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ABSTRACT

Context. The problem of filling missing image areas with realistic assumptions often arises in the processing of real scenes in
computer vision and computer graphics. To inpaint the missing areas in an image, various approaches are applied such as diffusion
models, self-attention mechanism, and generative adversarial networks. To restore the real scene images convolutional neural
networks are used. Although convolutional neural networks recently achieved significant success in image inpainting, high efficiency
is not always provided.

Objective. The paper aims to reduce the time consumption in computer vision and computer graphics systems by accuracy
prediction of image inpainting with convolutional neural networks.

Method. The prediction of image inpainting accuracy can be done by an analysis of image statistics without the execution of
inpainting itself. Then the time and computer resources on the image inpainting will not be consumed. We have used a peak signal-
to-noise ratio and a structural similarity index measure to evaluate an image inpainting accuracy.

Results. It is shown that a prediction can perform well for a wide range of mask sizes and real-scene images collected in the
Places2 database. As an example, we concentrated on a particular case of the LaMa network versions although the proposed method
can be generalized to other convolutional neural networks as well.

Conclusions. The results obtained by the proposed method show that this type of prediction can be performed with satisfactory
accuracy if the dependencies of the SSIM or PSNR versus image homogeneity are used. It should be noted that the structural
similarity of the original and inpainted images is better predicted than the error between the corresponding pixels in the original and
inpainted images. To further reduce the prediction error, it is possible to apply the regression on several input parameters.

KEYWORDS: image inpainting, accuracy prediction, LaMa network, texture descriptor, co-occurence matrix.

ABBREVIATIONS
CNN is a convolutional neural network;
LaMa is a Large Mask Inpainting;
ReLU is a Rectified Linear Unit;
GLCM is a gray-level co-occurrence matrix;
PSNR is a peak signal-to-noise ratio;
SSIM is a structural similarity index measure;
MSE is a mean squared error;
MAE is a mean absolute error.

NOMENCLATURE
n is a number of image rows;
m is a number of image columns;
(x,y) are coordinates of the image pixel;
I(x,y) is a vector function representing an image by

color channels;

Ir(X,y) is a red channel of an image;

U is an image uniformity;
D; is a texture descriptor;
P; is a measure of image inpainting accuracy;
S is the size of the missing image area;
h; (¢) is a function of the dependence of P; on D;;
W; is a vector of parameters of the function h; (*);
L is a number of intensity levels in the image;
I(v, w) is a luminance difference between images v, w;
c (v, w) is a contrast difference between images v, w;
S (v, W) is a structure difference between images Vv, W;
m, is a local mean of image v;
oy is a standard deviation of image v;
Oy 18 a cross-covariance for images vV and w.
Ciis a positive constant;
a is a positive constant;
B is a positive constant;
v is a positive constant.

Ic(X,y) is a green channel of an image;

Ig(x,y) is a blue channel of an image;

M(X,y) is a binary mask;

- is an element-by-element product of matrices;

fo is an inpainting network;

a; is a coefficient of the polynomial of the 1st degree;
b; is a coefficient of the polynomial of the 2nd degree;
d; is a coefficient of the polynomial of the 3rd degree;
gi is a coefficient of the inverse square root function;
ri is a coefficient of a logarithmic function;

G is a gray-level co-occurrence matrix;

H is an image entropy;

W is an image homogeneity;
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INTRODUCTION

Image inpainting means filling missing image areas
with realistic assumptions in computer vision and
computer graphics [1, 2]. Often, when photographing,
users can encounter unwanted scene elements, for
example, random persons or objects that need to be
deleted. Before publishing the photo, you may want to
make changes to correct the composition. In this case,
image inpainting helps to remove unwanted objects and
restore the image. Another case of application is the
restoration of old photos that have been physically

damaged.
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The missing areas in an image can be inpainted by
various approaches such as diffusion models (face and
expressions inpainting [3, 4]) and self-attention
mechanism (object removal in remote sensing images [2,
5, 6]). Generative adversarial networks are used for
general image object removal and image desensitization
which replaces sensitive information in images [2, 7]. To
restore modern life and industrial images single- and
multi-subnet CNNs are applied [8—10].

When filling an image area, it is necessary to select an
inpainting method depending on the size of the missing
area and the properties of the image. The CNNs known
from the literature do not always provide high efficiency
[1, 2, 8-10]. The question arises about the advisability of
using a particular CNN and, accordingly, the consumption
the time and computer resources on the image inpainting.
Therefore, it is desirable to predict the accuracy of the
filling of an image area of a certain size. It is supposed
that the selected CNN is applied to the specific type of
researched images.

The object of study is inpainting of real scene images
in computer vision and computer graphics systems.

