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ABSTRACT 
Context. Developing a geospatial multi-agent system for optimizing transportation networks is crucial for enhancing efficiency 

and reducing travel time. This involves employing optimization algorithms and simulating agent behavior within the network. 
Objective. The aim of this study is to develop a geospatial multi-agent system for optimizing transportation networks, focusing 

on improving network efficiency and minimizing travel time through the application of advanced optimization algorithms and agent-
based modeling. 

Method. The proposed method for optimizing transportation networks combines foundational structure with advanced 
refinement in two stages: pre-processing and evolutionary strategy optimization. In the first stage, a Minimum Spanning Tree is 
constructed using Kruskal’s algorithm to establish the shortest, loop-free network that connects all key points, accounting for natural 
obstacles and existing routes. This provides a cost-effective and realistic baseline. The second stage refines the network through an 
evolutionary strategy, where agents representing MST variations are optimized using a fitness function balancing total path length, 
average node distances, and penalties for excessive edges. Optimization employs crossover to combine solutions and mutation to 
introduce diversity through edge modifications. Repeated over multiple epochs, this process incrementally improves the network, 
resulting in an optimized design that minimizes costs, enhances connectivity, and respects real-world constraints. 

Results. The results of applying the evolutionary strategy and minimum spanning tree methods were analyzed in detail.  
Comparing these methods to benchmarks like Tokyo’s railway network and the Slime Mold algorithm revealed the advantage of 
using the evolutionary approach in generating optimal paths. The findings emphasize the need for integrating advanced algorithms to 
further refine path optimization and network design. 

Conclusions. The research successfully developed a geospatial multi-agent system for optimizing transportation networks, 
achieving its objectives by addressing key challenges in transport network planning. A detailed analysis of existing solutions revealed 
the dynamic and complex nature of transportation systems and underscored the need for adaptability to environmental changes, such 
as new routes or obstacles. The proposed approach enhanced the minimum spanning tree with an evolutionary strategy, enabling 
flexibility and rapid adaptation. Results demonstrated the system’s effectiveness in planning optimal intercity transport networks. 
Future work could refine environmental assessments, improve route cost evaluations, expand metrics, define new performance 
criteria, and integrate neural network models to further enhance optimization capabilities, particularly for urban networks. 

KEYWORDS: geospatial multi-agent system, optimization of transportation networks, evolution strategy. 
 

ABBREVIATIONS 
MST is a minimum spanning tree; 
CS is a capital particle; 
TF is a target food; 
ES is an Evolution Strategies. 

 
NOMENCLATURE 

EE '  is the condition for satisfying the goal 

),(' vudG  is the shortest path distance between nodes 

u   and v  in 'G ; 
  is a penalty weight; 

)(ed  is the length of the edge; 

),( ji ppl  is the shortest route between points ip  and 

jp  within the network;  

S  is the set of all shortest paths between all points; 
w  is the weighting factor that controls the 

importance; 
L   is the total graph distance; 

avrD  is the average value of the minimum distances 

between any pair of points in the network; 
S  is the penalty; 

)(T  is the number of triangles that include the vertex 
 ; 

k  is the number of neighbors of the vertex; 

trianglesN  is the number of triangles in the graph; 

groupsN  is the number of groups of size 3. 

 
INTRODUCTION 

The optimization of transportation networks is 
increasingly crucial as cities grow and demand for 
efficient systems rises. A geospatial multi-agent system 
offers a promising solution to streamline these networks, 
improving efficiency and reducing travel times. Research 
has made progress in optimizing transportation, but 
challenges remain. Traditional methods struggle with the 
complexity of real-world systems, where factors like 
traffic density, geography, and transport types interact. 
Data preprocessing is another hurdle. Integrating 
geospatial information from various sources requires 
significant effort, delaying implementation and reducing 
effectiveness. Another key issue is adaptability. 
Transportation networks are dynamic, constantly 
influenced by infrastructure changes and shifting traffic 
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patterns. An effective system must adapt quickly to these 
changes. However, many theoretical models fail to 
translate into practical, operational systems, limiting their 
real-world application. This work proposes an 
evolutionary strategy to transform the MST into an 
optimized network. The algorithm’s effectiveness was 
tested against the Slime Mold algorithm [23] and Tokyo’s 
railway system, showing promising results. Though the 
approach holds potential, more research is needed to 
refine the system’s adaptability, streamline data 
processing, and enhance scalability for broader use. 

Object of the study: interaction process and 
dynamics of vehicle movement within transportation 
networks, considering the topology of urban areas and 
optimal routes. 

Subject of the study: algorithms for analyzing and 
optimizing resource allocation in geospatial multi-agent 
systems aimed at improving the efficiency of 
transportation networks in cities. 

The aim of this study is to develop a geospatial 
multi-agent system that optimizes transportation networks 
by addressing key challenges such as data preprocessing, 
adaptability, and complexity. By applying evolutionary 
strategies to transform the minimum spanning tree into an 
optimal network, this research seeks to improve 
transportation efficiency and flexibility. The findings aim 
to contribute to the development of more effective and 
scalable solutions for real-world transportation systems. 

Tasks of the research: 
– Analyze existing methods for optimizing 

transportation networks and geospatial systems. 
– Develop a new multi-agent system algorithm that 

accounts for the geospatial features of transportation 
networks and agent capabilities for movement 
optimization. 

– Model and simulate the system using test data to 
assess its effectiveness and reliability. 

– Analyze the results and compare them with existing 
transportation optimization methods to confirm the 
advantages of the developed system.  

The advantages of modeling transportation network 
optimization lie in the ability to predict traffic flow, 
identify critical congestion points, and propose effective 
strategies to improve overall system efficiency. Such 
models can account for various factors, including traffic 
density, infrastructure, and agent behavior, allowing for a 
deeper understanding of the dynamic interactions within 
transportation systems. They are invaluable tools for 
decision-making, offering insights that can guide the 
design and implementation of smarter, more efficient 
transport solutions.  

