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ABSTRACT 
Context. The problem of filling missing image areas with realistic assumptions often arises in the processing of real scenes in 

computer vision and computer graphics. To inpaint the missing areas in an image, various approaches are applied such as diffusion 
models, self-attention mechanism, and generative adversarial networks. To restore the real scene images convolutional neural 
networks are used. Although convolutional neural networks recently achieved significant success in image inpainting, high efficiency 
is not always provided.  

Objective. The paper aims to reduce the time consumption in computer vision and computer graphics systems by accuracy 
prediction of image inpainting with convolutional neural networks. 

Method. The prediction of image inpainting accuracy can be done by an analysis of image statistics without the execution of 
inpainting itself. Then the time and computer resources on the image inpainting will not be consumed. We have used a peak signal-
to-noise ratio and a structural similarity index measure to evaluate an image inpainting accuracy.  

Results. It is shown that a prediction can perform well for a wide range of mask sizes and real-scene images collected in the 
Places2 database. As an example, we concentrated on a particular case of the LaMa network versions although the proposed method 
can be generalized to other convolutional neural networks as well.  

Conclusions. The results obtained by the proposed method show that this type of prediction can be performed with satisfactory 
accuracy if the dependencies of the SSIM or PSNR versus image homogeneity are used. It should be noted that the structural 
similarity of the original and inpainted images is better predicted than the error between the corresponding pixels in the original and 
inpainted images. To further reduce the prediction error, it is possible to apply the regression on several input parameters. 

KEYWORDS: image inpainting, accuracy prediction, LaMa network, texture descriptor, co-occurence matrix. 
 

ABBREVIATIONS 
CNN is a convolutional neural network; 
LaMa is a Large Mask Inpainting; 
ReLU is a Rectified Linear Unit; 
GLCM is a gray-level co-occurrence matrix; 
PSNR is a peak signal-to-noise ratio; 
SSIM is a structural similarity index measure; 
MSE is a mean squared error; 
MAE is a mean absolute error. 
 

NOMENCLATURE 
n is a number of image rows; 
m is a number of image columns; 
(x,y) are  coordinates of the image pixel; 
I(x,y) is a vector function representing an image by 

color channels; 
IR(x,y) is a red channel of an image; 
IG(x,y) is a green channel of an image; 
IB(x,y) is a blue channel of an image; 
M(x,y) is a binary mask; 
°  is an element-by-element product of matrices; 
fθ  is an inpainting network; 
ai is a coefficient of the polynomial of the 1st degree;  
bi is a coefficient of the polynomial of the 2nd degree;   
di is a coefficient of the polynomial of the 3rd degree; 
qi is a coefficient of the inverse square root function; 
ri  is a coefficient of a logarithmic function; 
G is a gray-level co-occurrence matrix;   
H is an image entropy; 
W is an image homogeneity; 

U is an image uniformity; 
Di  is a texture descriptor; 
Pi  is a measure of image inpainting accuracy; 
S is the size of the missing image area; 
hi (•) is a function of the dependence of Pi  on Di ; 
Wi   is a vector of parameters of the function hi (•); 
 L is a number of intensity levels in the image; 
I(v, w) is a luminance difference between images v, w;  
c (v, w) is a contrast difference between images v, w;  
s (v, w) is a structure difference between images v, w;  
mv  is a local mean of  image v;  
σv  is a standard deviation of image v;  
σvw  is a cross-covariance for images v and w.  
Ci is a positive constant;  
α is a positive constant;  
β is a positive constant; 
γ is a positive constant. 

 
INTRODUCTION 

Image inpainting means filling missing image areas 
with realistic assumptions in computer vision and 
computer graphics [1, 2]. Often, when photographing, 
users can encounter unwanted scene elements, for 
example, random persons or objects that need to be 
deleted. Before publishing the photo, you may want to 
make changes to correct the composition. In this case, 
image inpainting helps to remove unwanted objects and 
restore the image. Another case of application is the 
restoration of old photos that have been physically 
damaged.  

56



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 2 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 2 

 
 

© Kolodochka D. O., Polyakova M. V., Rogachko V. V., 2025 
DOI 10.15588/1607-3274-2025-2-5  
 

The missing areas in an image can be inpainted by 
various approaches such as diffusion models (face and 
expressions inpainting [3, 4]) and self-attention 
mechanism (object removal in remote sensing images [2, 
5, 6]). Generative adversarial networks are used for 
general image object removal and image desensitization 
which replaces sensitive information in images [2, 7]. To 
restore modern life and industrial images single- and 
multi-subnet CNNs are applied [8–10]. 

