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ABSTRACT

Context. In machine learning, similarity measures, and distance metrics are pivotal in tasks like classification, clustering, and
dimensionality reduction. The effectiveness of traditional metrics, such as Euclidean distance, can be limited when applied to com-
plex datasets. The object of the study is the processes of data classification and dimensionality reduction in machine learning tasks, in
particular, the use of metric methods to assess the similarity between objects.

Objective. The study aims to evaluate the feasibility and performance of a normalized L,-metric (Normalized Euclidean Dis-
tance, NED) for improving the accuracy of machine learning algorithms, specifically in classification and dimensionality reduction.

Method. We prove mathematically that the normalized L,-metric satisfies the properties of boundedness, scale invariance, and
monotonicity. It is shown that NED can be interpreted as a measure of dissimilarity of feature vectors. Its integration into k-nearest
neighbors and t-SNE algorithms is investigated using a high-dimensional Alzheimer’s disease dataset. The study implemented four
models combining different approaches to classification and dimensionality reduction. Model M1 utilized the k-nearest neighbors
method with Euclidean distance without dimensionality reduction, serving as a baseline; Model M2 employed the normalized L,-
metric in KNN; Model M3 integrated t-SNE for dimensionality reduction followed by kNN based on Euclidean distance; and Model
M4 combined t-SNE and the normalized L,-metric for both reduction and classification stages. A hyperparameter optimization
procedure was implemented for all models, including the number of neighbors, voting type, and the perplexity parameter for t-SNE.
Cross-validation was conducted on five folds to evaluate classification quality objectively. Additionally, the impact of data normali-
zation on model accuracy was examined.

Results. Models using NED consistently outperformed models based on Euclidean distance, with the highest classification accu-
racy of 91.4% achieved when it was used in t-SNE and the nearest neighbor method (Model M4). This emphasizes the adaptability of
NED to complex data structures and its advantage in preserving key features in high and low-dimensional spaces.

Conclusions. The normalized L,-metric shows potential as an effective measure of dissimilarity for machine learning tasks. It
improves the performance of algorithms while maintaining scalability and robustness, which indicates its suitability for various ap-
plications in high-dimensional data contexts.

KEYWORDS: normalized Euclidean distance, machine learning, classification, t-SNE, similarity measures, K-Nearest
Neighbors.

ABBREVIATIONS
kNN is the k-Nearest Neighbors algorithm;
NED is the Normalized Euclidean Distance;
t-SNE is a t-distributed Stochastic Neighbor Embed-
ding.

Accordingly, there is a need to find new, more flexi-
ble, and accurate tools that can take into account the spe-
cifics of different types of data and tasks and not only
more accurately reflect the similarity between objects but
also ensure correctness in the context of different metric
spaces for some applied tasks. On the other hand, it is
necessary to investigate whether these new tools can be
easily integrated into existing machine learning algo-
rithms and ensure their efficiency.

The object of the study is the process of data classifi-
cation and dimensionality reduction in machine learning
tasks, in particular, the use of metric methods to assess the
similarity between objects.

NOMENCLATURE
| -|is a Euclidean norm;
R" is a n-dimensional vector space;
u is a non-zero N-dimensional feature vector;
Vv is a non-zero N-dimensional feature vector;
o is a scalar.

INTRODUCTION

In machine learning and data analysis, one key task is
finding and using effective ways to measure the similarity
between objects. Distance metrics and similarity measures
serve as mathematical tools for this purpose. They are the
basis for many algorithms, including classification, clus-
tering, dimensionality reduction, and recommender sys-
tems. Traditional metrics, such as Euclidean, cosine, and
Manhattan distances, are widely used because of their
simplicity and efficiency. However, their use can limit the

Any function that satisfies the basic properties of non-
negativity and reflexivity can be considered a similarity
measure. If it satisfies the triangle inequality, it can be
considered a distance metric, so the number of such func-
tions is infinite. There are many well-known distance
measures in the literature, which, although they have a
common goal, differ significantly in focus and formula-
tion. Choosing the optimal measure for a particular task
should consider additional properties that may affect the

effectiveness of algorithms in the context of specific data.
In particular, standard metrics cannot always adequately
assess the similarity between objects when the data have
different measurement scales when there is a complex

correlation between features, etc.
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effectiveness of its application. This leads to the need not
only to develop measures but also to study their proper-
ties.
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The subject of this study is the normalized L,-metric
as a means of assessing the similarity between objects and
its impact on the efficiency of algorithms.

