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ABSTRACT

Context. The research object is the process of placing service centers (e.g., social protection services, emergency supply storage)
and allocating demand for services continuously distributed across a given area. Mathematical models and optimization methods for
location-allocation problems are presented, considering the overlap of service zones to address cases when the nearest center cannot
provide the required service. The relevance of the study stems from the need to solve problems related to territorial distribution of
logistics system facilities, early planning of preventive measures in potential areas of technological disasters, organizing evacuation
processes, or providing primary humanitarian assistance to populations in emergencies.

Objective. The rational organization of a network of service centers to ensure the provision of guaranteed service in the shortest
possible time by assigning clients to multiple nearest centers and developing the corresponding mathematical and software support.

Method. The concept of a characteristic vector-function of a k-th order partition of a continuous set is introduced. Theoretical
justification is provided for using the LP-relaxation procedure to solve the problem, formulated in terms of such characteristic func-
tions. The mathematical framework is developed using elements of functional analysis, duality theory, and nonsmooth optimization.

Results. A mathematical model of optimal territorial zoning with center placement, subject to capacity constraints, is presented
and studied as a continuous problem of optimal multiplex partitioning of sets. Unlike existing models, this approach describes distri-
bution processes in logistics systems by minimizing the distance to several nearest centers while considering their capacities. Several
propositions and theorems regarding the properties of the functional and the set of admissible solutions are proven. Necessary and
sufficient optimality conditions are derived, forming the basis for methods of optimal multiplex partitioning of sets.

Conclusions. Theoretical findings and computational experiment results presented in the study confirm the validity of the devel-
oped mathematical framework, which can be readily applied to special cases of the problem. The proven propositions and theorems
underpin computational methods for optimal territorial zoning with center placement. These methods are recommended for logistics
systems to organize the distribution of material flows while assessing the capacity of centers and the fleet of transportation vehicles
involved.

KEYWORDS: continuous set, multiplex partitioning, optimization, LP-relaxation, optimality conditions, location-allocation
problems.

ABBREVIATIONS
OMPS is an optimal multiplex partitioning of sets;
LP is Linear Programming.

NOMENCLATURE

Q is a set being partitioned is bounded, closed, and
Lebesgue measurable in the space Ej;

T; are points from Q, which are called centers;

N is a number of centers;

k 1is an order of the partition of the set €;

N is a set of all center indices;

M is a set of all k-element subsets of the set N;

L is a number of all k-element subsets of the set N;

p() is a non-negative function describing the demand
for the service.

() is a cost function;

w; is a proportionality coefficient;

a; is a cost of establishing i-th center 1; or upgrading
an existing one, or its fixed operating costs calculated per
unit of demand;
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b; is a capacity of i-th center, which defines the maxi-
mum volume of services the center can provide;

Q. are areas covering clients who have the same k&
nearest neighboring service centers from N existing (pos-
sible);

o is a set of indices of centers associated with the sub-
set Q.

INTRODUCTION

The problems of efficient organization of logistics,
production, and trade networks constitute one of the di-
rections of modern optimization theory. The scientific
literature contains numerous works devoted to the loca-
tion-allocation problem — determining the best positions
for service centers along with the most rational distribu-
tion of demand for the services they provide. A compre-
hensive review of location-allocation models and meth-
ods, as well as their practical applications, is presented in
[1]. The paper [2] provides a history of location models
over the past 50 years, though it is not exhaustive, as it
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highlights the contributions of only some of the most ac-
tive European operational research groups. A significant
part of scientific research focuses not only on the analysis
of object location but also on the evaluation of the market
share they occupy, their attractiveness, and competitors’
reactions to the appearance of new objects. In particular,
[3] describes methods for finding the best locations for
competing objects and significant modifications of the
classical gravity model. The paper [4] presents mathe-
matical models of optimal location of service centers and
partitioning of the territory into service zones, considering
the possibility of receiving services from any of the near-
est centers. Overlapping zones are provided for cases
when the nearest center is unable to provide the service.
Centers can include, for example, social protection ser-
vices, emergency supply warchouses, etc. The distribution
of service consumers among service centers is described
as optimal multiplex partitioning problems of continuous
sets in various formulations — with predefined centers or
the need for their location, with or without capacity con-
straints for service centers. Several possible optimality
criteria for multiplex partitioning of sets are proposed.
The applied aspects of these problems and related con-
tinuous multiple spheres covering problems are consid-
ered in [5].

This paper is devoted to the description and theoretical
justification of the method for solving continuous prob-
lems of optimal multiplex partitioning of sets with center
location and capacity constraints.

The object of study is the process of locating service
centers and territorial zoning.

The subject of study is mathematical models and
methods for optimal location of centers with the determi-
nation of their service zones.

The purpose of the work is to organize rationally a
network of service centers by determining such locations
and service zones to ensure the guaranteed provision of
services to consumers in the shortest possible time by
assigning them to several nearest centers.

1 PROBLEM STATEMENT

Lets Q represents the territory of a region where a
network of service enterprises operates; p(x) is a function
that describes the demand for a service at point x within
the set Q; 1; are points from Q, which are called centers,
1,€Q,i=12,...,N; b; is the capacity of the i-th center
i=L2,...,N; c(x,7;) is the cost of providing the service
to a client at the point x € Q by center t;, which is con-
sidered proportional to the distance between the two
points; a; is the cost of establishing a new center or up-
grading an existing one at point t; or its fixed organiza-
tional costs, calculated per unit of demand, for
i=12,...,N.

We will consider the problem of optimal location of a
certain number of service centers in a given area and as-
signing service zones to them in such a way that each
service consumer (the residents of the area) is assigned to
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k nearest centers to ensure guaranteed service. The quality
criterion is the minimization of transportation (time) and
organizational costs, with the condition being the capacity
constraints of the centers (the maximum volume of ser-
vices that a center can provide).

2 REVIEW OF THE LITERATURE

Models of the location of one or several objects
among a given set of demand points to achieve a particu-
lar goal are considered in [6]. In discrete models, a finite
set of potential locations for the objects is given. In con-
tinuous models, objects can be located anywhere on the
plane or within a region with an infinite number of poten-
tial locations. In paper [7], the use of professional optimi-
zation software (CPLEX and AIMMS packages) to solve
the location-allocation problem is demonstrated, but only
discrete models of problems are considered. In article [8],
the problems of intermediate transportation hubs, transfer
points, and collection warehouses are discussed, high-
lighting the difference between node location problems
and classical object location problems, presenting the p-
median problem with single and multiple allocations. Re-
search [9] is aimed at solving continuous location prob-
lems for the p-center by repeated analysis. An algorithm
based on model relaxation is presented here, enhanced by
the addition of four mathematical improvements, which
provide a significant reduction in computation time for
large data sets (up to one and a half thousand nodes). The
flexibility of the improved algorithm is demonstrated, as
it can be easily adapted for the a-neighbor p-center prob-
lem and problems with constraints.