When filling an image area, it is necessary to select an 
inpainting method depending on the size of the missing 
area and the properties of the image. The CNNs known 
from the literature do not always provide high efficiency 
[1, 2, 8–10]. The question arises about the advisability of 
using a particular CNN and, accordingly, the consumption 
the time and computer resources on the image inpainting. 
Therefore, it is desirable to predict the accuracy of the 
filling of an image area of a certain size. It is supposed 
that the selected CNN is applied to the specific type of 
researched images. 

The object of study is inpainting of real scene images 
in computer vision and computer graphics systems. 

The subject of the study is methods of accuracy 
prediction of image inpainting using CNNs. 

The paper aims to reduce the time consumption in 
computer vision and computer graphics systems by 
accuracy prediction of image inpainting with CNNs. 

 
1 PROBLEM STATEMENT 

The three-channels real scene image is defined as 
I(x,y)=(IR(x,y), IG(x,y), IB(x,y)), where x=1, …, n; y=1, …, 
m. To represent the missing areas of the image a mask is 
introduced. It is a binary image M(x, y) of the same size as 
each channel of the original image. The mask is element-
by-element multiplied by image channels, and the image 
with missing areas is represented as IМ(x,y)=(IR(x,y)°M(x, 
y), IG(x,y)°M(x, y), IB(x,y)°M(x, y)) [8–9, 11].  

Let us suppose that the CNN fθ(•) with parameters θ 
was preliminarily trained to inpaint the images. It outputs 
the image Iin(x,y) = fθ(IМ(x,y)) which approximates the 
original image I(x,y) in the sense of some criterion [8].   

To predict the accuracy of the image inpainting by the 
considered network, an image feature (one or more) is 
selected. To evaluate this feature, descriptors D1, D2, ..., 
Dk are formed. They will be used as independent variables 
representing the input information for the prediction. 
Besides, the prediction can be significantly influenced by 
additional factors. In our case, this is the size of the 
missing image area S. 

Next, the output variables are selected. These are 
measures evaluating the accuracy of the image inpainting 
by the selected network: P1, P2, ..., Pl. It is necessary to 
define the dependence of measures P1, P2, ..., Pl on 
descriptors D1, D2, ..., Dk and factor S : 

 
Pi=h1(D1, W1, S), Pi=h2(D2, W2, S), …,  
Pi=hk(Dk, Wk, S),  i=1, …, l;                         (1) 

 

and to estimate vectors of parameters W1, W2, ..., Wk of 
these dependences. Further for each Pi, i=1, ..., l,  we 
determine from a set of dependencies (1) the dependency 
Pi=hj(i)(Dj(i), Wj(i), S), j(i){1, ..., k}, with the highest 
value of the selected measure of approximation accuracy. 
Interpolation or extrapolation of the functions, 
Pi=hj(i)(Dj(i), Wj(i), S), i=1, ..., l; will predict the accuracy 
of image inpainting by the network fθ(•). 

In this paper we propose a method to predict the 
accuracy of the real scene image inpainting with the 
selected neural network. To obtain the solution to this 
problem we determined the factors that influenced the 
inpainting accuracy measures. Based on these factors we 
selected the predictors and determined the structure of 
dependence between the predictors and the measures of 
inpainting accuracy. After the estimation of the 
parameters of such dependence and the approximation 
accuracy evaluation, we can calculate an input parameter 
and predict the output parameter based on the dependence 
existing between them. Having this prediction, one can 
decide by a human or automatically using certain rules 
whether to apply considered CNN for image inpainting.  

To research the proposed method experimentally we 
used the selected LaMa convolutional network and varied 
the size of the missing area which must be inpainted. The 
size of the missing area defines the complexity of image 
inpainting and determines the effectiveness of the 
prediction for the selected network. We also evaluated the 
accuracy of prediction for the different spectral 
transforms consisted the LaMa network and for different 
image inpainting measures. The experimental results 
presented in this article were obtained using the Places365 
dataset [12]. 

 
2 REVIEW OF THE LITERATURE 

In the literature the ability to predict the CNN 
efficiency was researched for classification problems in 
[13]. The prediction of the image denoising efficiency 
based on the discrete cosine transform was considered in 
[14–16]. The paper [17] is devoted to the prediction of the 
dynamics of the signals describing a signature using the 
CNN. It is needed to detect potential forgeries by identity 
verification systems. However, the network efficiency has 
not been predicted for the problem of image inpainting. 
The recommendations for the selection of image 
inpainting methods are mostly qualitative. The evaluation 
of the accuracy of the filling of missing image areas is 
provided after image inpainting which is time and 
resource-consuming.  

