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ABSTRACT

Context. Bearings are an important part for the functioning of various means of transportation. They have the property of wear
and failure, which requires high-quality and timely detection of faults. Failures are not always easy to detect, so the use of traditional
detection methods may not be effective enough. The use of machine learning methods well-suited to the task can effectively solve the
problem of detecting bearing faults. The object of study is the process of non-destructive diagnosis of bearings. The subject of study
is methods of selecting hyperparameters and other optimization for building a diagnostic model based on a neural network according
to observations.

Objective. The goal of the work is to create a model based on a neural network for detecting bearing faults based on the ZSL.

Method. A proposed filter smooths the data, preserving key characteristics such as peaks and slopes, and eliminates noise
without significantly distorting the signal. A normalization method vibration data is proposed, which consists of centering the data
and distributing the amplitude within optimal limits, contributing to the correct processing of this data by the model architecture. A
model based on a neural network is proposed to detect bearing faults by data processing and subsequent binary classification of their
vibrations. The proposed model works by compressing the vibration data into a latent representation and its subsequent recovery,
calculating the error between the recovered and original data, and determining the difference between the errors of healthy and faulty
bearing vibration data. The Zero-Shot Learning machine learning method involves training, validating the model only on healthy
vibration data, and testing the model only on faulty vibration data. Due to the proposed machine learning method, the model based on
a neural network is able to detect faulty bearings present in the investigated fault class and theoretically new fault classes, that is, the
model can detect different classes of data that it did not see during training. The architecture of the model is built on the
convolutional and max-pooling layers of the encoder, and the reverse convolutional layers for the decoder. The best hyperparameters

of the model are selected using a special method.

Results. Using the Pytorch library, a model capable of binary classification of healthy and faulty bearings was obtained through

training, validation, and testing in the Kaggle software environment.

Conclusions. Testing of the constructed model architecture confirmed the model's ability to classify healthy and fault bearings
binaryly, allowing it to be recommended for use in practice to detect bearing faults. Prospects for further research may include testing
the model through integration into predictive maintenance systems for timely fault detection.

KEYWORDS: bearing fault, autoencoder, convolutional neural network, zero-shot learning, binary classification.

ABBREVIATIONS

AE is an autoencoder;

AE-CNN is an autoencoder convolutional neural
network;

CWRU is a Case Western Reserve University;

CNN is a convolutional neural network;

DAE is a deep autoencoder;

DNN is a deep neural network;

FFT is a fast Fourier transform;

GAE is a graph autoencoder;

GAF is a Gramian angular field algorithm;

GCN is a model that specializes in learning the node
characteristics of graph data;

GPMS is a Green Power Monitoring Systems
company;

LSTM is a long short-term memory;

MMN is a min-max normalization data method;

MSE is a mean squared error;

PCA is a principal component analysis method;

SGF is a Savitzky-Golay filter;

SSAE is a stacked sparse autoencoder;

STFT is a technology that has been developed to
overcome the limitations of FFT;

TPE is a Tree-structured Parzen Estimator method;

VAE is a variational autoencoder;
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XG i1s a Xavier Glotor initialization;
ZSL is a zero-shot learning machine learning scenario.

NOMENCLATURE

a is a hyperparameter of the learning rate of the AE-
CNN model;

a is a minimum data value for the MMN,

b is a maximum data value for the MMN;

by are the coefficients of the polynomials for the SGF;

B is a exponential smoothing coefficient of the first
momentum for the Adam optimization algorithm;

B, is a exponential smoothing factor for the second
momentum for the Adam optimization algorithm;

¢p 1s a probability distribution for bad combinations of
hyperparameters of the AE-CNN model;

¢, is a probability distribution for good combinations
of hyperparameters of the AE-CNN model;

¢y 1s a number of filters at the input to the
convolutional layer;

Cowr 18 a number of filters at the output of the
convolutional layer;

d is a data provided by the AE-CNN model,;

€ is a small value in the Adam optimization algorithm
to prevent division by zero;

E is a MSE;
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E,. 1s a set of test error values;

E,.i» 1s a set of training error values;

E,.; 1s a set of validation error values;

f is a samples of bad vibration data with faults;

g is a samples of good vibration data;

y is a threshold separating good and bad values of £;

h is a set of hyperparameters of the AE-CNN model;

k is a shift index of the smoothing window for the
SGF;

k. is a size of the one-dimensional convolutional layer
filter;

