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ABSTRACT 
Context. This study addresses the problem of developing a new metric for evaluating the quality of synthesized images. The rel-

evance of this problem is explained by the need for assessing the quality of artificially generated images. Additionally, the study 
highlights the potential of biomedical image synthesis based on diffusion models. The research results can be applied for biomedical 
image generation and quantitative quality assessment of synthesized images. 

Objective. The aim of this study is to develop a combined metric and an algorithm for biomedical image synthesis to assess the 
quality of synthesized images. 

Method. A combined metric MC for evaluating the quality of synthesized images is proposed. This metric is based on two exist-
ing metrics: MIS and MFID. Additionally, an algorithm for histopathological image synthesis using diffusion models has been devel-
oped. 

Results. To study the MIS, MFID, and MC metrics, histopathological images available on the Zenodo platform were used. This da-
taset contains three classes of histopathological images G1, G2, and G3, representing pathological conditions of breast tissue. Based 
on the developed image synthesis algorithm, three classes of artificial histopathological images were generated. 

Using the MIS, MFID, and MC metrics, quality assessments of the synthesized histopathological images were obtained. The devel-
oped metric will form the basis of a software module for image quality assessment using metrics. This software module will be inte-
grated into CAD systems. 

Conclusions. A combined metric for evaluating the quality of synthesized images has been developed, along with a proposed al-
gorithm for biomedical image synthesis. The software implementation of the combined metric and image synthesis algorithm has 
been integrated into an image quality assessment module. 

KEYWORDS: metric, IS metric, FID metric, histopathological images, deep neural networks, diffusion models, Stable Diffu-
sion. 

 
ABBREVIATIONS 

GAN is a generative adversarial network; 
CNN is a convolutional neural network; 
VT is a Vision-Transformer;  
Zenodo is a general-purpose open repository devel-

oped under the European OpenAIRE program and oper-
ated by CERN; 

G1 is a class of images of non-proliferative mastopa-
thy; 

G2 is a class of images of proliferative mastopathy; 
G3 is a class of images of fibrocystic mastopathy; 
IS is a distance based on the Google Inception V3 im-

age classification model; 
FID is a Fréchet inception distance; 
HD is a Hausdorff Distance; 
HI is a histopathological image; 
U-Net is a network with U-shaped structure; 
UF is an uncertainty Fréchet metric; 
CIVIs is a clustering internal validity Indices;  
VQ-VAE is a vector Quantized-variational autoen-

coder; 
FAED is a Fréchet AutoEncoder distance; 
MMD is a maximum mean discrepancy; 

MMD GAN is a Maximum Mean Discrepancy for 
generative adversarial network; 

KID is a Kernel Inception Distance; 
QMC Quasi-Monte Carlo method; 
PyTorch is an open-source machine learning frame-

work Python Torch; 
TensorFlow is an open-source platform and frame-

work for machine learning, which includes libraries and 
tools based on Python and Java; 

Clean-FID is a metrics with pre-processing of images; 
CLIP is a Contrastive Language-Image Pre-training 
CLIP-MMD is a Maximum Mean Discrepancy metric 

based on CLIP model; 
CMMD is a metric based on CLIP embeddings and 

the maximum mean discrepancy distance with the Gaus-
sian kernel; 

ACCURACY is a metric that determines the propor-
tion of correct predictions made by a model out of the 
total number of predictions. 

NotImageNet32 is a synthetic dataset; 
CIS is a Conditional Inception Score; 
CFID is a Conditional Fréchet Inception Distance; 
Wasserstein-1 is an improved of Wasserstein metric; 
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SSIM is a structural similarity index measure; 
PSNR is a peak signal-to-noise ratio is ratio between 

the maximum possible power of a signal and the power of 
corrupting noise; 

AUC is an area under the curve; 
MS-SSIM is a Multi-Scale SSIM; 
PRECISION is an accuracy of a model in predicting 

the positive class. 
RECALL is a metric, that reflects the model’s ability 

to identify all actual positive cases. 
F1-score is an average of precision and recall; 
LPIPS is a Learned Perceptual Image Patch Similar-

ity; 
GMM-GAN is a Graph-based Manifold Matching 

GAN; 
MAE is a Mean Absolute Error; 
UMMC is a University Malaya Medical Centre; 
WSI is a whole slide image; 
H&E is a hematoxylin and eosin; 
IHC is an immunohistochemistry; 
ER-IHC is an Estrogen Receptor Immunohistochemis-

