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ABSTRACT

Context. The problem of synthesizing a diagnostic model of complex technical processes in nonlinear systems, which should be
characterized by a high level of accuracy, is considered. The object of research is the process of synthesizing a neural network model
for technical diagnostics of nonlinear systems.

Objective of the work is to synthesize a high-precision neural network model based on previously accumulated historical data
about the system.

Method. It is proposed to use artificial neural networks for modeling nonlinear technical systems. First, you need to perform an
overall assessment of the complexity of the task. Based on the assessment, a decision can be made on the best approach to organizing
neuromodel synthesis. So, for the task, the level of ‘random complexity’ was chosen, because despite the relative structure of the
data, their total array is quite large in volume and requires careful study in order to ensure high quality of the solution. Therefore, in
the future, it was proposed to use a neuromodel based on recurrent networks of the GRU topology and use swarm intelligence meth-
ods for neurosynthesis, in particular the A3C method. The results obtained showed a high level of solution obtained, but due to the
high level of resource intensity, the proposed approach requires further modifications.

Results. A diagnostic model of complex technical processes in nonlinear systems of optimal topology, characterized by a high
level of accuracy, is obtained. The built neuromodel reduces the risks associated with ensuring human safety.

Conclusions. The conducted experiments confirmed the operability of the proposed approach and allow us to recommend it for
further refinement in order to implement technical, industrial and operational process control systems in practice in automation sys-
tems. Prospects for further research may lie in optimizing the resource intensity of synthesis processes.

KEYWORDS: technical diagnostics, nonlinear systems, machine learning, neural network synthesis, indicator system, neuro-
model, sampling, learning, error.

ABBREVIATIONS K icory 18 @ number of independent variables that

A3C is an Asynchronous Advantage Actor-Critic
method;

AdaGrad is an adaptive gradient algorithm;
ANN is an artificial neural net;
BTTT is a backpropagation throw the time method;
DNN is a deep neural network;
GBO is a gradient-based optimization method,; N;, is aneuron at the network input;
GRU is a gated recurrent unit;
ML is machine learning;
LSTM is a long short-term memory network;
RC is random complexity;
RL is a reinforcement learning;
RNN is recurrent neural network.

are weakly dependent on others or do not correlate with
each other;

n is a number of input features that characterize sam-
ple instances;

N; is a multiple neurons at the network input;

N, is a multiple neurons at the network output;
N,

o is a neuron at the network output;
Ny, is a multiple neurons of the hidden network layer;

N, is a hidden network layer neuron;

NOMENCLATURE Num iemeype

Infsample s a general information of input data (data ral network;
9 NN is a neural network;
set);

Kippue 1s @ number of element types in the neural net-

is a number of element types in the neu-

NNgjer 18 a structure of neural network;

. ! is a number of neurons at the network input;
work;

K.,y 1s a number of independent variables that €Vaccmeas 18 2 Measurement accuracy level;

strongly correlate with the original features; Lev .y 1s a level of significant and less significant

Ky is a number of the most significant independent  and/or non-significant factors4

variables among factorsd LeVyanag 18 a level of possible control and manage-
ment;
Lev,,q is a conditional difficulty level of the task;
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Lev gpiem 18 @ level of possible simplification of the

structure;

m is a number of dependent (categorical) features of
sample instances;

p 1s a number of neurons at the network output;

Paramy is additional and specificity parameters of

task;
q 1is a number of connections between neurons in the

network;
r is number of neurons in the hidden network layer;
RC is random complexity;
Sample is a data set;

Task is general represent of the modeling task;
w is a multiple of connections between neurons;

w, 1S a connection between neurons in the network;

q
x,, is a independent attribute of the sample instance;
X is a set of independent attribute (variables);

Vm 1s a value of the dependent variable (attribute) of

the sample instance;
Y is a set of values of dependent variables.

INTRODUCTION

ML is widely used for diagnostics of complex technical
processes, as it provides a number of advantages that are not
available in classical approaches using manual control, rule
systems, and the like. Today, ML is a powerful tool for solv-
ing such problems [1]-[4].