[ is a shift parameter for the AE-CNN convolutional
one-dimensional layer;

Lin 1s a training loss value;

L., 18 a validation loss value;

m is a width of the window for the SGF;

M() is an AE-CNN model structure;

n is a sample of vibration data;

n;,, is a number of input connections (neurons)
included in the layer;

Ny 18 @ number of output connections (neurons)
coming out of the layer;

N is a number of samples of vibration data;

p is a max-pooling filter size;

P() is a probability distribution;

t is a number of time points in the vibration data
sample;

U is an uniform distribution;

W is a set of controlled (adjusted) weights of the AE-
CNN model;

X is an one point in the original sample;

X is an one point in a recovered sample;

Xindex 1 an index of one point in the original sample;

Xes: 18 a test samples of bad vibration data with faults;

Xjain 18 a training samples of good vibration data;

X, 1s a validation samples of good vibration data;

y is an optimization iteration number, the current step
of the Adam optimization algorithm;

z is a MSE threshold.

INTRODUCTION

The study deals with the development of a special
neural network to detect faults in bearings that affect their
reliability and safety. The problem is that bearings can
wear or break over time, and these failures are often
accompanied by vibrations that are not always easy to
detect. Depending on different situations, different
methods of detecting bearing faults may be effective [16].
Detection of such faults using traditional methods can be
difficult and not always effective [1], [15], especially if
the faults are still at an early stage. Therefore, it is
necessary to develop an automated system capable of
analyzing the vibration signals and determining whether
the bearing is good or bad.

One of the powerful options for detecting the fault
features is AE-CNN, which can be trained only on healthy
vibration samples, ensuring their generalization and
extracting knowledge from data, without losing the ability
to further classify faulty data samples.
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The object of study is the process of non-destructive
diagnosis of bearings.

Vibration data are used to diagnose the condition of
these bearings and identify possible faults.

The process of pre-processing the vibration data to be
suitable for AE-CNN is very careful. This is caused by
the fact that the initial vibration data is very noisy due to
the influence of other sound factors from the
environment. Therefore, to realize the classification
ability of AE-CNN, a filter and normalization must be
applied to the vibration data. The size and quality of the
training sample used can significantly affect the training
and accuracy of the AE-CNN model. Therefore, reducing
the size of the samples, and ensuring the preservation of
its main properties, is necessary to improve the quality of
AE-CNN and the speed of its construction.

The subject of study is methods of selecting
hyperparameters and other optimization for building a
diagnostic model based on a neural network according to
observations.

The purpose of the work is to create a model based
on a neural network for detecting bearing faults based on
the ZSL.

1 PROBLEM STATEMENT

Suppose gn(?) and fp(?) are given. Training, validation,
and test samples are formed from data prepared for model
processing: Xiyains Xvats Xiest-

For given, respectively, good and bad bearing classes
{0,1}, the task of detecting the difference between
bearing classes through the AE-CNN model can be
represented as (if M(h, W, d) with d € {Xuin, Xoaty Xiesi}
then class(M(h, W, d)€ {0,1})) — opt. h of the best
model M() is determined by a special selection method,
and W is adjusted through the optimizer of the learning
process.

2 REVIEW OF THE LITERATURE

Aiming to address the issue of strong background
noise in bearing failures and the lack of evident fault
features, this paper [2] proposes a fault diagnosis method
that combines Savitzky-Golay Gram angle field feature
enhancement with ResNetl8. The acquired signal is
segmented, and the segmented signal is subjected to
Butterworth high-pass filtering to extract the high-
frequency component of the signal containing fault
information.

The optimized SGF and adaptive spectrum editing are
proposed to detect the fault feature of the rolling element
bearing under low-speed and variable-speed conditions
[3].

This manuscript elaborates on the development of a
VAE-CNN model, designed for the fault diagnosis of
rolling bearings. By amalgamating the CNN model’s
superior capacity for representing vibration signal data
with the VAE model’s robustness to data noise, the
proposed VAE-CNN model excels in scenarios where
only a limited amount of observational data is available at
the initial stages of rolling bearing operation. The VAE-
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CNN model achieves over 90% accuracy in diagnosing
different fault types at various speeds [4].