The features of most of the listed problems are the
discrete demand for services, and the obtaining of service
zones in the form of spatial monopolies. The classic p-
median problem assumes that services are always pro-
vided to clients by the nearest facility, whereas in prac-
tice, clients often interact with several facilities for vari-
ous reasons (not just the nearest one). In works [4, 10],
distribution rules for modeling such flows are introduced.
In [4], a mathematical model of the problem of locating
service centers while simultaneously determining over-
lapping service zones is presented as an optimal multiplex
partitioning problem. In [10], the so-called “distributed”
p-median problem is formulated, and various types of
allocation rules are investigated. For instance, if the
weighting coefficients increase (i.e., the assigned flows
are larger for objects located farther away), the problem
can be solved in polynomial time as a /-median. For de-
creasing weights, a special case of which is the classical
p-median, a generalization of standard continuous and
discrete models is obtained, leading to a broader interpre-
tation of median points. In work [11], the demand for
service is continuously distributed over a certain area, as
in the problems from [4, 12]. In these works, analytical or
spatially interpolated functions are used for the approxi-
mate representation of demand, although the results of
both methods are subject to significant errors and are
characterized by uncertainty. For this reason, [11] intro-
duces a general location model and a continuous Weber
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problem, in which objects can be located anywhere in
space to best meet the continuously distributed demand.
Due to the complexity of assessing constant demand, it is
proposed to integrate optimization methods with the func-
tional capabilities of a geographic information system.

In [12, 13], an approach to developing methods for
optimal multiplex partitioning of sets is presented, based
on formulating problems in terms of characteristic func-
tions, applying LP-relaxation for the obtained infinite-
dimensional optimization problems with Boolean vari-
ables, and further using elements of duality theory. Al-
though the relaxation procedure for discrete location-
allocation problems is widely used (see, for example, [6,
9)]), its application for multiplex partitioning problems in
a continuous setting requires theoretical justification and
has not been covered in the scientific literature so far. The
goal of this work is to rigorously prove statements and
theorems that underpin the methods and algorithms for
solving continuous optimal multiplex partitioning prob-
lems.

3 MATERIALS AND METHODS
To formulate the mathematical model, we introduce
some notations and concepts.
Nis a set of all center indices,

N={1,2,...,N};M(N,k) is a set of all k-element subsets
of the set N; L is a number of all k-element subsets of the
set N, L= C]]‘\} ;Q

the same
Y APSL Y R
it11’ A

is a set of indices { jll s jé,..., ]]l{} of centers associated

o, are areas covering clients who have

k nearest neighboring service centers

T } from N existing (possible), / :I,_L; o)
k

with the subset Q .
Definition 1. A
{ch Qs ,...,QGL} from Q< E2 is called a k-th order

collection of subsets

partition of the set Q into its subsets Qg ,...,Qg ,if

Q5
L
Ue,, = Q,mes(QGi NQg, ): 0;
=1
6;,6,; € M(Nk),i# j,i, j=1L,
where mes(-) — is the measure of the set. ch are k-th
order subsets of the set Q.
Let Eg’k — be the class of all possible k-th order parti-
tions of the set € into its subsets Q; ,...,Q

Ll T

L
sk :{a:{gcl,...,%}: IUQGI =Q,
=1

mes(QG_ mQG_):O, G/,0; eM(N,k),i#j, i,jzl,_L}.
i J

Problem A. The problem of optimal k-th order parti-
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tion of the continuous set € under constraints with loca-
tion of centers:

F (G,TN )—) min
Eeig‘k;‘r/v cQV

F(U—),,N):%ij Y (e(5)/w+a;)p(x)ds,

=1 Q, iec;

L
/ _ . .
E f vip(x)dx=b;, i=1p; 1)

Lieo; ©I

L —
> | vipndy<b, i=p+LN.

=1 O

lieoy

@

o]
Here x:(x(l),x(z))eQ; c(x,T,-)’ l'=1,_N are

bounded functions defined on QxQ . The function p(x)

is bounded and non-negative on Q;

w; >0,a; 20,b; 20,i=1,N, are given constants. The

coefficients yﬁ define the share of the service market that

the center t; occupies in the territory Qg , among the

G,
facilities {rj; ’le yee "le } , serving this territory, such that
1 2 k
forall j=1,N, =1L
! ! [ /
0y, <1, + +..+ =1.
e A Y 3)

If we assume that the allocation of demand for ser-
vices across the entire region  is proportional to the ca-

pacities of the centers, then for all / :I,_L and for all

j= l,_N , J €0y, the values ylj are given by the follow-

ing expression: y{/ =b;/ z b, . If the demand is dis-
q:q€0;

. 1
tributed evenly among the centers, then ylj =;, for all

jand /.
Lemma 1 (see [13]). Let S = fp(x)dx in problem A,
Q
and assume the conditions hold:
p N
0<b <S8, i=L..,N;Y b <S<)b. 4)
i=1 i=1

Then, for any fixed vector ™V e Q" the set of feasi-
ble partitions (satisfying conditions (1), (2)) is non-empty.

The method for solving Problem A involves express-
ing it in terms of characteristic vector-functions of the .-
th order partition of the set Q.

Definition 2. A characteristic vector-function of the k-

th order partition © = {Q Q QGL} of the set Q

RREELI I

is the vector-function ()= (%;()s-.., %), %2 ()
defined on €, which components are characteristic
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functions of the subsets Q, and are given by the formula

(almost everywhere) for x € Q

L xeQ,,
Xl(x):{ :

0,xeQ\Q,, /=1L
In [12, 13], to describe the k-th order partition of the
set Q, and NL-dimensional vector A(x) is introduced
with coordinates

Lif xe Qg andieoy,
kl-(x ={ o

N (5)
0 otherwise,i =1, N,i=1L,

where o, = { jll yeres ]11(} is the set of indices of the centers
{r daesT } , associated with Q .
A Jk !
Using (5), the coordinates of the function y(-) can be
represented as y; (x)= ka (x), 1= 1,L. for each point
iec;
x € Q. Since each pointx € Q belongs to only one of the

subsets

s, » among all components kf (x) only k com-

ponents for the same index / are equal to one. This means
that the vector-functions A(-) and y(-), which define the
same k-th order partition ® of the set Q, satisfy the fol-
lowing conditions: for each point x € Q

2 ()=0v1, Al(x)=0v1, i=,N, =1L,
N, L
Zki(x) =ky(x), [ = l,L;le(x) =1.
i=1 I=1
The relationship between A(-) and y(-) is one-to-one.

Indeed, if x e Qc, ,1.e., x;(x) =1, then in the correspond-

ing vector A (x) only k components will be equal to one:

kfz{ bicor Ty, (6)
0,ieN\oy,

The remaining components X;(x):O,Vi :I,_N,
t=1Lt#1.

On the other hand, if a point x € Q is associated with
a veetor 2 (x)= (2! ()., 2 (x),...A" (x)), in which

only k& components are equal to one among

k{ (x),...,kév (x), and the rest are zero, this means that

. g 1
there exists a set ¢; = {]l ,]2,...,]k}, such that x € Qg

and y;(x)=1. From a practical perspective, Al (x),

i =1, N, serves as an indicator of whether a client at point
x is served by center 7; along with the remaining (k—1)-
centers 1;, where j € 5; .

To formulate the OMPS problem in terms of the char-
acteristic functions of the partition, both vectors will be
used, with the vector-function y(-) considered as the un-
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known (which distinguishes this work from [12, 13]). In
the vector A/ (x) :(k{ (x),...,kév (x)), which corre-

sponds to the component (x) of the characteristic vec-
tor-function of the partition, the argument will be omitted
for compactness of notation. This vector defines the indi-
cators of the indices in the set o; from the N (see for-
mula (6)) and will therefore be used as a template.
Problem A is formulated in the following equivalent

form.
Problem B.

