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ABSTRACT

Context. The problem of increasing the efficiency of deep artificial neural networks in terms of memory and energy
consumption, and the multi-criteria evaluation of the quality of the results of large language models (LLM) taking into account the
judgments of users in the task of summarizing texts, are considered. The object of the study is the process of automated text
summarization based on LLMs.

Objective. The goal of the work is to find a compromise between the complexity of the LLM, its performance and operational
efficiency in text summarization problem.

Method. An LLM evaluation algorithm based on multiple criteria is proposed, which allows choosing the most appropriate LLM
model for text summarization, finding an acceptable compromise between the complexity of the LLM model, its performance and the
quality of text summarization. A significant improvement in the accuracy of results based on neural networks in natural language
processing tasks is often achieved by using models that are too deep and over-parameterized, which significantly limits the ability of
the models to be used in real-time inference tasks, where high accuracy is required under conditions of limited resources. The
proposed algorithm selects an acceptable LLM model based on multiple criteria, such as accuracy metrics BLEU, Rouge-1, 2,
Rouge-L, BERT-scores, speed of text generalization, or other criteria defined by the user in a specific practical task of intellectual
analysis. The algorithm includes analysis and improvement of consistency of user judgments, evaluation of LLM models in terms of
each criterion.

Results. Software is developed for automatically extracting texts from online articles and summarizing these texts. Nineteen
quantized and non-quantized LLM models of various sizes were evaluated, including LLaMa-3-8B-4bit, Gemma-2B-4bit, Gemma-
1.1-7B-4bit, Qwen-1.5-4B-4bit, Stable LM-2-1.6B-4bit, Phi-2-4bit, Mistal-7B-4bit, GPT-3.5 Turbo and other LLMs in terms of
BLEU, Rouge-1, Rouge-2, Rouge-L and BERT-scores on two different datasets: XSum and CNN/ Daily Mail 3.0.0.

Conclusions. The conducted experiments have confirmed the functionality of the proposed software, and allow to recommend it
for practical use for solving the problems of text summarizing. Prospects for further research may include deeper analysis of metrics
and criteria for evaluating quality of generated texts, experimental research of the proposed algorithm on a larger number of practical
tasks of natural language processing.

KEYWORDS: limited resources, natural language processing, text summarization, large language models, quantization, multi-
criteria analysis.

ABBREVIATIONS Z is a integer zero point;

NN is a neural network;

LLM is a large language model;

LLaMA is a large language model by Meta Al;

NLP is a natural language processing;

PLM is a pretrained transformer language model;
BERT is a bidirectional encoder representations by

transformer;

BNN is a binary neural network;

STE is a straight-through estimator;

QAT is a quantization aware training;

PTQ is a post-training quantization;

ROUGE is a recall-oriented understudy for gisting

evaluation — a set of metrics;

BLEU is a bilingual evaluation understudy algorithm;
PCM is a pairwise comparison matrix.

NOMENCLATURE
r is a real-valued input;
[a, B] is a cutoff range;
b is a quantization bit width;
r?is a result of quantization of r;
S is a real-valued scaling coefficient;

f(r) is a transformation operation for quantization;
int is a rounding operation;

clip is a clipping function;

f is a result of dequantization;

A, is a quantization threshold;

Y, is a quantization level;

Q(B,b) is a set of quantization levels;

H(-) is an operation of projecting;

W is a weight;

W’ is a binarized weight;

o(W) is a “hard sigmoid” function;

a, b, ¢ are weighting coefficients;

A is a coefficient of regularization;

Q, is a learnable quantization function;

L is a traditional cross-entropy loss function;
Ly, is a distribution loss;

H(,-) is a loss function between the teacher model

and the apprentice model,

WP isa full-precision weight of the teacher model;
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pT, ps are predictions based on the teacher and
student models.

INTRODUCTION

The importance of text summarization has increased
with the information explosion in the digital age. Today, a
huge amount of data is generated every second from
various sources such as news, scientific reports, emails
and social media posts. For both private individuals and
businesses, it is almost impossible to consume available
information without spending significant time. Text
summarization tools offer a practical solution, quickly
represent the essence of voluminous documents, and thus
allow efficient information consumption.

Large language models (LLMs) have fundamentally
changed the process of text summarization, providing
opportunities that surpass traditional statistical methods
[1, 2]. Trained on vast amounts of textual data from
various sources, the LLMs develop a comprehensive
understanding of linguistic nuances, idiomatic expressions
and complex sentence structures. As a result, they can
create summaries that not only capture the essential
information from the texts, but also preserve the style and
tone of original text [1, 3].

One of the most significant effects of LLMs is their
ability to perform text summarization at extremely large
scales and at extremely high speeds, quickly extracting
key points from large volumes of text. This capability
allows businesses, researchers, and policymakers to stay
informed and make data-driven decisions without having
to manually sift through extensive documents.

LLMs can work with various types and formats of
texts: books, news articles, blog posts, technical reports
and other [1]. These models support many languages and
offer the possibility of summarization in different
languages [4, 5].

LLMs are now very accessible to users, not even
requiring authorization to use the latest updated version of
the GPT 3.5 Turbo model [4]. In addition, LLMs offer a
recommendation  service and a  personalized
summarization experience: the user, for example, may
indicate his/her interests or the most relevant text’s
aspects, and the models adjust their summarization
strategies accordingly. Such personalization allows to
create individual resumes which are more relevant and
useful for individual users, increasing their interest and
satisfaction.

However, summarization using LLMs also faces a
number of problems [6]. The first and the most important
of them is to ensure a high level of accuracy of the
generated summaries and a contextual understanding of
input text documents. While LLMs can create coherent
resumes, the complexity of human language and the
subtleties of textual nuance often present challenges. The
problem is that the LLMs sometimes try to capture irony,
sarcasm, and implicit meaning in text documents, which
can lead to summaries that distort the original content. In
addition, LLMs may omit important information or
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emphasize less important details, especially in texts of
high information density or complex structure.

The second challenge is the bias of summaries
generated by LLMs. The reason for this problem lies in
the fact that the extremely large training data sets are
usually created by humans and, as a result, are already
characterized by a certain level of bias. Texts generated
by LLMs can further reinforce these biases, leading to a
distorted or partial representation of the original texts.
This problem is particularly relevant in such sensitive
areas as news distribution, legal document processing and
educational content, where impartiality and fairness are of
paramount importance.

