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ABSTRACT 
Context. Bearings are an important part for the functioning of various means of transportation. They have the property of wear 

and failure, which requires high-quality and timely detection of faults. Failures are not always easy to detect, so the use of traditional 
detection methods may not be effective enough. The use of machine learning methods well-suited to the task can effectively solve the 
problem of detecting bearing faults. The object of study is the process of non-destructive diagnosis of bearings. The subject of study 
is methods of selecting hyperparameters and other optimization for building a diagnostic model based on a neural network according 
to observations. 

Objective. The goal of the work is to create a model based on a neural network for detecting bearing faults based on the ZSL. 
Method. A proposed filter smooths the data, preserving key characteristics such as peaks and slopes, and eliminates noise 

without significantly distorting the signal. A normalization method vibration data is proposed, which consists of centering the data 
and distributing the amplitude within optimal limits, contributing to the correct processing of this data by the model architecture. A 
model based on a neural network is proposed to detect bearing faults by data processing and subsequent binary classification of their 
vibrations. The proposed model works by compressing the vibration data into a latent representation and its subsequent recovery, 
calculating the error between the recovered and original data, and determining the difference between the errors of healthy and faulty 
bearing vibration data. The Zero-Shot Learning machine learning method involves training, validating the model only on healthy 
vibration data, and testing the model only on faulty vibration data. Due to the proposed machine learning method, the model based on 
a neural network is able to detect faulty bearings present in the investigated fault class and theoretically new fault classes, that is, the 
model can detect different classes of data that it did not see during training. The architecture of the model is built on the 
convolutional and max-pooling layers of the encoder, and the reverse convolutional layers for the decoder. The best hyperparameters 
of the model are selected using a special method. 

Results. Using the Pytorch library, a model capable of binary classification of healthy and faulty bearings was obtained through 
training, validation, and testing in the Kaggle software environment. 

Conclusions. Testing of the constructed model architecture confirmed the model's ability to classify healthy and fault bearings 
binaryly, allowing it to be recommended for use in practice to detect bearing faults. Prospects for further research may include testing 
the model through integration into predictive maintenance systems for timely fault detection. 

KEYWORDS: bearing fault, autoencoder, convolutional neural network, zero-shot learning, binary classification. 
 

ABBREVIATIONS 
AE is an autoencoder; 
AE-CNN is an autoencoder convolutional neural 

network; 
CWRU is a Case Western Reserve University; 
CNN is a convolutional neural network; 
DAE is a deep autoencoder; 
DNN is a deep neural network; 
FFT is a fast Fourier transform; 
GAE is a graph autoencoder; 
GAF is a Gramian angular field algorithm; 
GCN is a model that specializes in learning the node 

characteristics of graph data; 
GPMS is a Green Power Monitoring Systems 

company; 
LSTM is a long short-term memory; 
MMN is a min-max normalization data method; 
MSE is a mean squared error; 
PCA is a principal component analysis method; 
SGF is a Savitzky-Golay filter; 
SSAE is a stacked sparse autoencoder; 
STFT is a technology that has been developed to 

overcome the limitations of FFT; 
TPE is a Tree-structured Parzen Estimator method; 
VAE is a variational autoencoder; 

XG is a Xavier Glotor initialization; 
ZSL is a zero-shot learning machine learning scenario. 
 

NOMENCLATURE 
α is a hyperparameter of the learning rate of the AE-

CNN model; 
a is a minimum data value for the MMN; 
b is a maximum data value for the MMN; 
bk are the coefficients of the polynomials for the SGF; 
Β1 is a exponential smoothing coefficient of the first 

momentum for the Adam optimization algorithm; 
Β2 is a exponential smoothing factor for the second 

momentum for the Adam optimization algorithm; 
cb is a probability distribution for bad combinations of 

hyperparameters of the AE-CNN model; 
cg is a probability distribution for good combinations 

of hyperparameters of the AE-CNN model; 
сin is a number of filters at the input to the 

convolutional layer; 
сout is a number of filters at the output of the 

convolutional layer; 
d is a data provided by the AE-CNN model; 
ε is a small value in the Adam optimization algorithm 

to prevent division by zero; 
E is a MSE; 
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Etest is a set of test error values; 
Etrain is a set of training error values; 
Eval is a set of validation error values; 
f  is a samples of bad vibration data with faults; 
g is a samples of good vibration data; 
γ is a threshold separating good and bad values of E; 
h is a set of hyperparameters of the AE-CNN model; 
k is a shift index of the smoothing window for the 