The relevance of this study is explained in the growing 
need to optimize transportation networks due to 
increasing urbanization, traffic congestion, and 
environmental concerns. As transportation systems 
evolve, traditional methods of management become less 
effective, highlighting the importance of developing 
innovative approaches like geospatial multi-agent 

systems. This research is timely, as it addresses both the 
practical need for improved traffic management and the 
scientific challenge of simulating complex, real-world 
transportation dynamics.  

Understanding and optimizing transportation networks 
is critical not only for reducing travel time but also for 
minimizing environmental impact and for enhancing 
public well-being. The outcomes of this research will 
have direct implications for urban planning, traffic 
management, and sustainability efforts, contributing to the 
development of smarter cities with more efficient, 
adaptive, and environmentally friendly transportation 
systems. 

The focus of the research is on identifying the 
relationships between various elements of urban 
transportation networks, such as traffic patterns, 
infrastructure, and agent behavior, as well as determining 
the factors that contribute to inefficiencies or congestion 
in these systems. The object and subject of the research 
reflect the core aspects investigated within this study to 
optimize transportation networks and enhance their 
efficiency in urban environments.  

This research is significant as it aims to enhance the 
optimization of transportation networks, a vital element of 
modern infrastructure that facilitates the efficient 
movement of people and goods. Addressing the 
challenges associated with these networks is essential for 
promoting economic growth and safeguarding public 
health. This study proposes the development of a 
geospatial multi-agent system as a new solution for 
transportation network optimization. Such systems enable 
the modeling of complex agent interactions while 
accounting for the unique characteristics of each network.  

Transport networks are inherently dynamic and 
complex, making traditional management methods 
increasingly ineffective. The application of geospatial 
multi-agent systems is particularly relevant in this 
context, as they offer the ability to simulate and analyze 
multiple factors simultaneously. For instance, traffic 
density, diverse modes of transportation, and geographic 
constraints can all be incorporated into the system’s 
framework.  

Despite notable progress in the field, as highlighted in 
recent studies [5, 7], significant challenges remain. One 
major issue is the high complexity involved in system 
development, stemming from the need to integrate 
numerous variables and adapt to real-world conditions. 
Additionally, substantial efforts are required for data 
preprocessing, including the aggregation and 
transformation of geospatial data from various sources. 
This often results in inefficiencies and complicates the 
practical implementation of these systems.  

Another key challenge is the adaptability of the 
system. Transportation networks are constantly evolving - 
new roads are built, traffic patterns change, and weather 
affects old roads. Thus, the system must be flexible 
enough to respond swiftly to these changes. Furthermore, 
many studies tend to focus on theoretical frameworks 

183



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 2 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 2 

 
 

© Boyko N. I., Salanchii T. O., 2025 
DOI 10.15588/1607-3274-2025-2-16  
 

without addressing practical considerations, which limits 
their applicability in real-world scenarios. 

To address these challenges, this research introduces 
an evolutionary strategy to transform a minimal spanning 
tree into an optimized transportation system. The 
proposed approach is evaluated by comparing its 
performance to the Slime Mold algorithm [23] and 
Tokyo’s railway network, demonstrating its potential as 
an effective and innovative solution. While the 
development of such systems presents several hurdles, it 
holds immense promise for creating adaptable, efficient, 
and practical transportation networks. 

 
1 PROBLEM STATEMENT 

The problem of optimizing a transportation network 
can be described using graph theory, where the network is 
represented as a graph ),( EVG  . Here, V  denotes the 

set of nodes (e.g., cities or junctions), and E  represents 
the set of edges (e.g., potential routes) with weights 

)(ew , which correspond to costs such as distance, time, 

or construction expenses. 
The goal is to determine a subgraph )',(' EVG  that 

satisfies several objectives: 
1. Minimizing Total Path Length: the network should 

have the lowest possible total cost, calculated as the sum 
of weights of all selected edges in E . 

 


 '

))(min(
Ee

ew . 

 
2. Ensure Connectivity: 'G  must form a connected 

subgraph such that every pair of nodes Vvu ),(  is 

reachable. 
3. Optimize Average Shortest Path Length: Minimize 

the average shortest path length between all pairs of 
nodes: 

 


 Vvu

vudG
VV ),(

),('
)1|(|||

1
min( . 

 
4. Restrict Excessive Edge Addition: Impose a penalty 

P  for adding extra edges beyond a defined threshold k : 
 

)|||'|,0max(*)'( kVEEP  . 

 
These goals are expressed in a single optimization 

function that balances the total path length, connectivity 
efficiency, and penalties for excessive edges. 
Additionally, constraints are applied to ensure the 
network respects real-world factors such as geographical 
obstacles, infrastructural limitations, and dynamic 
changes in environmental conditions. 

This formulation allows for the adaptive and efficient 
design of transportation networks under dynamic and 
real-world constraints. 

 

2 LITERATURE REVIEW 
Optimization methods are critical in addressing 

modern challenges in network systems, transportation, 
and urban planning. This summary highlights the most 
relevant recent studies on optimal transport and network 
optimization, focusing on their practical applications, 
advancements, and limitations.  

In research [2], “Imitation-regularized optimal 
transport on networks: provable robustness and 
application to logistics planning”, the authors address 
disruptions in network systems with a method called 
Simulation-Regularized Optimal Transport (I-OT). This 
approach enhances system resilience and provides 
practical applications in logistics planning using real-
world data. However, the study assumes that networks are 
Markovian, a simplification that might not always hold 
true. Additionally, it does not examine the stability of I-
OT solutions concerning Schrödinger’s bridge problems, 
nor does it compare I-OT with other transport planning 
methods, leaving questions about its relative performance 
unanswered.  

Study [3], “Heuristic Optimal Transport in Branching 
Networks” introduces an efficient heuristic algorithm for 
large-scale transport problems. This algorithm reduces 
computation time significantly, adapts well to various 
network topologies, including those with multiple 
sources, and sinks. Nonetheless, the reliance on heuristic 
approximations can compromise solution accuracy, 
creating a trade-off between speed and precision. 
Furthermore, the method may struggle with transport 
tasks involving nonlinear cost functions or complex 
constraints, limiting its applicability.  