In nonlinear technical systems, there are quite complex
patterns in the data received from Sensor Systems. Such data
contains nonlinear relationships, i.e. technical processes of-
ten involve nonlinear interactions between several variables
(for example, temperature, pressure, vibration). ML models
can automatically recognize these patterns. In addition, most
systems generate large amounts of sensor or operational data.
ML can efficiently process large data sets and identify mis-
sion-critical functions [1]-[4].

The main further goal of using ML models is to automate
diagnostics. ML-based models will allow you to perform
real-time analysis. ML models can analyze data in real time,
allowing instant fault detection and diagnostics. Moreover,
the use of ML will reduce human intervention. Unlike man-
ual diagnostics, ML systems can process data independently,
reducing reliance on industry experts [1]-[4].

Processing noise in data and uncertainty. Complex sys-
tems often operate in environments where data is noisy or
incomplete. ML models are designed to summarize imper-
fect data. In addition, ML models can estimate the probabil-
ity of various failures or technological anomalies, providing
probabilistic results that help with decision-making [1]-[4].

ML-based models are characterized by a high level of
adaptability to new conditions. Technical processes often
develop due to changes in operating conditions or system
configuration. ML models can be retrained or modified to
adapt to these changes. Pre-trained ML models can be
adapted to new but similar processes with minimal additional
training.
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In industries such as manufacturing, power plants, or
transportation, ML can perform diagnostic tasks for thou-
sands of sensors and subsystems simultaneously. ML can be
deployed on peripherals or in centralized systems to scale
diagnostics in multiple locations [4].

ML models analyze patterns in historical data to predict
when components might fail, preventing unplanned down-
time. Uncontrolled ML models can detect deviations from
normal operating conditions, warning of potential problems
at an early stage.

ML models allow you to determine which variables or
functions are most important for fault diagnosis, providing
valuable information for system optimization. By studying
patterns in misclassification or anomalies, ML can help pin-
point the root causes of problems [1].

Summing up, we should note the main advantages in
terms of costs and efficiency, namely:

—reduced downtime: early detection of malfunctions
minimizes production shutdowns and repair costs;

—reduced labor costs: automated diagnostics reduces the
need for constant monitoring by operators;

— by providing accurate and timely information, ML al-
lows you to make more informed decisions.

The object of study is synthesizing a high-precision
neural network model based on previously accumulated his-
torical data about the system.

The subject of the study is a neural network model of
complex technical processes in nonlinear systems, which
should be characterized by a high level of accuracy.

The purpose of the work is to construct and study neu-
romodels of complex technical processes in nonlinear sys-
tems, which should be characterized by a high level of accu-
racy with a preliminary definition of structural features based
on the use of a system of indicators.

1 PROBLEM STATEMENT
Let it be that a data set Sample , containing data on
mechanical parameters (e.g., vibration) recorded by spe-
cialized sensors and obtained during an operational study
of a complex nonlinear technical system (e.g., helicopter
transmission, car, or engine) is given. Then,

Samplez(X,Y), where Xz{xl,xz,x3,...,x,-}, where

i=11158,and Y = {y} is the key output variable.

Then, it is necessary to determine such a set of X *,
to ensure Y that the diagnostic error is minimized by a
diagnostic model based on such a data set:
Error(Model diag (X *)) — min .

Most of the tasks, for which is planning to use ML
models, have a different nature and a high level of speci-
ficity ( Paramy ) [5]. However, when using the apparatus
of neural networks, it is sufficient to have a comprehen-
sive assessment of the complexity of the task:
Task = {ParamT,LevTask} [5]. Such a comprehensive
assessment can be obtained on the basis of information
about the input data of the task (a sample of data) and a
group of criteria for evaluating the accuracy of the data
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and the model:

LeVTask = {[ nfsample’ Levsmplfctmv Lev fetrs Levaacmeas» Levmanag } .
It was noted in [5] that a complex neuromodel based

on a RNN and DNN topologies will be sufficient for tasks
belonging to the RC category. Then such a model ( NN )

requirements for the

will consist of: a set of neurons N = {Ni,No,Nh} con-

sisting of subsets of input
Ny =N, Ny Ny J1 =12,V output
N, = OI’NOZ,...,NOP;, p=12,..|N,|, and hidden neu-
rons N, :{Nhl,th’“"Nhr },r=1,2,...,|Nh|. The number
of neurons in the hidden layer