This study [5] proposes a GAE-based approach for
fusing node features in an Euclidean dataset. The primary
advantage of the proposed approach lies in its adaptive
ability to capture the complex structure of the dataset and
fuse node features using a GAE, effectively extracting the
latent features. Normalization is a vital pre-processing
step as it addresses the issue of varying magnitudes
among different base detectors, which makes direct
comparison and combination challenging. To enhance the
convergence speed of the algorithm, in the proposed
approach normalized the output of the base detectors.

This approach [6] uses both an unsupervised and a
supervised model. First, the current signal in the time
domain is segmented with respect to the fundamental
frequency, and then a DAE is trained with the normal
state data to estimate the approximation of the system
function. The residual signal is then calculated from the
difference between the raw and estimated signals
produced by the AE for all conditions, which helps to
extract discriminative features from the current signal
data without any labels. Finally, a two-layer CNN is built
with the residual signals to identify bearing faults. The
experiments were performed 100 times by randomly
selecting the training/testing dataset, and the result
showed good stable convergence with high accuracy.

This study [7] proposes a novelty detection and fault
diagnosis method for bearing fault recognition and
diagnosis based on a hybrid DAE. The method uses one
model to accomplish two tasks, detecting new faults and
classifying known faults. To address the challenge of
requiring a large number of training samples in existing
deep learning methods, this study combines the
unsupervised training characteristics of AEs with the
powerful feature extraction ability of CNNs, adopting a
semi-supervised training method that can learn fault
features from both labeled and unlabeled samples,
reducing the required sample size for training.

The proposed method [8] incorporates a GAF-based
image generation technique from a 1-dimensional current
signal for a 2-layer CNN model to construct a data-driven
intelligent fault-diagnosis approach for bearings. As the
current signal is affected by surrounding noises, it
becomes very difficult to extract the fault signatures
manually. When the data are converted into the polar
coordinates for image transformation, the different
bearing-condition data create distinctive patterns, which
helps the CNN model to easily extract the necessary high-
level features. In all considering operating conditions, this
proposed GAF and 2-dimensional CNN-based approach
can attain good accuracy.

This study [9] is based on deep learning methods for
bearing fault diagnosis. Firstly, a CNN model is designed
for end-to-end bearing fault diagnosis. Then, considering
the presence of strong noise in actual working conditions,
a bearing fault diagnosis model based on AE-CNN is
proposed to achieve bearing fault diagnosis under noisy
conditions. The experiment results on the CWRU
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demonstrate the effectiveness of the proposed model. The
method proposed in this study can be used for fault
diagnosis of bearings under noise conditions and has
engineering practical value.

This article [10] highlights the advantages of deep
learning models, particularly AE and CNNs, for fault
diagnosis in bearing systems. Unlike traditional machine
learning algorithms, which require extensive manual
feature design, AE and CNN can automatically extract
high-level features from large-scale, unlabeled data. AE,
though simple, benefits from enhancements such as
stacking layers and adding noise. CNN excels in feature
extraction due to its unique architecture and translation
invariance.

This study [11] indicates that experimental results
show that VAE is a more competent and promising
dimensionality reduction tool than PCA.

This work presents SSAE-DNN, which in
combination with a complex envelope spectrum for inputs
performs fault diagnosis of rotary machines when there
are fluctuations of the shaft speed. In the proposed
scheme, vibration signals related to different health
conditions of a motor bearing are preprocessed using the
complex envelope signal. In the proposed method,
information obtained by the stacked autoencoders from
the defect frequency, as well as its principle harmonics
present in the complex envelope spectrum for a given
fault, makes it possible to classify faults with varying
speeds. The efficiency of the proposed scheme was
validated using rotating machine bearing data for four
different shaft speeds. The minimum average
classification accuracy for every experiment was 90%,
which demonstrates that the proposed scheme can also
classify faults when fluctuations of the shaft speed exist.

3 MATERIALS AND METHODS
Let’s divide all vibration data into good and bad,
respectively, as follows: ga(¥) and fy(f). To reduce the
noise in the data arising from environmental factors, the
SGF is applied to the data, which is defined by the
following formulas:

gn()= Zz:bng(Hk) ;
INn®D= ibka(Hk),
where
k:m—_1 (1

2

The filtered data must have one dimension because if
the data is submitted to AE-CNN at different scales of
variation, it can complicate the data processing of the
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model and significantly degrade the classification results.
Taking into account this feature, MMN is used, which is
determined by the formulas:

__ &y @-mingy (),
max(gly (1))~ min(gj (1)

g +a,

o Sh@=min(/y (1)
S max(f (1)) - min( /3 ()

b-a)+a.

where b and a are determined according to research
requirements.