(x(.),anfll“kx o [(X(-),TN ),

where
N1 (X !
1.7 )= T Sl )+ s oo (o
Ql=1\i=l
r* ={o:0erg
L
[ > viripGon (dx=b;, i=1...p,
Ql=1
L
[ > viripGon (dx <b;, i=p+1....N};
Ql=1
T = {10 = (1O x O) (X =0V 1,
L
l:I,L,le(x)zla.e.er}.
/=1

To solve Problem B with Boolean variables, we per-
form its LP relaxation.
Problem C:

(X('),TNIT)iEIlleX oV I(X(')’ o ),

where
5 ={xoeerf,

L
[ S vird (x)p(x)dx=b,, i=Lp,
Ol=1

L
jszx, (x)p(x)dx<b;, i= p+1,N} ;
Ql=1

Tf = (2O = (0 On ety O )10 3y (x) <1,

L
[=1,L; Y x;(x)=1ae. forer}.
[=1

Justification of the reduction of Problem B to Problem
C. From the fact that Flé c F{{ , it follows that T* = Flzc .
Statement 1. FIZ‘ is a bounded, closed, and convex set

in the Hilbert space [5(Q)with the

o= [ é[x, ()
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Proof. Let %(-) and (-) be arbitrary elements of the
set TX , and let o be a constant such that 0 <o <1. We

will show that oy (x)+(1—a)y,;(x) € Fé. Indeed, almost
everywhere for x e Q

L
> (i 0+ (-7 () =

I=1

L
=Yy () +1-)Y ) =a+(l-a)=1
=1 =1
Foreach i=1,...,p

~

L
[ 208 (0 () + (1= 00, ()l =

Q=1

L L
= o[ >y (@p(ode+(1—o) [ > vini (x
Ql=1 Ql=1
Foreach i=p+1,...,N :

)p(x)dxz

L
[ 2 (e 0+ (1= )% ()| oty =

Ql=l

o[ 3 YA PO + (1o | AT (v)p(x) e <
Ql=1 Ql=1
<ab; +(1-a)b; =b;.
Since for xeQ 0<y;(x),x(x)<1, it follows that
0<aj,(x)+(1-a)g(x) <1, [=1L. Thus, the convex-
ity of the set 1"15 is proven.
Let the sequence {X(m)()} € 1"[2‘ converge to some
function y(-) in the norm of the space le‘ (Q) . Consider a
subsequence {x(mr)(-)} , that converges to () almost

everywhere on Q . For x(mr)(-) € Flz‘ the following con-
ditions hold'

_[ZYz (x)Xz (x)dx i=L2,..,p;
Ql=l
IZ% X\ (Odx <by, i=pr, N
Ql=1

0<x(m’)(x)£1,l:1,L,

Zl 1Xl

Taking into account that the function p(x) is bound-

(x)—l ae forxeQ.

ed, measurable, and non-negative on the set Q, according
to the Dominated Convergence Theorem [14], the limit
transition holds as m, — ©
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fim 3"y dpCo™ o -

m—0 517

=, lim [Zv, oo™ <x>]dx—

- Izyl iP IZYZ zP(x)Xgmr)(x)dx-

Ql=l Ql=l
Thus, we conclude that all the above conditions are
satisfied with the function y(-). This means that the set

(x)( lim XE (%)

Fé is closed.

Lety() eFIZ‘ ,then 0<y,(x)<1 a.e. forxeQ, /=1L

IO = \/ [ g[x, (x)]zdx < \/ | ilzdx = /Lmes(Q) = Const.

Ql=1
The boundedness of 1"15 is proven.

Lemma 2. For each fixed vector 7" € QY , the func-

tional I (X(')) =7 (x(~),?N ) in Problem A is linear and con-
tinuous on the set I 15 .

Proof. Let 7V be an arbitrary but fixed vector from

OV . Define the quantity

g = sup mg(c(x,ri)/ W, +a;)p(x) .
xeQ=1,

The linearity of the functional 7 (y()) is obvious be-
cause of the linearity of the Lebesgue integral in the func-
tional 7(x(),7").

To prove the boundedness of I(yx()), we use

Holder’s inequality:
T =t | =

<

1 L N /
= [ 22 (elrm) /w; + @ Wy (x)p(x)dx

k Ql=li=1

1 L N ; L
sz-qIZZMx;(x)dx q,[le(x)dx

Ql=li=1 Ql=1

L
< q\f ] S dc=g '”X(')"Lg(g) :
Ol=1

Thus, the functional 7 (x(-)) is linear, bounded, and,

<

according to [14], continuous with respect to % (-) .
Statement 2. If the conditions (4) hold for Problem A,
then for each fixed vector ¥ € Q" Problem C is solv-
able with respect to ().
Proof. Let 1/

OV in Problem A and let the conditions (4) hold. Ac-
cording to Lemma 1, the set of feasible partitions is non-

be an arbitrary but fixed vector from

empty, meaning the set T'* of admissible vector-functions
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%(-) in Problem C is also no-empty. According to Lemma
2, the functional 7 (X(-),‘rN ) is linear (convex) and con-
tinuous with respect to y(-) on the set 1"12‘ . According to
Statement 1, 1"12‘ is convex, closed, and bounded, and

therefore, by the generalized Weierstrass theorem [14],

the functional [ (X(-),TN ) attains its exact lower bound on
1"12‘. Thus, Problem C is solvable with respect to x(-) for
cach fixed V¥ e OV .

Statement 3. Let T € Q" be an arbitrary but fixed
vector. Among the set of points in Fé , where the func-
tional [ (X(~))=I (X(~),?N) attains its minimum, there ex-
ists at least one extreme point of 1"]5 .

Proof. By the generalized Weierstrass theorem, the
continuous (see Lemma 2) functional 7 (x()) on the

convex, closed, and bounded set Fé (see Statement 1)
attains its exact lower bound, and the set " of its mini-

mum points is non-empty, convex, and bounded, making
it weakly compact in Lé (Q) . According to the Krein-
Milman theorem [15], such a set I has an extreme point,
denoted as x* (-) . We now show that X* (-) is an extreme
point of the set 1"12‘ .

Assume the contrary. Then it can be expressed as a
linear combination of two points u(:),v() € Fé \F*,u £V
v ()= o)+ (1—a)v(-), where 0<a<1. Since 7 ()
is a minimum point of the functional, it follows that
T =T (), I0()=I(x (). Due to its linearity
16 ) = al @) + (1= o) (v() =
= 1(v(:) + oI () = 1 (v()))-

This is possible only if 7(y (1) =1 (u())=1(v()).
Thus u(-),v(") eI, This leading to a contradiction. We
conclude that x*(~) is an extreme point of r.

Statement 3 is proven.

Statement 4. Any extreme point of the set 1"15 is a

characteristic vector-function of some k-th order partition
©={Q0, Q5,5 Q, | of the set Q.

Proof. Assume the contrary: let y(-) be an extreme
point of the set 1"15, but at least one of its components
s (x),1<s<L, is not a characteristic function of the
corresponding subset QGS in the k-th order partition of

the set Q. Without loss of generality, assume that this is
the case for the function y;(x). This means that there
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exists a subset PcQ, mes(P)>0, such that for all
xeP:d<y(x)<1-8, 0<d<1.

Introduce an auxiliary function p(-), that satisfies the
following conditions:

1) forall xe Q\P pu(x)=0;

2) forall xeP

()| <3 (7)

3) where x € P p(-) is a nontrivial solution to the sys-

tem of equations.