(Nh={thNh2,...,Nhr}, r=1,2,...,|Nh|) can be calcu-

lated based on analytical estimates of the input data [5].
After that, it can proceed to determining the weights

of connections between neurons w = {wq }, in other words,

to parametric synthesis. Having determined the values of
the elements of sets, we can consider the synthesis of
ANN: complete [5].

Therefore, the first subtask will be to determine the
exact category of complexity of the problem based on the
values of the criteria

LeVTask = {[nfsample’Levsmplfctmﬂl‘evfctr’Levaccmeayl’evmanag}
and data about the data sample. The next subtask will be

the calculation of the number of neurons in the hidden
layer of the network

2 REVIEW OF THE LITERATURE

GRU is a type of RNN designed for processing se-
quential data. GRUs are particularly effective for tasks
related to time series or sequential data, where dependen-
cies need to be fixed over time. Presented in [6], GRUs
are a simplified version of LSTM, but retain comparable
performance while reducing computational complexity.

The GRU consists of two main gateways [6], [7]:

a) update gate:

— decides how much past information should be saved;

— helps the network focus on up-to-date past informa-
tion, while forgetting unnecessary details;

b) reset gate:

— manages how much past information should be de-
leted for the current time step;

— allows the network to reload its memory when new
patterns or states appear [6], [7].

GRUs do an excellent job of fixing time dependencies
in sequential data, such as sensor readings during techni-
cal processes. They can detect patterns or anomalies in
time-dependent data, which is crucial for diagnosing fail-
ures in dynamic systems.

GRUs have fewer parameters compared to LSTM,
which reduces computing costs. This speeds up GRU
training and deployment, especially for large data sets or
systems with real-time constraints [6], [7].

GRUs can study long-term dependencies in se-
quences, avoiding problems such as vanishing gradients
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faced by Standard RNNSs. This is very important for diag-
nosing processes in which the consequences of past
events (for example, earlier anomalies) affect the current
state [8].

Complex technical processes often lead to noisy data.
GRUs are resistant to such noise due to their closed
mechanisms that selectively filter out irrelevant informa-
tion [9].

GRU can efficiently process multidimensional time
series of data. For example, power plant operation Diag-
nostics may include simultaneous analysis of temperature,
pressure, and vibration data [7].

GRUs are computationally efficient and can be de-
ployed for real-time fault detection and diagnostics, which
is vital in mission-critical systems such as production
lines or power grids [7].

GRUs adapt well to a variety of technical processes,
making them versatile for applications in various indus-
tries, from Automotive to aerospace.

GRU in diagnostics is recommended to be used for:

a) fault detection:

— detection of anomalies in machine behavior by ana-
lyzing time series of sensor data

—example: detection of unusual vibrations in turbines
or engines;

b) preventive maintenance:

— predict possible system failures by analyzing his-
torical data;

—example: industrial equipment wear monitoring for
maintenance planning;

¢) process optimization:

— analysis of time dependencies to optimize operating
parameters;

—example: configure the input data of a chemical en-
terprise based on sensor feedback to maximize perform-
ance;

d) root cause analysis:

— tracking patterns in time series data to identify the
underlying cause of the malfunction;

—example: diagnostics of pressure fluctuations in
pipelines.

Thus, GRUs are ideal for diagnosing complex technical
processes, as they provide an optimal balance of computa-
tional efficiency, resistance to encrypted data, and the abil-
ity to capture complex time patterns. Their real-time capa-
bilities and adaptability make them a one-stop solution for
dynamic applications with large amounts of data [8].

A3C is an advanced RL method that can become an
effective method for synthesizing GRU-based networks,
especially for tasks that require high accuracy, such as
diagnosing complex technical processes. The benefits of
A3C are in good agreement with the requirements for
GRU training networks to perform these tasks [9], [10].