Normalized data ready for submission to AE-CNN is
divided into training, validation, and test samples: X4,
Xval = {Sg}; Athest:{Sf} .

Following the ZSL principle, the training and
validation data consists only of the working vibration
samples, and the test data consists only of the faulty
vibration samples.

Given the periodicity of the vibration data, the healthy
data samples have stable healthy features along their
entire length, as well as the fault features in the
corresponding faulty samples are observed consistently
along their entire length. Taking these data properties into
account, the data is reduced to an optimal size to optimize
the data processing speed of the AE-CNN model.

The architecture of the AE-CNN model is divided into
an encoder, a latent space, and a decoder.

The encoder architecture is proposed in four stages.
Each stage has a convolutional one-dimensional layer and
a maximum pooling layer. A convolutional one-
dimensional layer performs a convolution operation
where filters are moved over d and compute scalar
products.

The data in each stage of the encoder is processed
according to the formulas:

c= max (Wd+l),
i=0,...,p—1

where
d= {”s |se [xindexaxindex +ke - 1]} .

[ is initially initialized to zero. This is a standard
approach, as the offset value can be adjusted quickly
during training without much damage to the result, so
zero initialization works well.

W in AE-CNN models from the beginning of
processing are initialized through XG according to the
defined formula:

W=U(—J ¢ \/ ¢,
Rjpy + Moy Nin + Mout

Nip = Cinkc >

where
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Nour = Coutkc .

To reduce the dimensionality of the data to the state of
the latent representation, a linear layer is used, which has
one matrix of weights, which determines the connections
between input and output neurons. Each output neuron is
connected to all input neurons.

The decoder uses similar formulas as the encoder, but
in reverse order, since the main purpose of the decoder is
to recover or reconstruct the input data from the latent
representation.

To optimize W and o of the model, the Adam
optimization algorithm is used, which is determined by
the following formulas:

I’IA1y
Wy+1:Wy_0' = >
1Wy-l-S

m
m, = yy ,
1-B4
\J
vy = yy ,
1-B,

my = Blmy71 +(1—[31)VW); 5
vy =Bavyg +(1=B)(V I,

v, =
Yo,

The initial values of m, ; and v, , are initialized with
ZEeros.

The research uses the method of TPE hyperparameter
selection, which works according to the following
formulas:

cg(h)
cep(h)’

Ny, = argmax

cg(h)=P(h|E<y),
ey (h)=P(h|E>7).

This method divides / into good and bad groups using
a certain vy, and builds models to estimate the probability
of each group. This makes it possible to find new /4 that
have a higher probability of belonging to good values,
thus optimizing the choice of 4. y is usually chosen as a
certain quantile.

In this case, E is the last validation error at the end of
the current trial / through TPE.

The AE-CNN model goes through the processes of
training, validation, and updating W and is tested on X,,.
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At all stages, E determined by the following formulas is
used:

t
o 2
z (xtrain ~ Xtrain )
_ n=1
€rain = >

t

t
A 2
z (xval - xval)
=1
€yal = nf 4

t
A 2
Z (xlest ~ Xtest )
=1
Clest = .

t
Let the sets of errors be defined as E,,,i,, Evar, Eres={e€1,
e, ..., ey} which is calculated on the last epoch of the
final trained AE-CNN model. To obtain the difference
between the signs of good and bad bearings, the
difference between E,,; and E,,; was used. z is determined
by the formula:

z=max(E,) .

All samples with E>z are considered faulty.
In the final step, E,., is compared with z, and if e, >z,
then the corresponding sample is considered faulty.

4 EXPERIMENTS

The data for the study supplied by GMPS owner Eric
Bechhoefer has 1158 samples of vibration data, of which
865 are good and 293 are bad. Each sample has 93752
values recorded over 5 minutes.

Experimentally, m was selected with a value of 24, b,
with a value of 13, and k was calculated with a value of
11 according to formula (1).