Research [4], “Optimal intervention in traffic 
networks” proposes a topological optimization-based 
method for route planning in construction projects, 
focusing on reducing congestion and improving real-time 
infrastructure planning. The study demonstrates its 
efficiency through use cases but highlights a critical 
limitation: the high computational resources required for 
the optimization process. This drawback could result in 
complicated practical adoption, especially in scenarios 
with limited computational infrastructure.  

In article [5], “Network centrality guided multi-
objective particle swarm optimization for transport 
optimization on networks”, the authors present a multi-
objective particle swarm optimization algorithm 
incorporating Gaussian mutation to balance exploration 
and exploitation effectively. The algorithm performs well 
in achieving convergence to Pareto fronts and identifying 
optimal solutions. However, its high computational 
complexity raises concerns for large-scale applications. 
Additionally, the lack of comprehensive comparisons 
with other state-of-the-art methods and real-world 
validations limits its generalizability and practical 
relevance.  

These studies illustrate the advancements and trade-
offs in applying optimization techniques to real-world 
problems. While promising, future research must address 
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scalability, robustness, and broader applicability to realize 
their full potential. 

Table 1 provides research analysis of related 
publications that were selected from few sources: Scopus 
and ArXiv. 

 
Table 1 – Review of related papers 

Link 
Methodolo-

gy 
Pros of the 

methodology 
Cons of the 

methodology 

[2] 

Simulation-
regularized 

optimal 
transport 

Enhances resilience of 
network systems; 

practical in logistics 
planning with real-

world data 

Assumes Markovian 
networks (not always 

valid); lacks 
comparative analysis 
with other methods; 

limited stability insights

[3] 

Heuristic 
algorithm for 

branching 
networks 

Efficient for large-
scale applications; 
adaptable to varied 

topologies 

Compromises accuracy 
for speed; less effective 
for nonlinear costs or 
complex constraints 

[4] 

Topological 
optimization 
for real-time 

planning 

Reduces congestion; 
effective in 

infrastructure 
development 

Requires significant 
computational 

resources, limiting 
practicality in resource-
constrained scenarios 

[5] 

Particle 
swarm with 

Gaussian 
mutation 

Balances exploration 
and exploitation; 
efficient Pareto 

convergence 

High computational 
complexity; lacks 

broader comparisons 
and real-world 

validation 

 
Summing up the results presented in Table 1, the 

analysis highlights the significance of optimizing 
transportation networks and logistics systems using 
innovative methodologies. The reviewed studies 
emphasize the relevance of resilient and efficient 
approaches to address modern challenges in network 
planning. While the methodologies demonstrate notable 
advancements in efficiency, adaptability, and real-world 
applicability, certain limitations persist, such as 
computational complexity, reliance on specific 
assumptions, and the need for comprehensive 
comparative analyses. These findings underscore the 
importance of further research to refine these methods and 
enhance their scalability and robustness for practical 
applications. 

 
3 MATERIALS AND METHODS 

This study explores a promising approach to 
optimizing transportation networks using bio-inspired 
algorithms and geospatial data. The focus is on 
developing efficient, resilient, and adaptive systems 
capable of addressing the complexities of urban 
environments. To evaluate the proposed method, the 
Slime Mold Algorithm [23] was employed as a 
benchmark due to its ability to model self-organizing 
network behavior. 

To test these methodologies, we used a modified 
dataset derived from the open-source Slime Mould project 
[23]. This dataset includes geographic coordinates 
(latitude and longitude) and Cartesian coordinates (x, y) of 
Tokyo subway stations, formatted in GeoJSON. For 

convenience, the data was converted into a pandas 
DataFrame, facilitating integration with analytical tools 
and evolutionary algorithms. Converted dataset contains 
the geographic coordinates (latitude, longitude) and 
coordinates (x, y) of subway stations, enabling efficient 
modeling and analysis of Tokyo’s transportation 
infrastructure. An example of the transformed data is 
displayed on Table 2. 

 
Table 2 – Example of a modified data set 

node lon lat x y 
0 118, 86 32, 04 201 163 
1 118, 78 32, 05 116 174 
2 118, 98 32, 09 320 208 
4 118, 79 32, 04 127 166 

 

A map of the subway system, with stations marked as 
nodes and connections represented as edges is provided 
on Figure 1. 

 
Figure 1 – Map of subway station locations in Tokyo  

The slime mold algorithm is inspired by the natural 
behavior of Physarum polycephalum and simulates the 
organic growth of transport networks. This method 
mimics how slime molds optimize paths to connect 
resources efficiently. By balancing efficiency and 
resilience, the algorithm generates adaptive road networks 
capable of withstanding environmental or infrastructural 
changes.  

The networks designed using the slime algorithm are 
characterized by their speed and cost-effectiveness, as 
well as their ability to self-regulate. This makes them 
particularly well-suited for dynamic environments that 
require ongoing optimization.  

When it comes to road network design, the slime 
algorithm excels in achieving a balance between 
efficiency and resilience. It prioritizes minimizing 
distances while also ensuring that the network can 
withstand failures and adapt to shifts in the environment 
or infrastructure.  

As a result, these networks are not just fast and 
economical; they also possess the capability to self-
regulate, even in adverse conditions. This unique 
combination of features makes the slime algorithm a 
powerful tool for creating robust road networks. 
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Utilizing the self-organizing principles found in slime 
mold, this algorithm facilitates the development of 
transportation networks that can adjust to evolving 
conditions, such as rising traffic levels or new 
construction initiatives. This adaptability makes it 
particularly suitable for dynamic environments that 
require ongoing enhancement and optimization of 
transport infrastructure [17].  

In this study, the slime algorithm [23] was employed 
to assess and compare the effectiveness of the proposed 
method. Therefore, it is pertinent to provide a brief 
overview of how the algorithm operates.  

Slime simulation involves several factors. According 
to the literature, when Physarum is placed in a medium, 
such as a petri dish filled with nutrients like oatmeal, it 
creates a network of protoplasmic tubes to link all 
available food sources. In this context, the slime sample, 
its environment, and the nutrients present are the primary 
elements to consider when modeling the nutrient transport 
system. The slime model presented in [23] utilizes agent-
based modeling to replicate the decision-making 
processes involved in the movement of the slime sample. 
This model consists of four essential components: the 
grid, the food sources, the slime itself, and the slime 
particles or agents. 