A3C is a reinforcement learning system in which:

— many agents work asynchronously in parallel envi-
ronments, collecting data and learning from different ex-
periences;

— it uses two networks:
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—actor: determines what actions should be taken

(network of policies);

— critic: evaluates the quality of actions taken by
evaluating the value function;

—the method optimizes performance by combining
policy-based methods (learning policies) and value-based
methods (evaluating the value of states or actions);

— for GRU networks: GRU can serve as a basic archi-
tecture for participating and / or critical networks to proc-
ess sequential or temporary data.

A3C uses the term entropy-based regularization to en-
courage research, allowing GRU to learn from less com-
mon but important patterns [9], [10].

GRUs, combined with A3C, perfectly captures these
dependencies, focusing on sequences that maximize bene-
fits while effectively identifying the most significant pat-
terns in the data.

A3C stabilizes the learning process by asynchronous
updating of weighting factors by multiple agents. This

asynchronous process smooths out gradients, resulting in
faster convergence and a reduced risk of overtraining.

3 MATERIALS AND METHODS

As it was given in the previous section, the modeling
task can be unified for a specific task after a certain com-
prehensive assessment of its complexity. Given that the
structure of ANN ( NN = (struct, param)) allows to most
subtly encode the relationships between the input data
(X = {xl,xz,..,xn}) [5], it is necessary to accurately se-
lect the synthesis option for such a non-network model.
Based on the values of the indicators to assess the com-
plexity of the task
(LevTask = {Inf;‘ample’Levsmp[fctm’Levfctr’Levaccmeas’

Lev }), it can be chosen a way to synthesize the most

manag

acceptable structure [5].
The general scheme of chosen the category of com-
plicity using indicators prepared as a formula (1).

Levepifem < 0,Lev o < 0,LeVyccmeas = 0, LeViyanqg =0—> OS

Levrag =

Levg,pifem > O,Levfm <0,Lev,.cmeas = O,Levmam,g =0—->0C
Levsmp_lfctn <0 Levsmplfctn > O,Levfc,r >0,Lev,ccmeas > O,Levmanag =0—> CAwP

(1

Levgupifem > 0,Lev fy > 0,Levacemeas 2 0,Levygpqg 20— RC

Therefore, we can conclude that it has a level of com-
plexity of the RC category, that is why we will be using
combine of GRU model and A3C method for training
(Fig. 1).

A3C directly optimizes the expected reward (or a sur-
rogate) by combining [11], [12]:

Actor Loss: Encourages the GRU to make better pre-
dictions for diagnosis.

Data Set— Big Data
Levepipan™0
Leve,>0
Levicemeas2 0
Levuanag= 0

i iy TN

Random Complexity

Fl"he use of more complex ANNs—l
topologies in combination with
RL methods makes it possible to
obtain more adapted solutions

Figure 1 — Organized simplicity category of modeling task
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Critic Loss: Ensures the network evaluates the quality
of predictions accurately [13], [14].

This joint optimization ensures that the GRU learns
both what actions to take and how good those actions are,
leading to a more accurate and robust model.

In diagnosing complex processes, data is often noisy
or changes over time.

A3C’s parallel agents, combined with GRU’s gating
mechanisms, allow the system to:

— focus on relevant patterns;

— adapt to dynamic data distributions;

— improve robustness to outliers and transient condi-
tions.

A3C utilizes multiple agents working independently,
which reduces bottlenecks in learning long-term depend-
encies in GRUs.

This enables better model performance on large-scale
problems with time-series data, where capturing subtle
temporal patterns is essential [8]-[13].

GRUs already excel at modeling sequences, but A3C
reinforces this by focusing on rewarded patterns:

— fault patterns that result in high rewards (accurate
predictions) are emphasized;

— unimportant or noisy patterns are downplayed.

A3C agents experience diverse states and collect var-
ied trajectories, effectively regularizing the training proc-
ess. This diversity improves the GRU network’s generali-
zation, avoiding overfitting to specific fault scenarios.

Collect multivariate time-series data (in next section it
will be noticed that this is vibration) from sensors.

