p-ISSN 1607-3274 PagioenexrpoHika, iHpopmaTuka, ynpasmainss. 2025. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. Ne 2

UDC 004.94

DEVELOPMENT OF INNOVATIVE APPROACHES FOR NETWORK
OPTIMIZATION USING GEOSPATIAL MULTI-COMPONENT SYSTEMS

Boyko N. I. — PhD, Associate Professor, Associate Professor of the Department of Artificial Intelligence Systems,
Lviv Polytechnic National University, Lviv, Ukraine.

Salanchii T. O. — Student, Department of Artificial Intelligence Systems, Lviv Polytechnic National University,
Lviv, Ukraine.

ABSTRACT

Context. Developing a geospatial multi-agent system for optimizing transportation networks is crucial for enhancing efficiency
and reducing travel time. This involves employing optimization algorithms and simulating agent behavior within the network.

Objective. The aim of this study is to develop a geospatial multi-agent system for optimizing transportation networks, focusing
on improving network efficiency and minimizing travel time through the application of advanced optimization algorithms and agent-
based modeling.

Method. The proposed method for optimizing transportation networks combines foundational structure with advanced
refinement in two stages: pre-processing and evolutionary strategy optimization. In the first stage, a Minimum Spanning Tree is
constructed using Kruskal’s algorithm to establish the shortest, loop-free network that connects all key points, accounting for natural
obstacles and existing routes. This provides a cost-effective and realistic baseline. The second stage refines the network through an
evolutionary strategy, where agents representing MST variations are optimized using a fitness function balancing total path length,
average node distances, and penalties for excessive edges. Optimization employs crossover to combine solutions and mutation to
introduce diversity through edge modifications. Repeated over multiple epochs, this process incrementally improves the network,
resulting in an optimized design that minimizes costs, enhances connectivity, and respects real-world constraints.

Results. The results of applying the evolutionary strategy and minimum spanning tree methods were analyzed in detail.
Comparing these methods to benchmarks like Tokyo’s railway network and the Slime Mold algorithm revealed the advantage of
using the evolutionary approach in generating optimal paths. The findings emphasize the need for integrating advanced algorithms to
further refine path optimization and network design.

Conclusions. The research successfully developed a geospatial multi-agent system for optimizing transportation networks,
achieving its objectives by addressing key challenges in transport network planning. A detailed analysis of existing solutions revealed
the dynamic and complex nature of transportation systems and underscored the need for adaptability to environmental changes, such
as new routes or obstacles. The proposed approach enhanced the minimum spanning tree with an evolutionary strategy, enabling
flexibility and rapid adaptation. Results demonstrated the system’s effectiveness in planning optimal intercity transport networks.
Future work could refine environmental assessments, improve route cost evaluations, expand metrics, define new performance
criteria, and integrate neural network models to further enhance optimization capabilities, particularly for urban networks.

KEYWORDS: geospatial multi-agent system, optimization of transportation networks, evolution strategy.

ABBREVIATIONS
MST is a minimum spanning tree;

T(v) is the number of triangles that include the vertex

V3
%? 11: :tc ;ggi;ggg?de; K, is the number of neighbors of the vertex;
ES is an Evolution Strategies. Ntriangles is the number of triangles in the graph;
NOMENCLATURE N groups 18 the number of groups of size 3.
E'c E is the condition for satisfying the goal
INTRODUCTION

dG'(u,v) is the shortest path distance between nodes
u and v in G';

A is a penalty weight;

d(e) is the length of the edge;

I(p;, p;) is the shortest route between points p; and

The optimization of transportation networks is
increasingly crucial as cities grow and demand for
efficient systems rises. A geospatial multi-agent system
offers a promising solution to streamline these networks,
improving efficiency and reducing travel times. Research
has made progress in optimizing transportation, but

p. within the network; > .. .
) challenges remain. Traditional methods struggle with the

S is the set of all shortest paths between all points;