K Wonxdx=0,i=1,2,....N ®)
L
[ Pnykl[p(x)LXl&u(x)dx=0, i=L2N
=2 Z X] (x) ( )
Jj=2

The function p(-), which satisfies conditions (1)—(3),

can be constructed, for example, using the following ap-
proach. To partition P into (2N +1) non-overlapping
subsets of nonzero measure and define p(-) as a piece-

wise constant function on P, taking a constant value on
each subset. The corresponding values can be found as a
nontrivial solution to system (8), (9) — a system of 2N
linear homogeneous algebraic equations with respect to

(2N +1) variables. The obtained values are then normal-

ized to satisfy condition (7).
Using the function p(-), we construct two vector-

functions %(-) and %(-) as follows: for all x € Q
X1 () = %1 () + (),

% ,-(x)=x_,<x)—j‘f—(x)u<x),j =2,L;
D% (x)
=2

0 (x0) = 61 (x) —u(x),

_ () _
75 (0) =2 () + 2 p(x), ) = 2.1

D> )

=2
We will show that y(-) and %()e 1"”2‘ . Indeed, due to
conditions (8) and (9), forall i=1,2,...,N:

L L
[ 2 viripCosy (e = [ S vikdp (x) 1y (x)x+
=1 =1

[, I (0 () + () e+

L
I DR cyes — LG VA
= e
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2
2

L
= [ P (W) +
=1

L
+f, [v%x}xl @)+ X ki (x)} p(x)dx +

=2

+.[ yl}“ll'l(x)p(x)dx I 2%7‘] % (x)
= ZXJ'(X)
j=2

pOr)u(x)dx =

L
= [ vk (ds
/=1

Similarly,
L [y 1 = L [51 1 A7
[ 2 viip( (o) = [ D vikip(x)y (i =1, N .
=1 =1
By direct verification, we confirm the validity of the

L L
equalities D 7;(x) =1 %;(x)=1.
I=1 I=1

Z(~) we have:

For example, for

%) u(x)) =
Zx,(x)

ZXz(X)— %1 (%) — H(x)+Z(Xl(x)+

I=1 =2

L
=D () +———
= Zx,(x)

j=2

L
=Y () =1
[=1

(=1(x) Z % () + H(X)Z X1 (%) =

j=2

By the definition of the functions %;(-), %;() and
condition (7), it follows that: %;() =0, %;()=0 for all
x€Q. The remaining components of the vector-

functions ;(-),x;(-) are also non-negative. Indeed, con-
sidering that x(-) € FIZ‘, for j= 2,L we obtain:

3= 0 -1

> ()

1=2

p(x) =

2 2y (x)——-8=0.
Similarly, we Verlfy the inequality 7 ; (x) 20,j= 2,_L
By construction and the previously derived relation-

ships, forall xe Q: 0<§;(x)<1, 0<% (x)<LVI=1L.

Thus, it is proven that %(-),%x() el“’lzc. However, the
. 1. 1_ .
representation () =Ex(~)+zx(-) contradicts the state-

ment that x(-) is an extreme point of the set 1"15. There-
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fore y(-) must be a characteristic vector-function of some

k-th order partition of the set Q. Statement 4 is proven.
Thus, according to Statement 3, among the points of

the set T'% , where the linear functional [ (x(~),'rN ) attains
its minimum value for a fixed vector ¥ € QY there ex-

ists at least one extreme point of T’ 15 According to State-
ment 2, extreme points are characteristic vector-functions
of subsets ch, ,I =1,L, which form a k-th order partition

of the set Q for each fixed vector V¥ e Q. Thus, the set

of optimal solutions to Problem C includes the optimal
solutions to Problem B, which means that Problem B can
be reduced to Problem C by selecting from the solutions
of the latter those that are also solutions to Problem B.
This reduction forms the basis of optimal multiplex parti-
tioning methods, and the necessary and sufficient condi-
tions for optimal multiplex partitioning have been ob-
tained.

Optimality conditions for the solution of Problem C.
We construct the Lagrange functional for Problem C:

W (O, T, (o () ) =
1 L M ;
=— [, 22 (e, ) wi + @ Wty (x)p () +

k llil

+Zw,<JQZv, % (Op(X)dx —b;) +

i=l1

+IQ Yo 00(2 % (x)—Ddx =
=

L N ,
= [ S ) ey W) + o (o o —

=1 i=l W

N
—fQ Wo(¥)dx = ;b
i-1

The functional W((X(~),TN )(\Vo('),\v)) is defined on
the Cartesian product (A x QN ) x(®xV¥), where

:{x(-)eLg(Q):ogx,(x)szeQ,l:L_L};
D ={yo:yo() € L(Q)};
‘P:{\VERN Wy 20,izp+1,...,N}.

Definition 3. A pair (()Z(-),%N )(\I/O(-),\Il)) is called a
saddle  point of the Lagrange  functional

W) (wo(w)) on the set (AxQY Jx(@x¥),

if  for all (x(.),rN )e AxQN for all
(Wo(‘)"l’) e ® x ¥, the following inequalities hold:

w305 Mwoo.w)< {70, 4Y b (i)
04" o)< leo Lo o).
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The problem dual to Problem C is formulated as fol-
lows:

H(yo(),w)—>  max

(Yo (), w)edx¥
min

H(yoOw)=  min _ (0,7, (wo(),w)
(1" )eAXQY

Theorem 1 (see [16]). For Problem C and (10) to be
related by the duality relation I« = W*, and for the su-

(10)

premum in (10) to be attainable, it is necessary and suffi-

cient that a saddle point of the functional
WOt (wo()w)  exists  on  the st
(AxQV)x (@ x V).

Thus, solving the pair of problems C and (10) is
equivalent to finding a saddle function of the functional

W ()t ),(Wo(),w)) on the set (AxQN)x(@xW).

Let the vectors y € ¥ and Ve be arbitrary but
fixed in the functional H (Wo ), \|1) . Consider the problem
_N — .
Hhor hmow) s, an
Further, for brevity, we will use the following nota-
tion: d;(x) = (c(x,t;)/w;+a;)/k, i=1,N.
The center t; may be fixed or not, depending on the
context.

For each arbitrarily fixed point x € Q we introduce a
function of (L+1) variables:

O(x(x),wo(x)) =
L| N / /
= Z|:Z(di () +7;; )Kip(x) + wo(x)}x; (¥) = wo (x).

[=1Li=l1

This function is defined on the Cartesian product
A, x®, of the projections of the sets A and @ for
xeQ.

Theorem 2. For an admissible pair
(X()Wo(-)) € AxD to be a solution of problem (11), it is
necessary and sufficient that almost everywhere for
x € Q, the following condition holds:

O, §o(x)= max  min O(x(x),yo(x)).

Yo (x)ed, x(x)eA,
Proof. Necessity. Let (%(),¥o()) € Ax® be an op-

(12)

timal solution to problem (11), i.e., V() € A, yo(-) € ©

02 Moo w)<rlioz laoow) a3

o0 o0 @) o oo a9

We will show that almost everywhere for x € Q this
pair (%(),¥o(-)) satisfies condition (12). Assume the
contrary: there exists a subset Q of the set Q such that
mes(Q) >0 and VxeQ condition (12) does not hold,
i.e., VxeQ there exist §(x)e A, , for which the follow-
ing inequality is valid:

O (12,9 (x)) < O(1(x), Wo () -
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We construct a new pair of admissible functions for

the problem (11):
_ . 3 (f((x),q?o(x))eAxxd)x, VxeQ,
(200 () = {(;z(x),%(x)) eA xD,, VxeQ\Q.

