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ABSTRACT 
Context. The problem of increasing the efficiency of deep artificial neural networks in terms of memory and energy 

consumption, and the multi-criteria evaluation of the quality of the results of large language models (LLM) taking into account the 
judgments of users in the task of summarizing texts, are considered. The object of the study is the process of automated text 
summarization based on LLMs. 

Objective. The goal of the work is to find a compromise between the complexity of the LLM, its performance and operational 
efficiency in text summarization problem. 

Method. An LLM evaluation algorithm based on multiple criteria is proposed, which allows choosing the most appropriate LLM 
model for text summarization, finding an acceptable compromise between the complexity of the LLM model, its performance and the 
quality of text summarization. A significant improvement in the accuracy of results based on neural networks in natural language 
processing tasks is often achieved by using models that are too deep and over-parameterized, which significantly limits the ability of 
the models to be used in real-time inference tasks, where high accuracy is required under conditions of limited resources. The 
proposed algorithm selects an acceptable LLM model based on multiple criteria, such as accuracy metrics BLEU, Rouge-1, 2, 
Rouge-L, BERT-scores, speed of text generalization, or other criteria defined by the user in a specific practical task of intellectual 
analysis. The algorithm includes analysis and improvement of consistency of user judgments, evaluation of LLM models in terms of 
each criterion. 

Results. Software is developed for automatically extracting texts from online articles and summarizing these texts. Nineteen 
quantized and non-quantized LLM models of various sizes were evaluated, including LLaMa-3-8B-4bit, Gemma-2B-4bit, Gemma-
1.1-7B-4bit, Qwen-1.5-4B-4bit, Stable LM-2-1.6B-4bit, Phi-2-4bit, Mistal-7B-4bit, GPT-3.5 Turbo and other LLMs in terms of 
BLEU, Rouge-1, Rouge-2, Rouge-L and BERT-scores on two different datasets: XSum and CNN/ Daily Mail 3.0.0. 

Conclusions. The conducted experiments have confirmed the functionality of the proposed software, and allow to recommend it 
for practical use for solving the problems of text summarizing. Prospects for further research may include deeper analysis of metrics 
and criteria for evaluating quality of generated texts, experimental research of the proposed algorithm on a larger number of practical 
tasks of natural language processing. 

KEYWORDS: limited resources, natural language processing, text summarization, large language models, quantization, multi-
criteria analysis. 

 
ABBREVIATIONS 

NN is a neural network; 
LLM is a large language model; 
LLaMA is a large language model by Meta AI; 
NLP is a natural language processing; 
PLM is a pretrained transformer language model; 
BERT is a bidirectional encoder representations by 

transformer; 
BNN is a binary neural network; 
STE is a straight-through estimator; 
QAT is a quantization aware training; 
PTQ is a post-training quantization; 
ROUGE is a recall-oriented understudy for gisting 

evaluation – a set of metrics;  
BLEU is a bilingual evaluation understudy algorithm; 
PCM is a pairwise comparison matrix. 

 
NOMENCLATURE 

r is a real-valued input; 
[α, β] is a cutoff range; 
b is a quantization bit width;  

qr is a result of quantization of r; 
S is a real-valued scaling coefficient;  

Z is a integer zero point; 
f(r) is a transformation operation for quantization; 
int is a rounding operation; 
clip is a clipping function; 
r̂  is a result of dequantization;  

i  is a quantization threshold;  

iy  is a quantization level; 
( , )Q b  is a set of quantization levels; 

( )  is an operation of projecting; 
w is a weight; 

bw  is a binarized weight; 
( )w  is a “hard sigmoid” function; 

a, b, c are weighting coefficients; 
λ is a coefficient of regularization; 

aQ  is a learnable quantization function; 

CEL  is a traditional cross-entropy loss function; 

DLL  is a distribution loss; 
( , )H    is a loss function between the teacher model 

and the apprentice model; 
FPw  is a full-precision weight of the teacher model;  
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,T Sp p  are predictions based on the teacher and 
student models. 

 
INTRODUCTION 

The importance of text summarization has increased 
with the information explosion in the digital age. Today, a 
huge amount of data is generated every second from 
various sources such as news, scientific reports, emails 
and social media posts. For both private individuals and 
businesses, it is almost impossible to consume available 
information without spending significant time. Text 
summarization tools offer a practical solution, quickly 
represent the essence of voluminous documents, and thus 
allow efficient information consumption. 

Large language models (LLMs) have fundamentally 
changed the process of text summarization, providing 
opportunities that surpass traditional statistical methods 
[1, 2]. Trained on vast amounts of textual data from 
various sources, the LLMs develop a comprehensive 
understanding of linguistic nuances, idiomatic expressions 
and complex sentence structures. As a result, they can 
create summaries that not only capture the essential 
information from the texts, but also preserve the style and 
tone of original text [1, 3].  

One of the most significant effects of LLMs is their 
ability to perform text summarization at extremely large 
scales and at extremely high speeds, quickly extracting 
key points from large volumes of text. This capability 
allows businesses, researchers, and policymakers to stay 
informed and make data-driven decisions without having 
to manually sift through extensive documents. 

LLMs can work with various types and formats of 
texts: books, news articles, blog posts, technical reports 
and other [1]. These models support many languages and 
offer the possibility of summarization in different 
languages [4, 5]. 

LLMs are now very accessible to users, not even 
requiring authorization to use the latest updated version of 
the GPT 3.5 Turbo model [4]. In addition, LLMs offer a 
recommendation service and a personalized 
summarization experience: the user, for example, may 
indicate his/her interests or the most relevant text’s 
aspects, and the models adjust their summarization 
strategies accordingly. Such personalization allows to 
create individual resumes which are more relevant and 
useful for individual users, increasing their interest and 
satisfaction. 