W is the weighting factor that controls the
importance;

L is the total graph distance;

D, is the average value of the minimum distances

between any pair of points in the network;
S is the penalty;
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complexity of real-world systems, where factors like
traffic density, geography, and transport types interact.
Data preprocessing is another hurdle. Integrating
geospatial information from various sources requires
significant effort, delaying implementation and reducing
effectiveness. Another key issue is adaptability.
Transportation networks are dynamic, constantly
influenced by infrastructure changes and shifting traffic
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patterns. An effective system must adapt quickly to these
changes. However, many theoretical models fail to
translate into practical, operational systems, limiting their
real-world application. This work proposes an
evolutionary strategy to transform the MST into an
optimized network. The algorithm’s effectiveness was
tested against the Slime Mold algorithm [23] and Tokyo’s
railway system, showing promising results. Though the
approach holds potential, more research is needed to

refine the system’s adaptability, streamline data
processing, and enhance scalability for broader use.
Object of the study: interaction process and

dynamics of vehicle movement within transportation
networks, considering the topology of urban areas and
optimal routes.

Subject of the study: algorithms for analyzing and
optimizing resource allocation in geospatial multi-agent
systems aimed at improving the efficiency of
transportation networks in cities.

The aim of this study is to develop a geospatial
multi-agent system that optimizes transportation networks
by addressing key challenges such as data preprocessing,
adaptability, and complexity. By applying evolutionary
strategies to transform the minimum spanning tree into an
optimal network, this research seeks to improve
transportation efficiency and flexibility. The findings aim
to contribute to the development of more effective and
scalable solutions for real-world transportation systems.

Tasks of the research:

— Analyze existing methods for
transportation networks and geospatial systems.

— Develop a new multi-agent system algorithm that
accounts for the geospatial features of transportation
networks and agent capabilities for movement
optimization.

— Model and simulate the system using test data to
assess its effectiveness and reliability.

— Analyze the results and compare them with existing
transportation optimization methods to confirm the
advantages of the developed system.

The advantages of modeling transportation network
optimization lie in the ability to predict traffic flow,
identify critical congestion points, and propose effective
strategies to improve overall system efficiency. Such
models can account for various factors, including traffic
density, infrastructure, and agent behavior, allowing for a
deeper understanding of the dynamic interactions within
transportation systems. They are invaluable tools for
decision-making, offering insights that can guide the
design and implementation of smarter, more efficient
transport solutions.

The relevance of this study is explained in the growing

optimizing

need to optimize transportation networks due to
increasing  urbanization, traffic  congestion, and
environmental concerns. As transportation systems

evolve, traditional methods of management become less
effective, highlighting the importance of developing
innovative approaches like geospatial —multi-agent
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systems. This research is timely, as it addresses both the
practical need for improved traffic management and the
scientific challenge of simulating complex, real-world
transportation dynamics.

Understanding and optimizing transportation networks
is critical not only for reducing travel time but also for
minimizing environmental impact and for enhancing
public well-being. The outcomes of this research will
have direct implications for urban planning, traffic
management, and sustainability efforts, contributing to the
development of smarter cities with more -efficient,
adaptive, and environmentally friendly transportation
systems.

The focus of the research is on identifying the
relationships between various elements of urban
transportation networks, such as traffic patterns,
infrastructure, and agent behavior, as well as determining
the factors that contribute to inefficiencies or congestion
in these systems. The object and subject of the research
reflect the core aspects investigated within this study to
optimize transportation networks and enhance their
efficiency in urban environments.

This research is significant as it aims to enhance the
optimization of transportation networks, a vital element of
modern infrastructure that facilitates the efficient
movement of people and goods. Addressing the
challenges associated with these networks is essential for
promoting economic growth and safeguarding public
health. This study proposes the development of a
geospatial multi-agent system as a new solution for
transportation network optimization. Such systems enable
the modeling of complex agent interactions while
accounting for the unique characteristics of each network.