try; 
ER is an estrogen receptor; 
PGR is a progesterone receptor; 
HER2 is a human epidermal growth factor receptor 2; 
PR is a progesterone receptor; 
KI67 is a marker of proliferation Ki-67; 
TIFF is a file format for storing raster graphics im-

ages; 
JPG is a joint photographic experts’ group; 
MIRAX is a Carl Zeiss MIRAX slide scanner system 

file format; 
CPU is a central processing unit 
GPU is a graphics processing unit; 
CUDA is a Compute Unified Device Architecture; 
CAD stands for Computer-Aided Diagnosis; 
RAM is a Random Access Memory; 
VRAM is a Virtual Random Access Memory; 
GB is a gigabyte; 
GOOGLE COLAB is a free cloud-based platform pro-

vided by GOOGLE that allows users to write and execute 
Python code directly in their browser. 
 

NOMENCLATURE 
Ir is a set of real histopathological images; 
Il is a training set of histopathological images; 
Itest is a test set of histopathological images; 
Ic is a set of images based on diffusion models, 
MIS is a metric based on inception score; 
MFID is a metric based on Fréchet inception distance; 
MC is a a combined metric;  
t is a time step index; t is selected from the range 
[0, ]t T ; 

Z0C is a set of histopathological images into the latent 
space at timestep t=0; 

αt is a coefficient that determines the noise rate at 
timestep t; 

T is a total number of timesteps; 

εt is a value of random Gaussian noise at timestep t; 
ˆt  is an estimated noise value at timestep t; 

t  is a coefficient that determines the noise level at 

the previous timestep t; 
βt is a coefficient controlling the rate of noise reduc-

tion at timestep t; 
Z1C set of histopathological images into a latent space 

at timestep t = T; 
ICD is a set of images after encoder transforms Z1C; 
M1, …, Mn are metrics; 
X1, …, Xn are sets; 
N (E, D) is a normal distribution; 
E is a mean; 
D is a variance; 
M (x, y) is a given metric that measures the distance or 

dissimilarity between points x and y in a certain space; 
s is a scaling factor applied to the metric; 
m is a truncation parameter that limits the metric val-

ues; 
a is a constant; 
v is a translation parameter; 
p is a fixed element from the set X; 
μ and β are scaling coefficients; 
μr, μG are mean feature vectors for real and generated 

images; 

r , G  are covariance matrixs for real and generated 

images. 
Tr is a trace of the matrix; 
Ex is an expected value over the distribution of x; 
p (x | y) is a probability distribution of class y for im-

age x; 
p(y) is a marginal probability distribution over all 

classes; 
DKL is a Kullback-Leibler divergence. 

minFIDM  is a minimum value of the MFID metric; 

maxFIDM  is a maximum value of the MFID metric; 

minISM  is a minimum value of the MIS metric; 

maxISM  is a maximum value of the MIS metric; 
N
ISM  is a normalized value of the MIS; 
N
FIDM  is a normalized value of the MFID; 

α is a weight of a metric, with [0,1] . 

 
INTRODUCTION 

Biomedical images are structural and functional repre-
sentations of human and animal organs designed for dis-
ease diagnosis and the study of the anatomical and physi-
ological state of the body. Medical images used for dis-
ease diagnosis are obtained from digital radiology, com-
puted tomography, nuclear magnetic resonance, ultra-
sound, microscopy, etc. For the diagnosis of oncological 
diseases, microscopic color images are used, including 
cytological, histopathological, and immunohistochemical 
images. Oncological diseases are a global issue, signifi-
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cantly affecting countries such as the European Union, the 
United States, and Ukraine [1]. 

This article examines HIs of breast cancer, which has 
the highest mortality rate among women [2]. 

Existing datasets of HIs are limited due to objective 
reasons. Currently, deep neural networks of the CNN 
(Convolutional Neural Network) type are used for diag-
nosis [3]. Training neural networks requires large data-
sets. A solution to this problem is the synthesis of artifi-
cial HIs. The synthesis of artificial images is based on real 
HIs. 

In a short period, the following approaches have been 
used for medical image synthesis: 

1. Autoencoders and fully convolutional networks [4]. 
2. U-Net and GANs architectures [5]. 
3. VT architectures. 
4. Diffusion models [6]. 
Thus, at present, the use of diffusion models is a rele-

vant direction in medical image synthesis. 
The generated images must be quantitatively evalu-

ated. For this purpose, metrics are used to assess the simi-
larity between the generated image and the real one. An-
other important task is to evaluate the diversity of the 
generated images. The most widely used metrics for these 
tasks are Inception Score (IS) and Fréchet Inception Dis-
tance (FID) [8, 9]. 