However, summarization using LLMs also faces a 
number of problems [6]. The first and the most important 
of them is to ensure a high level of accuracy of the 
generated summaries and a contextual understanding of 
input text documents. While LLMs can create coherent 
resumes, the complexity of human language and the 
subtleties of textual nuance often present challenges. The 
problem is that the LLMs sometimes try to capture irony, 
sarcasm, and implicit meaning in text documents, which 
can lead to summaries that distort the original content. In 
addition, LLMs may omit important information or 

emphasize less important details, especially in texts of 
high information density or complex structure. 

The second challenge is the bias of summaries 
generated by LLMs. The reason for this problem lies in 
the fact that the extremely large training data sets are 
usually created by humans and, as a result, are already 
characterized by a certain level of bias. Texts generated 
by LLMs can further reinforce these biases, leading to a 
distorted or partial representation of the original texts. 
This problem is particularly relevant in such sensitive 
areas as news distribution, legal document processing and 
educational content, where impartiality and fairness are of 
paramount importance. 

At last, the use of LLMs requires powerful processors 
and large amounts of memory. To run, for example, a 
model of the GPT-4 level, which has at least 70 billion 
parameters, you need at least 48 GB of video memory [5]. 

In the end of 2023 and the beginning of 2024, the 
focus of the LLM community has shifted to the release of 
open-source and quantized models. In April 2024, Meta 
AI introduced LLaMA-3 70B and quantized LLaMA-3 
8B models, which are improved versions of the LLaMA-2 
[7]. The release of LLaMA-3 has once again raised the 
bar of quality for models of their size. For instance, the 
LLaMa-3 8B model aims to perform better than the 
LLaMa-3 70B in some tasks, while having 8.75 times 
fewer parameters. 

The object of study is the process of automated text 
summarization using LLMs.  

The subject of study is the analysis of quantization 
techniques and several different LLMs, which were 
proposed in 2023 and the beginning of 2024, depending 
on a set of multiple criteria.  

The purpose of the work is to develop an algorithm 
of LLMs’ evaluation in terms of multiple quantitative and 
qualitative criteria. 

 
1 PROBLEM STATEMENT 

Suppose 1 2, ,..., na a a  are alternative LLMs, such as 
LLaMa-3, Gemma, Qwen, Stable LM-2, Phi-2, Mistal, 
and their quantized versions, GPT-3.5 Turbo and other 
LLMs (decision alternatives), and 1 2, ,..., mc c c  are the 
following decision criteria: 

– metrics ROUGE, BLEU and BERT-score, which are 
used for evaluation of generated texts; 

– speed of text summarization; 
– convenience of using the LLM. 
It is necessary: 
– to evaluate decision alternatives (modern LLMs of 

various sizes) in a text summarization problem in terms of 
above decision criteria, using different data sets: CNN/ 
Daily Mail 3.0.0, and Extreme Summarization (XSum); 

– to integrate modern LLMs of various sizes: LLaMa-
3, Gemma, Qwen, Stable LM-2, Phi-2, Mistal, GPT-3.5 
Turbo into a summarization service. 
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2 REVIEW OF THE LITERATURE 
Several approaches are considered to improve the 

efficiency of NN models in terms of memory size, power 
consumption and others, while simultaneously providing 
an acceptable compromise between accuracy and 
generalization property of the models: 

– designing efficient architectures for NN models; 
adaptation and co-design of NN architectures for a 
specific target hardware; 

– quantization; 
– pruning; 
– model distillation. 
The issue of quantization of NNs is partly related to 

works in the field of neuroscience [8–10], according to 
which the human brain stores information in discrete and 
quantized rather than continuous form.  

One reason for the need for quantization is that the 
information, which is stored in continuous format, is 
exposed to noise (external, thermal, synaptic and other), 
and such noise is always present in small quantities in the 
physical environment, including the human brain [11]. 
Signals in discrete form may be more robust to such low-
level noise. In addition, discrete representations have a 
higher generalization ability [12] and higher efficiency in 
resource-constrained applications [13]. 

Model distillation consists of first training a large 
model, and then using it as a teacher to train a more 
compact model [14 – 16]. The main challenge is to obtain 
accurate results with a high degree of data compression as 
a result of distillation. Strong compression for knowledge 
distillation methods usually leads to a significant decrease 
in the accuracy of the results. Accuracy can be improved 
by combining knowledge distillation with quantization 
and pruning techniques [16].  

In recent years, there has been a trend to use pre-
trained language representations in natural language 
processing systems, which are applied more flexibly and 
independently of the task. Single-layer representations 
based on word-to-vector models were first explored and 
transferred to task-specific architectures [17, 18]. After 
that, the recurrent neural networks with contextual state, 
multiple representation layers [19–22] and sequence-to-
sequence model with copy mechanism [23] were used to 
form stronger representations. 

Recently, pretrained transformer language models 
(PLMs) have developed [24], which are directly fine-
tuned, completely eliminating the need for task-specific 
architectures [25–27].  

The Bidirectional Encoder Representations by 
Transformer (BERT) model [25] marked a significant 
advance in NLP tasks. BERT is extended to the sequence 
generation task in [26], where a two-stage decoding 
process is designed for efficient usage of BERT’s context 
modeling ability. Firstly, the summary is generated using 
a left context-only-decoder. After that, each word of the 
summary is masked, the refined word is predicted, and the 
reinforcement objective is cooperated with the refined 
decoder for further improvement of the naturalness of the 
generated sequence [26]. A self-supervised pre-training 

objective for abstractive summarization, a gap-sentences 
generation and study strategies for selecting those 
sentences are proposed in PEGASUS model [27]. The 
PEGASUS is able to be adapted very quickly, and fine-
tune with small numbers of supervised pairs. 