At last, the use of LLMs requires powerful processors
and large amounts of memory. To run, for example, a
model of the GPT-4 level, which has at least 70 billion
parameters, you need at least 48 GB of video memory [5].

In the end of 2023 and the beginning of 2024, the
focus of the LLM community has shifted to the release of
open-source and quantized models. In April 2024, Meta
Al introduced LLaMA-3 70B and quantized LLaMA-3
8B models, which are improved versions of the LLaMA-2
[7]. The release of LLaMA-3 has once again raised the
bar of quality for models of their size. For instance, the
LLaMa-3 8B model aims to perform better than the
LLaMa-3 70B in some tasks, while having 8.75 times
fewer parameters.

The object of study is the process of automated text
summarization using LLMs.

The subject of study is the analysis of quantization
techniques and several different LLMs, which were
proposed in 2023 and the beginning of 2024, depending
on a set of multiple criteria.

The purpose of the work is to develop an algorithm
of LLMSs’ evaluation in terms of multiple quantitative and
qualitative criteria.

1 PROBLEM STATEMENT
Suppose &,8y,...,8, are alternative LLMs, such as

LLaMa-3, Gemma, Qwen, Stable LM-2, Phi-2, Mistal,
and their quantized versions, GPT-3.5 Turbo and other

LLMs (decision alternatives), and C;,C,...,Cy are the
following decision criteria:

— metrics ROUGE, BLEU and BERT-score, which are
used for evaluation of generated texts;

— speed of text summarization;

— convenience of using the LLM.

It is necessary:

— to evaluate decision alternatives (modern LLMs of
various sizes) in a text summarization problem in terms of
above decision criteria, using different data sets: CNN/
Daily Mail 3.0.0, and Extreme Summarization (XSum);

— to integrate modern LLMs of various sizes: LLaMa-
3, Gemma, Qwen, Stable LM-2, Phi-2, Mistal, GPT-3.5
Turbo into a summarization service.
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2 REVIEW OF THE LITERATURE

Several approaches are considered to improve the
efficiency of NN models in terms of memory size, power
consumption and others, while simultaneously providing
an acceptable compromise between accuracy and
generalization property of the models:

— designing efficient architectures for NN models;
adaptation and co-design of NN architectures for a
specific target hardware;

— quantization;

— pruning;

— model distillation.

The issue of quantization of NNs is partly related to
works in the field of neuroscience [8—10], according to
which the human brain stores information in discrete and
quantized rather than continuous form.

One reason for the need for quantization is that the
information, which is stored in continuous format, is
exposed to noise (external, thermal, synaptic and other),
and such noise is always present in small quantities in the
physical environment, including the human brain [11].
Signals in discrete form may be more robust to such low-
level noise. In addition, discrete representations have a
higher generalization ability [12] and higher efficiency in
resource-constrained applications [13].

Model distillation consists of first training a large
model, and then using it as a teacher to train a more
compact model [14 — 16]. The main challenge is to obtain
accurate results with a high degree of data compression as
a result of distillation. Strong compression for knowledge
distillation methods usually leads to a significant decrease
in the accuracy of the results. Accuracy can be improved
by combining knowledge distillation with quantization
and pruning techniques [16].

In recent years, there has been a trend to use pre-
trained language representations in natural language
processing systems, which are applied more flexibly and
independently of the task. Single-layer representations
based on word-to-vector models were first explored and
transferred to task-specific architectures [17, 18]. After
that, the recurrent neural networks with contextual state,
multiple representation layers [19-22] and sequence-to-
sequence model with copy mechanism [23] were used to
form stronger representations.

Recently, pretrained transformer language models
(PLMs) have developed [24], which are directly fine-
tuned, completely eliminating the need for task-specific
architectures [25-27].

The Bidirectional Encoder Representations by
Transformer (BERT) model [25] marked a significant
advance in NLP tasks. BERT is extended to the sequence
generation task in [26], where a two-stage decoding
process is designed for efficient usage of BERT’s context
modeling ability. Firstly, the summary is generated using
a left context-only-decoder. After that, each word of the
summary is masked, the refined word is predicted, and the
reinforcement objective is cooperated with the refined
decoder for further improvement of the naturalness of the
generated sequence [26]. A self-supervised pre-training
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objective for abstractive summarization, a gap-sentences
generation and study strategies for selecting those
sentences are proposed in PEGASUS model [27]. The
PEGASUS is able to be adapted very quickly, and fine-
tune with small numbers of supervised pairs.

The T5 (Text-to-Text Transfer Transformer) model
had 11 billion parameters and used a transfer learning
approach, outperforming its predecessors BERT and
GPT2 in a wide range of NLP applications, including text
classification, question answering, and especially text
summarization [28]. The GPT-3 model proposed in 2020
already had 175 billion parameters and could be zero-
short transferred to downstream tasks without fine-tuning
[1]. In 2020, a new learning method known as replaced
token detection was introduced in the ELECTRA model.
In a pre-training task, this model learns to distinguish real
input tokens from plausible but synthetically generated
replacements [29]. ELECTRA is effective in extractive
note-taking, where identifying and summarizing the most
important sentences in a text is critical.

The DeBERTa (Decoding-enhanced BERT with
Disentangled Attention) model, released in 2020 as an
improvement to BERT, separated the representation of
words from their positions in the text, which allowed the
model to more clearly understand contextual
relationships, create contextually deeper and more
coherent summarizations, generalize different types of
texts [30].

GPT-3.5, also known as ChatGPT, introduced in 2022
provides enhanced interactivity, allowing users to interact
with the model directly by refining the summarization
results [4]. Dynamically responding to user input and
adjusting its responses, GPT-3.5 became not just a tool
for passive data processing, but also an active participant
in information analysis and decision-making processes.

Further advances in this area have been made by fine-
tuning LLMs for a set of tasks formulated as instructions,
allowing the models to better respond to instructions and
reducing the need for labeled data. It is emphasized in
[31] that fine-tuning on instructions can improve
performance across a range of models, prompting setups,
and evaluation tasks. As a result, Flan-T5 model with 11
billion parameters [31] achieves strong few-shot
performance compared to much larger models, such as
PalLM 62B.

