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ABSTRACT

Context. The paper considers the problem of analyzing large data vectors for analyzing helicopter engine performance. This is-
sue is crucial for improving the reliability and efficiency of modern aviation technologies.

Objective. To create a method for analyzing engine vibration data to achieve accurate classification of engine states based on vi-
bration signals.

Method. The input data is analyzed, and a decision is made to create a neural network that is trained to recognize the class of the
input vector. The neural network can work immediately and be configured for further training based on similar data. The program
was implemented using a classical neural network method. The optimal weights and offsets are calculated with derivatives to mini-
mize the loss function. The stochastic gradient descent (SGD) algorithm was used for optimization, and different activation functions
were tested to find the best configuration. Choosing the right activation functions ensured maximum performance.

Results. The graphs of the input vectors show that vectors from the first class had more peaks, which helped facilitate classifica-
tion. After applying this method, the accuracy was about 70-75%, which was insufficient for the task. To improve this, we enhanced
the model structure and reconfigured the activation functions. With the new method, the neural network can classify the input vector
with 100% accuracy.

Conclusions. This study presents an approach to analyzing engine vibration data for assessing performance. The scientific nov-
elty lies in adapting a multilayer perceptron (MLP) for classifying vibration signals. The research shows that high accuracy can be
achieved without deep architectures by optimizing the MLP. This method is universally applicable, eliminating additional model
adaptation costs, which is crucial for industrial use. The practical significance is demonstrated through software and experiments,
proving the effectiveness of the MLP for performance monitoring when model parameters and activation functions are properly ad-

justed.

KEYWORDS: 1D convolutional neural networks, multilayer perceptron, stochastic gradient descent, loss function, engine vibra-
tion analysis, helicopter performance, signal classification, neural network, machine learning.

ABBREVIATIONS
CNN is a convolutional neural network
FCNN is a fully connected neural network;
ICA is an independent component analysis;
MLP is a multilayer perceptron;
NN is a neural network;
PCA is a principal component analysis;
RAM is a random-access memory;
SGD is a stochastic gradient descent;
ZSL is a zero-shoot learning.

NOMENCLATURE

a” is an activation of the previous layer (or the input
vector if it is the first layer);

b is an offset vector for the /-th layer;

fis an filter size;

i is an iteration index;

L is a number of the layer on which the calculation is
performed;

R is a set of numbers in a single vector;

s 1s a step size;

W is a matrix of weights for the /-th layer;

X a set of vectors with input data;

x a value of the input layer;

y this is an outer layer;

7" is an intermediate layer;

A is a gradient of a function;
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4 is an error for layer 1;

O is an extracted feature set

A is a regularization hyperparameter;
o(x) is a sigmoid function.

INTRODUCTION

Any working component has a so-called 'service life'.
After a certain amount of time or a specific period of op-
eration, the component requires a mandatory technical
inspection to ensure continued reliability. For instance, in
the context of a helicopter flight, safety is paramount. To
guarantee flight safety, we must implement a robust me-
thod of training a neural network, which should ultimately
provide accurate assessments of engine conditions.

Predicting whether an inspection is truly necessary be-
fore examining a component is a significant challenge.
Vibrations can be read and analyzed, but interpreting
them is not straightforward. This task is inherently com-
plex, making it difficult to achieve reliable results through
traditional methods. Therefore, we need an alternative
approach to analyze vibration data in a way that is both
efficient and accessible.

Modern technology offers such an alternative in the
form of neural networks. Neural networks can process
large volumes of data at high speeds and handle multi-
tasking beyond the capabilities of human or traditional
computer algorithms. However, we cannot simply use any
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neural network and expect it to perform the task effec-
tively. A neural network must be carefully trained to un-
derstand the specifics of the problem it is intended to
solve. Only with appropriate training can it provide the
accurate and reliable results we need.

The object of study is the process of training a neural
network using the Zero Shot method. ZSL for neural net-
works allows models to classify objects they have not
seen during training. This is achieved by using semantic
information such as object descriptions or attributes to
generalize knowledge into new classes.

The purpose of the work is to use the available
methods to classify vectors into two classes and automate
this process. This is necessary because you have to work
with large amounts of data, so you need to work with
methods that are suitable for working with big data. The
goal is to implement a method for classifying data sam-
ples.