Transport networks are inherently dynamic and
complex, making traditional management methods
increasingly ineffective. The application of geospatial
multi-agent systems is particularly relevant in this
context, as they offer the ability to simulate and analyze
multiple factors simultaneously. For instance, traffic
density, diverse modes of transportation, and geographic
constraints can all be incorporated into the system’s
framework.

Despite notable progress in the field, as highlighted in
recent studies [5, 7], significant challenges remain. One
major issue is the high complexity involved in system
development, stemming from the need to integrate
numerous variables and adapt to real-world conditions.
Additionally, substantial efforts are required for data
preprocessing,  including the  aggregation and
transformation of geospatial data from various sources.
This often results in inefficiencies and complicates the
practical implementation of these systems.

Another key challenge is the adaptability of the
system. Transportation networks are constantly evolving -
new roads are built, traffic patterns change, and weather
affects old roads. Thus, the system must be flexible
enough to respond swiftly to these changes. Furthermore,
many studies tend to focus on theoretical frameworks
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without addressing practical considerations, which limits
their applicability in real-world scenarios.

To address these challenges, this research introduces
an evolutionary strategy to transform a minimal spanning
tree into an optimized transportation system. The
proposed approach is evaluated by comparing its
performance to the Slime Mold algorithm [23] and
Tokyo’s railway network, demonstrating its potential as
an effective and innovative solution. While the
development of such systems presents several hurdles, it
holds immense promise for creating adaptable, efficient,
and practical transportation networks.

1 PROBLEM STATEMENT
The problem of optimizing a transportation network
can be described using graph theory, where the network is
represented as a graph G =(V,E). Here, V denotes the

set of nodes (e.g., cities or junctions), and E represents
the set of edges (e.g., potential routes) with weights
Ww(e), which correspond to costs such as distance, time,

or construction expenses.
The goal is to determine a subgraph G'=(V,E') that

satisfies several objectives:

1. Minimizing Total Path Length: the network should
have the lowest possible total cost, calculated as the sum
of weights of all selected edges in E .

min( ) w(e)).

ecE’

2. Ensure Connectivity: G' must form a connected
subgraph such that every pair of nodes (u,v)eV is

reachable.

3. Optimize Average Shortest Path Length: Minimize
the average shortest path length between all pairs of
nodes:

1
min(——— > dG'(u,v).
VIV =D (UNZ):EV

4. Restrict Excessive Edge Addition: Impose a penalty
P for adding extra edges beyond a defined threshold k :

P(E') = *max(0,| E'| - |V | +K) .

These goals are expressed in a single optimization
function that balances the total path length, connectivity
efficiency, and penalties for excessive edges.
Additionally, constraints are applied to ensure the
network respects real-world factors such as geographical
obstacles, infrastructural limitations, and dynamic
changes in environmental conditions.

This formulation allows for the adaptive and efficient
design of transportation networks under dynamic and
real-world constraints.
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2 LITERATURE REVIEW

Optimization methods are critical in addressing
modern challenges in network systems, transportation,
and urban planning. This summary highlights the most
relevant recent studies on optimal transport and network
optimization, focusing on their practical applications,
advancements, and limitations.

In research [2], “Imitation-regularized optimal
transport on networks: provable robustness and
application to logistics planning”, the authors address
disruptions in network systems with a method called
Simulation-Regularized Optimal Transport (I-OT). This
approach enhances system resilience and provides
practical applications in logistics planning using real-
world data. However, the study assumes that networks are
Markovian, a simplification that might not always hold
true. Additionally, it does not examine the stability of I-
OT solutions concerning Schrédinger’s bridge problems,
nor does it compare I-OT with other transport planning
methods, leaving questions about its relative performance
unanswered.