The subject of the study is methods of accuracy
prediction of image inpainting using CNNs.

The paper aims to reduce the time consumption in
computer vision and computer graphics systems by
accuracy prediction of image inpainting with CNNs.

1 PROBLEM STATEMENT

The three-channels real scene image is defined as
IXY)=(Ir(%Y), lc(X,Y), 1a(X,y)), where x=1, ..., n; y=1, ...,
m. To represent the missing areas of the image a mask is
introduced. It is a binary image M(X, y) of the same size as
each channel of the original image. The mask is element-
by-element multiplied by image channels, and the image
with missing areas is represented as In(X,Y)=(Ir(X,y)-M(X,
¥, le(%,y)-M(X, y), le(X,y)-M(X, y)) [8-9, 11].

Let us suppose that the CNN fy(¢) with parameters 0
was preliminarily trained to inpaint the images. It outputs
the image Liy(X,y) = fo(Im(X,y)) which approximates the
original image I(X,y) in the sense of some criterion [8].

To predict the accuracy of the image inpainting by the
considered network, an image feature (one or more) is
selected. To evaluate this feature, descriptors Dy, D,, ...,
Dy are formed. They will be used as independent variables
representing the input information for the prediction.
Besides, the prediction can be significantly influenced by
additional factors. In our case, this is the size of the
missing image area S.

Next, the output variables are selected. These are
measures evaluating the accuracy of the image inpainting
by the selected network: Py, P, ..., P. It is necessary to
define the dependence of measures P, P,, ..., P on
descriptors Dy, D,, ..., Dy and factor S :

Pi:hl(Dh Wh S)’ Pi:hz(D23 W23 S): sy
Pi=h(Dy, Wi, S), i=1, ..., I; ()
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and to estimate vectors of parameters Wi, Wy, ..., W of
these dependences. Further for each P;, i=1, ..., I, we
determine from a set of dependencies (1) the dependency
Pi:hj(i)(Dj(i), Wj(i), S), j(l)E{l, . k}, with the highest
value of the selected measure of approximation accuracy.
Interpolation or extrapolation of the functions,
Pi=hia,(Dji, Wiay S), i=1, ..., I; will predict the accuracy
of image inpainting by the network fy().

In this paper we propose a method to predict the
accuracy of the real scene image inpainting with the
selected neural network. To obtain the solution to this
problem we determined the factors that influenced the
inpainting accuracy measures. Based on these factors we
selected the predictors and determined the structure of
dependence between the predictors and the measures of
inpainting accuracy. After the estimation of the
parameters of such dependence and the approximation
accuracy evaluation, we can calculate an input parameter
and predict the output parameter based on the dependence
existing between them. Having this prediction, one can
decide by a human or automatically using certain rules
whether to apply considered CNN for image inpainting.

To research the proposed method experimentally we
used the selected LaMa convolutional network and varied
the size of the missing area which must be inpainted. The
size of the missing area defines the complexity of image
inpainting and determines the -effectiveness of the
prediction for the selected network. We also evaluated the
accuracy of prediction for the different spectral
transforms consisted the LaMa network and for different
image inpainting measures. The experimental results
presented in this article were obtained using the Places365
dataset [12].

2 REVIEW OF THE LITERATURE

In the literature the ability to predict the CNN
efficiency was researched for classification problems in
[13]. The prediction of the image denoising efficiency
based on the discrete cosine transform was considered in
[14-16]. The paper [17] is devoted to the prediction of the
dynamics of the signals describing a signature using the
CNN. It is needed to detect potential forgeries by identity
verification systems. However, the network efficiency has
not been predicted for the problem of image inpainting.
The recommendations for the selection of image
inpainting methods are mostly qualitative. The evaluation
of the accuracy of the filling of missing image areas is
provided after image inpainting which is time and
resource-consuming.

The existing image inpainting approaches are
influenced by the content of input images, missing arca
size, and the ill-posedness of image inpainting problem.
The deep learning-based methods in image inpainting
allow for improving results by capturing image features
and semantic on different scales [18]. Despite the
similarity of deep learning methods, they differ in
inpainting approaches, network architecture, loss
function, etc. To construct the model for inpainting
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accuracy prediction it is advisable to take into account the
following four image inpainting approaches [1].

The progressive inpainting fills missing image areas
step by step. Specifically, coarse-to-fine, low-to-high-
resolution, and structure-to-content inpainting are used.
This approach supposes that available information is not
sufficient to reconstruct all missing pixels in one step [5,
18].

The structural information-guided inpainting is based
on the structure of the known regions, such as
segmentation results, edges, depth maps, gradient of color
or intensity, etc. These auxiliary cues facilitate the
recovery of sharp details and fine structure of the missing
areas [19-21].