The existing image inpainting approaches are 
influenced by the content of input images, missing area 
size, and the ill-posedness of image inpainting problem. 
The deep learning-based methods in image inpainting 
allow for improving results by capturing image features 
and semantic on different scales [18]. Despite the 
similarity of deep learning methods, they differ in 
inpainting approaches, network architecture, loss 
function, etc. To construct the model for inpainting 
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accuracy prediction it is advisable to take into account the 
following four image inpainting approaches [1].  

The progressive inpainting fills missing image areas 
step by step. Specifically, coarse-to-fine, low-to-high-
resolution, and structure-to-content inpainting are used. 
This approach supposes that available information is not 
sufficient to reconstruct all missing pixels in one step [5, 
18].  

The structural information-guided inpainting is based 
on the structure of the known regions, such as 
segmentation results, edges, depth maps, gradient of color 
or intensity, etc. These auxiliary cues facilitate the 
recovery of sharp details and fine structure of the missing 
areas [19–21].  

The convolutions-aware inpainting applies different 
convolution operators for the generation of missing 
pixels. For example, the traditional convolution operates 
by valid pixels as well as by substitute values in the 
missing areas, which leads to color discrepancy and 
blurring [22]. To avoid the disadvantages, partial 
convolution, gated convolution, and bidirectional 
convolution are used [22–24]. 

The attention-based inpainting uses the image content 
from distant spatial locations when CNNs are ineffective 
for the filling of missing areas. The additional information 
can be obtained from contextual patches, feature maps, 
searching for the most similar patch, or the modeling of 
the underlying distribution of reconstructed images [6, 7, 
25]. 

Let us review these approaches in light of the 
possibility of their applying to the prediction of image 
inpainting accuracy. So, progressive inpainting is not well 
suited for inpainting accuracy prediction due to its 
generality. Almost all the CNNs based on the 
convolutions-aware approach due to their architecture. If 
we will use the same approach to predict the accuracy of 
the image inpainting by the CNN we can obtain the 
overtrained prediction model. The attention-based 
approach uses local patterns of the original image and 
similar images. It is not clear how these local patterns can 
influence image inpainting in general and how to 
elaborate a predictive model based on such a 
representation. However, the attention-based approach 
can be used to obtain additional information for image 
inpainting accuracy prediction, specifically, the properties 
of the distribution of image colors or intensities.  

It should be noticed that the image content and fine 
structure influence the image inpainting accuracy. 
Therefore, it is advisable to predict the image inpainting 
accuracy based on a structural information-guided 
approach which allows to extraction of the image features 
and to estimate the feature descriptors. 
 

3 MATERIALS AND METHODS 
The proposed method of predicting the accuracy 

ofThe proposed method of predicting the accuracy of the 
image inpainting by CNN applies the regression on initial 
image descriptors. The general idea of the proposed 
method can be described by the following steps. 

 Step 1. Preparing the data.  
 The datasets for image inpainting are selected.  The 

range of sizes and the form of the image missing areas are 
determined. Then the binary masks modeling the image’s 
missing areas are formed and superimposed on images.  

 Step 2. The tuning of the CNN.  
As a result of the literature review, we choose CNN 

for image inpainting. If a pre-trained network is used then 
the parameters of such network are loaded. Otherwise, the 
training and test sets of images are formed from the 
selected datasets. The researched network is trained to 
inpaint the missing areas modeled with binary masks on 
the images of the training set.  

Step 3. The determining of the prediction model 
variables.  

To obtain the output variables of a prediction model, 
the measures of image inpainting accuracy are selected. 
The trained network is applied to test set images with 
missing areas. The inpainting accuracy is evaluated by the 
selected measures depending on the size of the missing 
areas of the image.  

Next, we choose the image descriptors that estimate 
the image features influencing the inpainting accuracy. 
They will be used as input variables of the model. Values 
of these descriptors are calculated based on original 
images from the test set. 

Step 4. The prediction model selection and model 
parameters estimation. 

The regression model that connects output and input 
variables is constructed using the fitting of the curves to 
data points in scatter plots. While scatter plots are created 
we take into account that original images may have 
different properties or content of missing areas differs 
from one image to the other. The regression model 
parameters are estimated on a training set of images by 
the least squares approach. 

Step 5. The prediction model evaluation and the image 
inpainting accuracy prediction. 