Study [3], “Heuristic Optimal Transport in Branching
Networks” introduces an efficient heuristic algorithm for
large-scale transport problems. This algorithm reduces
computation time significantly, adapts well to various
network topologies, including those with multiple
sources, and sinks. Nonetheless, the reliance on heuristic
approximations can compromise solution accuracy,
creating a trade-off between speed and precision.
Furthermore, the method may struggle with transport
tasks involving nonlinear cost functions or complex
constraints, limiting its applicability.

Research [4], “Optimal intervention in traffic
networks” proposes a topological optimization-based
method for route planning in construction projects,
focusing on reducing congestion and improving real-time
infrastructure planning. The study demonstrates its
efficiency through use cases but highlights a critical
limitation: the high computational resources required for
the optimization process. This drawback could result in
complicated practical adoption, especially in scenarios
with limited computational infrastructure.

In article [5], “Network centrality guided multi-
objective particle swarm optimization for transport
optimization on networks”, the authors present a multi-
objective  particle swarm optimization algorithm
incorporating Gaussian mutation to balance exploration
and exploitation effectively. The algorithm performs well
in achieving convergence to Pareto fronts and identifying
optimal solutions. However, its high computational
complexity raises concerns for large-scale applications.
Additionally, the lack of comprehensive comparisons
with other state-of-the-art methods and real-world
validations limits its generalizability and practical
relevance.

These studies illustrate the advancements and trade-
offs in applying optimization techniques to real-world
problems. While promising, future research must address
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scalability, robustness, and broader applicability to realize
their full potential.

Table 1 provides research analysis of related
publications that were selected from few sources: Scopus
and ArXiv.

Table 1 — Review of related papers

. Methodolo- Pros of the Cons of the
Link
gy methodology methodology
. Assumes Markovian
. . Enhances resilience of
Simulation- networks (not always
. network systems; .
regularized N . valid); lacks
[2] . practical in logistics : .
optimal . . comparative analysis
planning with real- .
transport with other methods;
world data L e
limited stability insights
Heuristic Efficient for large- |Compromises accuracy
algorithm for | scale applications; |for speed; less effective
[3] . . ;
branching adaptable to varied | for nonlinear costs or
networks topologies complex constraints
Topological | Reduces congestion; Requires mg}nﬁcant
L2 e computational
optimization effective in S
[4] . . resources, limiting
for real-time infrastructure O
. practicality in resource-
planning development . .
constrained scenarios
Particle Balances exploration High comp utational
. oo complexity; lacks
swarm with and exploitation; .
[5] . . broader comparisons
Gaussian efficient Pareto
. and real-world
mutation convergence o
validation

Summing up the results presented in Table 1, the
analysis highlights the significance of optimizing
transportation networks and logistics systems using
innovative methodologies. The reviewed studies
emphasize the relevance of resilient and efficient
approaches to address modern challenges in network
planning. While the methodologies demonstrate notable
advancements in efficiency, adaptability, and real-world

applicability, certain limitations persist, such as
computational complexity, reliance on specific
assumptions, and the need for comprehensive

comparative analyses. These findings underscore the
importance of further research to refine these methods and
enhance their scalability and robustness for practical
applications.

3 MATERIALS AND METHODS

This study explores a promising approach to
optimizing transportation networks using bio-inspired
algorithms and geospatial data. The focus is on
developing efficient, resilient, and adaptive systems
capable of addressing the complexities of urban
environments. To evaluate the proposed method, the
Slime Mold Algorithm [23] was employed as a
benchmark due to its ability to model self-organizing
network behavior.

To test these methodologies, we used a modified
dataset derived from the open-source Slime Mould project
[23]. This dataset includes geographic coordinates
(latitude and longitude) and Cartesian coordinates (X, Y) of
Tokyo subway stations, formatted in GeoJSON. For
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convenience, the data was converted into a pandas
DataFrame, facilitating integration with analytical tools
and evolutionary algorithms. Converted dataset contains
the geographic coordinates (latitude, longitude) and
coordinates (X, y) of subway stations, enabling efficient
modeling and analysis of Tokyo’s transportation
infrastructure. An example of the transformed data is
displayed on Table 2.

