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ABSTRACT 
Context. The problem of synthesizing a diagnostic model of complex technical processes in nonlinear systems, which should be 

characterized by a high level of accuracy, is considered. The object of research is the process of synthesizing a neural network model 
for technical diagnostics of nonlinear systems. 

Objective of the work is to synthesize a high-precision neural network model based on previously accumulated historical data 
about the system. 

Method. It is proposed to use artificial neural networks for modeling nonlinear technical systems. First, you need to perform an 
overall assessment of the complexity of the task. Based on the assessment, a decision can be made on the best approach to organizing 
neuromodel synthesis. So, for the task, the level of ‘random complexity’ was chosen, because despite the relative structure of the 
data, their total array is quite large in volume and requires careful study in order to ensure high quality of the solution. Therefore, in 
the future, it was proposed to use a neuromodel based on recurrent networks of the GRU topology and use swarm intelligence meth-
ods for neurosynthesis, in particular the A3C method. The results obtained showed a high level of solution obtained, but due to the 
high level of resource intensity, the proposed approach requires further modifications. 

Results. A diagnostic model of complex technical processes in nonlinear systems of optimal topology, characterized by a high 
level of accuracy, is obtained. The built neuromodel reduces the risks associated with ensuring human safety.  

Conclusions. The conducted experiments confirmed the operability of the proposed approach and allow us to recommend it for 
further refinement in order to implement technical, industrial and operational process control systems in practice in automation sys-
tems. Prospects for further research may lie in optimizing the resource intensity of synthesis processes. 

KEYWORDS: technical diagnostics, nonlinear systems, machine learning, neural network synthesis, indicator system, neuro-
model, sampling, learning, error. 

 

ABBREVIATIONS 
A3C is an Asynchronous Advantage Actor-Critic 

method; 
AdaGrad is an adaptive gradient algorithm; 
ANN is an artificial neural net; 
BTTT is a backpropagation throw the time method; 
DNN is a deep neural network; 
GBO is a gradient-based optimization method; 
GRU is a gated recurrent unit; 
ML is machine learning; 
LSTM is a long short-term memory network; 
RC is random complexity; 
RL is a reinforcement learning; 
RNN is recurrent neural network. 

 

NOMENCLATURE 

SampleInf  is a general information of input data (data 

set); 

inputK  is a number of element types in the neural net-

work; 

corrYK  is a number of independent variables that 

strongly correlate with the original features; 

impK  is a number of the most significant independent 

variables among factors4 

ntcorrXK  is a number of independent variables that 

are weakly dependent on others or do not correlate with 
each other; 

n  is a number of input features that characterize sam-
ple instances; 

iN  is a multiple neurons at the network input; 

li
N  is a neuron at the network input; 

oN  is a multiple neurons at the network output; 

poN  is a neuron at the network output; 

hN  is a multiple neurons of the hidden network layer; 

rhN  is a hidden network layer neuron; 

elemtypeNum  is a number of element types in the neu-

ral network; 
NN  is a neural network; 

structNN  is a structure of neural network; 

l  is a number of neurons at the network input; 

accmeasLev  is a measurement accuracy level; 

fctrLev  is a level of significant and less significant 

and/or non-significant factors4 

managLev  is a level of possible control and manage-

ment; 

taskLev  is a conditional difficulty level of the task; 
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smplfctnLev  is a level of possible simplification of the 

structure; 
m  is a number of dependent (categorical) features of 

sample instances; 
p  is a number of neurons at the network output; 

TParam  is additional and specificity parameters of 

task; 
q  is a number of connections between neurons in the 

network; 
r  is number of neurons in the hidden network layer; 
RC is random complexity; 
Sample  is a data set; 

Task  is general represent of the modeling task;  
w  is a multiple of connections between neurons; 

qw  is a connection between neurons in the network; 

nx  is a independent attribute of the sample instance; 

X  is a set of independent attribute (variables); 

my  is a value of the dependent variable (attribute) of 

the sample instance; 
Y  is a set of values of dependent variables. 