Given a large set of data, namely 1158 sets, and a file
that stores shortcuts (classes) for each of the vectors, it is
necessary to develop a tool that, using the given data, will
learn to diagnose which files are good and which have a
damaged component within a given data sample. Class 1
represents the correct operation of the engine, while Class
0 indicates that the engine has a malfunction.

1 PROBLEM STATEMENT

We have a dataset of 1158 vectors taken from the
helicopter gear and a file containing information about the
class of each vector. Construct an algorithm that deter-
mines the corresponding label Y (class 1 or 0) for a new
vector x € R. It will calculate the necessary parameters
for the vector classification algorithm. Increase the classi-
fication accuracy and minimize the loss function.

2 REVIEW OF THE LITERATURE

Traditional fault detection contains three main steps:
data acquisition, features extraction, fault detection and
classification [1]. As a common practice the data is col-
lected with the help of numerous sensors. Feature extrac-
tion is typically implemented through linear or nonlinear
transformations and data decomposition. Linear methods
include PCA [2] and ICA [3]. Nonlinear techniques, such
as kernel-based methods, have been shown to perform
better than their linear counterpart, PCA [4]. Reducing the
size or dimensionality of input data is also useful, as it is
difficult to work with large signals or images and because
training time increases. Straightforward methods, such as
max pooling, have been actively used to address this
problem [5].

In recent years, 1D convolutional neural network has
been actively used to extract the most significant features
from raw data for vibration-based fault detection. For
example, Hsueh et al. [6] proposed a method in which
they used a wavelet transform to convert a signal into a
two-dimensional grayscale image and then trained a deep
CNN on it to extract robust features. This data is then
used to train a classification neural network that deter-
mines the health status of the system.
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Another example of sophisticated feature extraction is
presented in [7], where 1D vibration signals are trans-
formed into 2D time-frequency images. While this trans-
formation adds an additional layer of computation and
complexity, the classification results are significantly bet-
ter than those obtained from simple max pooling.

An uncommon solution for fault detection can be a
simple MLP [8] or FCNN. However, it is important to
note that the training time can be unacceptable, as an
FCNN must be able to process large amounts of data [9].
As mentioned previously, many data extraction and de-
composition techniques exist that help reduce these limi-
tations.

3 MATERIALS AND METHODS

The method has been designed and tailored to address
the problem. The first step was to accept signals and dis-
tribute them into vectors according to the peaks. The sec-
ond step is feature extraction. Feature extraction helps
reduce the dimensionality of input data while retaining the
information that has the most significant impact on solv-
ing the task. A large data vector is compressed into a
smaller one to save resources and speed up the process
using the formulas below in this section [9]:

X[K1=Y Y x{n]- exp(—Zni%),k =0,1,2,..,N—1, (1)
0:R" > R™ m=469, ()

MaxPool(x | £8)i = Max(Xis:is+f), 3
MaxPool(x| 100,100); = max(x.100:100-100)- 4)

In the third step, we start training our neural network.
For the sake of simplicity and clarity, we provide an algo-
rithm for one vector. However, in the problem, we use it
for 100 files and divide them into 10 mini-batches. We
run the neural network once with randomly set parameters
for weights and offsets. In general, it looks like this: For
each hidden layer, activation is performed using the sig-
moid function according to the formula:

a™V o Da® 150, (5)

For the layer, denoted L, softmax is used to calculate
the probabilities using the following formulas:

z(L)y=w"a® +5"), (6)
y =softmax z(L), @)

where the function softmax is determined by the formula:
e

z el j .
J

Backward pass: we calculate an error of the output
layer using the cross-entropy loss function [13] with
softmax by the formula:

o —q® _ ),
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Gradients for the displacement weights of the output
layer L are calculated using the formulas:

Vb(L)=0o(L),
Vi) =50 (DT

(10)
(11

Neural network regularization helps to avoid over-
training, in this case, adding a penalty for large values of
model weights [11]. This prevents the model from “re-
learning” [12] on training data.

L=Ly+ . (12)

Recursive calculation of errors for previous layers:

For each layer / (moving from the original layer to the
first layer):

Define the derivative of the sigmoid function by the
formula:

6'(2) =o(z)(1-0o(2)). (13)

The error for layer / is calculated through the error of
the next layer and the derivative of the activation function
by the formula:

88 = () oo (D), (14)

where o denotes an elementary multiplication (Adamar
multiplication)

Gradients for weights and offsets in hidden layers:
For each layer / by the formulas:

Vb = 60,
T L) (gL

(15)
(16)

Formulas 15 and 16 will be implemented later within
this function, named backprop. This function
_backprop calculates the gradients of weights and biases
for each layer, as well as the value of the loss function for
the current example.