A3C Setup:

—use GRUs for both the Actor and Critic networks:

— input: sequential sensor data;
OPENaﬁCCESS @ @ @
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— actor output: predicted fault class or action;

— critic output: value of the current sequence.

Training:

— deploy multiple agents in parallel, each exploring
different sensor sequences and learning asynchronously.

Train GRUs to:

— recognize normal and fault patterns$

— predict future states or faults based on sequential
dependencies.

Optimization:

—use the A3C loss function to refine GRU parame-
ters:

— minimize actor loss for better fault classification.

— minimize critic loss to improve evaluation of predic-
tion quality.

Deployment:

— the resulting GRU model can diagnose faults with
high accuracy in real-time.

4 EXPERIMENTS

For testing was perpetrate next data set:

— 1158 Vibration Data Sets

—roughly 2/3s of the files are nominal data, while 1/3
have a gear fault.

Scoring: Percent Correct, total correct / 1158

Generally, for experimental comparing different
strategies of ML approaches was using list of Python li-
braries and packages, as:

— TensorFlow Agents for RL methods;

—Keras for different ANNs models [15] (as DNN,
RNN, CNN, etc.).

Table 1 — Model results based on test data

Model + method combination Synthesis time, s | Accuracy on training part of data set | Accuracy on test part of data set
Perceptron + Backpropagation 5236 92.77 92.04
DNN + GBO 6286 96.52 95.72
DNN + AdaGrad 4632 97.24 96.25
GRU + Backpropagation Through Time 5965 96.39 95.76
GRU + A3C 7045 98.58 98.37
GRU + MGA 8906 98.73 98.66

5 RESULTS of people during technical processes, it is not possible to

Table 1 shows the results of models based on test data.
During compression special attention was concentrated on
accuracy of models for different depended features.

Accuracy was calculated as:

__ CIrOlclass 100%

Numbersampl
In multiclass classification, accuracy is a standard
metric that measures the proportion of correctly predicted
labels out of the total predictions made. It is particularly
straightforward when each instance belongs to one of
multiple classes, and only one label is correct.
For different ML models was using different training
methods.

6 DISCUSSION

From the test results, it can be seen that the GRU-
based approach in combination with RL is one of the
slowest approaches. Therefore, the difference in compari-
son even with DNN sometimes almost 2 times indicates a
high resource intensity in terms of time, because RL
methods do not differ in high speed. Moreover, setting up
GRU metaparameters requires additional processing of
the gate value, which also slows down the synthesis time.
On the other hand, when using the more classical BPTT,
the time has been reduced, but this approach to training,
firstly, is quite difficult to parallelize, which significantly
slows it down for working on high-performance comput-
ing systems, and secondly, despite the more optimized
synthesis time, the accuracy of work is still not high.

In addition, despite the large number of computing
nodes, DNN also does not provide an acceptable level of
accuracy. And given the importance of ensuring the safety
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compromise accuracy. Also, it is worth noting that despite
the optimization of the synthesis time, when working with
such a model, the load on computing resources is also
high.

An ordinary Perceptron was taken for analysis simply
to ensure that even the simplest neural network models
show a high level of accuracy (more than 90%), but still
do not fully allow abstracting complex data connections.

The use of MGA [16] for GRU synthesis was also
considered separately as a stochastic approach. Despite
the highest time indicators, this particular solution dem-
onstrated the highest accuracy, but the synthesis process
itself, in addition to high time requirements, also imposes
high requirements on computing power.

CONCLUSIONS

The urgent scientific and applied problem of synthe-
sizing a diagnostic model of complex technical processes
in nonlinear systems, which should be characterized by a
high level of accuracy, is considered is solved.

The scientific novelty lies in the study of the use of a
system of criteria for determining the structural features
of a neural network model. Based on the assessment of
the complexity of the task and the system of indicators, it
was possible to obtain neuromodel with a high level of
accuracy of work.

The practical significance lies in the fact that the de-
veloped neural network models can be used during the
implementation of real technical processes in production
facilities. Their use will significantly reduce production
costs and automate the modeling process.