An open-source LLaMA (Large Language Model
Meta AI) model was proposed by Meta Al in February
2023 and marked a significant evolution in NLP for
deploying advanced NLP tools in resource-constrained
environments by optimizing performance in various
computing environments [32]. The LLaMA model has an
ability to produce high output quality with less training
data, which optimizes use of this model for real-time text
summarization problems, where fast and accurate

compression of information is very important. Also, the
release of the LLaMA model greatly improved the
position of open-source models, since there were and still
are a lot of big players hiding detailed information about
training

the architecture, number of parameters,
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configurations, data sets, etc. This has prompted many of
the big players in Al to release even more open-source
models of the GPT-level from OpenAl.

In the Gemini model proposed by Google in May
2023, two-context processing of texts and integration of
information from different sources were introduced [33].
In this regard, the Gemini model is effective for dynamic
content such as news streams.

The Mistral open-source model [34], developed by an
independent research group from France and released in
July 2023, aimed to solve the problem of generating
resume texts of better quality in many different languages
that were previously unavailable. The Mistral model
became more powerful than the similar LLaMa model by
7 billion parameters, actually taking first place among
open-source models at that time according to expert
evaluations [34]. Anyone can download the Mistral model
weights for free and run it locally having the appropriate
computing resources, unlike GPT-4 and GPT-3.5 models,
which are only available as an application programming
interface service.

In 2023 and 2024, there is also a trend to reduce the
dimensions of LLMs, so that they can effectively work on
devices with limited computing resources. Examples of
such models are Qwenl.5 — 0.5B, 1.8B, 4B, Stable LM —
1.6B, Phi-2 — 2.7B, Phi-3 — 3.8B and TinyLlama - 1.1B.
Recently, 8-bit and 4-bit quantization opens up an
opportunity of running LLMs on consumer hardware [35
—-37].

Non-uniform quantization, binarized weights and
activations, extreme and mixed precision quantization,
quantization aware training (QAT) and post-training
quantization (PTQ) are used in modern LLMs [37].

In order to choose the best models for text
summarization based on user preferences and multiple
quality criteria, and to increase the speed and quality of
text summarization based on LLMs, it is necessary to
evaluate modern quantized LLMs of different sizes in a
text summarization problem using several data sets and
metrics BLEU, Rouge-n, Rouge-L and BERT-score.

3 MATERIALS AND METHODS

Uniform quantization. The basic quantization
operation performs uniform quantization using the
following steps [38, 39]:

1. Specify the range of a real-valued quantity to be
quantized, and to clip values outside this range.

2. Map real values to integer values which are
represented by the required bit-width of the quantized
representation. This is often performed by rounding each
real value to the nearest integer.

Let r be a real-valued input, [o, B] be the range of r
chosen for quantization (the cutoff range), and b is the
quantization bit-width. Uniform quantization represents
the full-precision input value refa, P] as the low-

precision integer within the range [—2b_1,2b_1 —1]. Inputs
outside the range are cut to the nearest boundary.

© Nedashkovskaya N. I., Yeremichuk R. I., 2025
DOI 10.15588/1607-3274-2025-2-12

136

Asymmetric uniform or affine quantization represents
a real value reR as a signed b-bit integer

r9ef201 20Ty 211 The
transformation operation is defined by

following

f(r=S-r+z,

b
S:ﬁ, Z =—int(a-S)—-2"7"

where S is a real-valued scaling coefficient, Z is the zero
point — the integer, to which the real-valued zero is
mapped, and int is a rounding operation, which displays a
real value to an integer. The scaling coefficient S divides
the range of the real-valued r into several partitions. In the

8-bit case, S =§_Lg and Z =—int(a-S)—128.

The uniform quantization operation,
asymmetric, is defined as follows [39]:

also called

r* = quantize(r, b, S, Z) =
=clip(int(S-r+2), -2°",2°" 1),

where clip(r,l,u)=1 if r<I, clip(r,l,uy=u if r>u and
clip(r,Luy=r if I<r<u.

The corresponding dequantization operation, which
computes an approximation of the original real-valued

input f =T, is defined by
f = dequantize(r%,S,Z2) :é(rq -2).

In the symmetric uniform quantization, the cutoff
range and integer range are symmetric around zero, that is
o = — B, and the zero-point Z=0. For example, the integer
range [—127, 127] is used for 8-bit quantization, and we
do not use the —128 value in favor of symmetry. For int8,
the loss of one out of 256 representable values is minor.
However, for lower bit quantization we have to re-
evaluate the trade-off between representable values and
symmetry of quantization.

Symmetric uniform quantization represents a real
value reR as a signed b-bit integer

e 214,227 42 2% The
transformation operation is defined by

following

f(r)=S-r,

_ 2
s=257,

and the result of quantization is as follows:

r% = quantize(r, b, S) =
=clip(int(S-r), — bl +1, 20! =1).

Uniform quantization operations are shown on Fig. 1.

OPEN a ACCESS




p-ISSN 1607-3274 Panioenexrponika, inpopmaTuka, ynpasainss. 2025. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. Ne 2

Calibration is the process of selecting the cutoff range
[a, B] [38, 39]. A popular method is to set a.=r;, and

B=rpx for asymmetric uniform quantization. In this

max(|r)
b1 _

quantization method, the maximum of absolute values is
used: B=max(| My, s/ fpax ). Then S is given as
— 2max (|r))
I

A percentile of the distribution of absolute values
observed during calibration also can be set [40]. For
example, the 99% percentile would cut off 1% of the
largest values. The Kullback-Leibler divergence can be
used for calibration, which minimizes the loss of
information between the quantized values and the original
floating-point values.

Asymmetric uniform quantization is often applied in
practice, as it results in a wider and therefore more
accurate range, however, leading to more computationally
expensive inference compared to symmetric quantization.

case, S is specified as S = . In a case of symmetric

f=-3 0 1 a=4
-128 z 17 127
a
- 1 a=4
-127 o] 3z 127
b

Figure 1 — Quantization of real values to int8: a — asymmetric,
b — symmetric [39]

Non-uniform quantization methods provide higher
accuracy for a fixed bit width, and these methods allow
more attention to be focused on important regions of
weight or activation values, such as in the case of bell-
shaped distributions with long tails, and also support
dynamic definition of cutoff ranges [41-43].