 

INTRODUCTION 
ML is widely used for diagnostics of complex technical 

processes, as it provides a number of advantages that are not 
available in classical approaches using manual control, rule 
systems, and the like. Today, ML is a powerful tool for solv-
ing such problems [1]–[4]. 

In nonlinear technical systems, there are quite complex 
patterns in the data received from Sensor Systems. Such data 
contains nonlinear relationships, i.e. technical processes of-
ten involve nonlinear interactions between several variables 
(for example, temperature, pressure, vibration). ML models 
can automatically recognize these patterns. In addition, most 
systems generate large amounts of sensor or operational data. 
ML can efficiently process large data sets and identify mis-
sion-critical functions [1]–[4]. 

The main further goal of using ML models is to automate 
diagnostics. ML-based models will allow you to perform 
real-time analysis. ML models can analyze data in real time, 
allowing instant fault detection and diagnostics. Moreover, 
the use of ML will reduce human intervention. Unlike man-
ual diagnostics, ML systems can process data independently, 
reducing reliance on industry experts [1]–[4]. 

Processing noise in data and uncertainty. Complex sys-
tems often operate in environments where data is noisy or 
incomplete. ML models are designed to summarize imper-
fect data. In addition, ML models can estimate the probabil-
ity of various failures or technological anomalies, providing 
probabilistic results that help with decision-making [1]–[4]. 

ML-based models are characterized by a high level of 
adaptability to new conditions. Technical processes often 
develop due to changes in operating conditions or system 
configuration. ML models can be retrained or modified to 
adapt to these changes. Pre-trained ML models can be 
adapted to new but similar processes with minimal additional 
training. 

In industries such as manufacturing, power plants, or 
transportation, ML can perform diagnostic tasks for thou-
sands of sensors and subsystems simultaneously. ML can be 
deployed on peripherals or in centralized systems to scale 
diagnostics in multiple locations [4]. 

ML models analyze patterns in historical data to predict 
when components might fail, preventing unplanned down-
time. Uncontrolled ML models can detect deviations from 
normal operating conditions, warning of potential problems 
at an early stage. 

ML models allow you to determine which variables or 
functions are most important for fault diagnosis, providing 
valuable information for system optimization. By studying 
patterns in misclassification or anomalies, ML can help pin-
point the root causes of problems [1]. 

Summing up, we should note the main advantages in 
terms of costs and efficiency, namely: 

– reduced downtime: early detection of malfunctions 
minimizes production shutdowns and repair costs; 

– reduced labor costs: automated diagnostics reduces the 
need for constant monitoring by operators; 

– by providing accurate and timely information, ML al-
lows you to make more informed decisions. 

The object of study is synthesizing a high-precision 
neural network model based on previously accumulated his-
torical data about the system.  

The subject of the study is a neural network model of 
complex technical processes in nonlinear systems, which 
should be characterized by a high level of accuracy.  

The purpose of the work is to construct and study neu-
romodels of complex technical processes in nonlinear sys-
tems, which should be characterized by a high level of accu-
racy with a preliminary definition of structural features based 
on the use of a system of indicators. 

 

1 PROBLEM STATEMENT 
Let it be that a data set Sample , containing data on 

mechanical parameters (e.g., vibration) recorded by spe-
cialized sensors and obtained during an operational study 
of a complex nonlinear technical system (e.g., helicopter 
transmission, car, or engine) is given. Then, 

YXSample , , where  ,,...,,, 321 ixxxxX   where 

1158;1i , and  yY   is the key output variable. 

Then, it is necessary to determine such a set of *X , 
to ensure Y  that the diagnostic error is minimized by a 
diagnostic model based on such a data set: 

   min* XModelError diag . 