The subject of the research is the process of HI gen-
eration and quality assessment based on metrics. 

The object of the research is metrics for evaluating 
the quality of synthesized images. 

The purpose of the research is to develop a com-
bined metric for assessing the quality of synthesized HIs. 

 
1 PROBLEM STATEMENT 

Let a set of real HIs Ir be given. We divide this set into 
two subsets: Il and Itest, and 

 

r l testI I I  . 

 
To expand the training set Il, we generate a set of 

images Ic based on diffusion models, such that: 
 

.c lI I  

 
For image quality assessment, two metrics are used: 

MIS, MFID.  
Each of these metrics has its own advantages and dis-

advantages. Therefore, it is necessary to develop a com-
bined metric MC that incorporates both MIS and MFID. 

Thus, the objectives of this study are: 
1. Development of the combined metric MC. 
2. Development of an algorithm for synthesizing HIs 

based-on diffusion models. 
3. Conducting computational experiments to evaluate 

the quality of generated images using MIS and MFID met-
rics and comparing the experimental results with the MC 
metric. 

 

2 REVIEW OF THE LITERATURE 
The study [9] addresses the problem of evaluating 

CIVIs for synthetic and real datasets. The novel UF index 
enables the assessment of clustering quality while consid-
ering uncertainty. The authors improved the accuracy and 
adaptability of clustering metrics, particularly for datasets 
with non-convex structures or high noise levels. 

The authors of [10] focus on evaluating the quality of 
generated images in GANs. They point out that existing 
metrics, which are trained on ImageNet for feature extrac-
tion, may be inadequate for other data domains. Addition-
ally, these metrics can be sensitive to noise and image 
distortions and do not always reflect human perception of 
image quality. To address these issues, the researchers 
proposed the FAED method, which incorporates VQ-
VAE to achieve better clustering and local feature repre-
sentation compared to traditional evaluation methods. 

In [11], the authors introduce the FID metric as an al-
ternative to the IS, arguing its advantages in measuring 
the similarity between the distributions of real and gener-
ated images. The study demonstrates that FID correlates 
better with human perception and is more sensitive to 
changes in image quality than IS. 

The study [12] examines the training and performance 
of GANs using the MMD metric, leading to the develop-
ment of MMD-GAN. The authors compare IS, FID, and 
their newly proposed KID. They acknowledge that FID is 
widely used as the primary evaluation tool, as it better 
captures the distribution of real and generated images 
compared to IS. However, they highlight FID’s bias in 
small sample sizes, which can lead to inaccurate model 
comparisons. As an alternative, they propose KID, which 
serves as an unbiased estimator and is less dependent on 
feature distribution shifts. 

The researchers [13] demonstrate that the IS and FID 
are biased metrics. The values of these metrics, when 
computed on finite sample sizes, differ from their true 
values, which can only be obtained with an infinite sam-
ple size. To address this issue, the authors propose the use 
of the QMC method to improve the estimation of FID and 
IS on finite datasets. 

The study [14] investigates the impact of low-level 
image processing on the evaluation of generative models, 
particularly the influence of image resizing and compres-
sion techniques on the calculation of FID and IS metrics. 
The authors show that standard FID implementations in 
PyTorch and TensorFlow introduce artifacts due to incor-
rect smoothing during downscaling, affecting the accu-
racy of the metric. As a solution, the authors propose the 
Clean-FID evaluation, which eliminates these artifacts by 
ensuring consistent pre-smoothing and avoiding quantiza-
tion errors, leading to more reliable quality assessments of 
generated images. 

The authors of [15] argue that the FID metric has sig-
nificant limitations, including incorrect assumptions about 
the normality of feature distributions, low efficiency with 
small sample sizes, and poor alignment with human per-
ception of image quality. As an alternative, they propose 

170



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 2 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 2 

 
 

© Berezsky O. M., Berezkyi M. O., Dombrovskyi M. O., Liashchynskyi P. B., Melnyk G. M., 2025 
DOI 10.15588/1607-3274-2025-2-15  
 

the CMMD metric, which is based on CLIP embeddings 
and the MMD method. 

The key issue addressed in [16] is the volatility of FID 
and IS metrics and their limited ability to accurately com-
pare similar generative models. The authors introduce a 
new evaluation protocol that relies on the creation of a 
synthetic dataset NotImageNet32 and the use of KL di-
vergence for more objective model comparisons. 

The study [17] focuses on the evaluation of generative 
models in the case of conditional image generation. The 
authors propose two new metrics: CIS and CFID, which 
decompose the evaluation into within-class and between-
class components, allowing for a more refined assessment 
of generative models. 