Integrating Q(%(x),\i/o (x)) over the entire region Q

and adding the constant (—zlﬁl\?ib ), we obtain:
N N

w7 V0 0.9))= [, O o0 hbs - St =
i=1

N
= [ 20 Wo () dx + [ O(A(), g (¥)) dx = X Wi
i=1

Similarl splitting the integral in
W((X(J,?Ni(\v()(')ﬁ)) with %() = 700, wo() = Wo() and
comparing the right-hand sides of the obtained relations,
we conclude:

w7 Vo 0.9)< (0.7 )i 0.9))
which contradicts (14).
We can also assume the existence of a subset Q of
the set Q such that mes(Q) >0 and Vx e Q, there exists

Vo (x) € @, such that the following inequality holds:
O(7(x), g (%)) < Q((x), ¥ (x)) -
Then, for the pair (;z(x),% (x)) , defined as follows

L= 1), () eA xD ., VxeQ
(2000 (0] = (1) 9o () A < ;
(x(~),\|/0(~)) eA xD,, VxeQ\Q
condition (13) will be violated. The resulting contradic-
tion proves the necessity of condition (12) for the pair
(%(), W () to be a solution of problem (11).

Sufficiency. Let the pair ((-),¥o(-)) satisfy condition
(12) almost everywhere for x € Q. We will show that it
is a solution to the problem (12). Let xeQ
1(x)e A, ,yy(x)ed,. Then, almost everywhere for
xeQ

O(1(x) o () < O (1(x), Wo (1)) ,
O(1(x) 9 (x)) 2 O((x), wo () -

Integrating these inequalities over all x € Q and tak-
ing into account that the inequality may fail only on a set
of points in Q, where the values of the integrand do not
affect the value of the integral, we obtain:

[0 (R0 o () dx < [, O (x(x), g (x))

Jo 2 (A9 () dr > [, O (). wp (x)
N
Adding the constant - ,;5; to both sides of the ob-
i=1

tained inequalities, we obtain inequalities (13) and (14).
Theorem 2 is proven.
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Theorem 3. The optimal solution of Problem B is de-
termined by the following formulas: for all /=1,...,L,
and almost everywhere for x € QQ

N
L i (e &) /ws+ a) e y Jd =
i=1

¥ (x) = 15
(=) _ mmZ((c(x )/ w+a;) k+yig i)lf, (15)
s=1,L
0 otherwise, \Zi :I,_L;
where (1,...,35, Yi,...,V ) is the solution to the follow-

ing problem:

G(y)= ,?ESN Gy (t,y) - max (16)
subject to the conditions:
y; 20, i=p+1...,N, (17)

where

Gy (TNa\Il): _ZN]\Vibi +
i

Proof. The reduction of Problem B to Problem C was
justified above. Theorem 1 reduces the solution of the
latter to finding a saddle point of its Lagrange functional.
Fix the vectors y e ¥ and VeV it According to
Theorem 2, to determine the remaining components of the
saddle point of the Lagrange functional, it is necessary to
solve problem (12) for each point x from Q.

Let x be an arbitrarily fixed point from Q. Due to
the separability of the function Q(X(x),\yo (x)) with re-
spect to its variables, the following equality holds:

max  min Q(x(x), o (x))=
o (x)eCD . x(x)E

= max min Z(Z(d +YIVONP WX — Vo =
Woed XA 1oy =)

L
= max{z min {Z (dl- () +7iv; )KII'P(X) + \V0:|Xl - WO}

Vo (=105 o
The point (%(x),{o(x)) will be a solution to the prob-

lem (12) if and only if the following conditions [16] are
satisfied:

1. Q(X(X),\Ifo(x))=x(r)gi€r}\ O (x), o (x));

o L
5 w:o & Yu-1=0

Vo I=1
For an arbitrary yg(x), the function O(x(x),yg(x))

attains its minimum value over all x(x)eAx, where

A, :{x = (Xpseeor Ao A )10 g < l,l=1,...,L}. At
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the point X(x) , whose components satisfy the conditions:
for I=1,...,L

Mz

£3(di 0+ 7173 )0+ o () <,

Il
—_

Mz

() =1 0,3 3(d:(0)+ 717 | fp(0)+ wo (x) >0,

(18)

Il
—

Mz

£ 3°(c0) + 715 )Mp () + wo () = 0,

._.

i=
wherea e [0,1].

Among all solutions of Problem C, we consider those
that are extreme points of the feasible set of its solutions.

Due to the arbitrariness of the choice of o e[0,1] we

consider a particular case of formula (18), namely: for
I=1,...,L

1, lf

Mz

(s 0+ 71 )fpC+ wo () <0,

I
—

Mz

=10, if 2(d:00+71T; |Alp()+w(0) >0, (19)

Il
—_

OV Lif X[+ 75, ) Hp )+ o () = 0.
i=1

For wg(x)={yo(x) in inequality (18), particularly

N

(19), it holds the equality: le (x)—1=0. Then among
/=1

the components of the vector j(x) in (19), there is only

one unit component, let its index be /, and this formula
can be written as:

1 if Z(d,. (01, | Hfp(x) + g () =

=

% (x) = (20)

= min Z(d (7], AP () + o (),
S=bLi=]

0 otherwise, \7 :1,_L.
Substituting (20) into the function Q(x(x),y((x)),

we obtain:

O(X(x), o (x)) = mln (Z(d () + YDA P(x) + g (%)) —
- i=1

N
—o(x) = mm[Z(di(xHYf\T/i)xfjp(x) .
L=l

§=l1,

Due to the arbitrariness of the choice of point x, the

optimal value of the functional in problem (11) with fixed

AN
eQ

vectors y € ¥ and ™ is expressed as:
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2
2

ol )= (307}, 9))-

N
_I min {Z(d (x)+yl\T/l)Xs) p(x)dx = w;b; ,
i=1

s=1,L

or, substituting the expression for d;(x) and avoiding the

use of index indicators that form the combination o,
s=1L:
—N — N
G(T 7W)=_Z\Vl'bi +
i=l

JQ erN k) D (€OeT) wy +a) K+ i, p(x)d

I=l,...L
Due to the arbitrariness of the choice of vectors y

and T, and taking into account the obtained expression,
we rewrite the functional of problem (10), excluding the
function y(x), in the following form:

. N
H(y)==> yb+

i=1

c(x,t
T EQN '[QGIEM(N k) Z (o
=,..,L

According to (19), almost everywhere for x € Qs, the

)+a )/k+y Wy, p(x)dx.

l

following system of inequalities holds:

N
() + 0, )Mo+ wo (1) <0,
i=1

N _
- Z(dl-(x)+yf\4_/i)kfp(x)—\vo(x) <0,¥s=1,L,s#1.
i=l
This system is solvable due to the solvability of Prob-
lem C (and B). Adding each of the remaining inequalities
to the /-th inequality, we obtain almost everywhere for

XEQGN Vs:l,_L,sil

y I— Yol y —

(i )+ 11, AP () < X (0 + 1 ) Ao,

i=l i=l

Recalling that p(x) >0 for x € Q, almost everywhere

for erGz the following system of inequalities will

hold: Vs=1,L, s #1

5 (o411, ) < Z(d )+ 7 .
i=1
Formula (19), considering the above, can be written as
follows:

R 1,if Z(d (x)+yl\|ll)7» = min Z(d (x)—i—y, \y,)k
Xl(x): i=1 s=LL i

0 otherwise, Vi = 1, L.