The convolutions-aware inpainting applies different
convolution operators for the generation of missing
pixels. For example, the traditional convolution operates
by valid pixels as well as by substitute values in the
missing areas, which leads to color discrepancy and
blurring [22]. To avoid the disadvantages, partial
convolution, gated convolution, and bidirectional
convolution are used [22-24].

The attention-based inpainting uses the image content
from distant spatial locations when CNNs are ineffective
for the filling of missing areas. The additional information
can be obtained from contextual patches, feature maps,
searching for the most similar patch, or the modeling of
the underlying distribution of reconstructed images [6, 7,
25].

Let us review these approaches in light of the
possibility of their applying to the prediction of image
inpainting accuracy. So, progressive inpainting is not well
suited for inpainting accuracy prediction due to its
generality. Almost all the CNNs based on the
convolutions-aware approach due to their architecture. If
we will use the same approach to predict the accuracy of
the image inpainting by the CNN we can obtain the
overtrained prediction model. The attention-based
approach uses local patterns of the original image and
similar images. It is not clear how these local patterns can
influence image inpainting in general and how to
elaborate a predictive model based on such a
representation. However, the attention-based approach
can be used to obtain additional information for image
inpainting accuracy prediction, specifically, the properties
of the distribution of image colors or intensities.

It should be noticed that the image content and fine
structure influence the image inpainting accuracy.
Therefore, it is advisable to predict the image inpainting
accuracy based on a structural information-guided
approach which allows to extraction of the image features
and to estimate the feature descriptors.

3 MATERIALS AND METHODS
The proposed method of predicting the accuracy
ofThe proposed method of predicting the accuracy of the
image inpainting by CNN applies the regression on initial
image descriptors. The general idea of the proposed
method can be described by the following steps.
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Step 1. Preparing the data.

The datasets for image inpainting are selected. The
range of sizes and the form of the image missing areas are
determined. Then the binary masks modeling the image’s
missing areas are formed and superimposed on images.

Step 2. The tuning of the CNN.

As a result of the literature review, we choose CNN
for image inpainting. If a pre-trained network is used then
the parameters of such network are loaded. Otherwise, the
training and test sets of images are formed from the
selected datasets. The researched network is trained to
inpaint the missing areas modeled with binary masks on
the images of the training set.

Step 3. The determining of the prediction model
variables.

To obtain the output variables of a prediction model,
the measures of image inpainting accuracy are selected.
The trained network is applied to test set images with
missing areas. The inpainting accuracy is evaluated by the
selected measures depending on the size of the missing
areas of the image.

Next, we choose the image descriptors that estimate
the image features influencing the inpainting accuracy.
They will be used as input variables of the model. Values
of these descriptors are calculated based on original
images from the test set.

Step 4. The prediction model selection and model
parameters estimation.

The regression model that connects output and input
variables is constructed using the fitting of the curves to
data points in scatter plots. While scatter plots are created
we take into account that original images may have
different properties or content of missing areas differs
from one image to the other. The regression model
parameters are estimated on a training set of images by
the least squares approach.

Step 5. The prediction model evaluation and the image
inpainting accuracy prediction.

To evaluate the prediction model performance the
accuracy of curve fitting is estimated based on the values
of input and output variables obtained on the test set
images. The regression interpolation or extrapolation
predicts the values of the image inpainting accuracy
measures relying on the values of descriptors. The
obtained results are analyzed to conclude the
appropriateness of the considered CNN to inpaint the
specific image.

In this paper, we provide prerequisites for decision-
making based on the specifics of image inpainting
methods. In the following research, we concentrate on a
particular case of versions of the LaMa network although
the proposed method can be generalized to other CNNs as
well.

The LaMa network is considered here to inpaint the
images for the following reasons.

(1) This CNN has a simpler architecture than many of
the other state-of-the-art networks for image inpainting. In
particular, the LaMa network consists of one subnet rather
than an ensemble of subnets and has fewer parameters.

OPEN 8 ACCESS




p-ISSN 1607-3274 PagioenexrpoHika, iHpopmaTuka, ynpasmainss. 2025. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. Ne 2

(2) It can implement data processing with fast Fourier
transform or discrete wavelet transform leading to several
benefits:

a) a higher speed of image processing and network
training;

b) successful inpainting of large missing areas of
spectral textures;

¢) high-quality inpainting of fine details of images and
edges of objects.