The research conducted by [18] examines the training 
of generative models for unsupervised learning, specifi-
cally the challenges in measuring the closeness between 
real and generated data distributions. The authors intro-
duce a new metric, Wasserstein-1, which addresses train-
ing instability and mode collapse issues in GANs, provid-
ing a more stable and theoretically grounded approach to 
generative model evaluation. 

The study [19] analyzes various deep learning-based 
generative models, including CNNs, GANs, Transform-
ers, and Diffusion models, highlighting their applications, 
architectural differences, and effectiveness in medical 
image synthesis. The performance evaluation focuses on 
medical image quality metrics, such as SSIM, PSNR, and 
segmentation accuracy in downstream tasks. 

The article [20] investigates the problem of automatic 
metastasis detection in breast HIs, examining the impact 
of color variation on CNN performance. The study’s pri-
mary objective is to minimize the effect of staining vari-
ability and improve classification accuracy through en-
semble learning and color normalization techniques. The 
evaluation metrics used include Accuracy, AUC, Sensitiv-
ity, Specificity, and Kappa coefficient. 

The research [21] aims to address the insufficient and 
imbalanced volume of medical data for breast tumor clas-
sification using ultrasound and mammography. The use of 
GANs allows for the generation of synthetic images, 
which helps reduce overfitting and enhance the perform-
ance of deep neural networks in diagnostic tasks. The 
evaluation of synthetic images is conducted using metrics 
such as KID, SSIM, and MS-SSIM. 

The article [22] focuses on automated classification of 
histopathological medical images for early breast cancer 
diagnosis using deep learning. The primary evaluation 
metrics utilized by the authors include Accuracy, Sensi-
tivity, Specificity, F1-score, and AUC. 

The authors of [23] investigate the limited availability 
of large-scale annotated medical image datasets, which is 
a critical factor in training deep models for medical imag-
ing. They propose a method for generating ultrasound 
images using semantic information to enhance realism. In 
addition to FID, the authors apply PSNR, MS-SSIM, and 
LPIPS to more accurately measure the similarity of tex-
ture features between synthetic and real images. 

The study [24] addresses the challenge of cross-
modality medical image generation, which is crucial for 
diagnostics when certain image types are unavailable. The 
authors introduce the GMM-GAN, which leverages graph 
neural networks to improve the quality of synthetic im-
ages and ensure their alignment with real medical data. 
The evaluation is conducted using MAE, PSNR, SSIM, 
and MS-SSIM. 

The article [25] focuses on the automated synthesis of 
medical images in the absence of paired data, which is 
critical when obtaining multimodal images is restricted. 
Besides FID, the authors utilize Dice Score, HD, MAE, 
PSNR, and SSIM to assess the quality of the generated 
images. 

The review study [26] analyzes the application of 
GANs in digital pathology and HI processing. The article 
discusses key challenges such as color normalization, 
resolution enhancement, and artifact removal. Addition-
ally, the study highlights the need to improve consistency 
across images obtained from different laboratories. The 
evaluation is based on SSIM, PSNR, Dice Score, and HD, 
focusing on the quality assessment of synthetic images 
used by pathologists. 

The study [27] applies CNNs and pre-trained models 
for the classification of oral cancer images. The authors 
evaluate the performance of their models using standard 
classification metrics, including Accuracy, Recall, Preci-
sion, F1-score, and AUC. 

The study [28] explores various methods for evaluat-
ing image segmentation quality. The authors review tradi-
tional and modern approaches to segmentation assess-
ment, emphasizing objective and subjective evaluation 
criteria. The paper highlights the importance of quantita-
tive metrics such as Precision, Recall, and SSIM, which 
are commonly used to validate the performance of seg-
mentation algorithms. The study contributes to the ongo-
ing development of reliable evaluation techniques in im-
age processing, particularly in medical imaging applica-
tions. 

The article [29] investigates GANs for biomedical im-
age synthesis, proposing a method for automatically 
searching for optimal GAN architectures. The authors 
discuss the challenges associated with GAN architecture 
selection and present an approach that optimizes models 
for high-quality image generation. The study also evalu-
ates the performance of different architectures using FID, 
SSIM, and IS to ensure the realism and diversity of the 
generated images. 

The research [30] introduces a deep learning-based 
method and software for biomedical image generation and 
classification in small sample settings. The authors ad-
dress the data scarcity problem in medical imaging by 
developing a model that enhances image synthesis and 
classification accuracy. The paper focuses on GAN-based 
data augmentation, improving classification performance 
using CNNs and Transformer models. The evaluation is 
conducted using Accuracy, F1-score, AUC and SSIM to 
measure the effectiveness of both synthetic image genera-
tion and classification accuracy. The results demonstrate 
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significant improvements in small-sample learning sce-
narios, making the approach highly relevant for biomedi-
cal applications. 