A grid serves as the foundational structure that 
represents the environment for slime modeling. Each 
element of the grid is initialized as a cell, creating a 
comprehensive framework for the simulation. This grid 
consists of two distinct informational layers: the first layer 
is dedicated to nutrients and slime, while the second layer 
is composed of pheromones that play a crucial role in 
guiding the movement of the slime.  

In this modeling approach, nutrients are represented as 
food sources (FS). Each food source is initialized with the 
highest constant pheromone value in the second layer of 
the grid, ensuring that the slime can effectively locate and 
connect to these resources. The primary objective of the 
slime is to cover and connect all food sources throughout 
the entire grid, thereby optimizing nutrient transport. 

The slime is represented as a “population” of Physarum 
cells or agents. It maintains various global states that assist 
each agent, or slime particle, in making movement 
decisions based on the second layer of the grid. A key 
component in this process is the capital particle (CS), 
which designates the target food (TF) for all agents. The 
CS is randomly chosen from slime particles positioned at 
the four corners of the slime’s “covered area”. Once the CS 
is selected, it seeks out the nearest unconnected food 
source, which becomes the TF until it is linked.  

Since the slime’s ultimate aim is to capture and 
connect all food sources on the grid, the CS is 
dynamically updated in real-time. Additionally, the slime 
continuously replicates agents (slime particles) to move 
toward the TF. This ongoing adaptation is referred to as 
the evolutionary process. To illustrate this process clearly, 
a map of food sources (FS) is provided, along with a 
pheromone map that reflects the number of epochs, as 
shown in Figure 2. 

   
Figure 2 – Pheromone distribution map across epochs 

 
Each slime particle functions as an individual “agent” 

within the structure of the slime mold. These particles 
possess local states that enable them to make decisions 
regarding their movement. To navigate their environment 
effectively, a slime particle typically goes through two 
primary phases: the sensory phase and the diffusion 
phase. During the sensory phase, a slime particle 
identifies a food path (FP), which represents the shortest 
route from the nearest connected food source to the target 
food (TF). Each food source along this path is referred to 
as a step food (SF) leading to the TF. Once the FP is 
established, the agent transitions into the diffusion phase. 
In this stage, it expands its reach while assessing the 
conditions of adjacent cells. A schematic illustration of 
this process can be found in Figure 3. 

 
Figure 3 – Schematic representation of Slime Mould algorithm 

The diffusion process contains six key features:  
1. The pheromone level of a slime particle decreases 

with each diffusion step. 
2. Diffusion is directed toward the nearest step food 

(SF). 
3. If sufficient pheromone is present, diffusion can 

extend to other neighboring cells. 
4. A slime particle will refrain from spreading if it is 

too distant from the nearest connected food source. 
5. During the diffusion stage, a new replicated slime 

particle may be generated, potentially exhibiting mutated 
traits such as altered movement direction or pheromone 
emission. 

6. Different conditions of neighboring cells will 
influence how the pheromone level of the slime particle 
changes. 

186



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 2 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 2 

 
 

© Boyko N. I., Salanchii T. O., 2025 
DOI 10.15588/1607-3274-2025-2-16  
 

As a conclusion – at each stage, the algorithm 
improves the system using the physical properties of 
slime. Pheromones allow the algorithm to estimate the 
value of each segment: the higher the value of 
pheromones, the higher the probability that the segment 
will remain in the final decision. Diffusion, on the other 
hand, helps to “dry out” suboptimal segments, eliminating 
routes that do not contribute to efficient communication 
between stations. 

Evolution Strategies represent a method for addressing 
optimization problems, drawing inspiration from the 
principles of natural selection and evolution. Similar to 
other evolutionary computation techniques, this approach 
utilizes a population of potential solutions that are 
iteratively improved through mutation, selection, and 
crossover processes. In this context, each decision is 
represented as an “individual” or “agent” characterized by 
a specific set of parameters that define its attributes. The 
primary goal of evolutionary strategies is to refine these 
parameters, ultimately identifying the most effective 
options through continuous improvement. 

 
Figure 4 – Schematic representation of Evolution Strategy 

One notable characteristic of evolutionary strategies is 
their capacity to adjust to intricate, multidimensional 
settings that involve numerous variables. These strategies 
can be utilized across various fields, particularly in 
optimization tasks related to technical systems, 
economics, and biological applications.  

A fundamental component of evolutionary strategies 
is the mutation process, which creates new potential 
solutions by altering the parameters of existing 
individuals. Additionally, the selection process plays a 
crucial role, as it guarantees that only the most effective 
individuals contribute their traits to the subsequent 
generation. This combination of mutation and selection 
fosters continuous improvement in the search for optimal 
solutions. 

This approach is widely used in designing complex 
systems, such as road networks and communication 
infrastructures, where maintaining a balance between 
efficiency and sustainability is essential. In such systems, 
changes in the environment, resource constraints, and 
unpredictable disruptions often pose significant 
challenges. Evolutionary strategies are particularly 
valuable in these cases, as they can generate solutions that 
remain effective despite fluctuating conditions. Their 
adaptability makes them well suited for optimizing 
dynamic systems that require resilience and long-term 
viability. 

The developed transport network optimization method 
consists of two stages: 

1. Input data is pre-processed: using the Kruskal 
algorithm, a minimum spanning tree (MST) is created, 
which forms a basic network with the minimum total 
length of paths between key points (for example, cities). 

2. Using evolution strategy to improve MST by 
adding “usefull” segments to enhance connectivity, 
reduce travel time, and increase network resilience while 
maintaining cost efficiency. 

 
Figure 5 – Example of MST using Kruskal’s method 

Kruskal’s algorithm is a well-known greedy algorithm 
designed to find a minimum spanning tree (MST) within a 
weighted graph. This algorithm operates on the principle 
of incrementally adding edges that possess the least 
weight, all while ensuring that no loops are formed. The 
process continues until every nodes in the graph is 
connected, resulting in a robust structure. Schematic 
representation of algorithm is on Fig. 6. 