4 EXPERIMENTS

After analyzing the data, it was clear that using full
vectors for learning would not be completely appropriate.
The file that stored the data had weight while the program
was running, and this amount of information was stored
in RAM, making the training of such a neural network
very resource-intensive and inefficient for performance.

To gain a better understanding, we built graphs and
noticed that the graphs for different classes were distinct.
This is shown in Figure 1.
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Waveform of the signal, T0007, class=0
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Figure 1 — Example of peaks for different classes

The graphs corresponding to class = “1” had more
peaks, which were used to try to classify the vectors.
First, using the discrete Fourier transform [10] with the
formula (1), we converted the signal into its amplitude.
We also noticed a difference in the amplitude graphs,
which is shown in Figure 2.

Spectrum of the signal, TO007, class=0
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Figure 2 — Example of amplitude for different classes
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It was decided to take the modulus of the amplitude
vector, shift it by 0.1 values down to account for values
less than zero, and retain only the maximum peaks. This
is shown in Figure 3.
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Figure 3 — Example of modulus of the amplitude for different
classes

We clarified that it is possible to classify vectors by
peaks. To facilitate the process, we decided to compress
the data. Such manipulations with the input data allowed
the input vector to have not 93.752 values, but 469 by
formulas (2—4). This did not affect the training of the neu-
ral network but helped reduce the time and resources
needed for training. Next, the multilayer perceptron me-
thod was used, which is a common instance of the error
propagation algorithm.

The input data is permuted by the Hadamard multipli-
cation, using a randomly generated weight vector, which
is combined with the input vector using a specific dis-
placement vector (also randomly generated). This process
is repeated a specific number of times, producing an out-
put value, which is compared with the standard (given to
us by class 1 or 0). We then calculate the error, and from
this error, we proceed in reverse order, gradually calibrat-
ing weights and biases. Repeating this over a certain
number of files generates specific weight and bias vec-
tors. This dataset will be used to train the neural network,
which, using these vectors and the multilayer perceptron
method, will be able to classify a vector with a certain
probability.

5 RESULTS

The results obtained from the analysis of engine vibra-
tion data using the proposed multilayer perceptron
method show promising improvements in classification
accuracy. The accuracy of the initial model was 70-75%,
but after further adjustments to the model structure and
optimization of the activation functions, the accuracy
reached nearly 100%. This significant enhancement un-
derscores the effectiveness of the chosen approach in
classifying vibration signals, which is essential for per-
formance monitoring in helicopter engines.
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Figure 4 — Results of the learning neural network

The graphs presented in the study clearly illustrate the
improvement in model accuracy after optimization. One
graph shows a comparison of the accuracy between the
initial and optimized models, highlighting a significant
increase in accuracy after adjusting the network structure
and selecting optimal activation functions. Another graph
visualizes the learning process, where the reduction in
error on both the training and test datasets signals good
model consistency. Additionally, when comparing with
other approaches, such as convolutional neural networks,
it is evident that our model, despite its simplicity, yields
competitive results with lower computational costs. These
visualizations help to better understand the effectiveness
of the applied method and emphasize its potential for real-
world applications, where processing speed and resource
efficiency are critical.

The comparison with similar studies reveals both
similarities and differences in the methodology and re-
sults. For example, Hsueh et al. [6] used a wavelet trans-
form followed by a CNN for fault detection. While this
approach also provided robust feature extraction, it added
complexity and computational overhead. In contrast, our
approach using MLPs, despite its simplicity, demon-
strated high accuracy without requiring deep architec-
tures. This is particularly beneficial for real-time applica-
tions where computational resources and processing speed
are critical.

6 DISCUSSION

As is evident from Figure 4, increasing the number of
epochs in the formed sample improves classification ac-
curacy. The time spent on learning is optimized. Even an
increase in input data has almost no effect on the speed of
diagnosis, maintains acceptable accuracy, and does not
significantly increase the training time.