SGF; 
kс is a size of the one-dimensional convolutional layer 

filter; 
l  is a shift parameter for the AE-CNN convolutional 

one-dimensional layer; 
Ltrain is a training loss value; 
Lval is a validation loss value; 
m is a width of the window for the SGF; 
M() is an AE-CNN model structure; 
n is a sample of vibration data; 
nin is a number of input connections (neurons) 

included in the layer; 
nout is a number of output connections (neurons) 

coming out of the layer; 
N is a number of samples of vibration data; 
p is a max-pooling filter size; 
P() is a probability distribution; 
t  is a number of time points in the vibration data 

sample; 
U is an uniform distribution; 
W is a set of controlled (adjusted) weights of the AE-

CNN model; 
x is an one point in the original sample; 
x̂ is an one point in a recovered sample; 
xindex is an index of one point in the original sample; 
Xtest is a test samples of bad vibration data with faults; 
Xtrain is a training samples of good vibration data; 
Xval is a  validation samples of good vibration data; 
y is an optimization iteration number, the current step 

of the Adam optimization algorithm; 
z is a MSE threshold. 
 

INTRODUCTION 
The study deals with the development of a special 

neural network to detect faults in bearings that affect their 
reliability and safety. The problem is that bearings can 
wear or break over time, and these failures are often 
accompanied by vibrations that are not always easy to 
detect. Depending on different situations, different 
methods of detecting bearing faults may be effective [16]. 
Detection of such faults using traditional methods can be 
difficult and not always effective [1], [15], especially if 
the faults are still at an early stage. Therefore, it is 
necessary to develop an automated system capable of 
analyzing the vibration signals and determining whether 
the bearing is good or bad. 

One of the powerful options for detecting the fault 
features is AE-CNN, which can be trained only on healthy 
vibration samples, ensuring their generalization and 
extracting knowledge from data, without losing the ability 
to further classify faulty data samples. 

The object of study is the process of non-destructive 
diagnosis of bearings. 

Vibration data are used to diagnose the condition of 
these bearings and identify possible faults. 

The process of pre-processing the vibration data to be 
suitable for AE-CNN is very careful. This is caused by 
the fact that the initial vibration data is very noisy due to 
the influence of other sound factors from the 
environment. Therefore, to realize the classification 
ability of AE-CNN, a filter and normalization must be 
applied to the vibration data. The size and quality of the 
training sample used can significantly affect the training 
and accuracy of the AE-CNN model. Therefore, reducing 
the size of the samples, and ensuring the preservation of 
its main properties, is necessary to improve the quality of 
AE-CNN and the speed of its construction. 

The subject of study is methods of selecting 
hyperparameters and other optimization for building a 
diagnostic model based on a neural network according to 
observations. 

The purpose of the work is to create a model based 
on a neural network for detecting bearing faults based on 
the ZSL. 

 
1 PROBLEM STATEMENT 

Suppose gN(t) and fN(t) are given. Training, validation, 
and test samples are formed from data prepared for model 
processing: Xtrain, Xval, Xtest. 

For given, respectively, good and bad bearing classes 
{0,1}, the task of detecting the difference between 
bearing classes through the AE-CNN model can be 
represented as (if M(h, W, d) with d{Xtrain, Xval, Xtest} 
then class(M(h, W, d){0,1})) → opt. h of the best 
model M() is determined by a special selection method, 
and W is adjusted through the optimizer of the learning 
process. 

 
2 REVIEW OF THE LITERATURE 

Aiming to address the issue of strong background 
noise in bearing failures and the lack of evident fault 
features, this paper [2] proposes a fault diagnosis method 
that combines Savitzky-Golay Gram angle field feature 
enhancement with ResNet18. The acquired signal is 
segmented, and the segmented signal is subjected to 
Butterworth high-pass filtering to extract the high-
frequency component of the signal containing fault 
information. 

The optimized SGF and adaptive spectrum editing are 
proposed to detect the fault feature of the rolling element 
bearing under low-speed and variable-speed conditions 
[3]. 

This manuscript elaborates on the development of a 
VAE-CNN model, designed for the fault diagnosis of 
rolling bearings. By amalgamating the CNN model’s 
superior capacity for representing vibration signal data 
with the VAE model’s robustness to data noise, the 
proposed VAE-CNN model excels in scenarios where 
only a limited amount of observational data is available at 
the initial stages of rolling bearing operation. The VAE-
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CNN model achieves over 90% accuracy in diagnosing 
different fault types at various speeds [4]. 