The T5 (Text-to-Text Transfer Transformer) model 
had 11 billion parameters and used a transfer learning 
approach, outperforming its predecessors BERT and 
GPT2 in a wide range of NLP applications, including text 
classification, question answering, and especially text 
summarization [28]. The GPT-3 model proposed in 2020 
already had 175 billion parameters and could be zero-
short transferred to downstream tasks without fine-tuning 
[1]. In 2020, a new learning method known as replaced 
token detection was introduced in the ELECTRA model. 
In a pre-training task, this model learns to distinguish real 
input tokens from plausible but synthetically generated 
replacements [29]. ELECTRA is effective in extractive 
note-taking, where identifying and summarizing the most 
important sentences in a text is critical. 

The DeBERTa (Decoding-enhanced BERT with 
Disentangled Attention) model, released in 2020 as an 
improvement to BERT, separated the representation of 
words from their positions in the text, which allowed the 
model to more clearly understand contextual 
relationships, create contextually deeper and more 
coherent summarizations, generalize different types of 
texts [30].  

GPT-3.5, also known as ChatGPT, introduced in 2022 
provides enhanced interactivity, allowing users to interact 
with the model directly by refining the summarization 
results [4]. Dynamically responding to user input and 
adjusting its responses, GPT-3.5 became not just a tool 
for passive data processing, but also an active participant 
in information analysis and decision-making processes. 

Further advances in this area have been made by fine-
tuning LLMs for a set of tasks formulated as instructions, 
allowing the models to better respond to instructions and 
reducing the need for labeled data. It is emphasized in 
[31] that fine-tuning on instructions can improve 
performance across a range of models, prompting setups, 
and evaluation tasks. As a result, Flan-T5 model with 11 
billion parameters [31] achieves strong few-shot 
performance compared to much larger models, such as 
PaLM 62B. 

An open-source LLaMA (Large Language Model 
Meta AI) model was proposed by Meta AI in February 
2023 and marked a significant evolution in NLP for 
deploying advanced NLP tools in resource-constrained 
environments by optimizing performance in various 
computing environments [32]. The LLaMA model has an 
ability to produce high output quality with less training 
data, which optimizes use of this model for real-time text 
summarization problems, where fast and accurate 
compression of information is very important. Also, the 
release of the LLaMA model greatly improved the 
position of open-source models, since there were and still 
are a lot of big players hiding detailed information about 
the architecture, number of parameters, training 
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configurations, data sets, etc. This has prompted many of 
the big players in AI to release even more open-source 
models of the GPT-level from OpenAI. 

In the Gemini model proposed by Google in May 
2023, two-context processing of texts and integration of 
information from different sources were introduced [33]. 
In this regard, the Gemini model is effective for dynamic 
content such as news streams. 

The Mistral open-source model [34], developed by an 
independent research group from France and released in 
July 2023, aimed to solve the problem of generating 
resume texts of better quality in many different languages 
that were previously unavailable. The Mistral model 
became more powerful than the similar LLaMa model by 
7 billion parameters, actually taking first place among 
open-source models at that time according to expert 
evaluations [34]. Anyone can download the Mistral model 
weights for free and run it locally having the appropriate 
computing resources, unlike GPT-4 and GPT-3.5 models, 
which are only available as an application programming 
interface service. 

In 2023 and 2024, there is also a trend to reduce the 
dimensions of LLMs, so that they can effectively work on 
devices with limited computing resources. Examples of 
such models are Qwen1.5 – 0.5B, 1.8B, 4B, Stable LM – 
1.6B, Phi-2 – 2.7B, Phi-3 – 3.8B and TinyLlama - 1.1B. 
Recently, 8-bit and 4-bit quantization opens up an 
opportunity of running LLMs on consumer hardware [35 
– 37].  

Non-uniform quantization, binarized weights and 
activations, extreme and mixed precision quantization, 
quantization aware training (QAT) and post-training 
quantization (PTQ) are used in modern LLMs [37]. 

In order to choose the best models for text 
summarization based on user preferences and multiple 
quality criteria, and to increase the speed and quality of 
text summarization based on LLMs, it is necessary to 
evaluate modern quantized LLMs of different sizes in a 
text summarization problem using several data sets and 
metrics BLEU, Rouge-n, Rouge-L and BERT-score. 

 
3 MATERIALS AND METHODS 

Uniform quantization. The basic quantization 
operation performs uniform quantization using the 
following steps [38, 39]: 

1. Specify the range of a real-valued quantity to be 
quantized, and to clip values outside this range. 

2. Map real values to integer values which are 
represented by the required bit-width of the quantized 
representation. This is often performed by rounding each 
real value to the nearest integer. 

Let r be a real-valued input, [α, β] be the range of r 
chosen for quantization (the cutoff range), and b is the 
quantization bit-width. Uniform quantization represents 
the full-precision input value r [α, β] as the low-

precision integer within the range 1 1[ 2 ,2 1]b b   . Inputs 

outside the range are cut to the nearest boundary. 

Asymmetric uniform or affine quantization represents 
a real value r  as a signed b-bit integer 

1 1 1{ 2 , 2 1,...,2 1}q b b br        . The following 
transformation operation is defined by 
 

( )f r S r Z   , 
 

2 1b
S 

 , 1int( ) 2bZ S     , 

 

where S is a real-valued scaling coefficient, Z is the zero 
point – the integer, to which the real-valued zero is 
mapped, and int is a rounding operation, which displays a 
real value to an integer. The scaling coefficient S divides 
the range of the real-valued r into several partitions. In the 

8-bit case, 255S    and int( ) 128Z S    . 

The uniform quantization operation, also called 
asymmetric, is defined as follows [39]: 

 
quantize( , , , )qr r b S Z   

1 1clip(int ( ), 2 , 2 1)b bS r Z       , 

 
where clip( , , )r l u l  if r l , clip( , , )r l u u  if r u  and 
clip( , , )r l u r  if l r u  . 