By utilizing the minimum spanning tree, we can 
establish a network that guarantees the connectivity of all 
points at the lowest possible cost. This foundational 
network serves as a solid base for future additions to the 
transport infrastructure. As new edges are added, the 
efficiency of the network can be significantly improved, 
paving the way for a more effective and responsive 
transportation system. In essence, Kruskal’s algorithm not 
only provides a solution to the problem of connectivity 
but also lays the foundation for ongoing development in 
the next stage. 
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Figure 6 – Schematic representation of Kruskal algorithm 

The second stage of the method uses an evolutionary 
strategy to gradually improve the network structure. It 
begins with forming an initial population of agents, where 
each agent represents a set of additional edges added to 
the minimal spanning tree. These extra edges help refine 
the network, making it more efficient. 

 Next, each agent is scored using a fitness function 
that considers several factors. Let us have a set of vertices 

}...,,{ 321 nppppP  , representing key nodes in the 

network, and a list of edges E , representing the paths 
between points in the agent. To form an optimal network, 
we can set the following fitness function f , that 

considers listed metrics: 
1. Total Graph Length: Total sum of edges, used to 

reduce the cost of building new roads. 
For instance, let )(EL  be the total length of all edges 

in the set E . This metric can be represented into the 
fitness function (1): 
 





Ee

edL ),(  (1)
 

the goal is to find a combination E  that L  is minimal 
while fulfilling other conditions. 

Average distance between any pair of points: 
Minimizing this value ensures that the points in the 
network are not too far apart, improving overall 
efficiency. Let avrD  represent the average of the 

minimum distances between any pair of points in the 
network (2): 
 





Ppp

jiavr
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S

D
,

),,(
||

1
  (2)

is a formalized representation of the definition of the set 
of all shortest paths between all points. 

2. Extra Edge Penalty: To prevent excessive network 
complexity, the algorithm imposes a penalty when the 
number of extra edges surpasses a predefined threshold. 
This threshold is set as a permissible ratio of the total 
number of points—for instance, 1.1, which allows up to 
10% additional edges. When this limit is exceeded, a 
penalty is introduced (3): 
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in the experiments performed  = 0.01. 

Then the final fitness function can be expressed as (4): 
 

SDLwF avg  * . (4)

 
During the third step, agents undergo changes via 

crossover and mutation. Crossover in this method is 
performed by selecting common additional edges that are 
present in two parent agents. This strategic choice is 
designed to preserve the fundamental structure of each 
solution, ensuring that the strengths of both parents are 
retained in the child.  

Following this, the algorithm introduces an element of 
diversity and potential for further optimization. This is 
achieved by randomly selecting unique edges from each 
parent and incorporating them into the shared edges. To 
illustrate, consider a scenario where one agent possesses 
four extra edges while another has six, with three of those 
edges being common to both. In this case, the new agent 
will inherit the three common edges, but it will also 
receive three randomly chosen unique edges from each 
parent. This approach guarantees that the total number of 
additional segments in the offspring matches the 
maximum number found in either parent. This process is 
visually represented in Figure 7. 

 
Figure 7 – Crossover operation 

By employing this method, the algorithm effectively 
maintains a stable foundation derived from both parent 
agents. At the same time, it explores new possibilities by 
integrating unique elements. This dual approach not only 
preserves the valuable characteristics of the parent 
solutions but also enhances the search for optimal 
solutions, making the overall process efficient and robust.  

Despite the effectiveness of this approach, a complete 
mutation remains essential. Without it, there is a risk that 
parents sharing the same genome may stagnate in their 
evolutionary journey. In this method, mutation is 
executed through a random selection among three distinct 
actions: removing, replacing, or adding an edge. 

188



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 2 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 2 

 
 

© Boyko N. I., Salanchii T. O., 2025 
DOI 10.15588/1607-3274-2025-2-16  
 

In cases where addition is the chosen action, a new 
edge is introduced to the list of additional edges. This new 
edge is selected from those that have not yet been utilized. 
However, it is important to note that this addition can 
only occur if the total number of additional edges does not 
surpass the predetermined maximum limit. 

When the deletion option is chosen, one edge is 
randomly eliminated from the agent’s set of additional 
edges. This action not only simplifies the path but also 
encourages the exploration of more streamlined solutions. 

On the other hand, if the replacement option is 
selected, a randomly chosen additional edge is substituted 
with a new one. This new edge is drawn from the pool of 
available edges, deliberately excluding those already 
incorporated into the agent’s structure. This strategy 
ensures variability while maintaining a constant total 
number of additional edges. 

 
Figure 8 – Visualization of mutation types 

This implementation of mutation strategy is designed 
to maintain balance of solution stability and exploration, 
ensuring that the agent maintains path connectivity and 
optimality while simultaneously discovering new possible 
solutions.  

The fourth step of the algorithm involves iterative 
improving through evaluation, crossover. This process is 
repeated for a predetermined number of epochs, allowing 
the system to gradually enhance the quality of solutions. 

With each iteration, the population of agents 
undergoes continuous improvement, driven by the 
selection of the most promising candidates. Over time, 
this iterative process minimizes the gap between the best 
and worst performing agents, moving toward an optimal 
solution. 

As the algorithm progresses (See Fig. 9), weaker 
solutions are gradually eliminated, while stronger ones 
propagate, ensuring that each generation is more refined 
than the last. By the final epoch, the selection process has 
filtered the population to its most effective configuration. 
Ultimately, the agent exhibiting the highest performance 
is chosen as the best solution. 

The clustering coefficient is a metric that measures the 
likelihood that neighbors of a node in a graph are also 
connected to each other, forming a triangle. This 
coefficient indicates the local density of connections for 
each node and helps to understand the structure of the 
graph at a local level. Figures 10 (a) and 10 (b) illustrate 
the differences in the structure of graphs with different 
clustering coefficients: in a graph with high clustering. 

 
Figure 9 – Schematic representation of proposed algorithm 

 

  
a b 

Figure 10 – Example of graphs with different clustering 
coefficient 

 

The clustering coefficient for an individual node is 
defined as the ratio of the number of existing connections 
between its neighbors to the maximum possible number 
of such connections. The local clustering coefficient for a 
vertex indicates how much its neighbors are also 
neighbors with each other. It is defined as follows (5): 
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The higher the clustering coefficient, the more the 
node is part of a tightly connected group where its 
neighbors also interact closely with one another.  