This paper aims to investigate the feasibility of using
normalized L,-metric in classification and reduction algo-
rithms to improve their efficiency.

1 PROBLEM STATEMENT
Let u and v from R" be vectors, in particular, describ-
ing the numerical values of some features of objects.
The normalized L,-metric between two vectors U and
Vv can be defined using the formula (1):

NED(u,v) = u-v 1)
Jul+v
Here, | - | denotes the Euclidean norm of the vector. This

distance finds the ratio of the norm of the difference be-
tween the vectors to the sum of their norms, which en-
sures the normalization of the result. Note that (1) is de-
fined only for non-zero vectors u, v. In the case of zero
vectors, NED can be redefined to be zero.

As is known [1], of all the normalized L,-distances,
only when p=2 is a metric, i.e., it satisfies the triangle
inequality. We will study and generalize other mathemati-
cal properties of the metric NED and evaluate the effec-
tiveness of its integration into distance-based algorithms:
k-nearest neighbors and t-distributed stochastic proximity
embedding for high-dimensional data.

2 REVIEW OF THE LITERATURE

Since many real-world problems are based on finding
similarities between groups of objects or populations, the
list of fields of knowledge that use similarity measures is
quite broad: biology, physics, chemistry, geography,
ecology, social sciences, anthropology, algebra, statistical
mathematics, engineering, and computer science [1].

Distance and similarity measures play a critical role in
many machine learning tasks, including case-based rea-
soning, clustering, and classification [2—6], often impact-
ing model performance more than the choice of algorithm
[1]. However, this aspect receives insufficient attention in
the literature, as it requires deep knowledge of the subject
area and is difficult to generalize.

Modern studies on assessing the predictive capabilities
of various similarity metrics for different datasets and
conditions were conducted, particularly in [7-11]. Re-
searchers have studied the relationship between com-
monly used distance measures, their performance in vari-
ous machine learning tasks, and their robustness to noise
[9]. The article [8] investigates the predictive capabilities
of various similarity metrics (Euclidean, Pearson’s corre-
lation, Spearman’s rank correlation coefficient, Kendall’s
coefficient) based on their application to data sets of dif-
ferent dimensions and properties, as well as the evaluation
of the results obtained. Some metrics have been shown to
be better suited for large datasets, while others are more
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reliable when applied to smaller outlier datasets. Data
quality, correlation, and data types also play a role. Thus,
research in this area emphasizes carefully selecting simi-
larity measures depending on the application and data.

Selecting an effective tool for measuring the similarity
between objects is critical in distance-based machine
learning algorithms such as the k-nearest neighbors
method [10, 11], clustering [4—6], and reduction. For ex-
ample, in clustering tasks, using different similarity
measures allows to obtain more clearly interpreted groups
and apply a systematic approach to identifying different
types of relationships between data [5, 6].

The effectiveness of various normalized L;-metrics
has been studied in [9-11], but the use of normalized
Euclidean distance (1) in machine learning tasks has
hardly been investigated. Again, It should be emphasized
that among all normalized Ly-metrics, only NED is a dis-
tance metric.

This article is devoted to analyzing and summarizing
the properties of the normalized L,-metric (1) and evaluat-
ing its effectiveness in distance-based algorithms and
high-dimensional data.

3 MATERIALS AND METHODS

Let’s explore the properties of the NED metric.

1. Boundedness: 0 < NED (u,v) < 1.

Proof. The lower bound follows from the fact that NED
is a distance metric [1]. Let us prove the upper bound using
the triangle property.