The corresponding dequantization operation, which 
computes an approximation of the original real-valued 
input r̂ r , is defined by 

 

1ˆ dequantize( , , ) ( )q q
S

r r S Z r Z   . 
 

In the symmetric uniform quantization, the cutoff 
range and integer range are symmetric around zero, that is 
α = − β, and the zero-point Z=0. For example, the integer 
range [−127, 127] is used for 8-bit quantization, and we 
do not use the –128 value in favor of symmetry. For int8, 
the loss of one out of 256 representable values is minor. 
However, for lower bit quantization we have to re-
evaluate the trade-off between representable values and 
symmetry of quantization. 

Symmetric uniform quantization represents a real 
value r  as a signed b-bit integer 

1 1 1{ 2 1, 2 2,...,2 1}q b b br         . The following 

transformation operation is defined by 
 

( )f r S r  , 
12 1b

S
 
 , 

 

and the result of quantization is as follows: 
 

quantize( , , )qr r b S   
1 1clip(int ( ), 2 1, 2 1)b bS r       . 

 

Uniform quantization operations are shown on Fig. 1. 
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Calibration is the process of selecting the cutoff range 
[α, β] [38, 39]. A popular method is to set minr   and 

maxr   for asymmetric uniform quantization. In this 

case, S is specified as 
1

max(| |)

2 1b

rS  
 . In a case of symmetric 

quantization method, the maximum of absolute values is 
used: min maxmax(| |,| |)r r  . Then S is given as 

2max(| |)

2 1b

rS


 . 

A percentile of the distribution of absolute values 
observed during calibration also can be set [40]. For 
example, the 99% percentile would cut off 1% of the 
largest values. The Kullback-Leibler divergence can be 
used for calibration, which minimizes the loss of 
information between the quantized values and the original 
floating-point values. 

Asymmetric uniform quantization is often applied in 
practice, as it results in a wider and therefore more 
accurate range, however, leading to more computationally 
expensive inference compared to symmetric quantization. 

 
a 

 
b 

Figure 1 – Quantization of real values to int8: a – asymmetric,  
b – symmetric [39] 

 
Non-uniform quantization methods provide higher 

accuracy for a fixed bit width, and these methods allow 
more attention to be focused on important regions of 
weight or activation values, such as in the case of bell-
shaped distributions with long tails, and also support 
dynamic definition of cutoff ranges [41–43].  

The non-uniform quantization operation is specified as 
 

( ) if r y  if 1[ , )i ir    , 
 

where i  are quantization thresholds, and iy  are 
quantization levels. 

The quantization of a real-valued input r can be 
presented as 

 

( , )
clip( , )q

Q b
r r  , 

 

where ( , )Q b  is a set of quantization levels, β is the 
cutoff threshold, the cutting function ),clip(   clips 
values of r into range [– β, β], and b is the bit-width. 

Operation ( )  projects clipped r value onto the 
quantization level. 

In a case of uniform quantization, the quantization 
levels are defined as 

 

 1 1 1
31 2

2 1 2 1 2 1
( , ) 0, , , , ..., 1b b bQ b   

 
  

    . 

 

For non-uniform “powers-of-two” quantization 
method, the quantization levels are constrained to be 
powers-of-two values or zero (Fig. 2) [42]: 

 

 1 12 1 2 2 1( , ) 0, 2 , 2 , ..., 2 , 1
b bPoTQ b
           . 

 

Multiplication between a number 2x , that is a power 
of two, and other number q can be implemented by 
bitwise shifting as follows: 

 
, if 0

2 , if 0

, if 0

x
u x

u u x x

u x x


   
  

 , 

   

where    is the right shift operation, which accelerates 
the computation and takes only one clock cycle in modern 
CPU architectures [42].  

Quantization layers can also be trained along with 
model parameters using gradient descent methods [44].  

 

 
a b 

Figure 2 – Quantization of unsigned data to 3-bit or 4-bit:    
a – uniform, b – Powers-of-Two (PoT) quantization [42] 

 
In binary networks (BNNs) – networks with binary 

weights and activations – most arithmetic operations are 
replaced with bit-wise operations, which potentially lead 
to a substantial increase in power-efficiency. BNNs and a 
method for their training are proposed in [45]. 
Experiments in [45] show that binarization cardinally 
reduces memory consumption, namely number of 
accesses and memory size during the forward pass at run-
time and train-time.   
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When training a BNN, the weights and the activations 
are both constrained to +1 or −1. The binarization 
function can be either deterministic:  

 
1, if 0

sign( )
1, otherwise

b w
w w

 
  

  

 

or stochastic: 
 

1, with probability ( )
sign( )

1, with probability 1
b p w

w w
p

 
   

, 

 

where   is the “hard sigmoid” function: 
 

  1 1
2 2

( ) clip( , 0, 1) max 0, min 1,w wx     . 

 

A significant benefit of joint binarization of weights 
and activations in BNNs is that the floating-point matrix 
multiplication is replaced by lightweight operations 

 

 1XnorDotProduct b b
k ka W ,  1,...,k L , 

 

followed by bit counting. 
This operation is based on a following trick: it is 

relatively easy to handle continuous-valued inputs as 
fixed-point numbers, with m bits of precision [45]. For 
example, in the common case of 8-bit fixed point inputs: 

 

bsum x w  , 
8 1

1
2 ( )n n b

n
sum x w

  , 

 

where x is a vector of 1024 8-bit inputs, bw  is a vector of 
1024 1-bit weights, and sum is the resulting weighted 
sum.  

Binarization, which limits quantized values to a 1-bit 
representation is considered as the most extreme 
quantization method. Binary operations can be computed 
efficiently using bitwise arithmetic and achieve 
significant speedup compared to higher precisions such as 
FP32 and INT8. Peak binary arithmetic performance on 
NVIDIA V100 GPUs is 8 times faster than INT8 [46].  