Table 2 — Example of a modified data set

node lon lat X y
0 118, 86 32,04 201 163
1 118,78 32,05 116 174
2 118, 98 32,09 320 208
4 118,79 32,04 127 166

A map of the subway system, with stations marked as
nodes and connections represented as edges is provided

on Figure 1.
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Figure 1 — Map of subway station locations in Tokyo

The slime mold algorithm is inspired by the natural
behavior of Physarum polycephalum and simulates the
organic growth of transport networks. This method
mimics how slime molds optimize paths to connect
resources efficiently. By balancing efficiency and
resilience, the algorithm generates adaptive road networks
capable of withstanding environmental or infrastructural
changes.

The networks designed using the slime algorithm are
characterized by their speed and cost-effectiveness, as
well as their ability to self-regulate. This makes them
particularly well-suited for dynamic environments that
require ongoing optimization.

When it comes to road network design, the slime
algorithm excels in achieving a balance between
efficiency and resilience. It prioritizes minimizing
distances while also ensuring that the network can
withstand failures and adapt to shifts in the environment
or infrastructure.

As a result, these networks are not just fast and
economical; they also possess the capability to self-
regulate, even in adverse conditions. This unique
combination of features makes the slime algorithm a
powerful tool for creating robust road networks.

OPEN a ACCESS




p-ISSN 1607-3274 PagioenexkrpoHika, iHpopMaTuka, ynpasainss. 2025.
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025.

Utilizing the self-organizing principles found in slime
mold, this algorithm facilitates the development of
transportation networks that can adjust to evolving
conditions, such as rising traffic levels or new
construction initiatives. This adaptability makes it
particularly suitable for dynamic environments that
require ongoing enhancement and optimization of
transport infrastructure [17].

In this study, the slime algorithm [23] was employed
to assess and compare the effectiveness of the proposed
method. Therefore, it is pertinent to provide a brief
overview of how the algorithm operates.

Slime simulation involves several factors. According
to the literature, when Physarum is placed in a medium,
such as a petri dish filled with nutrients like oatmeal, it
creates a network of protoplasmic tubes to link all
available food sources. In this context, the slime sample,
its environment, and the nutrients present are the primary
elements to consider when modeling the nutrient transport
system. The slime model presented in [23] utilizes agent-
based modeling to replicate the decision-making
processes involved in the movement of the slime sample.
This model consists of four essential components: the
grid, the food sources, the slime itself, and the slime
particles or agents.

A grid serves as the foundational structure that
represents the environment for slime modeling. Each
element of the grid is initialized as a cell, creating a
comprehensive framework for the simulation. This grid
consists of two distinct informational layers: the first layer
is dedicated to nutrients and slime, while the second layer
is composed of pheromones that play a crucial role in
guiding the movement of the slime.

In this modeling approach, nutrients are represented as
food sources (FS). Each food source is initialized with the
highest constant pheromone value in the second layer of
the grid, ensuring that the slime can effectively locate and
connect to these resources. The primary objective of the
slime is to cover and connect all food sources throughout
the entire grid, thereby optimizing nutrient transport.

The slime is represented as a “population” of Physarum
cells or agents. It maintains various global states that assist
each agent, or slime particle, in making movement
decisions based on the second layer of the grid. A key
component in this process is the capital particle (CS),
which designates the target food (TF) for all agents. The
CS is randomly chosen from slime particles positioned at
the four corners of the slime’s “covered area”. Once the CS
is selected, it seeks out the nearest unconnected food
source, which becomes the TF until it is linked.