Most of the tasks, for which is planning to use ML 
models, have a different nature and a high level of speci-
ficity ( TParam ) [5]. However, when using the apparatus 

of neural networks, it is sufficient to have a comprehen-
sive assessment of the complexity of the task: 

 TaskT LevParamTask ,  [5]. Such a comprehensive 

assessment can be obtained on the basis of information 
about the input data of the task (a sample of data) and a 
group of criteria for evaluating the accuracy of the data 
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and the requirements for the model: 
 managaccmeasfctrsmplfctmsampleTask LevLevLevLevInfLev ,,,, . 

It was noted in [5] that a complex neuromodel based 
on a RNN and DNN topologies will be sufficient for tasks 
belonging to the RC category. Then such a model ( NN ) 
will consist of: a set of neurons  hoi NNNN ,,  con-

sisting of subsets of input 
  iiiii NlNNNN

l
,...,2,1,,...,

21,  , output 

  ooooo NpNNNN
p

,...,2,1,,...,
21,  , and hidden neu-

rons   hhhhh NrNNNN
r

,...,2,1,,...,
21,  . The number 

of neurons in the hidden layer 
(  ,,...,

21, rhhhh NNNN  hNr ,...,2,1 ) can be calcu-

lated based on analytical estimates of the input data [5]. 
After that, it can proceed to determining the weights 

of connections between neurons  qww  , in other words, 

to parametric synthesis. Having determined the values of 
the elements of sets, we can consider the synthesis of 
ANN: complete [5]. 

Therefore, the first subtask will be to determine the 
exact category of complexity of the problem based on the 
values of the criteria 

 managaccmeasfctrsmplfctmsampleTask LevLevLevLevInfLev ,,,,

 and data about the data sample. The next subtask will be 
the calculation of the number of neurons in the hidden 
layer of the network 

ntcorrXimpcorrYinputh KKKKN   [5]. 
 

2 REVIEW OF THE LITERATURE 
GRU is a type of RNN designed for processing se-

quential data. GRUs are particularly effective for tasks 
related to time series or sequential data, where dependen-
cies need to be fixed over time. Presented in [6], GRUs 
are a simplified version of LSTM, but retain comparable 
performance while reducing computational complexity. 

The GRU consists of two main gateways [6], [7]: 
a) update gate: 
– decides how much past information should be saved; 
– helps the network focus on up-to-date past informa-

tion, while forgetting unnecessary details; 
b) reset gate: 
– manages how much past information should be de-

leted for the current time step; 
– allows the network to reload its memory when new 

patterns or states appear [6], [7]. 
GRUs do an excellent job of fixing time dependencies 

in sequential data, such as sensor readings during techni-
cal processes. They can detect patterns or anomalies in 
time-dependent data, which is crucial for diagnosing fail-
ures in dynamic systems. 

GRUs have fewer parameters compared to LSTM, 
which reduces computing costs. This speeds up GRU 
training and deployment, especially for large data sets or 
systems with real-time constraints [6], [7]. 

GRUs can study long-term dependencies in se-
quences, avoiding problems such as vanishing gradients 

faced by Standard RNNs. This is very important for diag-
nosing processes in which the consequences of past 
events (for example, earlier anomalies) affect the current 
state [8]. 

Complex technical processes often lead to noisy data. 
GRUs are resistant to such noise due to their closed 
mechanisms that selectively filter out irrelevant informa-
tion [9]. 

GRU can efficiently process multidimensional time 
series of data. For example, power plant operation Diag-
nostics may include simultaneous analysis of temperature, 
pressure, and vibration data [7]. 

GRUs are computationally efficient and can be de-
ployed for real-time fault detection and diagnostics, which 
is vital in mission-critical systems such as production 
lines or power grids [7]. 

GRUs adapt well to a variety of technical processes, 
making them versatile for applications in various indus-
tries, from Automotive to aerospace. 