Also, binarization can radically reduce memory 
requirements by 32 times. For many complex problems, 
however, simple binarization methods usually result in a 
serious decrease in accuracy. 

Several methods were proposed to reduce decrease in 
accuracy in extreme quantization [47]: 

1. Minimize the quantization error. The floating-point 
parameters are approximated by introducing a scaling 
factor a  for the binary parameter. Then, the 

quantization of weight w is formulated as bw a w  , 

where bw  is the binarized weight. Optimal scaling factor 
and binary weights are found minimizing the quantization 
error 

2
,

min || ||b
b

a w
w a w  . 

 

Thus, { , }bw a a   and lead to less quantization error 
than directly using values {−1, 1}. This method increases 
the inference accuracy of the network, and still have the 
benefits of fast computation. 

A two-step quantization method is proposed to 
overcome shortcomings of the previous method [48]:  

– All activations are low-bit quantized using a 
learnable quantization function aQ . All weights are 
considered as full-precision values. 

– aQ  is fixed, and scaling factor a  and the low-

bit quantized weight vector bw  are learned as follows: 
 

2
2,

min || ( ( )) ||b
b

aa w
z Q a x w  , 

 

where the minimization problem can be solved iteratively.  
2. Improve the network loss function. Additional 

quantization-aware loss item is proved to be practical and 
is introduced as regularizer [49]: 

 

CE DLL L L  , 
 

where CEL  is the traditional cross-entropy loss function, 

DLL  is the distribution loss to learn the binarization 
property, and λ is the coefficient of regularization. 

Another approach uses the distillation technique, 
training a low-precision student network using a full-
precision, well-trained, and large-scale teacher network. 
The loss function in this approach is as follows [15] 

 

( ; , ) ( , ) ( , ) ( , )FP b T S T SL x w w a H y p b H y p c H p p      , 
 

where ( , )H    is the loss function between the teacher 

model and the apprentice model; FPw  is the full-precision 

weights of the teacher model, bw  is the binary weights of 

the apprentice (student) model; ,T Sp p  are predictions 
based on the teacher and student models; y is the label for 
sample x; a, b, c are weighting coefficients. 

3. Improved Training Method. The training method of 
BNNs, proposed in [45], uses the shift-based AdaMax 
algorithm and is a variant of the dropout method, but 
instead of randomly setting half of the activations to zero 
while computing the gradients, the binarization of 
activation and weight values is performed. A version of 
the straight-through estimator (STE) is applied with 
additional saturation effect to propagate gradients through 
a non-differentiable signed function while using the 
standard back-propagation algorithm. 

When using a pre-trained model, quantization can lead 
to distortion of parameters of the trained model and, as a 
result, to convergence to a non-optimal value of the loss 
function. To deal with this problem, a NN model may be 
retrained using the quantized parameters to minimize the 
decrease in accuracy after quantization. The method is 
called QAT and consists of the following steps (Fig.3, a) 
[47, 50]: 
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1. Pretraining the base NN model without taking into 
account quantization. Model accuracy assessment.  

2. Apply quantization to all layers of the pre-trained 
model. The resulting model supports quantization, but is 
not quantized. For example, the weights are float32 
instead of int8. Only individual layers of the pre-trained 
model can be quantized to increase the accuracy of the 
model.  

3. Fine-tuning (retraining) the model obtained in the 
previous step, which is quantization aware, on a subset of 
training data. Assessing the accuracy of the model and 
comparing it with the accuracy of the base model.  

4. Building an actually quantized model with int8 
weights and uint8 activations. Evaluating the accuracy of 
this model and comparing it with the accuracy of the base 
model. 

 

 
a 

 
b 

Figure 3 – QAT (a) and PTQ (b) methods of quantization 
 
The process of fine-tuning the quantization aware 

model in above step 3 is as follows: 
– the usual forward and backward pass, as well as the 

gradient step for updating the weight, are performed with 
floating point,  

– model parameters are quantized after gradient 
update, 

– the non-differentiable quantization operator is 
approximated by the identity function called the STE 
[51]. Later, instead of the rounding operation, a W-shaped 
non-smooth regularization function was proposed [52]. 

The QAT method helps to minimize the decrease of 
accuracy after quantization, despite the use of a rough 
approximation STE. The main limitation of QAT is the 
computational cost of retraining the NN. For example, 
low-bit precision quantization models may require several 
hundred epochs of the retraining. Also, the QAT method 
requires sufficient training data to retrain. 

Post-training quantization (PTQ) performs 
quantization of weights and activations of a pre-trained 
model without additional fine-tuning (Fig.3b) [47, 50, 
53]. Thus, PTQ is very fast method for quantizing NN 
models.  

The evaluation of modern LLMs aims to answer the 
question whether model’s size, architecture, quantization, 
and features of architecture significantly affect the 
summarization efficiency. Efficiency of texts generated in 
a process of summarization is estimated in terms of 
metrics ROUGE [54], BLEU [55] and BERT-score [56]. 

Additionally, speed of text summarization and 
convenience of using the LLM are analyzed. Qualitative 
decision criterion “convenience of using” requires, in its 
turn, expert or user evaluation. Weights of decision 
criteria are also calculated based on expert (user) 
preferences or judgements about relative importance of 
the criteria in a given problem. 

The proposed algorithm for multiple-criteria 
evaluation of LLMs has several stages (Fig. 4). 