 
3 MATERIALS AND METHODS 

The development of the combined metric and the 
evaluation of generated HIs consist of the following stag-
es: 

1. Preparation of the dataset of HIs of breast pathol-
ogy. 

2. Development of an algorithm for generating HIs 
based-on diffusion models. 

3. Design of a combined metric based on FID and IS 
metrics. 

4. Conducting computational experiments using HIs. 
This section describes steps 1, 2, and 3. 
For machine learning purposes, researchers utilize 

public biomedical image datasets. 
The ACROBAT dataset [31] consists of 4212 WSI 

from 1153 patients diagnosed with primary breast cancer. 
The images were obtained from tissue samples stained 
with H&E, as well IHC staining for ER, PGR, HER2, and 
KI67 markers. Each patient has one H&E image and be-
tween one to four IHC images. The images were digitized 
at 10x magnification using Hamamatsu NanoZoomer 
S360 scanners. 

The dataset was collected as part of the “Cancer His-
topathology Image Epidemiology Project” (Sweden) and 
is used for the development of computational pathology 
methods. It is divided into: training set: 3,406 images, 
validation set: 200 images, test set: 606 images. The data-
set is available in TIFF format and includes metadata with 
detailed information about each image. 

The UMMC ER-IHC Breast Histopathology Whole 
Slide Image and Allred Score dataset [32] contains 37 
whole-slide histological images, obtained in collaboration 
with the UMMC. The images were stained using IHC for 
ER and digitized using a 3DHistech Pannoramic Desk 
scanner at 20x magnification, with a resolution of 80000 
× 200000 pixels. 

Each image was annotated by pathologists, and the da-
taset is available in MIRAX format, accompanied by 
thumbnail images with annotation overlays. 

For machine learning in image classification, the au-
thors have created and published a dataset of cytological 

and histological images [33]. This dataset consists of: 73 
cytological images, 68 histological images. 

The images were obtained from tissue samples stained 
with H&E. Additionally, IHC images for ER, HER2, 
KI67, and PR markers were acquired. Each patient has 
one H&E image and between one to two IHC images. 

The images were digitized at 10x and 20x magnifica-
tion using a Nikon Eclipse Si laboratory-grade micro-
scope. The dataset, along with diagnostic information, 
was collected at the Interdepartmental Educational and 
Research Laboratory of Ternopil National Medical Uni-
versity named after I.Y. Horbachevsky (Ukraine, Terno-
pil). The dataset is available in JPG format, with metadata 
including: patient age, cancer stage. The cytological im-
ages are categorized into three classes: melanoma, non-
proliferative fibrous mastopathy, cystic mastopathy. The 
histological images belong to the class of invasive ductal 
carcinoma. 

Mastopathy is one of the most common pathologies of 
the mammary glands in women of reproductive age. 
While this condition is generally benign, in certain cases, 
it is associated with an increased risk of malignant tumor 
development. This characteristic makes mastopathy a 
critical subject for early diagnosis and regular monitoring. 

The dataset contains histological images with a resolu-
tion of 3664 × 2748 pixels, stained with H&E. The total 
number of images is 369. The images in the dataset (Fig. 
1) belong to three classes: non-proliferative mastopathy, 
proliferative mastopathy, fibrocystic mastopathy. 

The number of images in each class: 
– non-proliferative mastopathy: 37; 
– proliferative mastopathy: 45; 
– fibrocystic mastopathy: 23. 
The preprocessing of HIs is aimed at enhancing image 

quality, reducing variations, and removing artifacts, 
thereby improving the accuracy and reliability of analysis 
results. 

Initially, color normalization was performed to mini-
mize variations caused by different staining and scanning 
conditions. This was achieved through color standardiza-
tion and intensity normalization methods. Next, noise 
filtering was applied, specifically using a median filter to 
reduce unwanted artifacts. 

 

 

  
a b c 

Figure 1 – Image Types in the Dataset: a – non-proliferative mastopathy; b – proliferative mastopathy; c – fibrocystic mastopathy 
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Since the initial dataset is relatively small, the next 
step involves expanding the sample for all three classes 
using the Stable Diffusion model. 

For the synthesis of HIs, diffusion models were util-
ized within the Stable Diffusion environment [34]. The 
Stable Diffusion framework consists of two deep neural 
networks: Primary Network and Hypernetwork. 