The non-uniform quantization operation is specified as

f(=y; if refa;, Ay,

where A; are quantization thresholds, and Y; are
quantization levels.

The quantization of a real-valued input r can be
presented as

where Q(B,b) is a set of quantization levels, B is the
cutoff threshold, the cutting function -clip(-,B) -clips
values of r into range [— B, B], and b is the bit-width.
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Operation H(~) projects clipped r value onto the
quantization level.

In a case of uniform quantization, the quantization
levels are defined as

Q(B, b) _ BX{O, ; +1 2 +3

-
b-1_y 2 5b-1_;> pb-1_;° }

For non-uniform “powers-of-two” quantization
method, the quantization levels are constrained to be
powers-of-two values or zero (Fig. 2) [42]:

b b
Q™ (B,b) :BX{O, +07 2 22 ol 11}.

Multiplication between a number 2%, that is a power
of two, and other number g can be implemented by
bitwise shifting as follows:

u, if x=0
2Xu=Ju<<x, if x>0,
u>>x, if x<0

where > is the right shift operation, which accelerates
the computation and takes only one clock cycle in modern
CPU architectures [42].

Quantization layers can also be trained along with
model parameters using gradient descent methods [44].

Lo rml 1.0 il I
08 08
] | E
S 06 = 206 |
04 0.4
0, | 0.2 J
[ 3-bit e 3-bit
(=== 0.0 £
1.0 e | e 0.0
y—,_‘ +— Rigid Resolution
ns — k3
l' i 0.00 =
= I -1 0.00 0.0
Sos | Eos
Soa i S [
o
02 'R 0.2 J
4-bit 4-bi
"0 —,_[ ! 0.0 = : 3 & + i :
0 0.2 04 03 s [0 0o 02 04 06 0 0
Float Float
a b

Figure 2 — Quantization of unsigned data to 3-bit or 4-bit:
a — uniform, b — Powers-of-Two (PoT) quantization [42]

In binary networks (BNNs) — networks with binary
weights and activations — most arithmetic operations are
replaced with bit-wise operations, which potentially lead
to a substantial increase in power-efficiency. BNNs and a
method for their training are proposed in [45].
Experiments in [45] show that binarization cardinally
reduces memory consumption, namely number of
accesses and memory size during the forward pass at run-
time and train-time.

OPEN a ACCESS




p-ISSN 1607-3274 Panioenexrponika, inpopmaTuka, ynpasainss. 2025. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. Ne 2

When training a BNN, the weights and the activations
are both constrained to +1 or —1. The binarization
function can be either deterministic:

. +1, if w>0
WP = sign (W) = .
—1, otherwise

or stochastic:

>

W sign(W) = +1, Wij[h probabi.li.ty p =o(w)
—1, with probability 1-p

where o is the “hard sigmoid” function:
o(x) =clip(*1, 0, 1) :max(o, min(L W_H))

A significant benefit of joint binarization of weights
and activations in BNNs is that the floating-point matrix
multiplication is replaced by lightweight operations

XnorDotProduct(aE,lwkb ) , k=1..,L,

followed by bit counting.

This operation is based on a following trick: it is
relatively easy to handle continuous-valued inputs as
fixed-point numbers, with m bits of precision [45]. For
example, in the common case of 8-bit fixed point inputs:

sum=x-w°, sum=2i:12”‘l(x” WPy,

where X is a vector of 1024 8-bit inputs, WP is a vector of
1024 1-bit weights, and sum is the resulting weighted
sum.

Binarization, which limits quantized values to a 1-bit
representation is considered as the most extreme
quantization method. Binary operations can be computed
efficiently wusing bitwise arithmetic and achieve
significant speedup compared to higher precisions such as
FP32 and INTS. Peak binary arithmetic performance on
NVIDIA V100 GPUs is 8 times faster than INT8 [46].

Also, binarization can radically reduce memory
requirements by 32 times. For many complex problems,
however, simple binarization methods usually result in a
serious decrease in accuracy.

Several methods were proposed to reduce decrease in
accuracy in extreme quantization [47]:

1. Minimize the quantization error. The floating-point
parameters are approximated by introducing a scaling
factor aeR for the binary parameter. Then, the

quantization of weight w is formulated as W= a-v\}’,

where W is the binarized weight. Optimal scaling factor
and binary weights are found minimizing the quantization
error

. 2
min, [w—a-wP |?.
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Thus, WP e {—a, a} and lead to less quantization error

than directly using values {—1, 1}. This method increases
the inference accuracy of the network, and still have the
benefits of fast computation.

A two-step quantization method is proposed to
overcome shortcomings of the previous method [48]:

— All activations are low-bit quantized using a
learnable quantization function Q. All weights are
considered as full-precision values.

— Q, is fixed, and scaling factor a € R and the low-

bit quantized weight vector WP are learned as follows:
min, » | 2-Qa@(XOW) 3,

where the minimization problem can be solved iteratively.

2. Improve the network loss function. Additional
quantization-aware loss item is proved to be practical and
is introduced as regularizer [49]:

L=Llcg +2A-LpL,

where Lcg is the traditional cross-entropy loss function,

Lo is the distribution loss to learn the binarization
property, and A is the coefficient of regularization.

Another approach uses the distillation technique,
training a low-precision student network using a full-
precision, well-trained, and large-scale teacher network.
The loss function in this approach is as follows [15]

LW WPy =a-H(y,p")+b-H(y, p*)+c-H(p", p%),

where H(,-) is the loss function between the teacher
model and the apprentice model; W s the full-precision
weights of the teacher model, W is the binary weights of

the apprentice (student) model; pT, pS are predictions
based on the teacher and student models; Y is the label for
sample X; a, b, ¢ are weighting coefficients.

3. Improved Training Method. The training method of
BNNs, proposed in [45], uses the shift-based AdaMax
algorithm and is a variant of the dropout method, but
instead of randomly setting half of the activations to zero
while computing the gradients, the binarization of
activation and weight values is performed. A version of
the straight-through estimator (STE) is applied with
additional saturation effect to propagate gradients through
a non-differentiable signed function while using the
standard back-propagation algorithm.

When using a pre-trained model, quantization can lead
to distortion of parameters of the trained model and, as a
result, to convergence to a non-optimal value of the loss
function. To deal with this problem, a NN model may be
retrained using the quantized parameters to minimize the
decrease in accuracy after quantization. The method is
called QAT and consists of the following steps (Fig.3, a)
[47, 50]:
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1. Pretraining the base NN model without taking into
account quantization. Model accuracy assessment.