High values of the clustering coefficient indicate that 
the graph tends to form strongly connected local groups, 
or “clusters”. The clustering coefficient for a graph 
(global) is given by (6): 

 

groups

triangles
global N

N
C

3
 ,  (6)

 

a triangle in a graph is a group of three vertices where 
each one is connected to the other two, while groups of 
three vertices are simply all possible triplets of vertices, 
regardless of whether they are connected. 

The clustering coefficient for the entire graph allows 
for the assessment of the overall tendency to form such 
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local clusters. For a random graph, this coefficient is 
always equal to 0, as nodes are only connected to nodes 
with which they have the shortest paths, without forming 
triangles, which are the basis for clustering. For an agent, 
the clustering coefficient is equal to 0, meaning that the 
agent maintains separate lines of communication but does 
not engage in close connections with other nodes. 

In the process of solving optimization problems, it is 
important to consider and compare several approaches to 
achieve effective results. This study examines two 
methods: the slime mold method, which simulates the 
behavior of slime mold in finding the optimal path 
between food sources, and the evolutionary strategy, 
which is based on improving the MST. Both methods 
have distinct mechanisms for search, self-organization, 
and adaptation, which define their unique advantages and 
limitations. Comparative Tables 3–6 presents an analysis 
of the stages of these methods, from initialization to 
optimization. The goal of this comparison is to identify 
the most suitable method for solving optimization 
problems under the given conditions. 

 
Table 3 – Initialization stage comparison 

Initialization 
Slime Mould Slime particles are created, and a grid of 

food and pheromones is generated 
Evolution Strategy Combinations of all possible paths between 

vertices are created, and an initial population 
of agents is formed, where each agent is a list 
of paths.  

Evolution strategy 
based on MST 
improvement 
(Proposed method) 

MST is generated, combinations of all 
possible paths between vertices are created, 
and an initial population of agents is formed, 
where each agent is an addition to the MST. 

 
Table 4 – Search stage comparison 

Search 
Slime Mould A leader particle is selected to indicate the 

general direction for others; agents move and 
leave pheromone hints for other particles. 

Evolution Strategy Each agent is evaluated through a fitness 
function. 

Evolution strategy 
based on MST 
improvement 
(Proposed method) 

Each agent is evaluated through a fitness 
function; the average path, total path is 
calculated, and a penalty is added if the 
number of paths exceeds the allowed limit. 

 
Table 5 – Self organizing stage comparison 

Self-organizing 
Slime Mould Using the diffusion process, the slime 

improves the system. 
Evolution Strategy Agents are sorted by fitness value (agents 

that could not build a connected path/graph 
are excluded).  

Evolution strategy 
based on MST 
improvement 
(Proposed method) 

Agents are sorted by fitness value.  

 
 
 
 
 

Table 6 – Information processing stage comparison 
Information Processing 

Slime Mould Due to the physical properties of pheromones, 
non-optimal segments are “dried up” and 
important segments remain. 

Evolution 
Strategy 

The top 50% of the best-fitted agents are selected. 
Agents randomly form pairs that undergo classical 
crossover (with the preservation of graph 
connectivity) with a chance of random mutation. 

Evolution 
strategy based 
on MST 
improvement 
(Proposed 
method) 

The top 50% of the best-fitted agents are selected. 
Agents randomly form pairs that undergo 
crossover with a chance of random mutation. This 
allows for the reproduction of the initial population 
size while maintaining fitness and diversity.  

 
Based on the analysis of the stages of work of each 

method, certain conclusions can be drawn regarding their 
effectiveness. The evolutionary strategy based on 
improving the MST has proven to be more adaptable for 
situations where flexibility and the ability to adapt are 
important, as its mechanisms of crossover and mutation 
allow for the preservation of a diversity of solutions 
within the population of agents. This strategy promotes a 
higher adaptability of agents to changing conditions, 
which positively affects the effectiveness of optimization 
in complex networks.  

The slime method also has advantages in terms of the 
speed of self-organization due to the physical properties 
of pheromones, which allow for the identification of 
important segments and the “drying out” of non-optimal 
ones. Therefore, for tasks that require a quick 
convergence to an optimal solution, the slime method is 
also appropriate. Given the advantages of the evolutionary 
strategy for adaptive environments, it is advisable to use it 
as the primary method for further experiments. 

 
4 EXPERIMENTS 

Conducting experiments is of great importance, as it 
allows us to evaluate how effectively the system improves 
transportation efficiency and reduces travel time. These 
experiments measure the performance of the optimization 
algorithms and assess their ability to handle real-world 
challenges such as congestion and disruptions. Moreover, 
the results help validate the evolutionary strategy’s 
transformation of minimum cost distance into optimal 
paths while extending the minimal spanning tree for 
practical applications, offering valuable insights into 
network optimization. 

To implement the evolutionary algorithm system, 
Python was chosen as the primary programming language 
due to its versatility, readability, and extensive ecosystem 
of libraries. Python is widely recognized for its simplicity 
and cross-platform compatibility, making it an ideal 
choice for developing diverse software solutions. In 
particular, the following libraries and tools were used to 
develop the application:  

– NetworkX: This library specializes in analyzing and 
visualizing complex networks and graphs. It was used for 
constructing minimum spanning trees, checking graph 
connectivity, and visualizing transportation networks. 
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– NumPy is a library for scientific computing in 
Python. Essential for numerical computations, NumPy 
excels at handling large, multi-dimensional arrays with 
performance optimizations through C-based 
implementation.  

– Pandas: Known for its robust data manipulation 
capabilities, Pandas offers the DataFrame structure, which 
facilitates efficient data cleaning, filtering, grouping, and 
aggregation. 

– Matplotlib & Seaborn: These libraries provided tools 
for creating high-quality visualizations, from basic plots 
to more advanced data representations.   

This section focuses on identifying the optimal 
parameters for an evolutionary strategy, which are critical 
for ensuring the algorithm’s efficiency and performance. 
Specifically, we examine key parameters such as the 
number of epochs and population size. These parameters 
significantly influence both the quality of the solutions 
obtained and the convergence speed of the algorithm. 