Let us describe the architecture of the LaMa network
(Fig. 1) [8, 9, 11]. This network has inputted an image
with an overlayed mask denoting the pixels that need to
be inpainted. At first, the initial image is downscaled by a
factor of 3. Then the local and global textures are
extracted from the obtained image. These global and local
features are further passed through convolution layers.
Then spectral transform block is additionally applied to
global texture channels. The fast Fourier transform or the
discrete wavelet transform is implemented in this block.
The features of using these transforms in the LaMa
network are described and studied in detail in [8, 9, 11].
The outputs of the convolution layers are added up
crosswise. Then after batch normalization and ReLU
activation, the results of local and global texture
processing are concatenated. The described layers
excluded from the downscale are repeated and added up
with the downscaled image. The LaMa network module
embedded between downscaling and upscaling is also
repeated nine times. After that, the image is upscaled to
its initial size and outputted [8, 9].

Despite the relatively simple LaMa network
architecture, the learning of this network is time-
consuming. The image impainting by this trained network
also requires a lot of time. For example, in the Google
Colab environment with a pre-configured NVIDIA Tesla
T4 GPU, which has 16 GB of GDDR6 memory and 2,560
CUDA cores it took us 2 to 7 seconds to inpaint an image
of size 1024x1024 pixels. At the same time although the
LaMa network has demonstrated a high inpainting
accuracy, some of the restored images are of insufficient
quality. In particular, this is the case of the inpainting of
statistical textures and detail-rich images. In [11] it was
noted that the quality of the images inpainted with the
LaMa network is influenced by the initial image textures.
To avoid wasting time and resources we propose to
previously evaluate the accuracy of image inpainting by
the LaMa network.

Let us define the output variables of a prediction
model. We propose to use PSNR and SSIM which
estimate the inpainting accuracy in terms of edge quality
and structural integrity [26]. Let us suppose that the
lowest image intensity level is equal to zero. Then PSNR
is evaluated as the ratio between the highest squared
intensity (L — 1) of the initial image and MSE between the
initial and inpainted images [26]:

PSNR = 10xlog;o((L — 1)*/MSE).
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Figure 1 — LaMa network architecture [8, 9]

PSNR compares the edges and fine details in the
original and inpainted image and determines differences
between them at the pixel level.

Another considered measure is SSIM evaluates the
inpainted image in terms of restoring the natural
appearance of textures and edges. It estimates the
differences in texture, contrast, and structure of the initial
and reconstructed images [26]:

SSIM(v, w)=I (v, w)* ¢ (v, w)® s (v, w)",
I (v, w)=(2m,m,,+ Cl)/(mv2+ mw2+Cl)’
C (v, W) = (20, 0y +C2)/(Gv2 + Gw2+ Cy),

S (X, Y)=(ow +C3)/(oy 6w +C3).

We suppose that o=B=y=1, then the SSIM values range
between 0 to 1.

Selecting the input variables of the prediction model
we observed that the accuracy of image inpainting weakly
depends on the texture measures based on the color or
intensity histograms. They ignore the spatial relations
between pixels, which is important when a texture is
described. To avoid the shortcoming it can be taken into
consideration not only the distribution of intensities but
also the relative positions of pixels in an image. In this
way in [27] an operator Q is defined which evaluates the
relation between the intensities of two pixels. Based on
this operator a GLCM G is determined for a gray-scale
image I(X, y) with L possible intensity levels. Each
element gj; of the matrix G is the number of times that the
pixel pair with intensities |; and [; is found in the image in
the relation Q, where 1 <i, j<L.
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Based on a GLCM the texture descriptors are
introduced in [27]. When the LaMa network efficiency
was tested, we observed that the texture descriptors such
as uniformity, homogeneity, and entropy changed for
different values of the PSNR and SSIM [11]. Therefore,
we can to use these texture descriptors as the input
variables of the prediction model because their
computation is time-saving compared to the image
inpainting by CNN.

The  uniformity determines the pixel intensity
randomness and takes values from the range [0, 1]:

L

U:
2 -
nQ

Il
—
—
Il
—

where Ng is the number of pixel pairs in the relation Q.
Uniformity increases as the square of the probability
values, so the less random an image is, the higher its
uniformity. The uniformity is equal to 1 for a constant
image.

Homogeneity measures the concentration of GLCM
element values near the main diagonal by expression

W ZL 33 L .
Ng i joi 1+[i- |

The value of the denominator (1 + |i — j|) decreases as
the values of i and j get closer, i.c., as they approach the
main diagonal. The range of homogeneity values is [0, 1],
with the maximum being achieved when G is a diagonal
matrix. The GLCM with the highest values of elements
near the main diagonal will correspond to images with a
variety of gray-level content and areas of slowly varying
intensity values.