 

 
 

Figure 4 – An algorithm for LLMs multiple-criteria evaluation 
 
At the first stage, expert compare importance of 

decision criteria using special scale, and his/her 
judgements are presented as pairwise comparison 
matrices (PCMs) [57]. Expert also estimates LLMs in 
terms of the criteria based on previously calculated 
metrics ROUGE, BLEU and BERT-score. Consistency of 
expert judgments is analyzed, using method of assessment 
and increasing of consistency [57]. This method is based 
on the property of weak inconsistency of PCM, finds 
undesirable cycles in a PCM and the most inconsistent 
elements of PCM. The method can be applied to various 
types of PCMs, such as multiplicative, additive, fuzzy and 
other [58]. As a result, we obtain PCMs of acceptable 
quality (inconsistency).  

At next stage, the fuzzy preference method [59] is 
used for calculating local weights or priorities of model 
elements (LLMs and decision criteria). After that, local 
weights of model elements are aggregated using modified 
distributive, multiplicative or proposed hybrid 
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aggregation methods depending on the mutual 
dependence of the criteria. At the last stage, a sensitivity 
analysis of results is performed, and stability of results is 
assessed. 
 

4 EXPERIMENTS 
Experiments to evaluate the quality of text 

summarization by various LLMs were conducted on two 
different data sets: CNN/Daily Mail 3.0.0 [60] and 
Extreme Summarization (XSum) [61].  

The CNN/Daily Mail 3.0.0 dataset includes over 
300,000 unique English language news articles written by 
CNN and Daily Mail journalists. Initially, the set was 
developed for tasks of machine reading and understanding 
of texts, and subsequently for tasks of extractive and 
abstract summarization. Each entry in this set is 
represented by the following three key fields: the “id” 
field contains the SHA1 hash of the URL in hexadecimal 
format from which the text was retrieved; the “article” 
field is the text of the news article itself; and “highlights” 
of the article written by the author. 

The XSum dataset was designed specifically to 
address complex summarization problems. The set entries 
are represented by the following fields: “id”, “document”, 
which is the text of the news article itself, “summary”, 
which contains a one-sentence summary of the article. 

Using two different data sets helps to increase the 
validity of obtained results for evaluation of the quality of 
text summarization by various LLMs. 

Experiments were conducted using a temperature 
value of 0.1 and a maximum token length of 100 for each 
LLM, as proposed in [3]. The summation of 25 test 
samples of each data set was carried out. 

 
5 RESULTS 

Various LLMs in both standard and quantized form 
were tested on the ROUGE, BERT-score and BLEU 
metrics, in order to assess the impact of quantization on 
the performance of the models (Tables 1 and 2).  

LLMs of different configurations and sizes were 
compared with each other, and it was analyzed how the 
number of model parameters affects the quality of 
summarization and processing speed.  

Values of performance metrics for different LLMs 
depending on the size and quantization level of the 
models are shown in Tables 1 and 2 for the CNN/Daily 
Mail 3.0.0 and the XSUM datasets, respectively.  

An example of expert pairwise comparison 
judgements of decision criteria made in fundamental scale 
and the corresponding PCM are shown in Figs. 5 and 6. 
These judgements (and PCM) have no cycles, are 
acceptably inconsistent and can be used for calculation of 
reliable local weights, shown on the right parts of Figs. 5 
and 6.  

An example of unacceptable PCM is shown in Fig. 7. 
In this case, the system finds the most inconsistent 
element of PCM and offers a new value for it, which 
ensures an increase of consistency level of the entire PCM 
(Fig. 7). 

 

Table 1 – Metric values for different LLMs on the CNN/Daily Mail 3.0.0 dataset 

LL model 
Number of parameters 

(in billions) 
Rouge-1 Rouge-2 ROUGE-L BLEU BERT-precision BERT-recall BERT-F1

LLaMa-3-8B-4bit 8 0.288 0.094 0.261 0.044719 0.858 0.881 0.869 

Gemma-2B 2 0.263 0.08 0.245 0.039777 0.858 0.871 0.864 

Gemma-2B-4bit 2 0.269 0.078 0.247 0.036853 0.861 0.873 0.867 

Gemma-7B-4bit 7 0.271 0.082 0.245 0.036121 0.857 0.875 0.866 

Gemma-1.1-2B 2 0.256 0.069 0.223 0.032376 0.858 0.874 0.866 

Gemma-1.1-2B-4bit 2 0.251 0.067 0.227 0.031926 0.856 0.874 0.865 

Gemma-1.1-7B-4bit 7 0.259 0.082 0.238 0.035257 0.858 0.876 0.867 

Qwen-1.5-0.5B 0.5 0.286 0.097 0.248 0.045120 0.84 0.867 0.853 

Qwen-1.5-0.5B-4bit 0.5 0.268 0.08 0.237 0.039331 0.844 0.867 0.855 

Qwen-1.5-1.8B 1.8 0.283 0.083 0.253 0.040930 0.852 0.873 0.862 

Qwen-1.5-4B 4 0.295 0.109 0.266 0.057609 0.85 0.876 0.863 

Qwen-1.5-4B-4bit 4 0.294 0.111 0.267 0.066049 0.848 0.874 0.861 

Qwen-1.5-7B-4bit 7 0.284 0.079 0.245 0.039231 0.855 0.88 0.868 

Stable LM-2-1.6B 1.6 0.27 0.072 0.241 0.034851 0.853 0.872 0.862 

Stable LM-2-1.6B-4bit 1.6 0.271 0.086 0.241 0.044366 0.852 0.877 0.864 

Phi-2 2.7 0.283 0.097 0.259 0.051176 0.857 0.878 0.867 

Phi-2-4bit 2.7 0.277 0.09 0.253 0.045895 0.858 0.876 0.867 

Mistal-7B-4bit 7 0.26 0.071 0.229 0.028532 0.853 0.873 0.863 

GPT-3.5 Turbo 175 0.275 0.078 0.25 0.035723 0.858 0.878 0.868 
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Table 2 – Metric values for different LLMs on the XSum dataset 