GRU in diagnostics is recommended to be used for: 
a) fault detection: 
– detection of anomalies in machine behavior by ana-

lyzing time series of sensor data 
– example: detection of unusual vibrations in turbines 

or engines; 
b) preventive maintenance: 
– predict possible system failures by analyzing his-

torical data; 
– example: industrial equipment wear monitoring for 

maintenance planning; 
c) process optimization: 
– analysis of time dependencies to optimize operating 

parameters; 
– example: configure the input data of a chemical en-

terprise based on sensor feedback to maximize perform-
ance; 

d) root cause analysis: 
– tracking patterns in time series data to identify the 

underlying cause of the malfunction; 
– example: diagnostics of pressure fluctuations in 

pipelines. 
Thus, GRUs are ideal for diagnosing complex technical 

processes, as they provide an optimal balance of computa-
tional efficiency, resistance to encrypted data, and the abil-
ity to capture complex time patterns. Their real-time capa-
bilities and adaptability make them a one-stop solution for 
dynamic applications with large amounts of data [8]. 

A3C is an advanced RL method that can become an 
effective method for synthesizing GRU-based networks, 
especially for tasks that require high accuracy, such as 
diagnosing complex technical processes. The benefits of 
A3C are in good agreement with the requirements for 
GRU training networks to perform these tasks [9], [10].  

A3C is a reinforcement learning system in which: 
– many agents work asynchronously in parallel envi-

ronments, collecting data and learning from different ex-
periences; 

– it uses two networks: 

128



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 2 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 2 

 
 

© Leoshchenko S. D., Oliinyk A. O., Subbotin S. A., Morklyanyk B. V., 2025 
DOI 10.15588/1607-3274-2025-2-11  
 

– actor: determines what actions should be taken 
(network of policies); 

– critic: evaluates the quality of actions taken by 
evaluating the value function; 
– the method optimizes performance by combining 

policy-based methods (learning policies) and value-based 
methods (evaluating the value of states or actions); 

– for GRU networks: GRU can serve as a basic archi-
tecture for participating and / or critical networks to proc-
ess sequential or temporary data. 

A3C uses the term entropy-based regularization to en-
courage research, allowing GRU to learn from less com-
mon but important patterns [9], [10]. 

GRUs, combined with A3C, perfectly captures these 
dependencies, focusing on sequences that maximize bene-
fits while effectively identifying the most significant pat-
terns in the data. 

A3C stabilizes the learning process by asynchronous 
updating of weighting factors by multiple agents. This 

asynchronous process smooths out gradients, resulting in 
faster convergence and a reduced risk of overtraining. 

 
3 MATERIALS AND METHODS  

As it was given in the previous section, the modeling 
task can be unified for a specific task after a certain com-
prehensive assessment of its complexity. Given that the 
structure of ANN (  paramstructNN , ) allows to most 

subtly encode the relationships between the input data 
(  nxxxX ,..., 21 ) [5], it is necessary to accurately se-

lect the synthesis option for such a non-network model. 
Based on the values of the indicators to assess the com-
plexity of the task 
( ,,,,{ accmeasfctrsmplfctmsampleTask LevLevLevInfLev 

}managLev ), it can be chosen a way to synthesize the most 

acceptable structure [5]. 
The general scheme of chosen the category of com-

plicity using indicators prepared as a formula (1). 

 



















RCLevLevLevLev

CAwPLevLevLevLevLev

OCLevLevLevLev

OSLevLevLevLev

Lev

managaccmeasfctrsmplfctn

managaccmeasfctrsmplfctnsmplfctn

managaccmeasfctrsmplfctn

managaccmeasfctrsmplfctn

Task

0,0,0,0

0,0,0,0||0

0,0,0,0

0,0,0,0

. (1) 

 

Therefore, we can conclude that it has a level of com-
plexity of the RC category, that is why we will be using 
combine of GRU model and A3C method for training 
(Fig. 1).  

A3C directly optimizes the expected reward (or a sur-
rogate) by combining [11], [12]: 

Actor Loss: Encourages the GRU to make better pre-
dictions for diagnosis. 

