatenated input in Figure 5 shows
a diffused and less concentrated attention. This dispersion
could explain the decrease in performance with concate-
nated spectrograms, as YOLOvV8 may struggle to identify
consistent patterns amidst additional, potentially irrele-
vant information.

Overall, the comparison of Figures 4 and 5 highlights
the variability in model behavior across datasets with dif-
ferent input types. Concatenated Mel-spectrograms con-
sistently offer improvements for datasets with greater
variability (Fake or Real and In-the-wild), allowing
YOLOVS to capture intricate and temporally contextual-
ized features that might otherwise go unnoticed. For data-
sets with more homogenous patterns, such as ASVspoof
DF and Wavefake, simple Mel-spectrograms prove to be
more effective by reducing noise and focusing the mod-
el’s attention on specific, characteristic features. These
results suggest that input representation choice should be
tailored to dataset characteristics, with concatenated spec-
trograms being preferable for complex, varied data, while
simpler spectrograms may suffice for more uniform data-
sets.

CONCLUSIONS

The urgent problem of deepfake audio detection is ad-
dressed through the development of a YOLOv8-based
model that processes mel-spectrogram representations of
audio signals.

The scientific novelty of obtained results is that a
YOLOv8-based approach for deepfake audio detection is
firstly proposed, which leverages both traditional and
concatenated mel-spectrograms formed from SincConv
filters. The model analyzes visual representations of audio
signals to identify patterns indicative of synthetic speech.
This approach demonstrates that computer vision tech-
niques can be successfully adapted for audio authenticity
verification, showing varying effectiveness across differ-
ent types of datasets and mel-spectrogram representations.

The practical significance of obtained results is
demonstrated through comprehensive experiments across
multiple datasets, including ASVspoof 2021 DF, Fake or
Real, In-the-wild, and Wavefake. The results reveal that
the effectiveness of different mel-spectrogram representa-
tions varies significantly depending on the dataset charac-
teristics. Concatenated mel-spectrograms showed superior
performance on diverse real-world data (In-the-wild data-
set, EER reduction from 51.06% to 34.55%) and the Fake
or Real dataset (EER reduction from 39.58% to 35.3%).
However, simple mel-spectrograms proved more effective
for homogeneous datasets like Wavefake (34.55% vs
43.55% EER) and ASVspoof DF (28.99% vs 29.67%
EER). This demonstrates the importance of selecting ap-
propriate input representations based on the specific char-
acteristics of the target audio data.
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Prospects for further research include exploring ad-
ditional mel-spectrogram formation techniques, investi-
gating the impact of different YOLOVS architectures, and
developing adaptive methods that can automatically select
the most appropriate mel-spectrogram representation
based on dataset characteristics. Future work could also
focus on improving the model’s robustness against new
types of audio deepfakes and reducing computational re-
quirements while maintaining detection accuracy.
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BUSIBJEHHS I'THBOKNX ®EMKIB B AVJIO 3A JIOIIOMOT' OO0 YOLOVS TA MEJI-CHEKTPOT'PAM

36e:xxoBcbKka Y. P. — 1-p dinocodii, mpoBinHuii HayKOBHH CIIBPOOITHUK HAyKOBO-METOIUYHOTO BiIITy 3a0€3MeUeHHs SIKOCTI
OCBITHBOI JISTTBHOCTI Ta BUINOI OCBITH, XapKiBCEKUH HalioHanbHHH yHiBepcuTeT [oBiTpstHuX cui imeHi IBana Koxemy6a, Xapkis,
Vkpaina.

AHOTAIIA

AkTyansHictb. [Ipobiema BusABICHHS TITHOOKHX (EHKIB y ay/io cTae aeaali Giibll KPUTHYHOK B YMOBAaX IIBHAKOTO PO3BHTKY
TEXHOJIOT1H CHHTE3Y T0JI0CY Ta MOXKJIMBOCTI iX BUKOPHCTAHHSI 3 3JIOYMHHOIO MeTo0. TpaauLiiiHi MeToan 0OpOOKH ay1io CTHKAIOTHCS
3 CyTTEBUMHU BUKIIMKAMH Y BUSIBICHI CKIIQJHHUX aynio (eikiB, 0COOIMBO MiJ Yyac TECTYBaHHS Ha Pi3HUX THIIAX MaHIMyJSLiN 3 ayaio
Ta Habopax maHux. O0’€KTOM NOCHIIKEHHA € po3poOKa MOAeTi BUSBIECHHS TMHOOKHX (DeiKiB y aymio, sSka BHKOPUCTOBYE MeEI-
CIEKTPOTpaMH SIK BXiTHI TaHi Il KOMIT FOTEPHUX METOIIB 30PY, 30CEPEIKYIOUN YBary Ha MOKPAIICHHI MOXKIIMBOCTEH y3aralbHEHHS
MDK HabOpaMy JaHHX.

Meta po6oTH — MOKpAIICHHS y3arajJbHIOIOYNX MOXIUBOCTEH MOJieNIeil BUSBICHHS TIIHOOKHX ayaio (eHKiB MUITXOM BHKOPHC-
TaHHS MeJ-CHEeKTporpaM Ta KOMIT'IOTEpHUX MeToniB 3opy. Lle mocsraerscs nuiixom amanrtanii YOLOVS, cywacHol mopeni
KOMIT FOTEPHOTO 30Dy, JUTS aHalli3y ayJIio Ta JOCHTiHKEHHs e(EeKTHBHOCTI Pi3HUX MPECTaBICHh MEJI-CIICKTPOrpaM Ha Pi3HOMAaHITHUX
Habopax JAaHUX.