2. Apply quantization to all layers of the pre-trained
model. The resulting model supports quantization, but is
not quantized. For example, the weights are float32
instead of int8. Only individual layers of the pre-trained
model can be quantized to increase the accuracy of the
model.

3. Fine-tuning (retraining) the model obtained in the
previous step, which is quantization aware, on a subset of
training data. Assessing the accuracy of the model and
comparing it with the accuracy of the base model.

4. Building an actually quantized model with int8
weights and uint8 activations. Evaluating the accuracy of
this model and comparing it with the accuracy of the base
model.

‘ Pre-trained model [ Pre-trained model
| . X J

Quantization aware model Small numhch

with float32 weights | of labelled or
) i . \unlabelled data
Fine-tuning
on a training subset
4 .
Actually quantized model ]

Actually quantized model: l

+ dynamic range qllamization]

with int8 weights and uint8 »_full integer quantization |
activations J . floatl6 quantization |
a b

Figure 3 — QAT (a) and PTQ (b) methods of quantization

The process of fine-tuning the quantization aware
model in above step 3 is as follows:

— the usual forward and backward pass, as well as the
gradient step for updating the weight, are performed with
floating point,

— model parameters are quantized after gradient
update,

— the non-differentiable quantization operator is
approximated by the identity function called the STE
[51]. Later, instead of the rounding operation, a W-shaped
non-smooth regularization function was proposed [52].

The QAT method helps to minimize the decrease of
accuracy after quantization, despite the use of a rough
approximation STE. The main limitation of QAT is the
computational cost of retraining the NN. For example,
low-bit precision quantization models may require several
hundred epochs of the retraining. Also, the QAT method
requires sufficient training data to retrain.

Post-training quantization (PTQ) performs
quantization of weights and activations of a pre-trained
model without additional fine-tuning (Fig.3b) [47, 50,
53]. Thus, PTQ is very fast method for quantizing NN
models.

The evaluation of modern LLMs aims to answer the
question whether model’s size, architecture, quantization,
and features of architecture significantly affect the
summarization efficiency. Efficiency of texts generated in
a process of summarization is estimated in terms of
metrics ROUGE [54], BLEU [55] and BERT-score [56].
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Additionally, speed of text summarization and
convenience of using the LLM are analyzed. Qualitative
decision criterion “convenience of using” requires, in its
turn, expert or user evaluation. Weights of decision
criteria are also calculated based on expert (user)
preferences or judgements about relative importance of
the criteria in a given problem.

The proposed algorithm for multiple-criteria
evaluation of LLMs has several stages (Fig. 4).

[ Start

Obtain expert judgments of pairwise
comparisen of decision criteria, and the
judgments for LLMs in terms of the criteria

Construct pairwise comparison matrices
(PCMs)
¥

Check consistency of PCMs

—

Is PCM
acceptably inconsistent?

o

Are all PCMs of the mode
checked for consistency?

Calculate local weights or priorities
of all model elements

Are decision criteria
independent?

[Ca'cu'a‘e global ""e'gms] ( Calculate global weights J

using modified distributive " )
or multiplicative methods using the hybrid method

¥ 2
Perform sensitivity analysis of resulting
global weights

No
Are global weights stable?

( End = ]

Figure 4 — An algorithm for LLMs multiple-criteria evaluation

At the first stage, expert compare importance of
decision criteria using special scale, and his/her
judgements are presented as pairwise comparison
matrices (PCMs) [57]. Expert also estimates LLMs in
terms of the criteria based on previously calculated
metrics ROUGE, BLEU and BERT-score. Consistency of
expert judgments is analyzed, using method of assessment
and increasing of consistency [57]. This method is based
on the property of weak inconsistency of PCM, finds
undesirable cycles in a PCM and the most inconsistent
elements of PCM. The method can be applied to various
types of PCMs, such as multiplicative, additive, fuzzy and
other [58]. As a result, we obtain PCMs of acceptable
quality (inconsistency).

At next stage, the fuzzy preference method [59] is
used for calculating local weights or priorities of model
elements (LLMs and decision criteria). After that, local
weights of model elements are aggregated using modified
distributive,  multiplicative = or  proposed  hybrid
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aggregation methods depending on the mutual
dependence of the criteria. At the last stage, a sensitivity
analysis of results is performed, and stability of results is
assessed.

4 EXPERIMENTS

Experiments to evaluate the quality of text
summarization by various LLMs were conducted on two
different data sets: CNN/Daily Mail 3.0.0 [60] and
Extreme Summarization (XSum) [61].

The CNN/Daily Mail 3.0.0 dataset includes over
300,000 unique English language news articles written by
CNN and Daily Mail journalists. Initially, the set was
developed for tasks of machine reading and understanding
of texts, and subsequently for tasks of extractive and
abstract summarization. Each entry in this set is
represented by the following three key fields: the “id”
field contains the SHA1 hash of the URL in hexadecimal
format from which the text was retrieved; the “article”
field is the text of the news article itself; and “highlights”
of the article written by the author.

The XSum dataset was designed specifically to
address complex summarization problems. The set entries
are represented by the following fields: “id”, “document”,
which is the text of the news article itself, “summary”,
which contains a one-sentence summary of the article.

Using two different data sets helps to increase the
validity of obtained results for evaluation of the quality of
text summarization by various LLMs.

Experiments were conducted using a temperature
value of 0.1 and a maximum token length of 100 for each
LLM, as proposed in [3]. The summation of 25 test
samples of each data set was carried out.

5 RESULTS

Various LLMs in both standard and quantized form
were tested on the ROUGE, BERT-score and BLEU
metrics, in order to assess the impact of quantization on
the performance of the models (Tables 1 and 2).

LLMs of different configurations and sizes were
compared with each other, and it was analyzed how the
number of model parameters affects the quality of
summarization and processing speed.

Values of performance metrics for different LLMs
depending on the size and quantization level of the
models are shown in Tables 1 and 2 for the CNN/Daily
Mail 3.0.0 and the XSUM datasets, respectively.