There is an increase in speed compared to similar
methods, such as 1D Convolutional Neural Networks.
Compared to the original model, the accuracy improve-
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ment is nearly 100%. This confirms the feasibility of us-
ing the proposed method.

It should also be noted that the training method quali-
tatively affects the speed and effectiveness of training
compared to similar methods. This has made it possible to
improve the training process itself.

The limitations of the study primarily stem from the
necessity of adjusting model parameters (e.g., weights and
activation functions), which can introduce challenges in
scaling the model to larger datasets. However, the pro-
posed method’s ability to work with a limited number of
layers without compromising accuracy is a key advantage
in real-world applications, where training time and com-
putational efficiency are often constrained.

Practical applications of this method are significant.
The approach demonstrated here could be directly applied
to performance monitoring and predictive maintenance in
aviation systems, where it could reduce downtime and
prevent potential failures. This has important implications
for both safety and cost-effectiveness in the aviation in-
dustry.

While the study provides a solid foundation for vibra-
tion-based fault detection, further research is required to
enhance the model’s adaptability to varying conditions
and sensor configurations. Exploring hybrid models that
combine the strengths of both convolutional networks and
fully connected networks could lead to even more robust
solutions. Additionally, the integration of real-time data
collection and analysis in the model would make the me-
thod more dynamic and responsive to operational
changes.

CONCLUSIONS

The problem of providing automation for vibration
analysis is an urgent one. One of the most effective ways
to address this is by using a neural network. Neural net-
works come in different types and functionalities, which
allows them to be applied to various tasks. In our case, we
decided to develop and train an MLP-based neural net-
work. The use of a neural network developed based on the
MLP method and SGD training is a clear and universal
solution for solving similar classification problems.

Due to the combination of methods and their high-
quality implementation, we obtained satisfactory results.
Unfortunately, the results may vary slightly depending on
the number of epochs and initial conditions. However,
this should not be considered a flaw, and this method can
be regarded as a correct solution for similar problems.
Compared to methods that use convolution, our method is
more accurate and efficient. This allows for a more accu-
rate understanding of vibrations and the data derived from
them.

The prospects for further research involve studying the
capabilities of the neural network to learn from and ana-
lyze similar data. Pilot testing with similar methods and

© Shalimov O. Y., Moskalchuk O. O., Yevseienko O. M., 2025
DOI 10.15588/1607-3274-2025-2-13

152

further analysis are also planned. Practical application
will aim to improve and adjust the neural network.
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METO/ AHAJII3Y BXIJTHUX JAHUX 3 BIGPAIII 3YBUACTHUX MEXAHI3MIB
MlanximoB O. €. — cryneHT kadeapun ABTOMAaTHKM Ta YNPABIIHHS B TEXHIYHMX cHcTeMax, HamioHaubHUHM TEeXHIYHUH
YHIBepCHTET «XapKiBCHKHUH MOTITEXHIYHUH IHCTUTYTY.
Mockaabuyk O. O. — ctyneHT kadeapu ABTOMATHKM Ta YOPABIIHHS B TEXHIYHMX cUcTeMax, HallioHadbHUN TeXHIYHUIA
yHiBepCHUTET «XapKiBChKHUH MOJITEXHIYHUIT IHCTUTYTY.
€Bceenko O. M. — KaHA. TexXH. HayK, JOLEHT, NOLCHT Kadeapu ABTOMAaTHKH Ta YIPABIiHHSI B TEXHIYHHX CHCTEMaXx,
HauionanbHuii TeXHIYHHN YHiBepCHTET «XapKiBChKHI MOMITEXHIYHAIN IHCTUTYTY.

AHOTAULIA

AKTyanbHicTb. PO3MJISHYTO 3amady aHali3y BEKTODIB JAHUX BEJIMKOTO OO0CATY IS aHali3y Mpale3aTHOCTI JABUIYHA
remikonrepiB. Lls mpobineMa € KPUTHYHO BaXIMBOIO MUl MOKPAIIEHHS HAAIHHOCTI Ta e(EeKTUBHOCTI Cy4YacHHMX aBiaIlifHUX
TEXHOJIOTIH.

Meta po6oru. CTBOpUTH METOA JUIs aHali3y BiOpauiflHUX JAaHWUX JBUI'YHA 3 METOIO TOYHOTO KJIAacH(iKyBaHHsS CTaHIB JABUTYHA
Ha OCHOBI BiOpawLiiiHUX CUTHATIB.