Entropy measures the randomness of the elements of
GLCM which, in turn, is determined by the randomness
of the initial image:

L L 9ij
H=->> —log,
i=1 j=11Q NQ

9ij

The highest value 2xlog,L is achieved for matrix
GLCM, obtained from an image that is formed by
uniform noise then all image intensities are approximately
equally probable. The entropy is equal to zero for a
constant-intensity image.

4 EXPERIMENTS

Let us consider the construction of the scatter plots for
the image inpainting accuracy prediction. To obtain the
regression function that describes the dependence
between output and input variables, the curve fitting of
scatter plots is applied. To take into consideration the
different properties of inpainted images the simulation of
missing areas of the different sizes is needed. That is why
we have formed three separate categories of masks,
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modeling different levels of image inpainting complexity.
These masks randomly uniformly cover 25%, 50%, and
75% of the image area, and are named as narrow,
medium, and large, respectively.

We constructed masks of 1-5 straight lines with a
slope from 0 to 2x, 1-100 pixels wide, and 10-200 pixels
long. As an alternative, masks of 1-4 rectangles with
sides of 30—150 pixels were generated with a probability
of 0.5. Then the test set included 2,000 images from the
Places2 dataset [12]. The missing areas of these images
covered by generated masks were reconstructed by the
LaMa network. As spectral transform fast Fourier
transform or discrete wavelet transform were included in
LaMa network architecture. The LaMa-Fourier and
LaMa-Wavelet networks are obtained [8, 9]. The results
of image inpainting were evaluated with PSNR and
SSIM.

Further, the GLCM has been determined and the
image uniformity, homogeneity, and entropy have been
calculated based on the obtained GLCM for each test
image. Next, one mask from each category was generated
for each image. After element-by-element multiplication
of images on masks, the inpainting was performed using
LaMa-Fourier and LaMa-Wavelet networks. In Figure 2
the scatter plots SSIM and PSNR versus uniformity,
homogeneity and entropy are shown.

As a basis for prediction, the data points in the
obtained scatter plots indicate the main trends.
Specifically, the PSNR and SSIM decrease if entropy
increases and uniformity and homogeneity decrease. Data
for different mask categories are shown in the different
scatter plots. The results related to the image inpainting
by the LaMa-Wavelet and LaMa-Fourier networks
denoted with different symbols.

Next, we consider the estimation of the parameters of
the image inpainting accuracy prediction model. The
following functions for the scatter-plot fitting were
selected.

1. Polynomials of the first, second and third degree
y(X)=aX+a, Y(X)=h,X*+bx+bo, Y(X)=0:X*+d,x*+d X+

2. Inverse square root function y(x) = g,;x ">+ qj.

3. Logarithmic function y(X) = ryln X + .

The parameters of the mentioned functions were
estimated by the fitting of the scatter plots using the least
squares approach. To evaluate the curve fitting results we
have selected a curve fitting accuracy measure. This is the
R-squared (R?) value which is estimated as the proportion
of the variance in the dependent variable explained by the
independent variable in the considered model. The R-
squared values lie between 0 and 1, where higher R?
relates to better curve fitting. To estimate the
approximation error the mean squared error (MSE) is
used. It estimates the average squared difference between
the actual and predicted values of the dependent variable.
Lower MSE indicates that the selected model better
approximates the actual values. MSE is bounded below
by zero and has no higher limit.
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5 RESULTS

The obtained values of R-squared are shown in Tables
Inand 2. We have discarded the low-valued outliers of
entropy (2.5% for narrow and medium masks, 5% for
large masks), and the high-valued outliers of uniformity
(10% for narrow masks, 15% for medium masks, 20% for
large masks) to increase the approximation accuracy. As a
result, the R-squared values were increased by an average
of 7-8%. The best R-squared values were mostly obtained
on polynomials of the third order but the other functions
used for scatter-plot fitting in the paper have shown
similar results.

In Table 3 the MSEs related to SSIM and
corresponding to the R-squared from Table 1 are
presented without the brackets. The MSEs related to
PSNR and corresponding to the R-squared from Table 2
are shown in brackets.

Table 1 — The R-squared for polynomial regression degree 3, the
dependent variable is SSIM

Input variable | Narrow masks Ivrlr?s;ll(l:l Large masks
LaMa-Fourier
Entropy 0.3950 0.4192 0.4241
Homogeneity 0.7007 0.7098 0.6920
Uniformity 0.4408 0.4641 0.4500
LaMa-Wavelet
Entropy 0.4151 0.4277 0.4257
Homogeneity 0.7203 0.7267 0.7090
Uniformity 0.4541 0.4630 0.4489
The obtained dependencies of PSNR versus

homogeneity W for narrow masks are expressed for
LaMa-Fourier and LaMa-Wavelet as

PSNR=24.3653+14.9912W-2.4763W*+ 4.758 1W°;
PSNR=24.1664+18.0167W-11.4362W?
+13.5988W°.