An example of expert pairwise comparison
judgements of decision criteria made in fundamental scale
and the corresponding PCM are shown in Figs. 5 and 6.
These judgements (and PCM) have no cycles, are
acceptably inconsistent and can be used for calculation of
reliable local weights, shown on the right parts of Figs. 5
and 6.

An example of unacceptable PCM is shown in Fig. 7.
In this case, the system finds the most inconsistent
element of PCM and offers a new value for it, which
ensures an increase of consistency level of the entire PCM

(Fig. 7).

Table 1 — Metric values for different LLMs on the CNN/Daily Mail 3.0.0 dataset

LL model N“mlzierf giflﬁzfs‘;leters Rouge-1 | Rouge-2 | ROUGE-L | BLEU |BERT-precision| BERT-recall | BERT-F1
LLaMa-3-8B-4bit 8 0288 | 0.094 0.261 0.044719 0.858 0.881 0.869
Gemma-2B 2 0263 | 0.08 0.245 0.039777 0.858 0.871 0.864
Gemma-2B-4bit 2 0269 | 0.078 0.247 0.036853 0.861 0.873 0.867
Gemma-7B-4bit 7 0271 | 0.082 0.245 0.036121 0.857 0.875 0.866
Gemma-1.1-2B 2 0256 | 0.069 0.223 0.032376 0.858 0.874 0.866
Gemma-1.1-2B-4bit 2 0251 | 0.067 0.227 0.031926 0.856 0.874 0.865
Gemma-1.1-7B-4bit 7 0259 | 0.082 0.238 0.035257 0.858 0.876 0.867
Qwen-1.5-0.5B 0.5 0286 | 0.097 0.248 0.045120 0.84 0.867 0.853
Qwen-1.5-0.5B-4bit 0.5 0268 | 0.08 0.237 0.039331 0.844 0.867 0.855
Qwen-1.5-1.8B 1.8 0283 | 0.083 0.253 0.040930 0.852 0.873 0.862
Qwen-1.5-4B 0295 | 0.109 0.266 0.057609 0.85 0.876 0.863
Qwen-1.5-4B-4bit 0294 | 0.111 0.267 0.066049 0.848 0.874 0.861
Qwen-1.5-7B-4bit 7 0284 | 0.079 0.245 0.039231 0.855 0.88 0.868
Stable LM-2-1.6B 1.6 027 | 0.072 0.241 0.034851 0.853 0.872 0.862
Stable LM-2-1.6B-4bit 1.6 0271 | 0.086 0.241 0.044366 0.852 0.877 0.864
Phi-2 27 0283 | 0.097 0259 0.051176 0.857 0.878 0.867
Phi-2-4bit 27 0277 | 0.09 0.253 0.045895 0.858 0.876 0.867
Mistal-7B-4bit 7 026 | 0.071 0.229 0.028532 0.853 0.873 0.863
GPT-3.5 Turbo 175 0275 | 0.078 0.25 0.035723 0.858 0.878 0.868
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Table 2 — Metric values for different LLMs on the XSum dataset

LL model N“m'Zfrf giflﬁz;asr;‘eters Rouge-1 | Rouge-2 | ROUGE-L | BLEU |BERT-precision| BERT-recall | BERT-F1
LLaMa-3-8B-4bit 8 0.179 0.031 0.137 0.012043 0.842 0.886 0.864
Gemma-2B 2 0.175 0.031 0.141 0.007783 0.842 0.881 0.861
Gemma-2B-4bit 2 0.182 0.032 0.149 0.009392 0.843 0.882 0.862
Gemma-7B-4bit 7 0.173 0.03 0.149 0 0.844 0.884 0.863
Gemma-1.1-2B 2 0.167 0.023 0.139 0 0.844 0.881 0.862
Gemma-1.1-2B-4bit 2 0.167 0.025 0.134 0 0.845 0.882 0.863
Gemma-1.1-7B-4bit 7 0.18 0.035 0.153 0.013915 0.846 0.887 0.866
Qwen-1.5-0.5B 0.5 0.146 0.019 0.116 0.007328 0.819 0.864 0.841
Qwen-1.5-0.5B-4bit 0.5 0.151 0.021 0.115 0.007367 0.825 0.868 0.846
Qwen-1.5-1.8B 1.8 0.181 0.029 0.142 0.007655 0.839 0.881 0.859
Qwen-1.5-4B 4 0.178 0.024 0.146 0.006867 0.837 0.878 0.857
Qwen-1.5-4B-4bit 4 0.175 0.031 0.144 0.011973 0.83 0.873 0.851
Qwen-1.5-7B-4bit 7 0.185 0.035 0.155 0.014836 0.843 0.891 0.866
Stable LM-2-1.6B 1.6 0.174 0.028 0.149 0.008054 0.839 0.878 0.858
Stable LM-2-1.6B-
4bit 1.6 0.165 0.026 0.136 0.006938 0.837 0.88 0.858
Phi-2 2.7 0.185 0.036 0.165 0.011087 0.841 0.883 0.861
Phi-2-4bit 2.7 0.186 0.034 0.159 0.010903 0.843 0.882 0.862
Mistal-7B-4bit 7 0.185 0.03 0.159 0.012617 0.843 0.888 0.865
GPT-3.5 Turbo 175 0.179 0.036 0.15 0.011358 0.845 0.888 0.866
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Figure 5 — An example of expert pairwise comparison judgements of decision criteria made in fundamental scale
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Figure 6 — An example of PCM and calculated weights of decision criteria
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Figure 7 —The most inconsistent element of PCM (marked in gray) and its correction without the participation of an expert

The web interface for the text summarization service
is developed using FastAPI, providing fast response to
user actions during summarization processes which are
computationally intensive.

The interface includes elements necessary for the
summarization process (Fig. 8):

1. Drop-down menus to select language, model type
and voice for audio feedback.

2. A text field for entering the URL of the article for
which you want to generate a summary.

3. Button to start the process.

4. Areas displaying the initial text, summarized text,
the area displaying the progress of the operation and the
reproduced audio of the summarized text.