This study [5] proposes a GAE-based approach for 
fusing node features in an Euclidean dataset. The primary 
advantage of the proposed approach lies in its adaptive 
ability to capture the complex structure of the dataset and 
fuse node features using a GAE, effectively extracting the 
latent features. Normalization is a vital pre-processing 
step as it addresses the issue of varying magnitudes 
among different base detectors, which makes direct 
comparison and combination challenging. To enhance the 
convergence speed of the algorithm, in the proposed 
approach normalized the output of the base detectors. 

This approach [6] uses both an unsupervised and a 
supervised model. First, the current signal in the time 
domain is segmented with respect to the fundamental 
frequency, and then a DAE is trained with the normal 
state data to estimate the approximation of the system 
function. The residual signal is then calculated from the 
difference between the raw and estimated signals 
produced by the AE for all conditions, which helps to 
extract discriminative features from the current signal 
data without any labels. Finally, a two-layer CNN is built 
with the residual signals to identify bearing faults. The 
experiments were performed 100 times by randomly 
selecting the training/testing dataset, and the result 
showed good stable convergence with high accuracy. 

This study [7] proposes a novelty detection and fault 
diagnosis method for bearing fault recognition and 
diagnosis based on a hybrid DAE. The method uses one 
model to accomplish two tasks, detecting new faults and 
classifying known faults. To address the challenge of 
requiring a large number of training samples in existing 
deep learning methods, this study combines the 
unsupervised training characteristics of AEs with the 
powerful feature extraction ability of CNNs, adopting a 
semi-supervised training method that can learn fault 
features from both labeled and unlabeled samples, 
reducing the required sample size for training. 

The proposed method [8] incorporates a GAF-based 
image generation technique from a 1-dimensional current 
signal for a 2-layer CNN model to construct a data-driven 
intelligent fault-diagnosis approach for bearings. As the 
current signal is affected by surrounding noises, it 
becomes very difficult to extract the fault signatures 
manually. When the data are converted into the polar 
coordinates for image transformation, the different 
bearing-condition data create distinctive patterns, which 
helps the CNN model to easily extract the necessary high-
level features. In all considering operating conditions, this 
proposed GAF and 2-dimensional CNN-based approach 
can attain good accuracy. 

This study [9] is based on deep learning methods for 
bearing fault diagnosis. Firstly, a CNN model is designed 
for end-to-end bearing fault diagnosis. Then, considering 
the presence of strong noise in actual working conditions, 
a bearing fault diagnosis model based on AE-CNN is 
proposed to achieve bearing fault diagnosis under noisy 
conditions. The experiment results on the CWRU 

demonstrate the effectiveness of the proposed model. The 
method proposed in this study can be used for fault 
diagnosis of bearings under noise conditions and has 
engineering practical value. 

This article [10] highlights the advantages of deep 
learning models, particularly AE and CNNs, for fault 
diagnosis in bearing systems. Unlike traditional machine 
learning algorithms, which require extensive manual 
feature design, AE and CNN can automatically extract 
high-level features from large-scale, unlabeled data. AE, 
though simple, benefits from enhancements such as 
stacking layers and adding noise. CNN excels in feature 
extraction due to its unique architecture and translation 
invariance. 

This study [11] indicates that experimental results 
show that VAE is a more competent and promising 
dimensionality reduction tool than PCA. 

This work presents SSAE-DNN, which in 
combination with a complex envelope spectrum for inputs 
performs fault diagnosis of rotary machines when there 
are fluctuations of the shaft speed. In the proposed 
scheme, vibration signals related to different health 
conditions of a motor bearing are preprocessed using the 
complex envelope signal. In the proposed method, 
information obtained by the stacked autoencoders from 
the defect frequency, as well as its principle harmonics 
present in the complex envelope spectrum for a given 
fault, makes it possible to classify faults with varying 
speeds. The efficiency of the proposed scheme was 
validated using rotating machine bearing data for four 
different shaft speeds. The minimum average 
classification accuracy for every experiment was 90%, 
which demonstrates that the proposed scheme can also 
classify faults when fluctuations of the shaft speed exist. 