The number of epochs determines the iterations of the 
optimization process. A higher number of epochs allows 
the algorithm to fine-tune its search for the best solutions. 
However, it also increases the execution time. Striking a 
balance between learning efficiency and execution speed 
is essential for parameter optimization.  

Population Size Population size directly impacts the 
diversity of solutions explored during optimization. 
Larger populations offer more options for evolutionary 
selection, increasing the likelihood of finding a global 
optimum. On the other hand, excessively large 
populations can complicate the optimization process and 
increase computational costs. 

To identify the optimal algorithm parameters, a series 
of experiments were conducted. Two primary metrics 
were used for evaluation:  

– Execution time: How long the method takes to 
complete. 
 – Fitness of the best agent: Calculated using the 
objective function described earlier.  
The goal was to balance execution speed and result 

accuracy, maximizing system resource efficiency. 

 
Figure 11 – Relationship between execution time and the 

number of epochs for different population sizes 

Analysis reveals that increasing both population size 
and the number of epochs gradually extends the execution 
time. This is because larger populations require more 
processing time. 

 
Figure 12 – Relationship between fitness results and the number 

of epochs for different population sizes 

The Fig. 11–12 shows that increasing epochs does not 
always lead to consistent fitness improvements. For 
example, populations of 15 and 20 exhibit instability in 
later stages. 

Based on the experiments, the optimal parameter 
combination is a population size of 25 agents and 15 
epochs. This choice is supported by a clear trend of 
fitness improvement with increasing epochs, as observed 
in the fitness-epochs graph. This balance ensures efficient 
resource utilization while maintaining high solution 
quality. 

Using the optimal parameters (25 agents and 15 
epochs), a comparison was conducted to evaluate the 
efficiency of the developed method against the slime 
mold algorithm. For the slime mold algorithm, 350 
epochs were used, as this provided sufficient time for the 
agents to grow and form optimal paths. The Tokyo 
subway system was also included as a benchmark 
example for comparison. 

The evaluation was based on the criterion of the 
average distance between each pair of points (2). 

This approach allowed us to determine how well the 
optimal paths identified by the algorithms align with real-
world transportation routes and whether they could 
provide more efficient connections between stations 
compared to the existing subway network. MST is 
displayed on Figure 13. The calculations and results are 
presented in Tables 7–9. For better visualization, each 
table includes comparison between MST and generated 
system (red edges are common for MST and generated 
system, green are present only in generated system). 

 
Figure 13 – Generated MST 
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Table 7 – Calculation and analysis of Tokyo railway system 
Tokyo railway 
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Table 8 – Calculation and analysis of Slime Mould system 
Slime Mould method 
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Table 9 – Calculation and analysis of system generated by 

proposed method 
Proposed method 

  
Average distance 
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5 RESULTS 
In this chapter, we will evaluate the performance of 

the various algorithms employed to optimize 
transportation networks. It is crucial to assess not only the 
visual representations of the results but also to quantify 
those using relevant metrics. As described in the previous 
section, the average distance, total distance, and clustering 
coefficient were estimated for each algorithm. The results 
of the calculations are given in Table 10. 

 

Table 10 – Comparison of each system 
 Tokyo 

system 
Slime Mould Proposed 

method 
Average 
distance 

157.15 198.40 153.88 

Total distance 1738.65 1676.667 1527.66 
Clustering 
coefficient 

0 0.04 0 
 

Let us compare the effectiveness of the systems: each 
algorithm demonstrates different results regarding the 
average distance between pairs of points. The actual 
Tokyo railway system, which served as the benchmark, 
showed a score of 157.15. The slime algorithm, while it 
identified some optimal paths, had a worse score of 
198.40, indicating lower efficiency compared to the 
benchmark. The developed method achieved the best 
result of 153.88.  

Based on the comparative studies conducted, the 
developed method (using optimal parameters: 25 agents 
and 15 epochs) demonstrated the highest efficiency. It 
provided a shorter average distance between stations 
compared to the actual Tokyo railway system and 
achieved this improvement alongside a reduction in the 
overall path length, indicating its potential for further use 
in optimizing transportation networks. 

Moreover, the total distance metric further emphasizes 
the advantages of the proposed method. With a total 
distance of 1527.66, it outperformed both the Tokyo 
system and the Slime Mould algorithm, which recorded 
total distances of 1738.65 and 1676.67, respectively. This 
reduction in total distance not only signifies a more 
efficient routing of transportation but also suggests 
potential cost savings and reduced travel times for users. 

The clustering coefficient, while not as critical in this 
context, also provides insight into the connectivity of the 
network. The proposed method maintained a clustering 
coefficient of 0, similar to the Tokyo system, while the 
Slime Mould algorithm achieved a coefficient of 0.04. 
This indicates that the proposed method retains a level of 
simplicity in its structure, which can be beneficial for 
implementation and scalability.  

In conclusion, the results indicate that the proposed 
method is not only effective in optimizing transportation 
networks but also demonstrates a significant improvement 
over existing systems. Future work should focus on 
refining the algorithm further, potentially incorporating 
more complex models or hybrid approaches that could 
enhance performance even more. By exploring advanced 
techniques such as machine learning or multi-agent 
systems, we can continue to push the boundaries of 
transportation network optimization. 
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6 DISCUSSION 
Conducted research aimed at developing a geospatial 

multi-agent system for optimizing transportation 
networks. A comprehensive analysis of the subject area 
was performed, focusing on existing solutions and 
identifying promising research directions.  

The study revealed several critical challenges in 
planning optimal transportation systems, particularly the 
dynamic nature and complexity of transportation 
networks. An additional issue is the necessity for the 
system to adapt to environmental changes, which is vital 
due to the constant evolution of routes and the emergence 
of obstacles. To address these challenges, a novel 
approach was proposed that enhances the minimum 
spanning tree (MST) using evolutionary strategies.  

The results indicate that the developed system can 
effectively plan optimal transportation connections 
between cities. This system has the potential to 
significantly reduce travel time and costs, benefiting both 
passengers and transportation operators. Further research 
should aim to refine the methods for assessing 
environmental factors and the costs associated with 
selected routes, as well as improve existing metrics and 
develop new criteria for evaluating efficiency. 