Based on the periodicity in the samples, in each SGF-
treated faulty sample, pulses with increased amplitude of
the fault-determining signal are observed. The research
recorded that the first pulse appears on average at 513
values of the faulty sample, the period during which each
subsequent pulse is recorded is 935 values.

In the process of normalization of vibration data
according to formula (2), b with a value of 0.3 and a with
a value of —0.3 were used, these values were selected
taking into account that after normalization of healthy
samples and normalization of faulty samples based on the
calculated metrics of healthy samples, the maximum
module values of faulty samples will not exceed the range
from—1 to 1.

Based on the signs of periodicity of both healthy and
faulty vibration samples, it was decided to reduce the
samples to the first 1500 values to optimize the duration
of data processing in the AE-CNN model.

Empirical studies show that the best results are
obtained if the authors use 20-30% of the data for testing,
and the remaining 70—80% ofThe data for training [12].

Adhering to the ZSL principle, good samples in the
amount of 605 and 260, 70% and 30% of gy, respectively,
were selected for the training and validation processes,
and all 293 faulty samples were selected for the testing

process.
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In the best encoder architecture selected through TPE,
the parameters c;,=1, c,,~13 were used on the first one-
dimensional convolutional layer; on the second layer
¢ii=13, ¢, =22; on the third layer ¢;=22, c,,~57; on the
fourth layer c¢;,=57, c¢,~94. Each one-dimensional
convolutional layer used k=3, p=2, and a padding
parameter equal to 1 to preserve dimensionality and
include zero values at the edges, allowing the filters to
better treat edge values that would otherwise be treated
less than other values in the center. Output padding with
one extra value, without significantly affecting learning,
was added to control the decoder layers’ output sizes.

A linear layer is used to provide an initial size for the
data supplied to the decoder. An unflatten layer is used to
ensure the corresponding data size expected by the
reverse convolutional layers of the decoder.

The best reverse convolutional layers of the decoder
selected through TPE have the parameters of the first layer
¢ii=94, c,,~=57; on the second layer ¢;=57, c¢,,~22; on the
third layer ¢;=22, c,,~13; on the fourth layer c;=13,
cour=1. 18 epochs selected through TPE were used for
training and validation processes. The best o of the AE-
CNN model determined through TPE was set to 0.0004. It
should be noted that TPE determines the initial possible a,
after which the Adam optimizer adjusts the determined o.
The batch size for simultaneous sample processing by the
AE-CNN model was determined to be 16.

5 RESULTS

The results of the AE-CNN model training and
validation processes are shown in Table 1. The table
shows L, and L,, for 18 epochs. z and mean of E,
values are also represented.

Table 1 shows the satisfactory reduction of L,.;, and
L,, over epochs. It can be seen that the mean E,., >z, so
the method of detecting faults by comparing E of the AE-
CNN model of the reproduced samples with z works in
practice.

Table 1 — Results of training and validation of the AE-CNN

model
Epochs Livain Ly
1 0.0097 0.0092
2 0.0091 0.0091
3 0.0091 0.0090
4 0.0089 0.0086
5 0.0078 0.0076
6 0.0064 0.0064
7 0.0052 0.0056
8 0.0045 0.0052
9 0.0041 0.0050
10 0.0039 0.0048
11 0.0037 0.0048
12 0.0036 0.0047
13 0.0035 0.0047
14 0.0034 0.0046
15 0.0033 0.0046
16 0.0033 0.0046
17 0.0032 0.0046
18 0.0032 0.0046
z 0.00467195
Mean of E,.y 0.007458317
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Ly, and L, are calculated at the end of each epoch  corresponding number to batch size showing a clear
and are dynamic during all epochs due to changes in the difference between them. The last row of Table 2
performance of the AE-CNN model. represents the mean values for the E,,; and E ., columns.

Table 2 shows the mean values of E,,; and E,.
calculated from groups of 16 samples with the

Table 2 — The results of calculating the mean values of E,,; and E,, for each batch group