The SSIM versus homogeneity W for narrow masks is
expressed for LaMa-Fourier and LaMa-Wavelet as

0.950
0.925
0.900
EO.BTS

0.850

0.825

11.2 12 12.8 13.6 144 15.2
Entropy

© Kolodochka D. O., Polyakova M. V., Rogachko V. V., 2025
DOI 10.15588/1607-3274-2025-2-5

SSIM=0.8228+0.4694W—0.7282W*+ 0.4640W°;
SSIM=0.8199+0.4644W-0.7077W*+ 0.4622W*;

for medium masks as

SSIM=0.6341+0.8195W-1.0334W>+0.6318W°;
SSIM=0.6291+0.8284W-1.0622W>+0.6838W>;

for large masks as

SSIM=0.4112+1.1130W—1.1985W>+0.7524W>;
SSIM=0.3988+1.1170W—1.1921W>+0.7549W°.

Table 2 — The R-squared for polynomial regression, degree 3,
the dependent variable is PSNR

Input variable | Narrow masks Nﬁ;i;{l;n Large masks

LaMa-Fourier

Entropy 0.3220 0.2707 0.1457

Homogeneity 0.4826 0.3496 0.1960

Uniformity 0.2720 0.1691 0.0600
LaMa-Wavelet

Entropy 0.3329 0.2691 0.1466

Homogeneity 0.5034 0.3523 0.1961

Uniformity 0.2831 0.1620 0.0603

Table 3 — The MSE for polynomial regression, degree 3, the

dependent variable is SSIM (PSNR)

Medium
masks

Input variable | Narrow masks Large masks

LaMa-Fourier

Entropy 0.0004 0.0019 0.0048
(5.0254) (5.6551) (4.8962)

Homogeneity 0.0002 0.0009 0.0025
(4.0205) (5.0474) (4.9400)

Uniformity 0.0003 0.0016 0.0042
(5.5083) (5.6171) (4.7120)

LaMa-Wavelet

Entropy 0.0004 0.0019 0.0048
(5.0083) (5.7219) (4.7160)

Homogeneity 0.0002 0.0009 0.0025
(3.9224) (5.0739) (4.4509)

Uniformity 0.0004 0.0017 0.0043
(4.7620) (6.1228) (4.7074)
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Figure 2 — The scatter-plots of SSIM vs entropy: a — narrow mask; b — medium mask; ¢ — large mask; SSIM vs uniformity: d —
narrow mask; e — medium mask; f — large mask; SSIM vs homogeneity: g — narrow mask; h — medium mask; i — large mask; PSNR
vs homogeneity: j — narrow mask. The data points and the line of polynomial regression of 3rd degree related to LaMa-Fourier results
are marked with a circle and dash line; the same objects related to LaMa-Wavelet are marked with a cross and solid line
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6 DISCUSSIONS

Let us consider the dependencies of the SSIM from
the texture descriptors if the LaMa-Fourier network is
used. The best fitting is achieved for SSIM versus
homogeneity (Table 1). Specifically, the approximation
by a polynomial of degree 3 gives R* from 0.6920 to
0.7098 for different mask size. This indicates that
considered model fits the data well. Others texture
descriptors worse explain the dependent variable SSIM
(R? varies from 0.3950 to 0.4241 for entropy and from
0.4508 to 4641 for uniformity). As one can see, the results
do not appear to be affected by the mask size.

Now we analyze the dependences the PSNR from the
texture descriptors if the LaMa-Fourier network is used
(Table 2). The best fitting is again achieved for
homogeneity  versus ~ PSNR.  Specifically, the
approximation by a polynomial of degree 3 gives R* from
0.1960 to 0.4826 for different mask size. Others texture
descriptors even worse explain the PSNR (R? varies from
0.1457 to 0.3220 for entropy and from 0.0603 to 0.2831
for uniformity). Therefore, the PSNR can be only
predicted from homogeneity and for narrow masks. As for
the remaining scatter plots, the proportion of the PSNR
variance that is explained by texture descriptors is very
low to predict the actual PSNR values.

If the LaMa-Wavelet network is applied then the R-
squared values are increased by 3-5% for considered
dependencies and categories of masks (Tables 1, and 2).
Therefore, the LaMa-Wavelet network is more acceptable
for the prediction of the image inpainting accuracy.