Additionally, integrating the system with neural 
network models could lead to a more in-depth analysis 
and optimization of transportation routes, particularly in 
complex urban environments where traditional methods 
may be inadequate. By utilizing neural networks to 
process geographical maps and spatial data, the system 
can generate structured input data that enhances route 
planning and urban development strategies. This 
integration has the potential to revolutionize our approach 
to urban transportation planning, making it more adaptive 
and efficient in response to ever-changing conditions. 

 

CONCLUSIONS 
The conducted research on developing a geospatial 

multi-agent system for optimizing transportation networks 
has yielded significant insights into the complexities and 
dynamic nature of transportation planning. The study’s 
findings underscore the practical significance of the 
proposed system, which demonstrates the capability to 
effectively plan optimal transportation connections 
between cities. This advancement has the potential to 
substantially reduce travel time and costs, providing 
tangible benefits for both passengers and transportation 
operators.  

Scientific Novelty: The research contributes to the 
scientific community by introducing a novel approach 
that combines evolutionary strategies with traditional 
transportation planning methods. This innovative 
perspective not only addresses existing challenges but 
also opens new avenues for exploration in the field of 
transportation optimization.  

Practical Significance: The results of this research 
are particularly relevant for urban planners and 
transportation authorities, as they offer a novel solution to 
the pressing challenges of optimizing transportation 

networks. By enhancing the minimum spanning tree 
(MST) with evolutionary strategies, the system can adapt 
to environmental changes and evolving routes, thereby 
improving the overall efficiency of transportation 
systems. 

Prospects for Further Research: The prospects for 
further research are promising, particularly in the areas of 
algorithm refinement and the development of new 
evaluation metrics for transportation efficiency. 
Investigating the application of the proposed system 
across various practical scenarios, including urban and 
rural settings, could yield valuable insights. Additionally, 
exploring the potential of machine learning and artificial 
intelligence in conjunction with the multi-agent system 
may lead to breakthroughs in adaptive transportation 
planning, ultimately revolutionizing how we approach 
urban mobility in response to changing demands. 

Recommendations for Further Research: To build 
upon the findings of this study, it is recommended that 
future research focus on refining methods for assessing 
environmental factors and the associated costs of selected 
routes. Additionally, exploring the integration of neural 
network models into the system could provide deeper 
insights into route optimization, especially in complex 
urban environments. This integration could facilitate the 
processing of geographical maps and spatial data, leading 
to more structured input data that enhances route planning 
and urban development strategies.  
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АНОTАЦІЯ 

Актуальність. Розробка геопросторової багатагентної системи для оптимізації транспортних мереж є важливою для 
підвищення ефективності та зменшення часу подорожі. Це передбачає використання алгоритмів оптимізації та моделювання 
поведінки агентів у межах мережі. 

Мета роботи є розробка геопросторової багатагентної системи для оптимізації транспортних мереж, зосереджуючи 
увагу на покращенні ефективності мережі та мінімізації часу подорожі шляхом застосування передових алгоритмів 
оптимізації та моделювання на основі агентів. 

Метод. Запропонований метод оптимізації транспортних мереж поєднує базову структуру з розширеним уточненням у 
два етапи: попередня обробка та оптимізація еволюційної стратегії. На першому етапі будується мінімальне остовне дерево 
за допомогою алгоритму Крускала для встановлення найкоротшої мережі без петель, яка з’єднує всі ключові точки, 
враховуючи природні перешкоди та існуючі маршрути. Це забезпечує економічно ефективну та реалістичну базову лінію. 
Другий етап удосконалює мережу за допомогою еволюційної стратегії, де агенти, що представляють варіації мінімального 
остового дерева, оптимізуються за допомогою функції пристосування, яка балансує загальну довжину шляху, середню 
відстань до вузлів і штрафи за надмірні краї. Оптимізація використовує кросовер для поєднання рішень і мутацію для 
введення різноманітності через модифікації країв. Цей процес, повторюється протягом багатьох епох, поступово покращує 
мережу, в результаті чого створюється оптимізований щлях, який мінімізує витрати, покращує підключення та поважає 
обмеження подані в режимі реального часу. 

Результати. Результати застосування еволюційної стратегії та методів мінімальної вартості відстані були детально 
проаналізовані. Для еволюційної стратегії були оцінені такі метрики, як ефективність шляхів і обчислювальні витрати, що 
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продемонструвало значні покращення в оптимізації мережі. У випадку MST, хоча метод надав базову структуру для вибору 
шляхів, візуальні та числові оцінки підкреслили обмеження в розв’язанні складних реальних обмежень. Порівняння цих 
методів з еталонами, такими як залізнична мережа Токіо та алгоритм слизової цвілі, виявило перевагу еволюційного підходу 
в генерації оптимальних шляхів. Висновки підкреслюють необхідність інтеграції передових алгоритмів для подальшого 
вдосконалення оптимізації шляхів і проектування мереж. 

Висновки. Дослідження успішно розробило геопросторову багатоагентну систему для оптимізації транспортних мереж, 
досягнувши поставлених цілей шляхом вирішення ключових проблем у плануванні транспортної мережі. Детальний аналіз 
існуючих рішень виявив динамічний і складний характер транспортних систем і підкреслив необхідність адаптації до змін 
навколишнього середовища, таких як нові маршрути або перешкоди. Запропонований підхід розширив мінімальне 
охоплююче дерево за допомогою еволюційної стратегії, забезпечивши гнучкість і швидку адаптацію. Результати 
продемонстрували ефективність системи в плануванні оптимальних міжміських транспортних мереж. Майбутня робота 
може вдосконалити екологічні оцінки, покращити оцінку вартості маршруту, розширити показники, визначити нові критерії 
продуктивності та інтегрувати моделі нейронних мереж для подальшого підвищення можливостей оптимізації, особливо 
для міських мереж. 

КЛЮЧОВІ СЛОВА: геопросторова мультиагентна система, оптимізація транспортних мереж, еволюційна стратегія. 
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