To evaluate the prediction model performance the 
accuracy of curve fitting is estimated based on the values 
of input and output variables obtained on the test set 
images. The regression interpolation or extrapolation 
predicts the values of the image inpainting accuracy 
measures relying on the values of descriptors. The 
obtained results are analyzed to conclude the 
appropriateness of the considered CNN to inpaint the 
specific image.  

In this paper, we provide prerequisites for decision-
making based on the specifics of image inpainting 
methods. In the following research, we concentrate on a 
particular case of versions of the LaMa network although 
the proposed method can be generalized to other CNNs as 
well.  

The LaMa network is considered here to inpaint the 
images for the following reasons.  

(1) This CNN has a simpler architecture than many of 
the other state-of-the-art networks for image inpainting. In 
particular, the LaMa network consists of one subnet rather 
than an ensemble of subnets and has fewer parameters. 

58



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 2 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 2 

 
 

© Kolodochka D. O., Polyakova M. V., Rogachko V. V., 2025 
DOI 10.15588/1607-3274-2025-2-5  
 

(2) It can implement data processing with fast Fourier 
transform or discrete wavelet transform leading to several 
benefits:  

a) a higher speed of image processing and network 
training;  

b) successful inpainting of large missing areas of 
spectral textures;  

c) high-quality inpainting of fine details of images and 
edges of objects.  

Let us describe the architecture of the LaMa network 
(Fig. 1) [8, 9, 11]. This network has inputted an image 
with an overlayed mask denoting the pixels that need to 
be inpainted. At first, the initial image is downscaled by a 
factor of 3. Then the local and global textures are 
extracted from the obtained image. These global and local 
features are further passed through convolution layers. 
Then spectral transform block is additionally applied to 
global texture channels. The fast Fourier transform or the 
discrete wavelet transform is implemented in this block. 
The features of using these transforms in the LaMa 
network are described and studied in detail in [8, 9, 11]. 
The outputs of the convolution layers are added up 
crosswise. Then after batch normalization and ReLU 
activation, the results of local and global texture 
processing are concatenated. The described layers 
excluded from the downscale are repeated and added up 
with the downscaled image. The LaMa network module 
embedded between downscaling and upscaling is also 
repeated nine times. After that, the image is upscaled to 
its initial size and outputted [8, 9]. 

Despite the relatively simple LaMa network 
architecture, the learning of this network is time-
consuming. The image impainting by this trained network 
also requires a lot of time. For example, in the Google 
Colab environment with a pre-configured NVIDIA Tesla 
T4 GPU, which has 16 GB of GDDR6 memory and 2,560 
CUDA cores it took us 2 to 7 seconds to inpaint an image 
of size 1024x1024 pixels. At the same time although the 
LaMa network has demonstrated a high inpainting 
accuracy, some of the restored images are of insufficient 
quality. In particular, this is the case of the inpainting of 
statistical textures and detail-rich images. In [11] it was 
noted that the quality of the images inpainted with the 
LaMa network is influenced by the initial image textures. 
To avoid wasting time and resources we propose to 
previously evaluate the accuracy of image inpainting by 
the LaMa network.  

Let us define the output variables of a prediction 
model. We propose to use PSNR and SSIM which 
estimate the inpainting accuracy in terms of edge quality 
and structural integrity [26]. Let us suppose that the 
lowest image intensity level is equal to zero. Then PSNR 
is evaluated as the ratio between the highest squared 
intensity (L – 1) of the initial image and MSE between the 
initial and inpainted images [26]:  

 
PSNR = 10log10((L – 1)2/MSE). 

Figure 1 – LaMa network architecture [8, 9] 
 
PSNR compares the edges and fine details in the 

original and inpainted image and determines differences 
between them at the pixel level.  

Another considered measure is SSIM evaluates the 
inpainted image in terms of restoring the natural 
appearance of textures and edges. It estimates the 
differences in texture, contrast, and structure of the initial 
and reconstructed images [26]: 

 
SSIM(v, w)=l (v, w)α  c (v, w)β  s (v, w)γ, 
l (v, w) = (2mv mw + C1)/(mv

2 + mw
2+C1), 

c (v, w) = (2σv σw +C2)/(σv
2 + σw

2+ C2), 
s (x, y)=(σvw +C3)/(σv σw +C3). 

 
We suppose that α=β=γ=1, then the SSIM values range 
between 0 to 1.  