The scatter plots for different mask sizes are presented
in different figures (Figure 2). It can be observed that the
LaMa network versions in general show similar results,
i.e. the data points related to the LaMa-Fourier and LaMa-
Wavelet do not create separate clusters. Moreover, the
scatter plots of dependences of the texture descriptors on
the SSIM obtained for the different mask sizes are also
similar. However, in the scatter-plots of dependences of
the texture descriptors on the PSNR, the compactness of
data points is enlarged as the mask size is increased. The
cluster of data points is “pressed” to the texture descriptor
axis showing the significant lowering of the PSNR of
inpainted images as the missing area size increases. It
means that the accuracy of image detail in inpainting is
decreased as mask size is increased.

The results of the prediction of the image inpainting
accuracy on a test set of images from the Places2 dataset
are presented in Table 4. MAE was estimated between the
actual and predicted values of PSNR and SSIM. It should
be noted that the lowest MAE of the prediction we have
obtained for narrow mask inpainting. However, the
highest MAE is obtained for medium masks. This fact can
be explained by a high variety of medium-sized image
details.

As an example, we have considered the results of the
prediction of the inpainting accuracy for the images from
Figure 3. The images from Figures 3, a, b are processed
with narrow masks; the images from Figures 3, c, d are

© Kolodochka D. O., Polyakova M. V., Rogachko V. V., 2025
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inpainted with medium and large masks, respectively. The
PSNR was only predicted for images from Figure 3, a, b.
The actual PSNR were 24.7131 dB and 30.6880 dB, the
predicted PSNR were 30.5912 dB and 31.7558 dB. The
SSIM was predicted for images from Figure 3, a—d. The
actual values were 0.8926, 0.9281, 0.7819, and 0.5452;
the predicted values were 0.9260, 0.9330, 0.8586, 0.6185;
respectively.

Table 4 — The MAE of image inpainting accuracy prediction

Narrow masks, Narrow Medium rﬁ:zﬁ:
PSNR, dB masks, SSIM masks, SSIM SSIM’
LaMa-Fourier

3.7359 | 00262 | 00960 [ 00504
LaMa-Wavelet
37443 | 0023 [ 00966 | 00705
Finally, we mnote that computing the texture
descriptors, specifically, entropy, homogeneity, and

uniformity, took an average of 0.1139 sec per image of
1024x1024 pixels. The PSNR and SSIM calculation takes
an average of 0.1605 sec per image of the same size. By
comparison, we can mention that image inpainting by the
LaMa-Wavelet network took an average of 6.6 sec per
image. However, the network’s computations are
predominantly GPU-accelerated, making heavy use of
hardware-level parallelism, while the accuracy metrics
evaluation is done on the CPU (Intel(R) Xeon(R) CPU
2.00GHz, total RAM 12.67 GB) relying on synchronous
operations. It should be noted that because of inherent
differences in the hardware architecture, the time of the
computing of texture descriptors and calculations in the
network should not be directly compared.

CONCLUSIONS

The scientific novelty is the proposed method of the
prediction of the image inpainting accuracy. The method
is based on the set of texture descriptors estimated using
the gray-level co-occurrence matrix to predict the values
of image inpainting accuracy measures, specifically, the
PSNR and SSIM.

The practical significance of the research is in the
results obtained for real scene images from the Places2
dataset with the LaMa network applied. These results
show that the prediction of the image inpainting accuracy
can be performed with satisfactory accuracy if the
dependencies of the SSIM or PSNR versus homogeneity
are used. The other considered texture descriptors such as
entropy and uniformity can be only used to support the
prediction. It should be noted that the structural similarity
of the original and inpainted images is better predicted
than the error between the corresponding pixels in the
original and inpainted images. The better approximation
accuracy was achieved with the polynomial of 3rd degree
if data outliers have been removed. Better prediction
accuracy was obtained if the missing areas could be
modeled by a narrow mask.
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Figure 3 — The results of image inpainting with LaMa network: a, b, ¢, d — initial image; e, f — narrow mask; g — medium mask; h —
large mask; 1, j, k, | — images inpainted with LaMa-Fourier; m, n, o, p — images inpainted with LaMa-Wavelet

Prospect for further research is a reducing the
prediction error. In this way, it is possible to apply the
regression on several input parameters. To our opinion,
the proposed method can be also applied to other CNNs
trained to inpaint real scene images to decide about the
advisability of the time and resource consumption needed
for image inpainting.
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INPOTHO3YBAHHS AKOCTI BITHOBJIEHHSA 30BPAKEHD 13 3ACTOCYBAHHSM TECTYPHUX
JECKPHUIITOPIB

Kouaonouka JI. O. — cryzment IuctutyTy KoMn toTepHux cucteM HamionansHoro yniBepcurery «Opmechbka momitextikay, Oneca,
VYkpaiHa.