For any vectors U, V € R", it holds: |u — V| < Ju| + |v].

This inequality reflects that the length of a side of a tri-
angle (the difference of two vectors) is always less than or
equal to the sum of the lengths of the other two sides.
ul e _|

R TETRTET

Proven.

Consequence. If u, v are antiparallel, then NED
(u,v)=1.

Proof. Two vectors are called antiparallel if they are
collinear and oppositely directed.

So, V=—o0-U, o> 0, then

|u—(-au)

NED(U,V) = W .

In the numerator:
|u—(—a-u)|=|u+o-u =1+ o) |ul.

In the denominator:
[ul*H—o-ul=|ul+ o |-[u[=ul+ o -Jul=(1+ )- |ul.

So,
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I+a

NED(u,v)= 1.

1+a

Proven.

Remarks. Based on the boundedness property and the
consequence, we can conclude that this distance metric (1)
is also a similarity measure. That is, the more similar the
feature vectors of objects are, the closer the NED value will
be to zero. On the other hand, if the feature vectors are as
dissimilar as possible, the closer the NED value will ap-
proach one.

Therefore, it is proposed to interpret NED as a measure
of dissimilarity.

2. Invariance to scale: NED(au, av) = NED(u, V),
where o is some number.

Proof.
NED(ow, av) = Jowws — v _ Jou(u =) _
Jort] + o] forfu] + [od|v]
_Jelu—v) _ NED(u,v)
Jor(uf + V] e
Proven.

3. The monotonicity property.
If u, v, w are non-zero vectors, |W| < |v| and |u — v| <
|u —w|, then NED (u, v) <NED (u, w).
Proof. Consider the difference:
NED(u,v)- NED(u,w) = Ju Ju—w _
jul+ 1] Jul-+ i
=] o) o = - (] + )

<
-+ M)-(ul-+

Ju—w] (o + fw])—Ju - (u]+ )

ul-+ M)-(ul-+ w)
o=+ o —Jul -|v)
(uf+v1)- -+ )

el ),
Tl =

Given that all Euclidean norms are positive values and
|w| < |v|, the difference in the numerator will take on non-
positive values. Consequently, the expression will also be
non-positive.

Proven.

4 EXPERIMENTS

The DARWIN dataset [12], which contains data on
Alzheimer’s disease based on handwriting analysis (452
features about 174 respondents), was selected for the ex-
periments. As a result of data pre-processing, 450 predic-
tor features and one target feature, which is binary, were
retained. This made it possible to train models in high-
dimensional data. The k-nearest neighbors algorithm and
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the Euclidean distance metric were used as a benchmark
to evaluate the effectiveness of the dissimilarity measure
(1). The index for assessing the quality of classification is
a metric that determines the proportion of correct predic-
tions of the model, i.e., the ratio of the number of correct
predictions to the total number of observations.

Next, a procedure was implemented to find the opti-
mal hyperparameters of the kNN algorithm adapted to use
the Euclidean metric and the dissimilarity measure (1).
The classifiers were trained on unstandardized and stan-
dardized data using standard normalization and different
approaches to neighbor voting.

The approach of reducing the high-dimensional data
space to two dimensions based on the t-SNE method was
also used. The perplexity parameter was varied in the
range from 5 to 40 in increments of 5 to study the effect
of this parameter on classification accuracy.

We optimized the kNN hyperparameters using a grid
search, which included the number of neighbors in the
range from 2 to 15 and the type of voting — simple (uni-
form) and weighted (distance). During each iteration, the
value of the t-SNE perplexity parameter was updated, and
the classifier was optimized for the reduced data. The
dimensionality of the feature space was reduced using
Euclidean distance and NED.

Cross-validation was used to evaluate the classifica-
tion quality on five blocks, corresponding to 20% of all
data, to form the test sample. The best results of classifi-
cation accuracy were recorded, and for each combination
of parameters, it was determined whether they outper-
formed the previous results. As a result, the optimal hy-
perparameters of the models were determined, including
the t-SNE perplexity parameters, the number of
neighbors, the type of voting, and the accuracy achieved
for these settings.