 
3 MATERIALS AND METHODS 

Let’s divide all vibration data into good and bad, 
respectively, as follows: gN(t) and fN(t). To reduce the 
noise in the data arising from environmental factors, the 
SGF is applied to the data, which is defined by the 
following formulas: 
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The filtered data must have one dimension because if 
the data is submitted to AE-CNN at different scales of 
variation, it can complicate the data processing of the 
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model and significantly degrade the classification results. 
Taking into account this feature, MMN is used, which is 
determined by the formulas: 
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where b and a are determined according to research 
requirements. 

Normalized data ready for submission to AE-CNN is 
divided into training, validation, and test samples: Xtrain, 
Xval ={sg}; Xtest ={sf}. 

Following the ZSL principle, the training and 
validation data consists only of the working vibration 
samples, and the test data consists only of the faulty 
vibration samples. 

Given the periodicity of the vibration data, the healthy 
data samples have stable healthy features along their 
entire length, as well as the fault features in the 
corresponding faulty samples are observed consistently 
along their entire length. Taking these data properties into 
account, the data is reduced to an optimal size to optimize 
the data processing speed of the AE-CNN model. 

The architecture of the AE-CNN model is divided into 
an encoder, a latent space, and a decoder. 

The encoder architecture is proposed in four stages. 
Each stage has a convolutional one-dimensional layer and 
a maximum pooling layer. A convolutional one-
dimensional layer performs a convolution operation 
where filters are moved over d and compute scalar 
products. 

The data in each stage of the encoder is processed 
according to the formulas: 
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l is initially initialized to zero. This is a standard 
approach, as the offset value can be adjusted quickly 
during training without much damage to the result, so 
zero initialization works well. 

W in AE-CNN models from the beginning of 
processing are initialized through XG according to the 
defined formula: 
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To reduce the dimensionality of the data to the state of 
the latent representation, a linear layer is used, which has 
one matrix of weights, which determines the connections 
between input and output neurons. Each output neuron is 
connected to all input neurons. 

The decoder uses similar formulas as the encoder, but 
in reverse order, since the main purpose of the decoder is 
to recover or reconstruct the input data from the latent 
representation. 

To optimize W and α of the model, the Adam 
optimization algorithm is used, which is determined by 
the following formulas: 
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The initial values of my–1 and vy–1 are initialized with 
zeros. 

The research uses the method of TPE hyperparameter 
selection, which works according to the following 
formulas: 
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This method divides h into good and bad groups using 
a certain γ, and builds models to estimate the probability 
of each group. This makes it possible to find new h that 
have a higher probability of belonging to good values, 
thus optimizing the choice of h. γ is usually chosen as a 
certain quantile. 

In this case, E is the last validation error at the end of 
the current trial h through TPE. 

The AE-CNN model goes through the processes of 
training, validation, and updating W and is tested on Xtest. 
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At all stages, E determined by the following formulas is 
used: 
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Let the sets of errors be defined as Etrain, Eval, Etest={e1, 
e2, …, eN} which is calculated on the last epoch of the 
final trained AE-CNN model. To obtain the difference 
between the signs of good and bad bearings, the 
difference between Eval and Etest was used. z is determined 
by the formula: 

 

)max( valEz  . 
 

All samples with E>z are considered faulty. 
In the final step, Etest is compared with z, and if etest>z, 

then the corresponding sample is considered faulty. 
 

4 EXPERIMENTS 
The data for the study supplied by GMPS owner Eric 

Bechhoefer has 1158 samples of vibration data, of which 
865 are good and 293 are bad. Each sample has 93752 
values recorded over 5 minutes. 

Experimentally, m was selected with a value of 24, bk 
with a value of 13, and k was calculated with a value of 
11 according to formula (1). 

Based on the periodicity in the samples, in each SGF-
treated faulty sample, pulses with increased amplitude of 
the fault-determining signal are observed. The research 
recorded that the first pulse appears on average at 513 
values of the faulty sample, the period during which each 
subsequent pulse is recorded is 935 values. 

In the process of normalization of vibration data 
according to formula (2), b with a value of 0.3 and a with 
a value of –0.3 were used, these values were selected 
taking into account that after normalization of healthy 
samples and normalization of faulty samples based on the 
calculated metrics of healthy samples, the maximum 
module values of faulty samples will not exceed the range 
from –1 to 1. 

Based on the signs of periodicity of both healthy and 
faulty vibration samples, it was decided to reduce the 
samples to the first 1500 values to optimize the duration 
of data processing in the AE-CNN model.  