Merton. IIpoananizoBaHo BXifHI AaHi, micis 4oro OyJo MPUIHATO PillIEHHS CTBOPUTH HEHPOMEPEXY IS PO3Ii3HABAHHS KIacy
BXiZHOTO BekTopa. Helipomepeska Moke MpalfoBaTu oapasy abo OyTH HalallTOBAHOK JJIS MOJAibIIOr0 HAaBYaHHS Ha MOJIOHUX
manux. Ilporpama Oyma peanmizoBaHa 3 BHKOPHUCTAHHSAM KIACHYHOTO METONy Helpomepex. ONTHManbHI Bard Ta 3MIIICHHS
00YNCIIOIOTECS 32 JIONIOMOTOI0 TMOXigHMX Iy MiHiMizamii ¢yskmii Brpar. s onrtuMizamii Oysi0 BHKOPHUCTaHO alrOpUTM
CTOXaCTHYHOTO TpajieHTHOro cmycky (SGD), a takox Oyyio mportectoBaHo pisHI (yHkmii aktmBamii mius BuOOpy HaHKkparmoi
koHOirypauii. Bubip npaBunbHuX QyHKLII akTHBanii 3a0e3MeurB MaKCUMaIbHY e()eKTUBHICTb.

Pe3yabsTaTn. Ha rpadikax BXiJHHX BEKTOPIB BHJHO, 10 BEKTOPHU 3 HEPIIOro Kiacy Majy OUIbIIE MiKiB, IO HOJICTIINIO IPOLeC
kiacudikauii. ITicis 3acTocyBaHHS L[bOTrO METONY TOUHICTh gocsria 70—75%, mo Oyno HenocTaTHbO s 3anadi. [t moKpaieHHs
pe3ynbTaTiB Oyna 3MiHEHa CTPYKTypa MOJENi Ta mepeHanamroBaHi (yHKIii akTHBaIil. 3 HOBUM METOJOM Helpomepeka 3JaTHa
KIacu}ikyBaTH BXifHI BekTOpH 3 TouHicTIO 100%.

BucHoBku. Y 1pOMY [JOCHIKEHHI NpPEACTaBICHO MiAXiN OO aHAmi3y BiOpamiiHMX IOaHWX [BUTYHA JUIA OIIHKH HOTO
mpanesgatHocti. HaykoBa HOBHM3Ha Merony momsirae B amanranii OararomapoBoro mepuentpoHy (MLP) mis xmacudikamii
BiOpaniifHux curramiB. JIOCHIDKEHHS IIOKa3ano, IO HaBiTh 0€3 TIMOOKHX apXiTEeKTyp MOXKHA JOCSATTH BHCOKOi TOYHOCTI,
ontumisyBaBumm MLP. Ileit MeTon € yHiBepcanbHHMM, IO J03BOJISE YHUKHYTH IOJATKOBHX BUTPAT Ha aJamlTallil0 MOJIENi, IO
BOXJIMBO JUI IIPOMHUCIIOBOTO BHMKOPHCTAaHHs. [IpakTH4He 3HAUeHHS MIATBEPIUKYETHCS MPOTpaMHUM 3a0e3MEUYEHHSIM Ta
eKCIIepUMEHTaMH, 110 AO0BOAATH edextuBHiCTh MLP 11t MOHITOPHHIY mNpane3faTHOCTI, KONM mapameTpu Mopeni Ta (yHKIT
aKTUBALl HAJIAIITOBAH] HAJIECKHUM YHHOM.

IepcrieKTHBY MOJANBIIMX JOCIiKEHb MOJSATaloTh Y BUBYCHHI MOMKIIHBOCTEH HelipoMepeski AJs HaBYaHHs Ta aHalizy MogiOHHUX
JAHUX, & TAKOX y MUIOTHUX TECTYBAaHHAX 13 BUKOPUCTAHHAM CXOXKHX METO/IB 1 MTOJANBIIOMY aHAIi31.

KJIFOYOBI CJIOBA: 1D Convolutional Neural Networks, Multilayer Perceptron, Stochastic Gradient Descent, Loss Function,
aHaJi3 BiOpaliif ABUryHa, KJIacuQikamis CUTHANIB, HEHpoMepeka, MaIIMHHE HaBYaHHS.
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