The Primary Network is trained on a large dataset of 
images and stores the parameters (weights) for the general 
dataset. The training process using HI datasets takes place 
within the Hypernetwork environment, which adjusts the 
weights of the base model. 

The image generation algorithm in both networks is 
based on diffusion models and consists of the following 
steps: 

1) training on the HI dataset within the Hypernetwork 
environment; 

2) noise addition process (diffusion) applied to the ini-
tial dataset Ic; 

3) denoising process (reverse diffusion) to generate 
high-quality synthetic images. 

Let’s detail the steps. We perform the transformation 
of the set of HIs into the latent space:  

 
Ic → Z0C. 

 
Based on Z0C, the noise value is computed at each 

timestep t as follows: 
 

0 1t t C t tZ Z     , 

 
where: εt ~ N (0, 1), N (0, 1) is the normal distribution 
with mean E = 0 and variance D = 1. 

The denoising value is computed as follows: 
 

1
1

ˆ
1

t
t t t

t t

Z Z
 

      
. 

 
After completing the denoising process (after t = T 
timesteps), the vector Z1C is formed in the latent space. 
Then, the encoder transforms Z1C into the set of images 
ICD, where .CD CI I  The quality of the generated im-

ages is evaluated using MIS and MFID metrics. 
There are various ways to derive a new metric from an 

existing one. Let M1 be a given metric on a set X. Then, a 
new metric can be constructed based on M1 through trans-
formations. 

Alternatively, given multiple metrics M1, …, Mn, de-
fined on sets X1, …, Xn, we can obtain a new metric on the 
extended set X1, …, Xn. 

Consider two metrics M1 and M2 on the set X. 
A metric transformation is a new metric obtained as a 

function of the existing metrics M1 and M2 on X. 
The general matrix transformations are as follows 

[35]: 
1) Scaled metric:  

s M(x, y), s > 0. 
 

2) Truncated metric:  
 

min{mM(x, y)}. 
 

3) Discrete metric transformation:  
 

max {a, M (x, y)}, x ≠ y. 
 
4) Translation metric:  

 
M (x, y) + v. 

 
5) Normalized metric transformation:  
 

( , )

1 ( , )

M x y

M x y
. 

 
6) Biotope metric: 
 

( , )
( , )

( , ) ( , ) ( , )p
M x y

M x y
M x p M y p M x y


 

. 

 
7) Maximum metric transformation:  
 

1 2max{ ( , ), ( , )}M x y M x y . 

 
8) Metric cone transformation:  
 

1 2( , ) ( , )M x y M x y  .  

 
In the article, the 8th transformation is used. 
To evaluate the quality of generated images, two 

common metrics are utilized: MFID and MIS. 
The distance calculation between real and generated 

images is performed using the following formula: 
 

 
1

2
22FID r G r G r GM Tr

 
           

 
. 

 
The MIS metric is defined by the following formula: 
 

   exp ( ) ( )IS x KLM E D p x y p y ∣ . 

 
The Kullback-Leibler divergence DKL is calculated as 

follows: 
 

  ( )
( ) ( ) ( ) log

( )KL
y

p y x
D p x y p y p y x

p y
  ∣∣ ∣ . 

 
The goal is to combine these two metrics. 
The MFID and MIS metrics have different ranges and 

interpretations. A lower MFID value indicates that the gen-
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erated image is more similar to the real one. A higher MIS 
value suggests that the generated images are better repre-
sented across different classes. 

To combine these metrics, normalization must be per-
formed. 

The normalized value of the MFID metric is computed 
as follows: 

 

min

max min

FID FIDN
FID

FID FID

M M
M

M M





. 

 
For the MIS metric, the normalization formula is: 
 

min

max min

IS ISN
IS

IS IS

M M
M

M M





. 

 
Thus, the combined metric is defined as: 
 

(1 ) N N
C FID ISM M M   . 

 
4 EXPERIMENTS 

In this paper, two types of experiments were con-
ducted: 1. Synthesis of HIs of three classes based on real 
images in the Stable Diffusion environment. 2. Evaluation 
of the quality of the generated images using the IS, FID 
metrics and the combined metric. 

For conducting computer experiments on HI synthe-
sis, the Stable Diffusion Web UI software tool by Jarvis 
Labs was used. The computational resources utilized for 
this process were: GPU: 1 x A6000 Ampere (CUDA 
12.3), CPU: 7 cores, RAM: 32 GB, VRAM: 48 GB. 

This configuration ensures high performance for gen-
erating synthetic images. 