 
Data Set→ Big Data

Levsmplfctn>0
Levfctr>0

Levaccmeas≥ 0
Levmanag≥ 0

Random Complexity

Swarm intelligence
//

RNN + A3C

The use of more complex ANNs 
topologies in combination with 

RL methods makes it possible to 
obtain more adapted solutions

 
Figure 1 – Organized simplicity category of modeling task 

Critic Loss: Ensures the network evaluates the quality 
of predictions accurately [13], [14]. 

This joint optimization ensures that the GRU learns 
both what actions to take and how good those actions are, 
leading to a more accurate and robust model. 

In diagnosing complex processes, data is often noisy 
or changes over time. 

A3C’s parallel agents, combined with GRU’s gating 
mechanisms, allow the system to: 

– focus on relevant patterns; 
– adapt to dynamic data distributions; 
– improve robustness to outliers and transient condi-

tions. 
A3C utilizes multiple agents working independently, 

which reduces bottlenecks in learning long-term depend-
encies in GRUs. 

This enables better model performance on large-scale 
problems with time-series data, where capturing subtle 
temporal patterns is essential [8]–[13]. 

GRUs already excel at modeling sequences, but A3C 
reinforces this by focusing on rewarded patterns: 

– fault patterns that result in high rewards (accurate 
predictions) are emphasized; 

– unimportant or noisy patterns are downplayed. 
A3C agents experience diverse states and collect var-

ied trajectories, effectively regularizing the training proc-
ess. This diversity improves the GRU network’s generali-
zation, avoiding overfitting to specific fault scenarios. 

Collect multivariate time-series data (in next section it 
will be noticed that this is vibration) from sensors. 

A3C Setup: 
– use GRUs for both the Actor and Critic networks: 
– input: sequential sensor data; 
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– actor output: predicted fault class or action; 
– critic output: value of the current sequence. 
Training: 
– deploy multiple agents in parallel, each exploring 

different sensor sequences and learning asynchronously. 
Train GRUs to: 
– recognize normal and fault patterns$ 
– predict future states or faults based on sequential 

dependencies. 
Optimization: 
– use the A3C loss function to refine GRU parame-

ters: 
– minimize actor loss for better fault classification. 
– minimize critic loss to improve evaluation of predic-

tion quality. 
Deployment: 

– the resulting GRU model can diagnose faults with 
high accuracy in real-time. 

 
4 EXPERIMENTS 

For testing was perpetrate next data set: 
– 1158 Vibration Data Sets 
– roughly 2/3s of the files are nominal data, while 1/3 

have a gear fault. 
Scoring: Percent Correct, total correct / 1158 
Generally, for experimental comparing different 

strategies of ML approaches was using list of Python li-
braries and packages, as: 

– TensorFlow Agents for RL methods; 
– Keras for different ANNs models [15] (as DNN, 

RNN, CNN, etc.). 

 

Table 1 – Model results based on test data 
Model + method combination  Synthesis time, s Accuracy on training part of data set Accuracy on test part of data set 
Perceptron + Backpropagation 5236 92.77 92.04 

DNN + GBO 6286 96.52 95.72 
DNN + AdaGrad 4632 97.24 96.25 

GRU + Backpropagation Through Time 5965 96.39 95.76 
GRU + A3C 7045 98.58 98.37 
GRU + MGA 8906 98.73 98.66 

 

5 RESULTS 
Table 1 shows the results of models based on test data. 

During compression special attention was concentrated on 
accuracy of models for different depended features. 

Accuracy was calculated as: 
 

%100
sampl

class

Number

error
E . 

 

In multiclass classification, accuracy is a standard 
metric that measures the proportion of correctly predicted 
labels out of the total predictions made. It is particularly 
straightforward when each instance belongs to one of 
multiple classes, and only one label is correct. 

For different ML models was using different training 
methods.  

 
6 DISCUSSION 

From the test results, it can be seen that the GRU-
based approach in combination with RL is one of the 
slowest approaches. Therefore, the difference in compari-
son even with DNN sometimes almost 2 times indicates a 
high resource intensity in terms of time, because RL 
methods do not differ in high speed. Moreover, setting up 
GRU metaparameters requires additional processing of 
the gate value, which also slows down the synthesis time. 
On the other hand, when using the more classical BPTT, 
the time has been reduced, but this approach to training, 
firstly, is quite difficult to parallelize, which significantly 
slows it down for working on high-performance comput-
ing systems, and secondly, despite the more optimized 
synthesis time, the accuracy of work is still not high. 