LL model 
Number of parameters 

(in billions) 
Rouge-1 Rouge-2 ROUGE-L BLEU BERT-precision BERT-recall BERT-F1

LLaMa-3-8B-4bit 8 0.179 0.031 0.137 0.012043 0.842 0.886 0.864 

Gemma-2B 2 0.175 0.031 0.141 0.007783 0.842 0.881 0.861 

Gemma-2B-4bit 2 0.182 0.032 0.149 0.009392 0.843 0.882 0.862 

Gemma-7B-4bit 7 0.173 0.03 0.149 0 0.844 0.884 0.863 

Gemma-1.1-2B 2 0.167 0.023 0.139 0 0.844 0.881 0.862 

Gemma-1.1-2B-4bit 2 0.167 0.025 0.134 0 0.845 0.882 0.863 

Gemma-1.1-7B-4bit 7 0.18 0.035 0.153 0.013915 0.846 0.887 0.866 

Qwen-1.5-0.5B 0.5 0.146 0.019 0.116 0.007328 0.819 0.864 0.841 

Qwen-1.5-0.5B-4bit 0.5 0.151 0.021 0.115 0.007367 0.825 0.868 0.846 

Qwen-1.5-1.8B 1.8 0.181 0.029 0.142 0.007655 0.839 0.881 0.859 

Qwen-1.5-4B 4 0.178 0.024 0.146 0.006867 0.837 0.878 0.857 

Qwen-1.5-4B-4bit 4 0.175 0.031 0.144 0.011973 0.83 0.873 0.851 

Qwen-1.5-7B-4bit 7 0.185 0.035 0.155 0.014836 0.843 0.891 0.866 

Stable LM-2-1.6B 1.6 0.174 0.028 0.149 0.008054 0.839 0.878 0.858 

Stable LM-2-1.6B-
4bit 1.6 0.165 0.026 0.136 0.006938 0.837 0.88 0.858 

Phi-2 2.7 0.185 0.036 0.165 0.011087 0.841 0.883 0.861 

Phi-2-4bit 2.7 0.186 0.034 0.159 0.010903 0.843 0.882 0.862 

Mistal-7B-4bit 7 0.185 0.03 0.159 0.012617 0.843 0.888 0.865 

GPT-3.5 Turbo 175 0.179 0.036 0.15 0.011358 0.845 0.888 0.866 
 

 

Figure 5 – An example of expert pairwise comparison judgements of decision criteria made in fundamental scale 
 

 
Figure 6 – An example of PCM and calculated weights of decision criteria 
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Figure 7 –The most inconsistent element of PCM (marked in gray) and its correction without the participation of an expert 

 

The web interface for the text summarization service 
is developed using FastAPI, providing fast response to 
user actions during summarization processes which are 
computationally intensive. 

The interface includes elements necessary for the 
summarization process (Fig. 8): 

1. Drop-down menus to select language, model type 
and voice for audio feedback. 

2. A text field for entering the URL of the article for 
which you want to generate a summary. 

3. Button to start the process. 
4. Areas displaying the initial text, summarized text, 

the area displaying the progress of the operation and the 
reproduced audio of the summarized text. 

 

 
Figure 8 – Visualization of the service Web-interface after 

completion of all stages of summarization on the example of an 
arbitrary article from the New York Times 

 

A WebSocket connection is used for real-time 
communication between the client and the server, 
allowing dynamically display updates, task progress, 
intermediate and final results without the need to reload 
the page. 

To generate summarized text, the user first selects 
desired LLM model, text language, voice type, and 
specifies the URL of the article. After clicking the 
“Process Article” button, the request is sent to the 
backend, where the appropriate model is loaded based on 

the parameters selected by the user. The article is then 
downloaded, processed and summarized. 

The system in real time informs the user about the 
status of their request with the help of a progress indicator 
and a direct display of the analyzed and summarized text. 

A separate area of the interface displays the original 
text so that users can compare it with the summarized 
one. The summarized text is displayed together with the 
possibility to listen to the audio of the summarized text. 
Progress indicators visually show the current state of 
processing stages, increasing user engagement and 
ensuring clarity of system operation. 

 

6 DISCUSSION 
A comparative analysis of the obtained values of the 

metrics (Tables 1 and 2) shows that the model’s size, 
architecture, quantization, and features of architecture 
significantly affect the summarization efficiency. Thus, 
models with more parameters tend to be capable of better 
understanding of context and more complex patterns in 
texts. However, the GPT-3.5 Turbo model with 175 
billion parameters did not outperform the other 
considered in this study models on the ROUGE, BERT, 
and BLEU metrics on either the CNN/Daily Mail 3.0.0 set 
or the XSum dataset. 

Well-structured LLMs with fewer parameters 
outperformed larger LLMs by some metrics in this study. 
Thus, the LLaMa-3 quantized model with 8 billion 
parameters showed the best performance in BERT 
metrics, and the Qwen-1.5 quantized model with 4 billion 
parameters was the best in ROUGE and BLEU metrics on 
the CNN/Daily Mail 3.0.0 set.  

On the XSum set, the quantized models Gemma-1.1 
and Qwen-1.5, both with 7 billion parameters, showed the 
highest performance in BERT metrics, and the quantized 
model Qwen-1.5-7B-4bit was the best among the 
considered models in terms of BLEU. The Phi-2 model 
with 2.7 billion parameters was the best according to the 
ROUGE metrics, showing the highest values of this 
metric among the other considered models. 

Quantization of all considered models increased the 
speed of inferences based on these models. In some cases, 
the performance of quantized models decreased on 
considered metrics, but the decrease was minor compared 
to the significant advantages of quantized models in speed 
and resource utilization. 
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The obtained results indicate that quantization is a 
viable strategy for the LLMs that leads to a significant 
increase in the speed of the model inferences while 
maintaining acceptable levels of accuracy and consistency 
of summarization results. 