For ye¥ and NV eQV to be components of the
saddle point of the Lagrange functional of Problem C,
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they must be the optimal solution to the following prob-
lem:
G(y)= min Gi(t,y)—> max,
VeV

y; 20, i=p+1,...,N,
where
N N
GI(T s‘l’) = _Zwibi +
i=l
c(x,t;) /
+IQG,€M(N k) z (—— : +a;) k+v;y;)p(x)dx.
[,
Thus, the characteristic functions of the subsets

Q; = I,_L , which form the optimal multiplex partition,

are found using the following formula: for all /=1,...,L,
and almost everywhere x € Q

N
I, if Z((c(x,%i)/wi +al~)/k+yl~\fli)7»f =
i=1

A

1(¥)=1 _ mmzi]\il((c(x,%i)/wi +a) [ k+yigAg,
s=1,L -

Vi :I,_L;
Tn, Wis--Wp ) is the solution to the prob-

0 otherwise,
where (1y,...,
lem:

G(y) = ]rvnipNGl(r,\u)—>max, y;20,i=p+1N.
17 eQ

Theorem 3 is proven.

1 _

Remark. Let ylj = T for all j=1,N and /=1,L.
Then the indices in these parameters can be omitted, and
almost everywhere for xeQ in (15), the component
% (x)=1 when

N A o
z;(c(xsri)/wi +a;+y)h =
i=1

N .
=min— Y (c(x,7;)/w; +a; + ;A
s=LLk ;5
Considering that for any s = I,_L among the N values
A; only k are nonzero, the minimum value of the sum

on the right will be achieved at the index /, such that

o(x,7; .
W iy < (Lra) i
1 Wj i

Vieo;,VjeN\o; :(———

That is %;(x) =1 corresponds to the vector A' with the

following components:
~ c(x, % )
1 if i) ( X, 1) Y < J
Wi Wi
Vieo;, jeN\o,

ta;+vy;,

ki) =

0 otherwise.
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Thus, when the demand for services in the QG; s

I=1L, is distributed evenly among the centers, the

mathematical formulation of the multiplex partition prob-
lem can be limited to the characteristic vector-function

A=A (0)s Ay (), defined on Q by the following
rule: if erGl,then A;(x)=1Vieo;, and A;j(x)=1Vj eN\o},

I =1,_L. Then, in terms of characteristic functions, Prob-

lem A is written as follows:
Problem D:

(k('),TN_mm)iErI}"k x QN 1(k(')’ LA )’

where:
N
100,747 = %J‘Q;‘;(C(X:Ti)/wi +a; oy (X)p(x)dx,
= {x(-) () elk,
P e =b, i=1p
%jgp(x)xi(x)dxﬁbi, i=p+l,...,N};
Iy = {k(-) =My () (x)=0v1,i=1,...,N,

N
> Ai(x)=k,[=1,...,L, almost everywhere for x € Q} .
i=1

The optimal solution to this problem, based on the
above material, can also be expressed as follows:

. lif Vieo(x),
Ai(x) = . .
0jeN\o(x),i=1N,

where o(x) = {jl,jz,...,jk} is the set of indices of the

first k elements in the array
Dqorieq (X) = {dj1 ()c),dj2 (x),.. .,djN (x)} sorted in as-
cending order, with elements
al(x)=M+al+ﬁll,l=L_N, and %1,...,%]\],

1
Y1,....,\ 5 is the solution to the problem:

G(y)= min_ Gi(t,y) > max,y; 20,i=p+LN,
eV

1 c(x,t; N
G =y B EE Dy ptodi- Y vib.
ies(x) Wi i=l
4 EXPERIMENTS

Based on the formulas obtained in Theorem 3 and the
remark to it, computational methods and algorithms for
solving continuous problems of optimal multiplex parti-
tioning of sets have been developed, some variants of
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which are presented in the works [12, 13]. Computational
experiments were conducted to verify the correctness of
the algorithms and the adequacy of the mathematical
model of optimal location of service centers and multiplex
allocation of service demand, continuously spread over a
certain territory. The latter can be uniform or proportional
to the capacities of the centers.

Specific cases of problem A were solved: 1) optimal
multiplex partitioning of a set with fixed centers without
restrictions on their capacities; 2) OMPS with fixed cen-
ters without restrictions; 3) OMPS with location of cen-
ters with unlimited and limited their capabilities.

To illustrate the work of the proposed mathematical
model and approaches, we developed a software imple-
mentation using C# in Visual Studio. For the experimen-
tal environment, we used a Lenovo laptop featuring an 8-
core Intel Core i7 CPU, 16 GB of RAM, a 512 GB SSD,
and running Windows 10.

5 RESULTS
In the problems presented below, the following data

are common: Q:{xeR2 0<x; SlO,i:1,2}; p(x)=1

VxeQ; a;=0,w; =1,Vi= I,_N; the distance function is

the Minkowski with

e(xr) = Hlea —)? +(n )P
Problem 1. Figure 1 shows a duplex (k& =2 ) partition

of the square for N =7 fixed (a) and optimally located
(b) centers.

metric parameter  p:

0 10

BiBnoe idicms konsopy 304U
HAUBNWAYUM UeHMpPaM

Bidnoe idnicms konbopy 304U
HaubnuwxyuM ueHmpam

b

Figure 1 — Duplex partition of the square for 7 centers:
a — fixed centers, b — optimally located centers
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The case considered is p =2, with unlimited center

capacities, and demand for services is evenly distributed
in shared areas. On the right side of the partition in the
figures, here and further, the color of each zone corre-
sponds to the pair of centers that must serve it. Table 1
provides the corresponding coordinates of the centers and
their calculated capacities.

Since the demand for services is evenly distributed
over the entire area and equals 1, the computed capacities
essentially represent the area that each center must cover.
The objective function value in the OMPS problem with
fixed centers is: F = 230.2844, execution time = 2 sec.,
number of obtained subsets (zones) = 12. The same pa-
rameters in the OMPS problem with center location are:

F =210.6106, execution time = 32 sec, number of zones =
10. As seen, due to the optimal placement of centers, the
objective function value decreased by 8.54%.

Problem 2. Figure 2 shows a 2nd-order partition of
the square for the same fixed centers as in Problem 1, but
with capacity constraints (see Table 2).

Table 1 — Coordinates and capacities of centers in Problem 1

Ce;oter Center coordinates Center capacity, bi
B fixed optimally located |  fixed optimally

- - - - located

i T T Tha

1 224 | 2.16 | 2.389 | 2.607 13.844 12.813

2 7.04 | 236 | 7471 | 2.453 16.010 12.426

3 0.96 5 3221 | 2.236 14.553 14.966

4 444 | 552 | 3222 | 7.724 14.408 14.969

5 8.56 | 548 | 7.899 | 4.979 17.477 18.789

6 3.12 | 8.76 | 2.389 | 7.352 12.063 12.812

7 7.52 | 872 | 7471 | 7.506 10.847 12.426

The problem was solved when the demand for ser-
vices in the shared area of two centers is distributed both
evenly (Problem D, Fig. 2a) and proportionally (Problem
A, Fig. 2b). The number of non-empty zones was the
same in both cases: Number of zones = 11, the solution
time was almost the same, about 50 seconds, and the ob-
jective function values of the direct problem were 322.34
and 296.896, respectively.