Empirical studies show that the best results are 
obtained if the authors use 20–30% of the data for testing, 
and the remaining 70–80% ofThe data for training [12]. 

Adhering to the ZSL principle, good samples in the 
amount of 605 and 260, 70% and 30% of gN, respectively, 
were selected for the training and validation processes, 
and all 293 faulty samples were selected for the testing 
process. 

In the best encoder architecture selected through TPE, 
the parameters сin=1, сout=13 were used on the first one-
dimensional convolutional layer; on the second layer 
сin=13, сout=22; on the third layer сin=22, сout=57; on the 
fourth layer сin=57, сout=94. Each one-dimensional 
convolutional layer used kс=3, p=2, and a padding 
parameter equal to 1 to preserve dimensionality and 
include zero values at the edges, allowing the filters to 
better treat edge values that would otherwise be treated 
less than other values in the center. Output padding with 
one extra value, without significantly affecting learning, 
was added to control the decoder layers’ output sizes. 

A linear layer is used to provide an initial size for the 
data supplied to the decoder. An unflatten layer is used to 
ensure the corresponding data size expected by the 
reverse convolutional layers of the decoder. 

The best reverse convolutional layers of the decoder 
selected through TPE have the parameters of the first layer 
сin=94, сout=57; on the second layer сin=57, сout=22; on the 
third layer сin=22, сout=13; on the fourth layer сin=13, 
сout=1. 18 epochs selected through TPE were used for 
training and validation processes. The best α of the AE-
CNN model determined through TPE was set to 0.0004. It 
should be noted that TPE determines the initial possible α, 
after which the Adam optimizer adjusts the determined α. 
The batch size for simultaneous sample processing by the 
AE-CNN model was determined to be 16. 

 
5 RESULTS 

The results of the AE-CNN model training and 
validation processes are shown in Table 1. The table 
shows Ltrain and Lval for 18 epochs. z and mean of Etest 
values are also represented. 

Table 1 shows the satisfactory reduction of Ltrain and 
Lval over epochs. It can be seen that the mean Etest>z, so 
the method of detecting faults by comparing E of the AE-
CNN model of the reproduced samples with z works in 
practice. 

 

Table 1 – Results of training and validation of the AE-CNN 
model 

Epochs Ltrain Lval 
1 0.0097 0.0092 
2 0.0091 0.0091 
3 0.0091 0.0090 
4 0.0089 0.0086 
5 0.0078 0.0076 
6 0.0064 0.0064 
7 0.0052 0.0056 
8 0.0045 0.0052 
9 0.0041 0.0050 
10 0.0039 0.0048 
11 0.0037 0.0048 
12 0.0036 0.0047 
13 0.0035 0.0047 
14 0.0034 0.0046 
15 0.0033 0.0046 
16 0.0033 0.0046 
17 0.0032 0.0046 
18 0.0032 0.0046 
z 0.00467195 

Mean of Etest 0.007458317 
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Ltrain and Lval are calculated at the end of each epoch 
and are dynamic during all epochs due to changes in the 
performance of the AE-CNN model. 

Table 2 shows the mean values of Eval and Etest 
calculated from groups of 16 samples with the 

corresponding number to batch size showing a clear 
difference between them. The last row of Table 2 
represents the mean values for the Eval and Etest columns. 

 

Table 2 – The results of calculating the mean values of Eval and Etest for each batch group 
 

Batch group Eval Etest 
1 0.0045924 0.00741719 
2 0.00449713 0.00747784 
3 0.00457025 0.00725762 
4 0.00458623 0.00775483 
5 0.00447544 0.00727971 
6 0.00461615 0.00741939 
7 0.00446275 0.00729698 
8 0.00461744 0.00755094 
9 0.00463127 0.00701465 
10 0.00448145 0.00788275 
11 0.00452703 0.00733029 
12 0.00454546 0.00676255 
13 0.0046516 0.0077562 
14 0.00459267 0.00735691 
15 0.00456514 0.00795846 
16 0.00467195 0.00786724 
17 0.00454972 0.00778848 
18  0.00705316 
19  0.00748284 

Mean of E 0.0045667106 0.0074583173 

 
Figure 1 – The example of two faulty and healthy samples without SGF-MMN treatment 

 

 
Figure 2 – The example of two SGF-MMN-treated faulty and healthy samples 
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Figure 3 – The example of a healthy SGF-MMN-treated sample and its recovery from the AE-CNN model 

 
Figure 4 – The example of a faulty SGF-MMN-treated sample and its recovery from the AE-CNN model 

 

Fig. 1 shows that the faulty and healthy samples 
without proper data pre-processing have blurred class 
characteristics, which can complicate the perception of 
the AE-CNN model and worsen its classification ability. 