Selecting the input variables of the prediction model 
we observed that the accuracy of image inpainting weakly 
depends on the texture measures based on the color or 
intensity histograms. They ignore the spatial relations 
between pixels, which is important when a texture is 
described. To avoid the shortcoming it can be taken into 
consideration not only the distribution of intensities but 
also the relative positions of pixels in an image. In this 
way in [27] an operator Q is defined which evaluates the 
relation between the intensities of two pixels. Based on 
this operator a GLCM G is determined for a gray-scale 
image I(x, y) with L possible intensity levels. Each 
element gij of the matrix G is the number of times that the 
pixel pair with intensities li and lj is found in the image in 
the relation Q, where 1 ≤ i, j ≤ L. 
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Based on a GLCM the texture descriptors are 
introduced in [27]. When the LaMa network efficiency 
was tested, we observed that the texture descriptors such 
as uniformity, homogeneity, and entropy changed for 
different values of the PSNR and SSIM [11]. Therefore, 
we can to use these texture descriptors as the input 
variables of the prediction model because their 
computation is time-saving compared to the image 
inpainting by CNN.  

The  uniformity determines the pixel intensity 
randomness and takes values from the range [0, 1]: 

 

2
2

1 1

1 L L

ij
i jQ

U g
n  

   , 

 
where nQ is the number of pixel pairs in the relation Q. 
Uniformity increases as the square of the probability 
values, so the less random an image is, the higher its 
uniformity. The uniformity is equal to 1 for a constant 
image. 

Homogeneity measures the concentration of GLCM 
element values near the main diagonal by expression 

 

1 1

1

1

L L ij

i jQ

g
W

n i j 


 
  . 

 
The value of the denominator (1 + |i – j|) decreases as 

the values of i and j get closer, i.e., as they approach the 
main diagonal. The range of homogeneity values is [0, 1], 
with the maximum being achieved when G is a diagonal 
matrix. The GLCM with the highest values of elements 
near the main diagonal will correspond to images with a 
variety of gray-level content and areas of slowly varying 
intensity values.  

Entropy measures the randomness of the elements of 
GLCM which, in turn, is determined by the randomness 
of the initial image: 

 

2
1 1

log
L L ij ij

i j Q Q

g g
H

n n 
   . 

 
The highest value 2log2L is achieved for matrix 

GLCM, obtained from an image that is formed by 
uniform noise then all image intensities are approximately 
equally probable. The entropy is equal to zero for a 
constant-intensity image. 

 
4 EXPERIMENTS 

Let us consider the construction of the scatter plots for 
the image inpainting accuracy prediction. To obtain the 
regression function that describes the dependence 
between output and input variables, the curve fitting of 
scatter plots is applied. To take into consideration the 
different properties of inpainted images the simulation of 
missing areas of the different sizes is needed. That is why 
we have formed three separate categories of masks, 

modeling different levels of image inpainting complexity. 
These masks randomly uniformly cover 25%, 50%, and 
75% of the image area, and are named as narrow, 
medium, and large, respectively.  

We constructed masks of 1–5 straight lines with a 
slope from 0 to 2π, 1–100 pixels wide, and 10–200 pixels 
long. As an alternative, masks of 1–4 rectangles with 
sides of 30–150 pixels were generated with a probability 
of 0.5. Then the test set included 2,000 images from the 
Places2 dataset [12]. The missing areas of these images 
covered by generated masks were reconstructed by the 
LaMa network. As spectral transform fast Fourier 
transform or discrete wavelet transform were included in 
LaMa network architecture. The LaMa-Fourier and 
LaMa-Wavelet networks are obtained [8, 9]. The results 
of image inpainting were evaluated with PSNR and 
SSIM.  

Further, the GLCM has been determined and the 
image uniformity, homogeneity, and entropy have been 
calculated based on the obtained GLCM for each test 
image. Next, one mask from each category was generated 
for each image. After element-by-element multiplication 
of images on masks, the inpainting was performed using 
LaMa-Fourier and LaMa-Wavelet networks. In Figure 2 
the scatter plots SSIM and PSNR versus uniformity, 
homogeneity and entropy are shown. 

As a basis for prediction, the data points in the 
obtained scatter plots indicate the main trends. 
Specifically, the PSNR and SSIM decrease if entropy 
increases and uniformity and homogeneity decrease. Data 
for different mask categories are shown in the different 
scatter plots. The results related to the image inpainting 
by the LaMa-Wavelet and LaMa-Fourier networks 
denoted with different symbols.  

Next, we consider the estimation of the parameters of 
the image inpainting accuracy prediction model. The 
following functions for the scatter-plot fitting were 
selected. 