Article Processor

English ¢ Llama-3-BB-dbit : Male # httpsifwwwnytimesce | 8 Process Article

Parsed Article Text:

Aid to Ukraine Is on the Way. Here's How It Might Help.. Weapons from the support package,
considered “a lifeline” for Ukraine’s military, could be arriving on the battlefield within days.. Lara Jakes
writes about weapons and military aid for Ukraine.. Now that the Senate has approved a nearly $61
billion aid package to Ukraine, and President Biden has signed it, desperately needed American
weapons could be arriving on the battlefield within days.. The weapons package — which has been
delayed over political wrangling by House Republicans since last fall — is "a lifeline” for Kyiv's military,
said Yehor Cherniev, the deputy chairman of the Ukrainian Parliament’s national security committee.
Shortly after approving the funding on Wednesday, Mr. Biden said that the weapons shipments would

Summarized Text:

The United States has approved a nearly $61 billion aid package to Ukraine, which includes weapons
considered a "lifeline” for Ukraine's military. The package, delayed due to political wrangling, is
expected to arrive on the battlefield within days. Ukraine's President Volodymyr Zelensky has
requested artillery ammunition, long-range missiles, and air defenses to strike Russian forces, and the
package includes some of these weapons, such as shoulder-fired Stinger surface-to-air missiles, 155

Summarized Audio:

> 0:02/0:23 L]

Figure 8 — Visualization of the service Web-interface after
completion of all stages of summarization on the example of an
arbitrary article from the New York Times

A WebSocket connection is used for real-time
communication between the client and the server,
allowing dynamically display updates, task progress,
intermediate and final results without the need to reload
the page.

To generate summarized text, the user first selects
desired LLM model, text language, voice type, and
specifies the URL of the article. After clicking the
“Process Article” button, the request is sent to the
backend, where the appropriate model is loaded based on
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the parameters selected by the user. The article is then
downloaded, processed and summarized.

The system in real time informs the user about the
status of their request with the help of a progress indicator
and a direct display of the analyzed and summarized text.

A separate area of the interface displays the original
text so that users can compare it with the summarized
one. The summarized text is displayed together with the
possibility to listen to the audio of the summarized text.
Progress indicators visually show the current state of
processing stages, increasing user engagement and
ensuring clarity of system operation.

6 DISCUSSION

A comparative analysis of the obtained values of the
metrics (Tables 1 and 2) shows that the model’s size,
architecture, quantization, and features of architecture
significantly affect the summarization efficiency. Thus,
models with more parameters tend to be capable of better
understanding of context and more complex patterns in
texts. However, the GPT-3.5 Turbo model with 175
billion parameters did not outperform the other
considered in this study models on the ROUGE, BERT,
and BLEU metrics on either the CNN/Daily Mail 3.0.0 set
or the XSum dataset.

Well-structured LLMs with fewer parameters
outperformed larger LLMs by some metrics in this study.
Thus, the LLaMa-3 quantized model with 8 billion
parameters showed the best performance in BERT
metrics, and the Qwen-1.5 quantized model with 4 billion
parameters was the best in ROUGE and BLEU metrics on
the CNN/Daily Mail 3.0.0 set.

On the XSum set, the quantized models Gemma-1.1
and Qwen-1.5, both with 7 billion parameters, showed the
highest performance in BERT metrics, and the quantized
model Qwen-1.5-7B-4bit was the best among the
considered models in terms of BLEU. The Phi-2 model
with 2.7 billion parameters was the best according to the
ROUGE metrics, showing the highest values of this
metric among the other considered models.

Quantization of all considered models increased the
speed of inferences based on these models. In some cases,
the performance of quantized models decreased on
considered metrics, but the decrease was minor compared
to the significant advantages of quantized models in speed
and resource utilization.
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The obtained results indicate that quantization is a
viable strategy for the LLMs that leads to a significant
increase in the speed of the model inferences while
maintaining acceptable levels of accuracy and consistency
of summarization results.

Asymmetric uniform quantization is often used in
practice, as it results in a wider and therefore more
accurate range compared to symmetric quantization [39].
Asymmetric quantization, however, leads to more
computationally expensive inference in comparison with
the symmetric variant.

In discussed quantization methods, we need to know
the range of change of the real-valued activation or
weight value so that we can determine the correct scaling
coefficients. This requires access to all training data. In
cases where there is no access to the original training data
during the quantization procedure (for example, the
training data set is too large), the zero-shot quantization
methods should be used.

An additional task is the integration of LLMs into
existing information systems at enterprises and
optimization of the dynamics of interaction with users.
Users need intuitive interfaces and the ability to
customize  results, which requires continuous
improvement in the human-machine interaction aspects of
LLM applications. Having a service with LLM, which can
host a large number of users at the same time, can be
afforded by companies with a large budget, since this
requires a large number of servers to run large language
models.

CONCLUSIONS

The large size of the NN models significantly limits
their ability to be deployed and used by many applications
that require real-time output, low power consumption and
high accuracy in conditions of limited resources.
Quantization is an extremely important technology for
further improving the efficiency of NLP models in
conditions of limited computing resources.

The scientific novelty of obtained results is that the
algorithm for LLMs’ evaluation in terms of multiple
criteria (metrics) is proposed, and estimates of quality for
nineteen different quantized and unquantized LLMs of
various sizes, including LLaMa-3-8B-4bit, Gemma-2B-
4bit, Qwen-1.5-4B-4bit, Stable LM-2-1.6B-4bit, Phi-2-
4bit, Mistal-7B-4bit, GPT-3.5 Turbo are obtained in terms
of metrics Rouge-1,2, Rouge-L, BLEU and BERT-scores.
To the best of our knowledge, such estimates of quality of
the considered open-source LLMs have been obtained for
the first time. The proposed algorithm for multi-criteria
model’s evaluation allows to choose the most appropriate
model for summarizing the text, to find a compromise
between the complexity of the model, its performance and
operational efficiency.

The practical significance of obtained results is that
the software for multiple criteria LLMs evaluation and
choosing the most appropriate model for text
summarization has been developed. Also a service has
been developed that automatically receives text from an
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online article, summarizes and speaks it. The web
interface for the text summarization service has been
created using FastAPI, providing fast response to user
actions during summarization processes which are
computationally intensive.