5 RESULTS

Table 1 show the results of the experiments for non-
standardized and standardized data: the optimal hyper-
parameters of the four models, including the value of the
t-SNE perplexity parameter, the number of kNN
neighbors, the type of voting, and the achieved accuracy
of the classifiers.

Fig. 1 graphically illustrates the comparison of the de-
pendence of the accuracy of classifiers built based on
M1-M4 models under optimally tuned hyperparameters
(Table 1) and the number of kNN neighbors with and
without using data standardization approaches.

In Fig. 1, the solid line represents the performance of
models based on the NED dissimilarity measure (M2,
M4), while the dashed line represents models based on
Euclidean distance (M1, M3). Bold points indicate where
the highest accuracy is achieved. Fig. 1a and 1c illustrate
the comparison of model performance for non-
standardized data, while Fig. 1b and 1d show the per-
formance for standardized data. Fig. 1a and 1b show the
accuracies of the M1 and M2 models, while Fig. 1c and
1d illustrate the accuracies of the M3 and M4 models.
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Table 1 — Experimental results on optimal hyperparameters and model accuracy

Ml:  model  without | M2: model without t-SNE | M3: model with t-SNE|M4: model with t-SNE
Model t-SNE  reduction;  the | reduction; the distance | using Euclidean distance; | using NED distance; the
distance metric in KNN is [ metric in kNN is NED. the distance metric in kNN | distance metric in KNN is
Euclidean. is Euclidean. NED.
. Number of neighbors — 4, | Number of neighbors —4, | Perplexity — 30, Perplexity — 10,
Non- Optimal . . . . . .
. weighted voting. weighted voting. number of neighbors — 4, | number of neighbors — 10,
standardized | Hyperparameters . . . .
data weighted voting. weighted voting.
Accuracy 75% 81 % 80 % 87 %
Optimal Number of neighbors — 2, | Number of neighbors — 6, | Perplexity — 25, Perplexity — 25,
Standardized P weighted voting. weighted voting. number of neighbors — 3, | number of neighbors — 9,
Hyperparameters . . . .
data simple voting. weighted voting.
Accuracy 73 % 89 % 87 % 914 %
Accuracy vs Number of Neighbors for Original Data ) Accuracy vs Number of Neighbors for Original Data

=== Euchdean {Max Acc: 0.73 at k=2)
—— Dissimilarity Measure (Max Acc: 0.89 at k=6)
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Figure 1 — Comparison of predictive accuracy of the models M1-M4
6 DISCUSSION sponding result of 80% for the Euclidean metric by 7%.

The results presented in Table 1 demonstrate the ef- Similarly, for standardized data, the use of NED im-
fectiveness of using the t-SNE dimensionality reduction  proved accuracy by 4%, with the best performance reach-
technique to enhance model kNN performance. Specifi- ing 91.4% (model M4). These findings highlight the
cally, models based on Euclidean distance (M1, M3) competitiveness of the proposed dissimilarity measure
achieved a 5% improvement in accuracy for non- (1), which demonstrates greater adaptability to complex
standardized data and a 14% improvement for standard-  data structures compared to the Euclidean metric.

ized data. For models using the NED dissimilarity meas- The experiments combining t-SNE for dimensionality
ure (M2, M4), performance gains were 6% for non- reduction and KNN for classification emphasize the sig-
standardized data and 2% for standardized data. nificant influence of the choice of distance measure and

When comparing models based on NED (M2, M4) model parameters on classification outcomes. The NED
and Euclidean distance (M1, M3), the NED-based models = measure (1) proved particularly effective when applied in
consistently showed higher accuracy across various val- combination with t-SNE, where it was also used to com-
ues of the nearest neighbors parameter (Fig. 1). For non-  pute distances between points during data compression.
standardized data, the highest accuracy of 87% was  This approach, implemented in model M4, outperformed
achieved with the NED measure, exceeding the corre- all other configurations, achieving an accuracy of 91.4%.
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This result indicates that the proposed measure (1) can
better capture data structures in high-dimensional spaces
and after dimensionality reduction.