Batch group E,. E.q
1 0.0045924 0.00741719
2 0.00449713 0.00747784
3 0.00457025 0.00725762
4 0.00458623 0.00775483
5 0.00447544 0.00727971
6 0.00461615 0.00741939
7 0.00446275 0.00729698
8 0.00461744 0.00755094
9 0.00463127 0.00701465
10 0.00448145 0.00788275
11 0.00452703 0.00733029
12 0.00454546 0.00676255
13 0.0046516 0.0077562
14 0.00459267 0.00735691
15 0.00456514 0.00795846
16 0.00467195 0.00786724
17 0.00454972 0.00778848
18 0.00705316
19 0.00748284
Mean of E 0.0045667106 0.0074583173
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Figure 1 — The example of two faulty and healthy samples without SGF-MMN treatment
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Figure 3 — The example of a healthy SGF-MMN-treated sample and its recovery from the AE-CNN model
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Figure 4 — The example of a faulty SGF-MMN-treated sample and its recovery from the AE-CNN model

Fig. 1 shows that the faulty and healthy samples
without proper data pre-processing have blurred class
characteristics, which can complicate the perception of
the AE-CNN model and worsen its classification ability.

Fig. 2 shows that the SGF-MMN-treated vibrations of
healthy and faulty samples mainly differ only in the
characteristic pulses that are present in the faulty sample
and absent in the healthy sample.

Fig. 3 shows that the AE-CNN model restores the
healthy sample with satisfactory accuracy, highlighting
the main details of the healthy sample, which confirms the
qualitative performance of the AE-CNN model.

Fig. 4 shows that the AE-CNN model recovers a
faulty sample without characteristic pulses due to the fact
that the AE-CNN model learned to recover only healthy
data features, which is why there is a clear difference
between E,,; and E ., in Table 2.

6 DISCUSSION

The dimensionality of the vibration samples was
reduced to 1500 values, but still, the AE-CNN model
showed good performance results in sample recovery and
classification of faulty samples through the comparison of
E, and E,.. It is assumed that if the AE-CNN model will
handle full-size samples, with proper tuning of M() and
corresponding /, the AE-CNN model will do well in the
classification task. The difference when processing full-
size samples will be that the difference between E,,; and
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E.y will be much larger because the reduced faulty
samples have a much smaller number of characteristic
pulses than the full-size faulty samples.

It is worth noting that if the bearing faults have small
amplitude and low intensity of the characteristic signals
[5], that is, if the vibrations of the faulty samples are very
similar to the vibrations of the healthy samples and have
barely noticeable signs of the fault, the AE-CNN model
constructed in this study is likely to be much more
difficult to track the characteristics of faulty samples and
distinguish them from healthy samples by a slight
difference in class features, in this case, the £ comparison
method may be less effective.

The proposed combinatorial method in the study [5]
solves the given problem. The method transforms the
original dataset into a graph dataset and uses the feature
aggregation module to aggregate the features of
neighboring nodes.

Considering that during the SGF processing of the
data provided for this study, only the features of the
classes shown in Fig. 2 were detected, the AE-CNN
model was built for the task of binary classification based
on these features of the classes of healthy and faulty
samples. It is also worth noting that the SGF parameters
selected for processing the data provided in this study are
appropriate only for this data and may vary when properly

applied to other data.
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In the study [7], the hyperparameters of the DAE
hybrid network are mainly set based on common
experience and are constantly adjusted by trial and error
to achieve higher diagnostic accuracy. In this study, this
feature was taken into account and the TPE method was
used to select /2 in the AE-CNN model. Also, the method
proposed in the study [7] can only detect new faults and
cannot distinguish between different new faults, it is not
able to represent and distinguish faults in more detail. In
this research, the AE-CNN model can detect new faults if
they have specific characteristics that are significantly
different from the healthy characteristics of the samples.
Still, it can also not distinguish between classes of
possible faulty samples.

The method proposed in the study [9] is also based on
the AE-CNN model and can be used to diagnose bearing
faults under noise conditions. The AE-CNN model in this
study uses data processed by SGF and MMN, however, in
the case of using noisy data processed through MMN
only, it is not known what the classification ability of the
AE-CNN model will be, but assumed that it will be lower
due to the presence of noise in the data, which can distort
the characteristics of classes important for classification.

Research [10] mentions the integrated use of different
deep learning models, such as LSTM network and CNN,
the advantages of each model can be complementary. It is
assumed that adding layers of LSTM to the AE-CNN
model, given its ability to remember well the short-term
and long-term features of the data, can indeed if correctly
implemented, help to better capture the dependencies
between successive pulses and long-term trends in
vibration data, especially if the AE-CNN model processes
samples of the full-size of 93752 values.