Stable Diffusion version specifications: version: 
v1.9.4; python: 3.10.14; torch: 2.1.2+cu121; xformers: 
0.0.23; post1; gradio: 3.41.2; checkpoint: 5493a0ec49; 
model: v1-5-pruned-emaonly.safetensors. 

Before starting the experiment, small real datasets 
were expanded using affine transformation algorithms, 
implemented via the Rudi library [36] in Python. 

The Rudi library is used for automated augmentation 
(generating variations) of cropped images. The following 
augmentation operations were performed: transformation 
probability, rotations, scaling, distortion intensity. 

During the experiment, three extended datasets repre-
senting different image classes were used: his-
to_fibrocystic_cystic_mastopathy, non-proliferative, pro-
liferative. After expansion, the number of images per 
class ranged from 119 to 165. 

Training was conducted for 10000 steps per dataset, 
corresponding to 60 to 84 epochs, depending on the num-
ber of images in the dataset. Total training time per class: 
43 minutes. Time per step: 0.26 seconds. Epoch duration: 
31 to 42.9 seconds, varying due to dataset size differ-
ences. 

The generation of synthetic images was performed us-
ing a specialized sampling approach, ensuring high detail 
and realism in the results. Synthesis of 4000 images per 
class took approximately 3 hours and 20 minutes. 

Figure 2 presents original and generated images for 
the first class (histo_fibrocystic_cystic_mastopathy), 
demonstrating the quality of the obtained results. 

Figure 3 presents examples of real and generated im-
ages for the class (proliferative). 

Figure 4 presents examples of real and generated im-
ages for the class (non-proliferative). 

 

Original 

  

Steps 2500 5000 7500 10000 

Generated 

  

Figure 2 – Examples of real and generated images for the class (histo_fibrocystic_cystic_mastopathy) 
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Original 

  

Steps 2500 5000 7500 10000 

Generated 

  

Figure 3 – Example of real and generated images for the class (proliferative) 
 

Original 

  

Steps 2500 5000 7500 10000 

Generateed 

  

Figure 4 – Example of real and generated images for the class (non-proliferative) 
 

After generation, the synthesized images were com-
pared with the training images based on metrics calcu-
lated in Google Colab. 

The data was stored in tables containing information 
on the number of iterations, metric values, and normalized 
indicators. 

Based on the conducted experiments, the following 
were constructed: 

1. Graphs of metric value changes during training 
( N

FIDM , N
ISM , MC as a function of iterations). 

2. 3D graphs showing the relationship between MC, 
N
FIDM , and N

ISM  for different values of the parameter α. 

The graphs were plotted in the Google Colab envi-
ronment. Figures 5a and 5b present the graphs of the IS 
and FID metric dependencies on the number of iterations 
for three classes: G1, G2 and G3. 

Figures 6a and 6b present the dependencies of N
FIDM  

and N
ISM  on the number of iterations for the three classes: 

G1, G2 and G3. 
Figure 7 presents the graph of the dependence of MC 

on the number of iterations for class G1. Similarly, graphs 
of the dependence of MC on the number of iterations for 
classes G2 and G3 are provided. 
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a        b 

Figure 5 – a – Dependence of IS on the number of iterations; b – Dependence of FID on the number of iterations 
 

 

 
a        b 

Figure 6 – a – Dependence of N
FIDM  on the number of iterations; b – Dependence of N

ISM  on the number of iterations 

 
 

 

 
Figure 7 – Dependence of MC on the number of iterations 

 
Figure 8 presents a 3D graph of the dependence of MC 

on the number of iterations for class G3. Similar depend-
encies are shown for other classes. 
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Figure 8 – Dependence of MC on the number of iterations (class G3) 

 
5 DISCUSSION 

Modern classifiers are built on deep neural networks. 
The required classification accuracy is achieved through a 
large dataset of input images and prolonged neural net-
work training. However, biomedical image datasets are 
limited due to objective constraints in obtaining biomedi-
cal images. Therefore, an urgent task is the generation of 
synthetic biomedical images based on real ones. The 
study [34] demonstrates that a promising approach for 
biomedical image generation is the use of diffusion mod-
els and modern generative tools such as Stable Diffusion. 
In this work, diffusion models are utilized for generating 
HIs. 

The second crucial task is the evaluation of the gener-
ated images. Typically, artificial image evaluation relies 
on metrics and their modifications. The MFID metric com-
putes the similarity between real and generated images, 
while the MIS metric measures the diversity of images in 
the generated dataset. Ideally, the MFID metric should in-
dicate minimal distance between real and generated im-
ages, whereas the MIS metric should reflect maximum 
diversity in the synthesized dataset. This necessitates the 
combination of these metrics, leading to the development 
of the combined metric MC, which allows for adjusting 
the influence of MIS and MFID on the quality assessment of 
generated images. 