Fig. 2 shows that the SGF-MMN-treated vibrations of 
healthy and faulty samples mainly differ only in the 
characteristic pulses that are present in the faulty sample 
and absent in the healthy sample. 

Fig. 3 shows that the AE-CNN model restores the 
healthy sample with satisfactory accuracy, highlighting 
the main details of the healthy sample, which confirms the 
qualitative performance of the AE-CNN model. 

Fig. 4 shows that the AE-CNN model recovers a 
faulty sample without characteristic pulses due to the fact 
that the AE-CNN model learned to recover only healthy 
data features, which is why there is a clear difference 
between Eval and Etest in Table 2. 

 

6 DISCUSSION 
The dimensionality of the vibration samples was 

reduced to 1500 values, but still, the AE-CNN model 
showed good performance results in sample recovery and 
classification of faulty samples through the comparison of 
Eval and Etest. It is assumed that if the AE-CNN model will 
handle full-size samples, with proper tuning of M() and 
corresponding h, the AE-CNN model will do well in the 
classification task. The difference when processing full-
size samples will be that the difference between Eval and 

Etest will be much larger because the reduced faulty 
samples have a much smaller number of characteristic 
pulses than the full-size faulty samples. 

It is worth noting that if the bearing faults have small 
amplitude and low intensity of the characteristic signals 
[5], that is, if the vibrations of the faulty samples are very 
similar to the vibrations of the healthy samples and have 
barely noticeable signs of the fault, the AE-CNN model 
constructed in this study is likely to be much more 
difficult to track the characteristics of faulty samples and 
distinguish them from healthy samples by a slight 
difference in class features, in this case, the E comparison 
method may be less effective.  

The proposed combinatorial method in the study [5] 
solves the given problem. The method transforms the 
original dataset into a graph dataset and uses the feature 
aggregation module to aggregate the features of 
neighboring nodes. 

Considering that during the SGF processing of the 
data provided for this study, only the features of the 
classes shown in Fig. 2 were detected, the AE-CNN 
model was built for the task of binary classification based 
on these features of the classes of healthy and faulty 
samples. It is also worth noting that the SGF parameters 
selected for processing the data provided in this study are 
appropriate only for this data and may vary when properly 
applied to other data. 
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In the study [7], the hyperparameters of the DAE 
hybrid network are mainly set based on common 
experience and are constantly adjusted by trial and error 
to achieve higher diagnostic accuracy. In this study, this 
feature was taken into account and the TPE method was 
used to select h in the AE-CNN model. Also, the method 
proposed in the study [7] can only detect new faults and 
cannot distinguish between different new faults, it is not 
able to represent and distinguish faults in more detail. In 
this research, the AE-CNN model can detect new faults if 
they have specific characteristics that are significantly 
different from the healthy characteristics of the samples. 
Still, it can also not distinguish between classes of 
possible faulty samples. 

The method proposed in the study [9] is also based on 
the AE-CNN model and can be used to diagnose bearing 
faults under noise conditions. The AE-CNN model in this 
study uses data processed by SGF and MMN, however, in 
the case of using noisy data processed through MMN 
only, it is not known what the classification ability of the 
AE-CNN model will be, but assumed that it will be lower 
due to the presence of noise in the data, which can distort 
the characteristics of classes important for classification. 

Research [10] mentions the integrated use of different 
deep learning models, such as LSTM network and CNN, 
the advantages of each model can be complementary. It is 
assumed that adding layers of LSTM to the AE-CNN 
model, given its ability to remember well the short-term 
and long-term features of the data, can indeed if correctly 
implemented, help to better capture the dependencies 
between successive pulses and long-term trends in 
vibration data, especially if the AE-CNN model processes 
samples of the full-size of 93752 values. 

In the paper [13], a GCN-based LSTM autoencoder 
with a self-attention model for bearing fault diagnosis was 
proposed and evaluated using multivariate time series 
data. The proposed model was found to increase the 
accuracy of fault diagnosis by combining the GCN layer 
and the LSTM layer to extract important features from the 
frequency domain. In the data pre-processing step, data 
including various fault states and steady states were 
standardized, while features in the frequency domain were 
extracted through STFT conversion. A competent 
implementation of STFT can likely help improve the 
efficiency of AE-CNN in detecting faulty samples by 
taking into account frequency components and observing 
the change in frequency over time. 