1. Polynomials of the first, second and third degree 
y(x)=a1x+a0, y(x)=b2x

2+b1x+b0, y(x)=d3x
3+d2x

2+d1x+d0. 
2. Inverse square root function y(x) = q1x –1/2 + q0. 
3. Logarithmic function y(x) = r1ln x + r0. 
The parameters of the mentioned functions were 

estimated by the fitting of the scatter plots using the least 
squares approach. To evaluate the curve fitting results we 
have selected a curve fitting accuracy measure. This is the 
R-squared (R²) value which is estimated as the proportion 
of the variance in the dependent variable explained by the 
independent variable in the considered model. The R-
squared values lie between 0 and 1, where higher R² 
relates to better curve fitting. To estimate the 
approximation error the mean squared error (MSE) is 
used. It estimates the average squared difference between 
the actual and predicted values of the dependent variable. 
Lower MSE indicates that the selected model better 
approximates the actual values. MSE is bounded below 
by zero and has no higher limit.  
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5 RESULTS 
The obtained values of R-squared are shown in Tables 

1nand 2.  We have discarded the low-valued outliers of 
entropy (2.5% for narrow and medium masks, 5% for 
large masks), and the high-valued outliers of uniformity 
(10% for narrow masks, 15% for medium masks, 20% for 
large masks) to increase the approximation accuracy. As a 
result, the R-squared values were increased by an average 
of 7–8%. The best R-squared values were mostly obtained 
on polynomials of the third order but the other functions 
used for scatter-plot fitting in the paper have shown 
similar results. 

In Table 3 the MSEs related to SSIM and 
corresponding to the R-squared from Table 1 are 
presented without the brackets. The MSEs related to 
PSNR and corresponding to the R-squared from Table 2 
are shown in brackets.  

 
Table 1 – The R-squared for polynomial regression degree 3, the 

dependent variable is SSIM 

Input variable  Narrow masks Medium 
masks Large masks 

 LaMa-Fourier  
Entropy  0.3950  0.4192  0.4241 

Homogeneity  0.7007  0.7098  0.6920 
Uniformity  0.4408  0.4641 0.4500 

 LaMa-Wavelet 
Entropy 0.4151  0.4277  0.4257  

Homogeneity  0.7203 0.7267 0.7090 
Uniformity  0.4541  0.4630 0.4489  

 
The obtained dependencies of PSNR versus 

homogeneity W for narrow masks are expressed for 
LaMa-Fourier and LaMa-Wavelet as 

 
PSNR=24.3653+14.9912W–2.4763W2+ 4.7581W3; 
PSNR=24.1664+18.0167W–11.4362W2 
+13.5988W3. 
 
The SSIM versus homogeneity W for narrow masks is 

expressed for LaMa-Fourier and LaMa-Wavelet as 
 
 

SSIM=0.8228+0.4694W–0.7282W2+ 0.4640W3; 
SSIM=0.8199+0.4644W–0.7077W2+ 0.4622W3; 
 

for medium masks as 
 
SSIM=0.6341+0.8195W–1.0334W2+0.6318W3; 
SSIM=0.6291+0.8284W–1.0622W2+0.6838W3; 
  

for large masks as 
 
SSIM=0.4112+1.1130W–1.1985W2+0.7524W3; 
SSIM=0.3988+1.1170W–1.1921W2+0.7549W3. 

 
Table 2 – The R-squared for polynomial regression, degree 3, 

the dependent variable is PSNR 

Input variable Narrow masks Medium 
masks Large masks 

 LaMa-Fourier  
Entropy  0.3220 0.2707  0.1457  

Homogeneity  0.4826  0.3496 0.1960 
Uniformity  0.2720  0.1691 0.0600 

 LaMa-Wavelet 
Entropy 0.3329  0.2691  0.1466  

Homogeneity  0.5034  0.3523  0.1961 
Uniformity  0.2831  0.1620  0.0603  

 
Table 3 – The MSE for polynomial regression, degree 3, the 

dependent variable is SSIM (PSNR) 

Input variable Narrow masks Medium 
masks Large masks 

 LaMa-Fourier  

Entropy  0.0004 
(5.0254) 

0.0019 
(5.6551) 

0.0048 
(4.8962) 

Homogeneity  0.0002 
(4.0205) 

0.0009 
(5.0474) 

0.0025 
(4.9400) 

Uniformity  0.0003 
(5.5083) 

0.0016 
(5.6171) 

0.0042 
(4.7120) 

 LaMa-Wavelet 

Entropy 0.0004 
(5.0083) 

0.0019 
(5.7219) 

0.0048 
(4.7160) 