As shown in Section 3 of this article, the normalized
Euclidean distance (NED) metric simultaneously acts as a
distance metric and a similarity measure and satisfies the
important properties for algorithms: scale invariance,
monotonicity, and boundedness. It has been experimen-
tally shown that the use of NED consistently allows mod-
els to achieve higher accuracy than the traditional Euclid-
ean metric. These characteristics emphasize the adaptabil-
ity of NED to work with complex datasets and its ability
to preserve key properties even in spaces with reduced
dimensionality.

CONCLUSIONS

The problem of developing a mathematical framework
to enhance the efficiency of existing machine learning
algorithms is addressed. One of the central elements of
distance-based methods is the approach to distance meas-
urement.

The scientific novelty of the results lies in demon-
strating that the normalized L, distance metric (1) can be
interpreted as a measure of dissimilarity between feature
vectors, making it valuable for comparing relative differ-
ences between vectors. It is proven that the NED satisfies
the properties of boundedness, monotonicity, and scale
invariance.

The practical significance of the results is reflected
in the developed software that implements the dissimilar-
ity measure (1) within the k-nearest neighbors method and
t-SNE feature space reduction. A comparative analysis of
the accuracy of four models was conducted using applied
high-dimensional data. The highest accuracy achieved
through cross-validation was 91.4%, obtained by Model
M4, which integrates NED into the classifier and feature
space reduction. It is worth noting that the experiments
demonstrated the ability of measure (1) to significantly
improve the efficiency of distance-based algorithms in
solving specific classes of applied classification problems
under standardized and non-standardized, high-
dimensional, and reduced data conditions.

Future research prospects include studying the effi-
ciency of applying the normalized Euclidean metric to
other applied problems.
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YK 004.942, 004.89
JTOCIIKEHHA BUKOPUCTAHHSA HOPMAJII3OBAHOI L,-METPUKH B 3AJTAYAX KJACHBIKAIIT

Kounnpyxk H. E. — xanj. TexH. HayK, JOLEHT, IOLEHT Kadeapu KiOepHETHKH 1 MPUKIATIHOT MaTeMaTUKU YIKTOPOACHKOTO HAIlio-
HAJIHOTO YHIBEpCHTETY, YKropon, YKpaiHa.

AHOTAIIA

AKTyasIbHicTh. Y MallMHHOMY HaBYaHHI MipH MOAIOHOCTI Ta METPUKH BiJCTaHI BiAIrpaloTh KIIOYOBY POJIb ¥ 33jadax Kiacugi-
Kallisl, KJlacTepH3allisi Ta 3MEHILCHHs po3MipHOCTi. E(eKTUBHICTh TpaguLifHUX METPHK, 30KpeMa eBKJIJIOBOI BiICTaHi, MOXKe OyTH
00ME)XEHOIO TIPH 3aCTOCYBaHHI 10 CKJIaJHUX HabopiB naHux. O6’€KTOM JIOCHIIKEHHS € mpouecu Kiacudikarii Ta 3MEHIIEHHS PO3-
MIpHOCTI y 3ajadyaXx MAaIIMHHOTO HAaBYAaHHS, 30KpEeMa BHKOPHCTAHHS METPHYHMX METOMIB Ul BHU3HAYCHHS MOMIOHOCTI MiX
00’€KTaMH.

Meta po0OTH — OLIHKAa JOUIIBHOCTI Ta €(QEKTUBHOCTI HOpMali3oBaHOi L,-MeTpuku (HOpMaii3oBaHOi €BKIITOBOI METPHKH,
NED) ans migBUIICHHS TOYHOCTI ITOPUTMIB MAaIIHHHOTO HABYAHHS, 30KpeMa B 3aJadax Kiacu]ikaiii Ta 3MEHIIEHHS PO3MIPHOCTI.