Prospects for further research and development are
mechanisms of optimization of computing resources us-

ing.
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IarHOCTYBaHHS HEJIHIHHUX CHCTEM.

MeTta podoTH nossirac y cuHTe3i HelpoMepexeBoi Mol BUCOKOI TOYHOCTI, Ha OCHOBI IOIIEPETHEO HAKOIMMYEHUX 1CTOPUIHHUX
JIAaHUX TIPO CHCTEMY.

Metopa. 3anporOHOBAaHO BUKOPUCTOBYBATH IITYYHI HEHPOHHI MEpEeXi IS MOJIETIOBAHHS HENIHIHHMX TeXHIUYHHMX cucteM. [lo-
nepiie, HeoOXiTHO BUKOHATH 3arajibHy OIIIHKY CKJIQJIHOCTI 3amadi. Ha OCHOBI OIIHKK MOXXHA MPUNHSATH PIIICHHS PO MOJANBINNI
miaxig no opraisauii cuHTe3y Heiipomopeni. Bin tak, s mocTtasieHol 3amadi Oysio oOpaHO piBEeHb CKIIAMHOCTI Oe3naaHa CKIia-
HICTb, JUKE HE 3B)KAIOYM Ha BiJHOCHY CTPYKTYPOBAHICTb JAHUX, IX 3arajbHHI MacHB € JIOCUTb BEJUKHUM 3a 00’€MOM Ta BUMAarae
PETETBHOTO ONPALOBaHHS 3 METOIO 3a0€3MeUeHHs BUCOKO]I SIKOCTI pimeHHs. ToMy B mopanbmomy Oyio 3alIpOIOHOBAaHO BUKOPHUCTO-
BYBaTH HEHUPOMOZEIh HAa OCHOBI peKypeHTHHX Mepex Tonosorii GRU ta Bukopucratu A HEHpOCHHTE3y METOJH POHOBOTO iHTEIe-
KTy, 30kpema Metor A3C. OTpumaHi pe3yIbTaTd 3aCBIIYMIN BUCOKHI PiBEHb OTPHMAHOTO PIIICHHS, IPOTE Yepe3 BUCOKUH PIBEHBb
PECYPCOEMHOCTI 3aIIPOITIOHOBAHUH ITi/IX1/l BUMArae ImoJaIbIIIX MO diKaIriii.

Pe3yabTaTn. OTprMaHO iarHOCTHYHY MOJEINb CKJIAJHUX TEXHIYHUX IPOILECIB Y HENIHIHHUX CHCTEMAaX ONTHMAJIBHOI TONOJIOTIT,
IO BiJPI3HSETHCS BHCOKUM piBHeM To4yHOCTI. [ToOymoBaHa HeWpoMoOJeab 3HMKY€E PU3MKH IOB’s3aHi 31 3a0e3MeUeHHIM JIF0JICBKOT
6e3mnexu.

BucHoBku. [IpoBe/ieHi eKCIEpUMEHTH MiATBEPAMIM MPALE3JaTHICTh 3alIPOIIOHOBAHOTO MiJXO0AY i JO3BOJISIOTh PEKOMEH/IyBaTH
HOT0 AJIS MOJANTBIIOTO AOTPALIOBAHHS 3 METOIO IMIUIEMEHTAIlI{ Ha MPAKTHUIl B CHCTEMH aBTOMAaTH3allii CHCTEM KOHTPOJIIO TEXHIYHUX,
MIPOMHUCIIOBHUX Ta €KCILTyaTaIlifHuX mporeciB. [lepcrneKkTHBY MoJaNbIInX AOCTIIKEHbh MOXKYTh TOJISATaTH B ONTHMI3allii pecypcoeM-
HOCTI IIPOIIECiB CHHTE3Y.

KJIFOYOBI CJIOBA: TexHiuHe qiarHOCTYBaHHS, HEiHIHHI CHCTEMH, MAITUHHE HABYAHHS, CHHTE3 HEUPOHHUX MEPEXK, CHCTEMa
IHIMKATOPiB, HEHPOMOIelb, BUOIpKa, HABYAHHSI, TOMMJIKA.
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