Prospects for further research are to study the
proposed algorithm for a broad class of practical
problems.
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OIIHIOBAHHSI KBAHTOBAHUX BEJIMKUX MOBHUX MO):[EJIEﬁ B 3AJAUI Y3AT AJIbHEHHSI TEKCTIB

Hepamkiseska H. 1. — 1-p Texs. Hayk, JOIEHT, TOLEHT KadeIpy MaTeMaTHIHUX METOMIB CHCTEMHOTro aHaii3y HarionansHoro
TeXHIYHOro yHiBepcuteTy Ykpainum «KwuiBchkmii momitexHiunmii iHctHTyT iMeHi Iropst Cikopcbkoro», IHCTHTYT NpHKIamHOTO
cucreMHoro ananizy, Kuis, Ykpaina.

€pemiuyk P. 1. — 6akanaBp cucremHoro anainizy, Kuie, Ykpaina.

AHOTAIIA

AKTyanbHicTh. Po3risiHyTo 3a1a4y migBHIeHHS e()eKTUBHOCTI NIMOOKMX ITYYHHX HEHPOHHHUX MEPEX LI00 00CATy mam'sTi Ta
CHEProCIIOXKMBaHH, Ta OaraTOKpUTepialbHe OL[HIOBAHHS SIKOCTI pe3yJbTATiB BeNMKHX MOBHUX Monened (LLM) 3 ypaxyBaHHSIM
CyKeHb KOPHCTYBadJiB B 3ajadi cymapusawil TekcTiB. O0’€KTOM IOCIIHKEHHS € MpOLeC aBTOMAaTH3alil cymMapu3aiii TeKCTiB Ha
ocHosi LLM.

Meta poboTH — 3HaliTH KOMIpOMIc Mixk ckiagHicTio Mogeni LLM, ii TouHicTiO Ta eeKTUBHICTIO B 3agadi cymapu3aiii abo
y3arajbHEHHS TEKCTIB.

MeToa. 3anpornoHOBaHO AITOPUTM OLiHIOBAaHHS Mojened LLM 3a GaraTbMa kpuTepisMu (MeTpUKaMu), SKAil J03BOJIsIE 00paTH
HaWOLIpIm migxoasmty monens LLM i cymapusarnii TeKCTy, 3HAHTH NPHHHATHHI KOMIIpoMic MK ckiagHicTio moxeni LLM, 1i
MIPOJYKTHBHICTIO Ta SIKICTIO y3arajJbHEHHS TEKCTy. 3HauHe MIJBUIICHHS TOYHOCTI Pe3yJbTaTiB Ha OCHOBI HEHPOHHUX MEpex y
3agayax 0OpOOKH IPUPOIHOT MOBH HacTO JOCATAETHCS BUKOPUCTAHHSAM 3aHAATO INIMOOKUX 1 HAJIMIPHO MapamMeTpH30BaHUX MOJIEIIeH,
II0 CYTTEBO OOMEXKYE 3/1aTHICTh MOJIENICH BHKOPUCTOBYBATHCS y 33/1auax BUBOJY B pEasIbHOMY 4aci, 3a MOTPeOU BUCOKOT TOUHOCTI B
yMoBax oOMexeHHX pecypciB. [IpornoHoBaHuii anroput™ obupae npuidHATHY Mozaens LLM 3a Gararbma KpUTEpisiIMH, TAaKUMH SIK
nmoka3aukn ToyHocti BLEU, Rouge-1, 2, Rouge-L, BERT-ominku, mBHAKICTE cyMapu3zamii a0o IHIIUMH KpUTEPisIMH, SKi
BH3HAYAIOThCA KOPHCTYBadeM B KOHKPETHIH MpPaKTHUYHIM 3a7adi iHTEJIEKTyaJbHOTO aHali3y TEKCTY. AJTOPUTM BKIIOYAE aHANI3 i
TIiABUIIEHHS Y3TOKEHOCTI Cy/KeHb KOPUCTYBAiB, OiHIOBaHHS Moaeseil LLM 3a Ko)KHUM KpHUTepieM, arperyBaHHs JIOKAJIBHUX Bar
Mojereil, aHalli3 9y TIMBOCTI OTPUMAHHX ITI00ANBHHX Bar Mojeiel.

PesyabTaTu. Po3pobiieHo mporpaMHe 3a0e3neueHHs Uil aBTOMATHYHOTO OTPUMAaHHS TEKCTIB 3 OHJIAHH-CTaTe#l 1 cymapusarii
LIUX TEKCTIB, Ta JJIs OLiHIOBaHHS skocTi Mojeneid LLM. OTpuMaHO OLHKHM SKOCTi JEB’SITHAJUATH KBAaHTOBAaHUX 1 HEKBAHTOBAHHX
moneneit LLM pi3aux po3mipis, cepen skux LLaMa-3-8B-4bit, Gemma-2B-4bit, Gemma-1.1-7B-4bit, Qwen-1.5-4B-4bit, Stable
LM-2-1.6B-4bit, Phi-2-4bit, Mistal-7B-4bit, GPT-3.5 Turbo 3a nokasuukamu BLEU, Rouge-1, Rouge-2, Rouge-L i BERT-ouinok Ha
JBOX pi3HKUX Habopax TekctiB XSum Ta CNN/Daily Mail 3.0.0.

BucHoBku. IIpoBemeHi eKCIEpUMEHTH MiATBEPIMIM TPANE3JaTHICTh MPOIMOHOBAHOTO MAaTEMaTHYHOTO 3a0e3ledeHHs,
JIO3BOJIIIOTH PEKOMEHIAYBAaTH IOTO I/l BUKOPHCTAHHS NPH BUPIMICHHI 3aad cyMapu3allii TeKcTiB Ha mpaktumi. llepcrexTuBu
MOAANBIINX JOCIIDKEHb MOXYTh MOJISTaTH y OLTBII ITTMOOKOMY aHAaNi3i METPHK Ta KPUTEPIiiB OLIHIOBAHHS SKOCTiI CT€HEPOBAHUX
TEKCTIB, @ TAKOX CKCIICPIMEHTAILHOMY JOCITI/PKEHHI IIPOITOHOBAHOTO aJTOPUTMY Ha OiIbIIiH KUTBKOCTI IPaKTUYHMX 3a/1ad 00poOKn
NIPUPOIHOI MOBH.

KJIFOUYOBI CJIOBA: o6MexeHICTh pecypciB, 00poOKa MpUpoaHOi MOBH, CyMapu3allist ab0 y3arajibHEHHS TEKCTY, BEJIHKI MOBHI
MOJIeJi, KBaHTH3allis, 6araTOKpUTepialbHUN aHai3.
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