Homogeneity  0.0002 
(3.9224) 

0.0009 
(5.0739) 

0.0025 
(4.4509) 

Uniformity  0.0004 
(4.7620) 

0.0017 
(6.1228) 

0.0043 
(4.7074) 

 

 

 
 

a b 
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Figure 2 – The scatter-plots of SSIM vs entropy: a – narrow mask; b – medium mask; c – large mask;  SSIM vs uniformity: d – 
narrow mask; e – medium mask; f – large mask;  SSIM vs homogeneity: g – narrow mask; h – medium mask; i – large mask; PSNR 

vs homogeneity: j – narrow mask. The data points and the line of polynomial regression of 3rd degree related to LaMa-Fourier results 
are marked with a circle and dash line; the same objects related to LaMa-Wavelet are marked with a cross and solid line 
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6 DISCUSSIONS 
Let us consider the dependencies of the SSIM from 

the texture descriptors if the LaMa-Fourier network is 
used. The best fitting is achieved for SSIM versus 
homogeneity (Table 1). Specifically, the approximation 
by a polynomial of degree 3 gives R2 from 0.6920 to 
0.7098 for different mask size. This indicates that 
considered model fits the data well. Others texture 
descriptors worse explain the dependent variable SSIM 
(R2 varies from 0.3950 to 0.4241 for entropy and from 
0.4508 to 4641 for uniformity). As one can see, the results 
do not appear to be affected by the mask size.  

Now we analyze the dependences the PSNR from the 
texture descriptors if the LaMa-Fourier network is used 
(Table 2). The best fitting is again achieved for 
homogeneity versus PSNR. Specifically, the 
approximation by a polynomial of degree 3 gives R2 from 
0.1960 to 0.4826 for different mask size. Others texture 
descriptors even worse explain the PSNR (R2 varies from 
0.1457 to 0.3220 for entropy and from 0.0603 to 0.2831 
for uniformity). Therefore, the PSNR can be only 
predicted from homogeneity and for narrow masks. As for 
the remaining scatter plots, the proportion of the PSNR 
variance that is explained by texture descriptors is very 
low to predict the actual PSNR values. 

If the LaMa-Wavelet network is applied then the R-
squared values are increased by 3–5% for considered 
dependencies and categories of masks (Tables 1, and 2). 
Therefore, the LaMa-Wavelet network is more acceptable 
for the prediction of the image inpainting accuracy. 

The scatter plots for different mask sizes are presented 
in different figures (Figure 2). It can be observed that the 
LaMa network versions in general show similar results, 
i.e. the data points related to the LaMa-Fourier and LaMa-
Wavelet do not create separate clusters. Moreover, the 
scatter plots of dependences of the texture descriptors on 
the SSIM obtained for the different mask sizes are also 
similar. However, in the scatter-plots of dependences of 
the texture descriptors on the PSNR, the compactness of 
data points is enlarged as the mask size is increased. The 
cluster of data points is “pressed” to the texture descriptor 
axis showing the significant lowering of the PSNR of 
inpainted images as the missing area size increases. It 
means that the accuracy of image detail in inpainting is 
decreased as mask size is increased.  

The results of the prediction of the image inpainting 
accuracy on a test set of images from the Places2 dataset 
are presented in Table 4. MAE was estimated between the 
actual and predicted values of PSNR and SSIM. It should 
be noted that the lowest MAE of the prediction we have 
obtained for narrow mask inpainting. However, the 
highest MAE is obtained for medium masks. This fact can 
be explained by a high variety of medium-sized image 
details. 

As an example, we have considered the results of the 
prediction of the inpainting accuracy for the images from 
Figure 3. The images from Figures 3, a, b are processed 
with narrow masks; the images from Figures 3, c, d are 

inpainted with medium and large masks, respectively. The 
PSNR was only predicted for images from Figure 3, a, b. 
The actual PSNR were 24.7131 dB and 30.6880 dB, the 
predicted PSNR were 30.5912 dB and 31.7558 dB. The 
SSIM was predicted for images from Figure 3, a–d. The 
actual values were 0.8926, 0.9281, 0.7819, and 0.5452; 
the predicted values were 0.9260, 0.9330, 0.8586, 0.6185; 
respectively.  
 