 
CONCLUSIONS 

The task of detecting bearing faults when applying the 
machine learning method based on the ZSL principle has 
been solved. 

The scientific novelty of the obtained results is that, 
for the first time, a machine learning method with the 
selection of hyperparameters was proposed for building 
the AE-CNN model based on the best-selected 
hyperparameters. The hyperparameter selection method 
divides the combinations of hyperparameters into good 
and bad using a certain threshold value of the objective 

function and builds models to estimate the probability of 
each group. This makes it possible to find new 
combinations of hyperparameters that have a higher 
probability of being good, thereby optimizing the choice 
of hyperparameters. 

The practical significance of the obtained results is 
that, following the ZSL principle, a model based on a 
neural network was built that detects bearing faults and 
successfully performs binary classification of healthy and 
faulty samples of vibration data. The results of the 
experiment make it possible to recommend the proposed 
data pre-processing methods and the built model for 
practical application, as well as to determine the effective 
conditions for applying the data pre-processing methods 
and the built model based on a neural network. 

Prospects for further research consist of testing the 
built model based on a neural network on other vibration 
data of bearings and its implementation in practical 
operations to detect bearing faults. 
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AНОТАЦІЯ 
Актуальність. Підшипники є важливою частиною для функціонування різних засобів пересування. Вони мають 

властивість зношуватися і виходити з ладу, що вимагає якісного і своєчасного виявлення несправностей. Збої не завжди 
легко виявити, тому використання традиційних методів виявлення може бути недостатньо ефективним. Використання 
методів машинного навчання, які добре підходять для завдання, може ефективно вирішити проблему виявлення 
несправностей підшипників. Об’єктом дослідження є процес неруйнівної діагностики підшипників. Предметом дослідження 
є методи підбору гіперпараметрів та іншої оптимізації для побудови діагностичної моделі на основі нейронної мережі за 
даними спостережень. 

Мета роботи – створення моделі на основі нейронної мережі для виявлення несправностей підшипників на основі ZSL. 
Метод. Запропонований фільтр згладжує дані, зберігаючи ключові характеристики, такі як піки та нахили, і усуває шум 

без істотного спотворення сигналу. Запропоновано метод нормалізації вібраційних даних, який полягає в центруванні даних 
і розподілі амплітуди в оптимальних межах, що сприяє коректній обробці цих даних архітектурою моделі. Запропоновано 
модель на основі нейронної мережі для виявлення несправностей підшипників шляхом обробки даних і подальшої двійкової 
класифікації їх коливань. Запропонована модель працює шляхом стиснення даних про вібрацію в приховане представлення 
та їх подальшого відновлення, обчислення похибки між відновленими та вихідними даними та визначення різниці між 
похибками даних про вібрацію справного та несправного підшипників. Метод машинного навчання Zero-Shot Learning 
передбачає навчання, перевірку моделі лише на справних даних про вібрацію та тестування моделі лише на несправних 
даних про вібрацію. Завдяки запропонованому методу машинного навчання модель на основі нейронної мережі здатна 
виявляти несправні підшипники, наявні в досліджуваному класі несправностей і теоретично нові класи несправностей, 
тобто модель може виявляти різні класи даних, які вона не бачила під час навчання. Архітектура моделі побудована на 
згорткових рівнях і рівнях максимального об’єднання кодера, а також на зворотних згорткових рівнях для декодера. 
Спеціальним методом вибираються найкращі гіперпараметри моделі. 

Результати. Використовуючи бібліотеку PyTorch, було отримано модель, здатну до бінарної класифікації справних і 
несправних підшипників, шляхом навчання, валідації та тестування в програмному середовищі Kaggle. 

Висновки. Тестування побудованої архітектури моделі підтвердило здатність моделі класифікувати справні та 
несправні підшипники двійково, що дозволяє рекомендувати її для використання на практиці для виявлення несправностей 
підшипників. Перспективи подальших досліджень можуть включати тестування моделі шляхом інтеграції в системи 
прогнозного обслуговування для своєчасного виявлення несправностей. 

КЛЮЧОВІ СЛОВА: несправність підшипника, автокодувальник, згорткова нейронна мережа, навчання з нуля, бінарна 
класифікація. 
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