The initial biomedical image dataset consisted of three 
classes: G1 –37 images, G2 – 45 images, and G3 – 23 
images. Using affine transformations, the dataset was 
expanded to 165 images in each class. Based on Stable 
Diffusion, 4000 images were generated for each class. 

The total training time was 43 minutes per class. The 
synthesis of 4000 images took approximately 3 hours and 

20 minutes for each class. The numerical parameters of 
the conducted experiments are as follows: 

1. For class G1: 
minFIDM  = 0.28, 

minISM  = 2.46; 

maxFIDM  = 0.94, 
maxISM  = 4.26. 

2. For class G2: 
minFIDM  = 0.25, 

minISM  = 1.75; 

maxFIDM  = 1.06, 
maxISM  = 3.54. 

3. For class G3: 
minFIDM  = 0.46, 

minISM  = 2.56; 

maxFIDM  = 2.03, 
maxISM  = 5.94. 

As shown in Figures 5a, 5b, 6a, 6b, and 7, approxi-
mately 2500 iterations are sufficient to achieve the re-
quired quality of generated images. This trend is observed 
for the MIS, MFID, and MC metrics. 

The developed combined metric will be integrated into 
the image quality assessment module based on metric 
evaluation. The metric module will be one of the compo-
nents of the CAD software system. 
 

CONCLUSIONS 
This paper addresses the problem of evaluating the 

quality of synthesized images. To this end, a combined 
metric MC was developed, based on the MIS and MFID met-
rics. Additionally, an algorithm for biomedical image 
synthesis using diffusion models was proposed. The syn-
thesized biomedical images of three breast pathology 
classes were evaluated using the MIS, MFID, and MC met-
rics. 

The training and generation time for HIs using diffu-
sion models was reduced by an order of magnitude com-
pared to GANs. High-quality synthetic images were ob-
tained for each histopathological class (G1, G2 and G3), 
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demonstrating good performance in terms of the MIS, 
MFID, and MC metrics. 

The scientific novelty of this study lies in the devel-
opment of a combined metric for evaluating the quality of 
synthesized images. 

The practical significance of this research includes 
the development of a HI synthesis algorithm, generation 
of HIs for three classes, and the execution of computa-
tional experiments to assess the quality of the synthesized 
images. 

Future research directions involve exploring new 
biomedical image synthesis algorithms based on diffusion 
models and fuzzy metrics for quality assessment of syn-
thesized images. 
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AНОТАЦІЯ 

Актуальність. У статті досліджено проблему розробки нової метрики для оцінки якості синтезованих зображень. 
Актуальність проблеми пояснюється необхідністю оцінки якості штучних зображень. Крім цього у роботі показано 
перспективність синтезу біомедичних зображень на основі дифузійних моделей. Результати дослідження можуть бути 
використані для синтезу біомедичних зображень та кількісної оцінки якості синтезованих зображень.  

Мета роботи – розробка комбінованої метрики та алгоритму синтезу біомедичних зображень для оцінки якості 
синтезованих зображень.  

Метод. У статті розроблено комбіновану метрику MC для оцінки якості синтезованих зображень. Ця метрика базується 
на основі двох метрик MIS, MFID. Також розроблено алгоритм синтезу гістопатологічних зображень на основі дифузійних 
моделей. 

Результати. Для дослідження метрик MIS, MFID і MC використано гістопатологічні зображення, які  знаходяться на  
платформі Zenodo. Цей dataset містить три класи G1, G2, G3 гістопатологічних зображень патологічних станів молочної 
залози. На основі розробленого алгоритму синтезу зображень отримано три класи штучних гістопатологічних зображень. 

На основі метрик MIS, MFID і MC отримано оцінки якості синтезованих гістопатологічних зображень: Розроблена 
метрика війде в основу програмного модуля для оцінки якості зображень на основі метрик. Цей програмний модуль буде 
інтегрований у CAD.  

Висновки.  Розроблена комбінована метрика для оцінки якості синтезованих зображень і запропонований алгоритм 
синтезу біомедичних зображень. Програмна реалізація комбінованої метрики і алгоритму синтезу зображень інтегровані у 
модуль оцінки якості зображень.  

КЛЮЧОВІ СЛОВА: метрика, метрики IS, FID, гістопатологічні зображення, глибокі нейронні мережі, дифузійні 
моделі, Stable Diffusion.  
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