In the paper [13], a GCN-based LSTM autoencoder
with a self-attention model for bearing fault diagnosis was
proposed and evaluated using multivariate time series
data. The proposed model was found to increase the
accuracy of fault diagnosis by combining the GCN layer
and the LSTM layer to extract important features from the
frequency domain. In the data pre-processing step, data
including various fault states and steady states were
standardized, while features in the frequency domain were
extracted through STFT conversion. A competent
implementation of STFT can likely help improve the
efficiency of AE-CNN in detecting faulty samples by
taking into account frequency components and observing
the change in frequency over time.

CONCLUSIONS

The task of detecting bearing faults when applying the
machine learning method based on the ZSL principle has
been solved.

The scientific novelty of the obtained results is that,
for the first time, a machine learning method with the
selection of hyperparameters was proposed for building
the AE-CNN model based on the best-selected
hyperparameters. The hyperparameter selection method
divides the combinations of hyperparameters into good
and bad using a certain threshold value of the objective
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function and builds models to estimate the probability of
each group. This makes it possible to find new
combinations of hyperparameters that have a higher
probability of being good, thereby optimizing the choice
of hyperparameters.

The practical significance of the obtained results is
that, following the ZSL principle, a model based on a
neural network was built that detects bearing faults and
successfully performs binary classification of healthy and
faulty samples of vibration data. The results of the
experiment make it possible to recommend the proposed
data pre-processing methods and the built model for
practical application, as well as to determine the effective
conditions for applying the data pre-processing methods
and the built model based on a neural network.

Prospects for further research consist of testing the
built model based on a neural network on other vibration
data of bearings and its implementation in practical
operations to detect bearing faults.
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BUABJIEHHS HECITPABHOCTI NIIIIUITHUAKA 3A IOIIOMOI'OXO 3rOPTKOBOi HEMPOHHOI MEPEXKI
ABTOKOJYBAJIbHUKA

Kucapin M. K. — cryzent dakynbrery iHpopManiiiHUX TeXHOJOTIH J[ep>kaBHOTO TOProOBEIbHO-CKOHOMIYHOTO YHIBEpPCHUTETY,
Kuis, Yxpaina.

AHOTAIIA

AxTyanbHicTh. [TiIIINMHUKKA € BaXXJIMBOIO YacTHHOI A8 (YHKI[IOHyBaHHsS pPi3HMX 3aco0iB mepecyBaHHs. BoHH MaioTh
BJIACTUBICTH 3HOILIYBATHCS 1 BUXOAWUTH 3 JIady, IO BHUMArae SIKICHOTO 1 CBOEYACHOTO BHUSBICHHsS HecHpaBHOCTEH. 3001 He 3aBkAu
JIErKO BHUSBUTH, TOMY BHKOPHUCTaHHS TPaJMUIHHUX METOIIB BHSBJICHHS MOXKe OyTH HEIOCTaTHbO e(EKTHBHUM. BHKOpHCTaHHS
METOJiB MAaIIMHHOIO HaBYaHHSI, SKi J00pe MiIXOAATh IS 3aBJaHHS, MOXe €(EeKTHBHO BUPIIINTH MPOOJIEMY BHSBICHHS
HecIIpaBHOCTEeH MiAIHUITHAKIB. 00’ €KTOM JOCIIHKEHHS € IPOoIec HepyHHIBHOI IIarHOCTHKH IMiAIIMIHUKIB. [IpenrvMeTom nociikeH s
€ MeToI¥ Mifdopy TrileprapaMeTpiB Ta iHIIOT onTHMi3amii 1 MoOyX0oBH AiarHOCTHYHOI MOJIENi Ha OCHOBI HEHpPOHHOI Mepexi 3a
JAHUMH CIIOCTEPEIKECHb.

Meta po60TH — CTBOPEHHSI MOJIEJIi HAa OCHOBI HEMPOHHOT MEpPeXi /ISl BUSIBIICHHS HECTIPABHOCTEH MiAIIMITHUKIB HA 0cHOBI ZSL.