MeTtoa. MareMaTH4HO JJOBEIECHO, 10 HOPMalizoBaHa L,-MeTprka 3a10BOJIbHSIE BIACTHBOCTI OOMEKEHOCTI, MacITabHOI iHBapi-
aHTHOCTI Ta MoHOTOHHOCTI. [Toxaszano, o NED MoxHa iHTepHpeTyBaTh sK Mipy HECXOXkOCTi BEKTOpiB o3Hak. [ inTerpamis B anro-
put™u K-HaiiOnmkuux cycinis i t-SNE gocimiukyeTbest Ha OCHOBI IaHHX MPO XBOpoOy AJibLreiiMepa BUCOKOT po3MipHOCTi. Y mocii-
JOKCHHI peai3oBaHO YOTHPH MOJICH, 10 MOEHYIOTh Pi3Hi MiAX0aAu 10 Kiacudikaiii Ta 3MeHIIeHHs po3MmipHocTi. Moaens M1 Bu-
KOpHCTOBYBaa MeTo [ K-HAOIMKIMX CyCi/liB 3 €BKIIIIOBOIO BiJCTaHHIO 63 3MEHILICHHSI PO3MIPHOCTI, Ik 6a30Ba; Moelb M2 BUKO-
pucroByBaia HopMaiizoBaHy L,-merpuky B KNN; momens M3 interpysana t-SNE st 3MeHIeHHst po3mipHocTi, a nmotim KNN Ha
OCHOBI €BKIiIOBOI BifcTaHi; Monens M4 noennysana t-SNE 1 HopmainizoBaHy L,-MeTpuKy SK IUId 3MEHIIEHHS PO3MIpHOCTI, TaK i
knacudikarii. s Beix Mogenelt Oyno 3acTOCOBaHO MpOLEAypy ONTHMI3alii rineprnapaMeTpiB, BKIOYAIOYN KUTBKICTh CYCiiB, THIT
rosiocyBaHHs Ta nmapamerp nepruiekcii B t-SNE. s 06’ ekTHBHOI OIIHKY SIKOCTI Kitacu(ikamnii OyJIo IpOBEICHO NepeXpecHy mepeBi-
pky Ha 1r’stu porax. Kpim toro, O6yio 1ociimkeHo BIUIMB HOpMalTizamii JaHNX Ha TOYHICTH MOJIEII.

PesyasTaTn. Mogeni, mo BukopucroByBaian NED, cTabinbpHO nepeBepiiyBajii MoJIeNi Ha OCHOBI €BKJIIIOBOI BiICTaHi, IPUYOMY
HalBuIIa To4HICTh Knacudikauii (91,4%) Oyna nocsruyra npu interpyBanti NED y t-SNE ta metoni HaitGimmkuux cycifis (Mozxels
M4). Le nigkpeciroe agantuBHicts NED 10 CKitaiHUX CTPYKTYp AaHHX Ta ii mepeBary y 30epeeHHi KIIIOYOBHX O3HAK SIK Y BUCOKO-
PO3MipHOMY, TaK i B HU3bKOPO3MipHOMY IPOCTOPAX.

BucnoBku. HopmaiizoBana Metpuka L, 1eMOHCTpy€e MOTEHIIAN SK e(eKTHBHA Mipa HECXOXKOCTI IS 33/1a4 MAIIMHHOTO HABYaH-
Hs. BoHa mokpantye IpogyKTHBHICT allTOPUTMIB, 30epiralodu Mpu bOMY MacIiTabOBaHICTb i HAIWHICTB, IO BKa3ye Ha i mpuaaT-
HICTB JUIsl pI3HUX 3aCTOCYBaHb y KOHTEKCTI JAHUX BUCOKOI PO3MIPHOCTI.

KJIFOYOBI CJIOBA: HOpManmizoBaHa €BKJIIJOBa BiJICTaHb, MallMHHE HaBuaHHs, kinacuikamis, t-SNE, mipu momibHOCTI,
K-Hait6mmk4nx cycinis.
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