MHonsikoBa M. B. — n-p TexH. Hayk, JOLEHT, npodecop kadenpn npukiagHoi MaTeMaTHKU Ta iHGOPMAUiHHMX TEXHOJOTIN
HarionansHoro yHiBepcutety «Ofechka moiiTexHika», Omeca, Ykpaina.
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AHOTAULIA

AxTyanbHicTs. IIpobnema 3amoBHEHHS BiACYTHIX 00JacTell 300paKCHHS PEaTiCTHYHHUM KOHTCHTOM YacTO BHMHHKAE IIPH
00po0mi peansbHUX CIEH Y KOMIT'IOTepHOMY 30pi Ta KoM 'roTepHiit rpadimi. 1106 BimHOBHTH BincyTHI oGiacti Ha 300pakeHH,
3aCTOCOBYIOTBCS Pi3HI HiIXoQW, Taki sK AuQy3iiiHI Mozeni, MeXaHi3M CaMOYBa)KHOCTi, T'€HepaTHBHI 3MaranbHi Mepexi. Jlus
BiJIHOBJICHHS 300pa)ke€Hb pealbHUX CLIEH BUKOPHCTOBYIOTHCS 3TOPTKOBI HEWPOHHI Mepexi. [3 3acTocyBaHHSAM IIMX MEPEX OCTaHHIM
4acoM JOCSTHYTO 3HAYHUX YCIIXiB Y BiJHOBJICHHI 300pakeHb. AJle OTpUMaHi BiTHOBJICHI 300paskeHHsI HE 3aBXKAN BUCOKOI SIKOCTI.

Merta poboTH MoJirae y 3MEHIISHHI BUTpaT yacy B CHCTEMaxX KOMII'IOTEpPHOI rpadikd Ta KOMI'IOTEPHOrO 30py  IUIIXOM
MIPOTHO3YBAHHS SIKOCTI BiJTHOBJICHHS 300paXeHb 3rOPTKOBUMH HEHPOHHUMH MEPEIKAMH.

Merton. [IporHo3 TOYHOCTI BiJHOBIEHHS 300paKeHHS 3iMICHEHO IUIIXOM aHaji3y CTaTUCTUKU 300pakeHHs 0e3 BUKOHAHHSA
camol PEeKOHCTPYKIHii i, oTke, 0e3 BUTpadyaHHS 3aiBOrO Yacy Ta KOMII IOTEPHHX PECypCiB Ha BiHOBICHHS 300pakeHHI. Mu
BHUKOPHCTAIN MIKOBE BiJHOIICHHS CHTHAI/IIYM 1 NMOKa3HHK IHIEKCY CTPYKTYPHOI MOJIOHOCTI AJISL OIHKM SIKOCTI BiJHOBIICHHS
300paKeHHSI.

PesyasTaTn. [TokasaHo, 1o nepeabadeHHs eeKTHBHE JUIsl IHPOKOTO Jliana3oHy po3MipiB MacoK i 300paXKeHb pealbHUX CICH 3
6a3u nanux Places2. V skocTi npukiany OyJio 30CepemKeHO Ha OKPEMHX BHIIanKax Bepcii mepexi LaMa, xoua 3anmponoHOBaHUiMA
METO/] TAKOXX MOYKHA y3arajJbHUTHU HA iHIII 3rOPTKOBI HEHPOHHI MEpexi.

BucnoBkn. OTpuMaHi pe3yjbTaTd MOKa3ylOTh, IO TPOTHO3 SIKOCTI BiHOBJIEHHs 300pakeHb MOXKe OyTH BHKOHaHHMH i3
3aJJ0BUTBHOI0 TOYHICTIO, SIKIIO BUKOPUCTOBYBaTH 3anexkHocTi SSIM abo PSNR Bin moka3Huka oZHOPIAHOCTI TEKCTYpH 300paskeHb.
Crin 3a3Ha4YMTH, IO CTPYKTYypHA MOAIOHICTH MOYAaTKOBOTO Ta BIIHOBICHOTO 300pa)KeHb Kpallle mepeadadyBaHa, HK TOMIUIKA MiX
BIZIMTOBITHUMH HIKCEISIMH IUX 300paskeHsb. 11[06 3MEHIINTH NOMMIIKY IIPOTHO3YBAaHHSI MOXKHA 3aCTOCYBATH PETpPecilo 3a JeKinbKoMa
BX1IHUMH 3MIHHUMH.

KJIIOUOBI CJIOBA: BinHOBIEHHsI 300payKeHHsI, IPOrHO3yBaHHS TOYHOCTI, Mepexa LaMa, IecKpHIITOp TEKCTYpH, MaTpHUIs
CYMI»KHOCTI.
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