Table 4 – The MAE of image inpainting accuracy prediction 

Narrow masks, 
PSNR, dB 

Narrow 
masks, SSIM 

Medium 
masks, SSIM 

Large 
masks, 
SSIM 

LaMa-Fourier  
3.7359 0.0262 0.0960  0.0504 

LaMa-Wavelet 
3.7443 0.0283  0.0966  0.0705 

 
Finally, we note that computing the texture 

descriptors, specifically, entropy, homogeneity, and 
uniformity, took an average of 0.1139 sec per image of 
1024x1024 pixels. The PSNR and SSIM calculation takes 
an average of 0.1605 sec per image of the same size. By 
comparison, we can mention that image inpainting by the 
LaMa-Wavelet network took an average of 6.6 sec per 
image. However, the network’s computations are 
predominantly GPU-accelerated, making heavy use of 
hardware-level parallelism, while the accuracy metrics 
evaluation is done on the CPU (Intel(R) Xeon(R) CPU 
2.00GHz, total RAM 12.67 GB) relying on synchronous 
operations. It should be noted that because of inherent 
differences in the hardware architecture, the time of the 
computing of texture descriptors and calculations in the 
network should not be directly compared.  

 
CONCLUSIONS 

The scientific novelty is the proposed method of the 
prediction of the image inpainting accuracy. The method 
is based on the set of texture descriptors estimated using 
the gray-level co-occurrence matrix to predict the values 
of image inpainting accuracy measures, specifically, the 
PSNR and SSIM.  

The practical significance of the research is in the 
results obtained for real scene images from the Places2 
dataset with the LaMa network applied. These results 
show that the prediction of the image inpainting accuracy 
can be performed with satisfactory accuracy if the 
dependencies of the SSIM or PSNR versus homogeneity 
are used. The other considered texture descriptors such as 
entropy and uniformity can be only used to support the 
prediction. It should be noted that the structural similarity 
of the original and inpainted images is better predicted 
than the error between the corresponding pixels in the 
original and inpainted images. The better approximation 
accuracy was achieved with the polynomial of 3rd degree 
if data outliers have been removed. Better prediction 
accuracy was obtained if the missing areas could be 
modeled by a narrow mask. 
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Figure 3 – The results of image inpainting with LaMa network: a, b, c, d – initial image; e, f – narrow mask; g – medium mask; h – 
large mask; i, j, k, l – images inpainted with LaMa-Fourier;  m, n, o, p – images inpainted with LaMa-Wavelet  

 
 
Prospect for further research is a reducing the 

prediction error. In this way, it is possible to apply the 
regression on several input parameters. To our opinion, 
the proposed method can be also applied to other CNNs 
trained to inpaint real scene images to decide about the 
advisability of the time and resource consumption needed 
for image inpainting. 
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AНОТАЦІЯ 
Актуальність. Проблема заповнення відсутніх областей зображення реалістичним контентом часто виникає при 

обробці реальних сцен у комп’ютерному зорі та комп’ютерній графіці. Щоб відновити відсутні області на зображенні, 
застосовуються різні підходи, такі як дифузійні моделі, механізм самоуважності, генеративні змагальні мережі. Для 
відновлення зображень реальних сцен використовуються згорткові нейронні мережі. Із застосуванням цих мереж останнім 
часом досягнуто значних успіхів у відновленні зображень. Але отримані відновлені зображення не завжди високої якості.  

Мета роботи полягає у зменшенні витрат часу в системах комп’ютерної графіки та комп’ютерного зору  шляхом 
прогнозування якості відновлення зображень згортковими нейронними мережами. 

Метод. Прогноз точності відновлення зображення здійснено шляхом аналізу статистики зображення без виконання 
самої реконструкції і, отже, без витрачання зайвого часу та комп’ютерних ресурсів на відновлення  зображення. Ми 
використали пікове відношення сигнал/шум і показник індексу структурної подібності для оцінки якості відновлення 
зображення. 

Результати. Показано, що передбачення ефективне для широкого діапазону розмірів масок і зображень реальних сцен з 
бази даних Places2. У якості прикладу було зосереджено на окремих випадках версій мережі LaMa, хоча запропонований 
метод також можна узагальнити на інші згорткові нейронні мережі.  

Висновки. Отримані результати показують, що прогноз якості відновлення зображень може бути виконаний із 
задовільною точністю, якщо використовувати залежності SSIM або PSNR від показника однорідності текстури зображень. 
Слід зазначити, що структурна подібність початкового та відновленого зображень краще передбачувана, ніж помилка між 
відповідними пікселями цих зображень. Щоб зменшити помилку прогнозування можна застосувати регресію за декількома 
вхідними змінними.  

КЛЮЧОВІ СЛОВА: відновлення зображення, прогнозування точності, мережа LaMa, дескриптор текстури, матриця 
суміжності. 
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