MerTona. 3anpornoHOBaHO HOBHUil miaxin, 1o BukopucroBye YOLOVS mis BusiBieHHs IuOOKHX aynio (eikiB depe3 aHawi3 IBOX
TUMIB MeJ-CIIEKTPOrpaM: TPaIUIiHHIX Ta KOHKaTeHOBaHUX, copMoBaHuX 3 ¢inbTpiB SincConv. MeTox TpaHchopMye ayaiocUTHa-
I B Bi3yalbHi MPEACTABICHHSA, IKi MOXYTb OOpOOIISATHCS aNrOPUTMAMK KOMIT IOTEPHOTO 30py, IO JO3BOJISIE BUSBISATH TOHKI MI1a0-
JIOHH, SIKi CB1{4aTh PO CHHTETUYHY MOBY. 3aIIpOIIOHOBAHMH ITiIX1]] BKIIOYA€ KiJIbKa KITIOYOBHX KOMIIOHEHTIB: ONTUMI3allii0 (yHKIIT
BTpat OiHapHOI Kpoc eHTpomii Iyt 3a1adi OiHapHOT KiIacHdiKariil, CTOXaCTHIHUH rpagieHTHUH ciryck 3 MoMeHToM (0,937) s edexk-
TUBHOTO HAaBYaHHS Ta KOMIUICKCHI MeTOIU ayrMeHTanil manux. @inptpu SincConv OXOIUIIOTh YacTOTHHN fiana3oH Big 0 ' mo
8000 TI'r; 3 kpokom mpubm3Ho 533,33 't Ha GinkTp, 3a0e3MeuyroUn AeTabHI MOKIMBOCTI YaCTOTHOTO aHami3y. EQekTuBHIiCTh o1li-
HIOEThCs 3a nonomororo MeTpukd EER Ha kinbkox Habopax manux: ASVspoof 2021 LA (25 380 crpaxnix Ta 121 461 migpobie-
HUX BHCIIOBIIOBaHb) A1 HaBuaHHs, Ta ASVspoof 2021 DF, Fake-or-Real (111 000 peanbuux Ta 87 000 CHHTETHYHUX BHCIIOBIIIO-
BaHb), In-the-Wild (17,2 rogunn ¢eiikoBux, 20,7 ronunu peanpHux), Ta WaveFake (117 985 ¢eiikoBux ¢aiimiB) ais TecTyBaHHA
y3araibHeHHS MK HaOOpaMU JaHUX.

Pe3yabTaTn. ExcriepuMeHTH 1eMOHCTPYIOTH Pi3HY €(EKTUBHICTE MOJEINEH B 3aI€XKHOCTI BiJl pI3HHAX MPEICTABICHb BXITHUX Ja-
HuX. KoHKaTeHOBaHI MeJ-CIEKTPOrpaMu MPOAEMOHCTPYBAIH Kpallly MPOIyKTHBHICTh Ha PI3HOMAaHITHHUX peaJbHUX HAbOpax JaHHX
(In-the-Wild: 34,55% EER, Fake-or-Real: 35,3% EER), Toai ik IpoCTi MeJI-CIIEKTPOTrPaMu MPAIFOBAIIN Kpallle Ha OLITBII OTHOPITHUX
Habopax manux (ASVspoof DF: 28,99% EER, WaveFake: 34,55% EER). Bizyamizaniii kapT 03HaK MOKa3yroTh, [0 [Ta0JIOHN yBarud
MOJIeNTi 3HAYHO PI3HATHCS B 3aJICKHOCTI Bill THINB BXiJHHMX JaHUX, HANPHUKIIAJ, KOHKATCHOBaHI MEN-CIEKTPOrpaMH JIEMOHCTPYIOTh
O1IbLI PO3MOiNIeHUH (POKYC Ha BiAMOBIAHUX 00NACTSX IS CKIaJHUX HAOOPIB JaHHX.

BucHoBku. ExcriepuMeHTanbHI pe3ybTaTd MiATBEPIKYIOTh JOUUIbHICTh BuKopucTaHHs YOLOVS mjis BUSBIEHHS TNTHOOKHX
aynio QelkiB Ta JEMOHCTPYIOTH, IO €()eKTHBHICTh MPEACTABICHb MEN-CIIEKTPOrpaM 3HAYHO 3aJIeKHTh BiJl XapaKTEPUCTUK HAOOpy
nmaanx. OTpUMaHi pe3yinbTaTH CBiq4aTh, IO MPEICTABICHHS BXIIHUX JAHUX CIiJl OOMpaTdh Ha OCHOBI crielU(iYHUX BIACTUBOCTEH
LUIBOBUX ayJi0laHAX, IPUIOMY KOHKAaTEHOBAHI MEJI-CHEKTPOrpaMH € GUIBII MiTXOASIINMY JUIs PI3HOMaHITHUX peaJIbHUX CICHApIiB,
a IPOCTi MEJI-CIIEKTPOrpaMu — Juisi OLIbII KOHTPOJILOBAHUX OJHOPIHUX HaOOpiB HaHuX. JIOCIiPKEHHS 3aKiiaiae OCHOBY JUIs MOJa-
JBLIMX JOCHIIKEHb Y Taly3i aalTUBHOIO BUOOPY IPEJCTABICHHS JaHUX Ta ONTUMI3aLil MOJeIel Ul BUSIBICHHS TIIMOOKHX ayJlio
(elikis.

KJUIFOYOBI CJIOBA: BusBieHss riubokux ¢eiikis, YOLOVS, Men-crieKTporpamu, y3arajabHIOI04i MOXKIHBOCTI.
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