As seen from Table 2 and Figure 2b, in the case when
demand in the shared area of two centers is distributed
proportionally to their capacities, even low-capacity cen-
ters do not fully exhaust their capabilities, although they
cover a large area. This is explained by the fact that in
these areas, most of the work is taken on by centers whose
capacities are significantly larger than others. If the prob-
lem of optimal duplex partitioning is solved for the same
seven fixed centers with the capacities computed above
but changing the form of demand distribution in shared
areas, the resulting partition is shown in Figure 3.
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[1.3]

10

b
Figure 2 — Duplex service zones in Problem 2 for seven
centers. Distribution of customers between centers on their
common area is: a — uniform, b — proportional

Table 2 — Load on centers in Problem 2

Center Capacity Real capacity calculated in case of
No bi distribution customs between centers
on their common area
uniform Proportional

1 100 20.773 21.645

2 4 4.062 1.085

3 100 22.204 26.415

4 6 5.941 1.125

5 100 25.083 30.550

6 3 2.988 0.433

7 100 18.149 17.949

The values of the dual (computed and provided to ver-
ify the correctness of the algorithm) and direct problem
functionals, solution time, number of zones, and calcu-
lated capacities of the centers are provided below accord-
ing to the figure:

Fig. 3,a — Fyya = 421.4912, Fyiree= 421.4927, time =
53 sec., Number zones = 8; By = (21.645; 1.085;
26.415; 1.125; 30.550; 0.433; 17.949);

Fig. 3,b — Fyya = 293.8833, Firee= 293.8835, time =
58 sec., Number zones = 12: B, = (20.773; 4.062;
22.204; 5.941; 25.083; 2.988; 18.150).
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Figure 3 — Optimal duplex partition of the square for seven cen-
ters with limited capacities. Demand in shared zones is distrib-
uted: a — uniform (capacity corresponds to Fig. 2 b), b — propor-
tional (capacity like Fig. 2 a)

Problem 3. Figure 4 a shows the solution to the opti-
mal duplex partition problem of the square with the loca-

tion of seven centers.
0 10

Bidnoe idnicms konbopy 304U

HaUbn ey um WeHmpam

I 2 5]

1.2

I [1.5]

15.7]

13.7]

I 4.7

I 4 6]

13.4)

1.3

a
Tx Ty wi ai Bi realBi
1 3594. 2731.. 1 0 30 21,574200
2 [859%5.. 1372. 11 0 4 4,0025999
3 |(2915.. |3245.. 1 0 30 20,545400)
4 [1672.. 82%4.. 11 0 & 5.9873999
5 |7.250.. 6276.. |1 0 30 22323200
6 [1.207.. 8787.. 11 0 3 2,9661999
7 |6731.|7.018.. 1 0 30 20,598600)
. -
L4 >
b

Figure 4 — Solution of the optimal duplex partition problem of
the square with the location of seven centers with limited ca-
pacities: a — partition; b — coordinates of the centers and their

capacities
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Some of them have limited capacities (in Figure 4b,
the grid table shows the coordinates of the placed centers,
their limited capacities B;, and the demand they must
cover realB;). The 2nd-order partition of the square for the
same fixed centers as in Problem 1, but with capacity
constraints (see Table 2), was solved when the demand
for services in the shared area of two centers is distributed
evenly. The number of non-empty zones is 9, the solution
time is 56 seconds, and the objective function value of the
direct problem is 277.76.

We present a few more examples in which solutions
of problems are predictable and confirm the correctness of
the algorithm.

Problem 4. The problem of optimal duplex partition-
ing with the location of 8 centers. The Minkowski metric
parameter is given. The initial placement of centers is
shown in Fig. 5, a; the optimally located centers and the
corresponding duplex partition are presented in Fig. 5,b.
In Fig. 6, the table provides the coordinates of the placed
centers, initial parameter values w;,a;, b;, center capaci-

ties calculated according to the obtained partition (last
column). At the optimal solution, Fy, = 166.602,
Fdirect = 166.678.

0 10 0 10

m

10

a

Figure 5 — Optimal duplex partition of the square with the loca-

tion of eight centers: a — initial placement of centers; b — optimal
placement of centers and their corresponding zones

Tx Ty wi a Bi realBi

v 1 N2 1 0 100 | 12.459
2 |7473. 2510.. 1 0 100 12.400

3 (7501 2484 1 0 100 12,381

4 (2494, 2464 1 0 00 12,317

5 2504 7541 1 0 100 12.297

6 7464, 7454 1 0 100 12,384

7 |2530. 7442 |1 0 100 12499

o g (7435 74521 0 100 12418
< >

Figure 6 — Calculation results in Problem 5

The results of computational experiments for solving
optimal triplex partitioning problems of the square with
fixed and optimally located centers are shown in Figures
7-9. The Manhattan metric (Figures 7, 8) and the Euclid-
ean metric (Figure 9) were used to calculate the distance
between points.
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Figure 7 — Optimal triplex partitioning of the square with fixed
centers and limited capacities of the 1st, 4th, and 7th centers
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Figure 8 — Optimal triplex partitioning problem of the square
with the location of ten centers
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Figure 9 — Optimal triplex partitioning of the square with loca-
tion of nine centers (Euclidean metric)

6 DISCUSSION

Unlike the OMPS models and problems presented in
[4, 5, 12, 13], in this paper, first, the partitioning criterion
is refined by considering the average cost of providing a
service to a client, calculated for all centers that can serve
them. This allows for a more accurate representation of
the service provision in the objective function.

Second, the results of multiplex partitioning of sets
with constraints on the centers’ capacity are presented for
different approaches of calculating capacity utilization.
Specifically, cases are considered where the demand for a
service in the k-th order zone is distributed among the
corresponding centers either proportionally to their ca-
pacities (as in [12, 13]) or evenly. In both cases, the ca-
pacity utilization constraints are met because of optimal
partitioning, but the last may differ significantly. Typi-
cally, in the first case, the service arcas for low-capacity
centers are smaller and their capabilities are not fully util-
ized. The full utilization of the small center capacity is
characteristic for an even demand distribution.

Under certain initial conditions, the placement-
partitioning results correspond to the properties of the
solutions of OMPS problems presented in [12, 13]. When
capacity constraints are present, they are always satisfied,
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and the objective functions of the primal and dual prob-
lems converge with acceptable accuracy.

Thus, the obtained results confirm the validity of the
developed mathematical model for optimal zoning of ter-
ritories with the facility location in the form of an optimal
multiplex partitioning problem of continuous sets.

CONCLUSIONS

The scientific novelty of this research lies in the theo-
retical justification of methods and algorithms for optimal
multiplex partitioning of sets. This is achieved through
the formulation and proof of propositions and theorems
that establish the properties of the functional, define the
set of feasible solutions, and determine the necessary and
sufficient conditions for optimality.

The practical significance of this research lies in the
ability to apply the developed methods and algorithms for
decision-making in the distribution of structural objects
within a logistics system and the determination of their
service zones based on specific criteria.