Mertopa. 3anponoHoBaHuid QUIBTP 3IIAMKYE qaHi, 30epiraroun KII0Y0Bi XapaKTePHUCTHKH, TaKi SIK KK Ta HAXWIH, 1 yCyBa€ LIyM
0e3 iICTOTHOTO CITIOTBOPEHHS CHTHAY. 3alpONOHOBAHO METOJ HOpMallizarii BiOpaiifHuX qaHuX, sSIKHi MOJIsrae B HCHTPYBaHHI JaHUX
1 pO3MOALTI aMITITYIM B ONTHMAIBHUX MEXax, IO CHpHUsI€ KOPEKTHIH oOpoOIi IUX JaHUX apXiTEKTYPOIO MOJENi. 3alpomoHOBaHO
MOJIENTb Ha OCHOBI HEMPOHHOT MEpEeXi JUTs BUSIBIICHHS] HECIIPABHOCTEH i IIIUITHAKIB IIISIXOM 00pOOKH aHWX 1 MOAAJBINOI ABIHKOBOT
ki1acudikaii iX KOJIMBaHb. 3aPOIIOHOBAHA MO/IENb TIPALIOE LIIIXOM CTHCHEHHS JaHHX MPO BiOpamito B MPUXOBaHE IPEACTABICHHS
Ta 1X MOAAJBIIOrO BiTHOBJICHHS, OOYMCICHHS MOXHOKM MK BiHOBICHMMH Ta BHUXIIHHUMHU JaHHNMH T4 BU3HAYCHHS PI3HUIN MiX
MOXHOKaMH JaHUX PO BiOpalli0 CHPABHOrO Ta HECIPABHOIO MiMIIMIHKUKIB. MeTon MamiiHHOrO HaBuaHHs Zero-Shot Learning
nependavae HaBYAHHs, MEPEBIPKY MOJEII JIMILE HA CIPABHUX JAHUX MPO BiOpALil0 Ta TECTYBaHHS MOJENi JIMIIE HA HECIPaBHUX
JaHuX Mpo Bibpamito. 3aBASKU 3aNpPONOHOBAHOMY METOAY MAIIMHHOTO HaBYaHHS MOJEIb Ha OCHOBI HEHPOHHOI Mepexi 3haTHa
BUSIBIIATH HECHPABHI MiJIIUITHUKH, HASBHI B IOCITI[KyBaHOMY KJIaci HECHPAaBHOCTEH 1 TEOPETHYHO HOBI KJIACH HECIIPABHOCTEM,
TOOTO MOJENs MOXE BHSIBISATH Pi3HI KJIacH JaHUX, SKi BOHAa He Oadmiia MiJ Yac HaBYaHHS. ApXITEKTypa MoJeli moOyJoBaHa Ha
3TOPTKOBUX PIiBHAX 1 PIBHAX MaKCHMAaJIBHOTO 00’€JHAaHHS KOJAEpa, a TaKOK HAa 3BOPOTHUX 3TOPTKOBHX DIBHAX A ICKOAEPA.
CrieniaIbHIM METOJJOM BUOMPAIOThCS HAaliKpalli rineprnapaMeTpy MOJEi.

PesyabsTaTn. Bukopucrosyroun 6i6miorexy PyTorch, 6yno orpumano moxens, 3matHy no OiHapHOi kiacudikarii crpaBHUX i
HECHPaBHUX ITiIUIMITHAKIB, IIIIXOM HaBYaHHs, BaJliiallii Ta TECTyBaHHs B IporpaMHoMy cepenosunii Kaggle.

BucnoBkn. TectyBaHHs mnoOynOBaHOi apXiTEKTypH MOJeNi MiATBEPAMIO 3HaTHICTH Mojesi KiacudikyBaTH CIpaBHI Ta
HECIPaBHi MAMIUITHUKA JBIHKOBO, IO 103BOJISIE PEKOMEH/yBaTH 1i 11 BAKOPUCTAHHS HA MPAKTHUL ISl BUSBICHHSI HECIIPABHOCTEM
miamunHUKiB. [IepcrieKTHBH MOAANBIINX AOCTIKSHh MOXYTh BKIIIOYaTH TECTYyBaHHS MOJEIN IUIAXOM IHTerpamii B CHCTEMH
MPOTHO3HOTO 00CITyTrOBYBaHHS 1JIsI CBOEYACHOTO BUSIBIICHHS HECIIPABHOCTEH.

KJIFOYOBI CJIOBA: HecnpaBHICTh MiANIMITHAKA, aBTOKOTYBaJbHUK, 3TOPTKOBAa HEMPOHHA Mepe)ka, HABYaHHS 3 HyJs1, OiHapHa
KJIacudikaris.
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