Asymmetric uniform quantization is often used in 
practice, as it results in a wider and therefore more 
accurate range compared to symmetric quantization [39]. 
Asymmetric quantization, however, leads to more 
computationally expensive inference in comparison with 
the symmetric variant. 

In discussed quantization methods, we need to know 
the range of change of the real-valued activation or 
weight value so that we can determine the correct scaling 
coefficients. This requires access to all training data. In 
cases where there is no access to the original training data 
during the quantization procedure (for example, the 
training data set is too large), the zero-shot quantization 
methods should be used. 

An additional task is the integration of LLMs into 
existing information systems at enterprises and 
optimization of the dynamics of interaction with users. 
Users need intuitive interfaces and the ability to 
customize results, which requires continuous 
improvement in the human-machine interaction aspects of 
LLM applications. Having a service with LLM, which can 
host a large number of users at the same time, can be 
afforded by companies with a large budget, since this 
requires a large number of servers to run large language 
models. 

 

CONCLUSIONS 
The large size of the NN models significantly limits 

their ability to be deployed and used by many applications 
that require real-time output, low power consumption and 
high accuracy in conditions of limited resources. 
Quantization is an extremely important technology for 
further improving the efficiency of NLP models in 
conditions of limited computing resources. 

The scientific novelty of obtained results is that the 
algorithm for LLMs’ evaluation in terms of multiple 
criteria (metrics) is proposed, and estimates of quality for 
nineteen different quantized and unquantized LLMs of 
various sizes, including LLaMa-3-8B-4bit, Gemma-2B-
4bit, Qwen-1.5-4B-4bit, Stable LM-2-1.6B-4bit, Phi-2-
4bit, Mistal-7B-4bit, GPT-3.5 Turbo are obtained in terms 
of metrics Rouge-1,2, Rouge-L, BLEU and BERT-scores. 
To the best of our knowledge, such estimates of quality of 
the considered open-source LLMs have been obtained for 
the first time. The proposed algorithm for multi-criteria 
model’s evaluation allows to choose the most appropriate 
model for summarizing the text, to find a compromise 
between the complexity of the model, its performance and 
operational efficiency. 

The practical significance of obtained results is that 
the software for multiple criteria LLMs evaluation and 
choosing the most appropriate model for text 
summarization has been developed. Also a service has 
been developed that automatically receives text from an 

online article, summarizes and speaks it. The web 
interface for the text summarization service has been 
created using FastAPI, providing fast response to user 
actions during summarization processes which are 
computationally intensive. 

Prospects for further research are to study the 
proposed algorithm for a broad class of practical 
problems. 
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Єремічук Р. І. – бакалавр системного аналізу, Київ, Україна. 
 

AНОТАЦІЯ 
Актуальність. Розглянуто задачу підвищення ефективності глибоких штучних нейронних мереж щодо обсягу пам'яті та 

енергоспоживання, та багатокритеріальне оцінювання якості результатів великих мовних моделей (LLM) з урахуванням 
суджень користувачів в задачі сумаризації текстів. Об’єктом дослідження є процес автоматизації сумаризації текстів на 
основі LLM.  

Мета роботи – знайти компроміс між складністю моделі LLM, її точністю та ефективністю в задачі сумаризації або 
узагальнення текстів. 

Метод. Запропоновано алгоритм оцінювання моделей LLM за багатьма критеріями (метриками), який дозволяє обрати 
найбільш підходящу модель LLM для сумаризації тексту, знайти прийнятний компроміс між складністю моделі LLM, її 
продуктивністю та якістю узагальнення тексту. Значне підвищення точності результатів на основі нейронних мереж у 
задачах обробки природної мови часто досягається використанням занадто глибоких і надмірно параметризованих моделей, 
що суттєво обмежує здатність моделей використовуватися у задачах виводу в реальному часі, за потреби високої точності в 
умовах обмежених ресурсів. Пропонований алгоритм обирає прийнятну модель LLM за багатьма критеріями, такими як 
показники точності BLEU, Rouge-1, 2, Rouge-L, BERT-оцінки, швидкість сумаризації або іншими критеріями, які 
визначаються користувачем в конкретній практичній задачі інтелектуального аналізу тексту. Алгоритм включає аналіз і 
підвищення узгодженості суджень користувачів, оцінювання моделей LLM за кожним критерієм, агрегування локальних ваг 
моделей, аналіз чутливості отриманих глобальних ваг моделей.  

Результати. Розроблено програмне забезпечення для автоматичного отримання текстів з онлайн-статей і сумаризації 
цих текстів, та для оцінювання якості моделей LLM. Отримано оцінки якості дев’ятнадцяти квантованих і неквантованих 
моделей LLM різних розмірів, серед яких LLaMa-3-8B-4bit, Gemma-2B-4bit, Gemma-1.1-7B-4bit, Qwen-1.5-4B-4bit, Stable 
LM-2-1.6B-4bit, Phi-2-4bit, Mistal-7B-4bit, GPT-3.5 Turbo за показниками BLEU, Rouge-1, Rouge-2, Rouge-L і BERT-оцінок на 
двох різних наборах текстів XSum та CNN/Daily Mail 3.0.0.  

Висновки. Проведені експерименти підтвердили працездатність пропонованого математичного забезпечення, 
дозволяють рекомендувати його для використання при вирішенні задач сумаризації текстів на практиці. Перспективи 
подальших досліджень можуть полягати у більш глибокому аналізі метрик та критеріїв оцінювання якості сгенерованих 
текстів, а також експериментальному дослідженні пропонованого алгоритму на більшій кількості практичних задач обробки 
природної мови.  

КЛЮЧОВІ СЛОВА: обмеженість ресурсів, обробка природної мови, сумаризація або узагальнення тексту, великі мовні 
моделі, квантизація, багатокритеріальний аналіз. 
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