Future research will focus on generalizing these prob-
lems by considering the temporal variability of the de-
mand function, the hierarchical structure of logistics sys-
tems, and the multi-stage nature of distribution processes.
Additionally, efforts will be made to adapt the developed
algorithms for practical applications in territorial zoning,
taking into account existing infrastructure and intercon-
nections between real-world objects.
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V]IK 519.8

MATEMATHUYHI OCHOBA METO/JIB OIITUMAJIBHOI'O MYJIbTHIIVIEKCHOI'O PO3BUTTA
KOHTUHYAJIbBHUX MHOXHWH

Kopsimkina JI. C. — 1-p TexH. HayK, TOUCHT Kadeapyu CHCTEMHOTO aHaji3y Ta ynpasiiHHs HamioHalpHOro TEXHIYHOTO yHiBEp-
curety «JlHIMpoBCchbKa momiTexHikay, JJHinpo, Ykpaina.

Jly6eneun [I. €. — acmipant Kkadeapw CHCTEMHOTO aHami3y Ta yHOpaBliHHA HaIlioHaTbHOTO TEXHIYHOTO YHIBEPCUTETY
«/lHinpOoBCHKa ToMTiTeXHiKay, JHinpo, YkpaiHa.
MineeB O. C. — kaHJ. TexXH. HayK, JOIEHT Kadeapu CHUCTEMHOTO aHaji3y Ta ympaBiiHHA HarioHadbHOTO TEXHIYHOTO

yHiBepcuTeTy «J{HInpoBchKka nojitexHikay, JJHinpo, Ykpaiuna.
Ca3zonoBa M. C. — xanz. ¢i3.-MaT. HayK, JOCHITHUK CEKIil onTuUMizalii Ta Teopii cucreM kadenpu Marematiku KopoliBCcbKkoro
TEXHOJIOT1YHOro iHCTUTYTY, CTOKrOJbM, LIIBeris.

AHOTAULIA

AKTyaJabHicTb. O0'€KTOM TOCTIIHKEHHS € MPOLIEC PO3MIIIECHHS CEPBICHUX LEHTPIB (CIyk0 COMiadbHOTO 3aXUCTy, CKIAIiB aBa-
piifHOrO mocTayaHHS Ta iH.) 1 PO3NOAITY MDX HHMHM HONHTY Ha IOCHyry y perioni. IlpencraBieHo MaremaTwdHi Mopenmi i
0oOIPYHTOBAaHO METOIM PO3B’S3aHHS ONTHMI3alifHMX 3a7ad PO3MIIIECHHSI-PO3IONALUTY, B SKHX Iepe0aueHo MEepPeKpPUTTS CepBICHUX
30H Ha TOW BUIIAJIOK, KOJIM HAHOIIKIMK [IEHTP HE 3MOXEe HaJaTH IOCIyry. AKTyalbHICTh TOCHIKEHHsI 00yMOBIICHA HEOOXIIHICTIO
BUPIIICHHS 3aBJIaHb, 0B’ 3aHUX, IIPUMIPOM, 3 TEPUTOPIAIBHAM PO3IOAIIOM 00’ €KTIB JIOTICTHYHUX CUCTEM i 3aBYaCHUM ILIaHyBaH-
HSM 3amoODKHMX 3aXOfiB B paifoHaX MOTCHLIMHUX TEXHOTCHHHMX aBapili, opraHi3auii eBakyauidHuHX mpoueciB abo HaJaHHS
MEPBUHHOT I'YMaHITapHOI TOMOMOTH HACENICHHIO y Pa3i HaJA3BUYAHUX CUTYaIliil.

Meta — 3a0e3nedyeHHs HaZaHHS TapaHTOBAHOTO CEPBICY y KOPOTKHH TEpMIH HUISIXOM MPUKPIIUICHHS KIi€HTa A0 AEKITBKOX
HAONMMKYNX HEHTPIiB, PO3POOIICHHS BiIMOBITHOTO MAaTEMAaTHYHOTO Ta MIPOTPaMHOTo 3a0e3MeUCHHSI.

MeTtoa. BBeneHO NOHATTS XapaKTePUCTUIHOI BEKTOP-(PYHKIIT PO3OUTTS k-ro MOPSIAKY MHOXHHH, TEOPETHIHO apryMEHTOBAHO
BUKOpHCTaHHs npouenypu JIII-penakcanii 3aadi, 3amucanol y TepMiHax TaKUX XapaKTepHCTHUHuX (yHKUii. MaTemaTndHe 3a0e3-
HEYEeHHS PO3POOIIEHO 3 BUKOPUCTAHHSM eJIeMEHTIB (DyHKI[IOHAIBHOTO aHali3y, Teopii ABOICTOCTI, HErIa(Koi ONTUMI3allii.

PesyabsTaTn. [IpencraBieHo i JOCTIKEHO MaTeMAaTHYHY MOJENb ONTHMAIBHOTO TEPUTOPIaJbHOIO 30HYBAaHHS 3 PO3MIILICHHIM
LECHTPIB, MPU HAsIBHOCTI OOMEKEHb Ha 1XHi MOTYXKHOCTI y BUIJISIAI HENIEPEpPBHOI 3aa4i ONTUMATIBHOTO MYJIBTUIUICKCHOTO PO30HTTS
MHOuH (OMPM), sika onucye po3moaiibyi MPOLECH B JIOTICTHYHAX CHCTEMax 3a KpUTepisMH MiHiMmizauii BiacTaHi A0 JEKIIBKOX
HAMOMMKYNX [EHTPIB 3 ypaxXyBaHHIM 1X MOKIHBOCTEH. [IoBeIeHO P TBEPHKEHB Ta TEOPEM CTOCOBHO BIACTHBOCTEH (PYyHKITIOHATY
1 MHOXXHMHH JOITyCTUMHX PO3B’s3KiB 3amayi. OTpuMaHO HEOOXifHI Ta IOCTaTHI YMOBH ONTHMAJIBHOCTi, Ha SKHX 0a3yrOTbCs
Ppo3po0IIeHi METOAN 1 AITOPHUTMH OITUMAIEHOTO MYJIBTHIUICKCHOTO PO3OUTTS! MHOKHH.

BucnoBkn. TeopeTwuHi MONOXKEHHS 1 pe3yNbTaTH OOUYMCIIOBAIBHMX EKCIEPHMEHTIB, HaBeleHI y pOOOTi, CBig4aTh Ipo
KOPEKTHICTh PO3pPOOIEHOT0 MaTEMAaTHYHOTO arapara i JISTKO MEepeHOCSATHCS Ha OKpeMi BHIAJKH po3TIIHyTol 3amadi. JoBeneHi
TBEP/KEHHS Ta TEOPEMH JIeKaThb B OCHOBI OOYMCIIOBAIFHMX METOJIB ONTHMAJIBHOTO 30HYBAaHHS TEPUTOPIH 13 PO3MIIIEHHIM
LICHTPIB, SIKi BAPTO BUKOPHCTOBYBATH IIPH OpraHi3awii po3nojaiTy MaTepiallbHUX IMOTOKIB JUIS OL[IHIOBaHHS MICTKOCTI LIEHTPIB i MapKy
3a/isIHUX TPAHCHOPTHHUX 3aCO0iB.

KJIIOUYOBI CJIOBA: koHTHHyalbHa MHOXHHA, MYJbTUIUIEKCHE po30uTTs, ontuMisauis, JI[I-penakcaris, ymoBu
ONTUMAJIBHOCTI, 3a]1a4i PO3MILICHHA-PO3MOILTY.
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