In addition, despite the large number of computing 
nodes, DNN also does not provide an acceptable level of 
accuracy. And given the importance of ensuring the safety 

of people during technical processes, it is not possible to 
compromise accuracy. Also, it is worth noting that despite 
the optimization of the synthesis time, when working with 
such a model, the load on computing resources is also 
high.  

An ordinary Perceptron was taken for analysis simply 
to ensure that even the simplest neural network models 
show a high level of accuracy (more than 90%), but still 
do not fully allow abstracting complex data connections. 

The use of MGA [16] for GRU synthesis was also 
considered separately as a stochastic approach. Despite 
the highest time indicators, this particular solution dem-
onstrated the highest accuracy, but the synthesis process 
itself, in addition to high time requirements, also imposes 
high requirements on computing power. 

 
CONCLUSIONS 

The urgent scientific and applied problem of synthe-
sizing a diagnostic model of complex technical processes 
in nonlinear systems, which should be characterized by a 
high level of accuracy, is considered is solved. 

The scientific novelty lies in the study of the use of a 
system of criteria for determining the structural features 
of a neural network model. Based on the assessment of 
the complexity of the task and the system of indicators, it 
was possible to obtain neuromodel with a high level of 
accuracy of work.  

The practical significance lies in the fact that the de-
veloped neural network models can be used during the 
implementation of real technical processes in production 
facilities. Their use will significantly reduce production 
costs and automate the modeling process.  

Prospects for further research and development are 
mechanisms of optimization of computing resources us-
ing. 
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АНОТАЦІЯ 
Актуальність. Розглянуто задачу синтезу діагностичної моделі складних технічних процесів у нелінійних системах, що 

має відрізнятися високим рівнем точності. Об’єктом дослідження є процес синтезу нейромережевої моделі для технічного 
діагностування нелінійних систем. 

Мета роботи полягає у синтезі нейромережевої моделі високої точності, на основі попередньо накопичених історичних 
даних про систему. 

Метод. Запропоновано використовувати штучні нейронні мережі для моделювання нелінійних технічних систем. По-
перше, необхідно виконати загальну оцінку складності задачі. На основі оцінки можна прийняти рішення про подальший 
підхід до організації синтезу нейромоделі. Від так, для поставленої задачі було обрано рівень складності безладна склад-
ність, адже не зважаючи на відносну структурованість даних, їх загальний масив є досить великим за об’ємом та вимагає 
ретельного опрацювання з метою забезпечення високої якості рішення. Тому в подальшому було запропоновано використо-
вувати нейромодель на основі рекурентних мереж топології GRU та використати для нейросинтезу методи ройового інтеле-
кту, зокрема метод A3C. Отримані результати засвідчили високий рівень отриманого рішення, проте через високий рівень 
ресурсоємності запропонований підхід вимагає подальших модифікацій. 

Результати. Отримано діагностичну модель складних технічних процесів у нелінійних системах оптимальної топології, 
що відрізняється високим рівнем точності. Побудована нейромодель знижує ризики пов’язані зі забезпеченням людської 
безпеки.  

Висновки. Проведені експерименти підтвердили працездатність запропонованого підходу і дозволяють рекомендувати 
його для подальшого допрацювання з метою імплементації на практиці в системи автоматизації систем контролю технічних, 
промислових та експлуатаційних процесів. Перспективи подальших досліджень можуть полягати в оптимізації ресурсоєм-
ності процесів синтезу.  

КЛЮЧОВІ СЛОВА: технічне діагностування, нелінійні системи, машинне навчання, синтез нейронних мереж, система 
індикаторів, нейромодель, вибірка, навчання, помилка. 
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