Since the slime’s ultimate aim is to capture and
connect all food sources on the grid, the CS is
dynamically updated in real-time. Additionally, the slime
continuously replicates agents (slime particles) to move
toward the TF. This ongoing adaptation is referred to as
the evolutionary process. To illustrate this process clearly,
a map of food sources (FS) is provided, along with a
pheromone map that reflects the number of epochs, as
shown in Figure 2.

© Boyko N. 1., Salanchii T. O., 2025
DOI 10.15588/1607-3274-2025-2-16

186

Figure 2 — Pheromone distribution map across éf)bchs

Each slime particle functions as an individual “agent”
within the structure of the slime mold. These particles
possess local states that enable them to make decisions
regarding their movement. To navigate their environment
effectively, a slime particle typically goes through two
primary phases: the sensory phase and the diffusion
phase. During the sensory phase, a slime particle
identifies a food path (FP), which represents the shortest
route from the nearest connected food source to the target
food (TF). Each food source along this path is referred to
as a step food (SF) leading to the TF. Once the FP is
established, the agent transitions into the diffusion phase.
In this stage, it expands its reach while assessing the
conditions of adjacent cells. A schematic illustration of
this process can be found in Figure 3.

Input Dataset

generate slime cells, place food in .

Initialization
environment, create pheromon plane
selecting capital slime

» Selection
and target food
slime growth, SPrea.dmg Optimization
pheromens, diffusion

Epoch timeout or
all food connected 2

Figure 3 — Schematic representation of Slime Mould algorithm

The diffusion process contains six key features:

1. The pheromone level of a slime particle decreases
with each diffusion step.

2. Diffusion is directed toward the nearest step food
(SF).

3. If sufficient pheromone is present, diffusion can
extend to other neighboring cells.

4. A slime particle will refrain from spreading if it is
too distant from the nearest connected food source.

5. During the diffusion stage, a new replicated slime
particle may be generated, potentially exhibiting mutated
traits such as altered movement direction or pheromone
emission.

6. Different conditions of neighboring cells will
influence how the pheromone level of the slime particle

changes.
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As a conclusion — at each stage, the algorithm
improves the system using the physical properties of
slime. Pheromones allow the algorithm to estimate the
value of each segment: the higher the value of
pheromones, the higher the probability that the segment
will remain in the final decision. Diffusion, on the other
hand, helps to “dry out” suboptimal segments, eliminating
routes that do not contribute to efficient communication
between stations.

Evolution Strategies represent a method for addressing
optimization problems, drawing inspiration from the
principles of natural selection and evolution. Similar to
other evolutionary computation techniques, this approach
utilizes a population of potential solutions that are
iteratively improved through mutation, selection, and
crossover processes. In this context, each decision is
represented as an “individual” or “agent” characterized by
a specific set of parameters that define its attributes. The
primary goal of evolutionary strategies is to refine these
parameters, ultimately identifying the most effective
options through continuous improvement.

Input Dataset

Initial Population

v

calculation fithess > Selection <
Cross-breeding | Creating new
and/or mutation generation

Epoch timeout ?

Best Agent

Figure 4 — Schematic representation of Evolution Strategy

One notable characteristic of evolutionary strategies is
their capacity to adjust to intricate, multidimensional
settings that involve numerous variables. These strategies
can be utilized across various fields, particularly in
optimization tasks related to technical systems,
economics, and biological applications.

A fundamental component of evolutionary strategies
is the mutation process, which creates new potential
solutions by altering the parameters of existing
individuals. Additionally, the selection process plays a
crucial role, as it guarantees that only the most effective
individuals contribute their traits to the subsequent
generation. This combination of mutation and selection
fosters continuous improvement in the search for optimal
solutions.
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This approach is widely used in designing complex
systems, such as road networks and communication
infrastructures, where maintaining a balance between
efficiency and sustainability is essential. In such systems,
changes in the environment, resource constraints, and
unpredictable  disruptions  often pose significant
challenges. Evolutionary strategies are particularly
valuable in these cases, as they can generate solutions that
remain effective despite fluctuating conditions. Their
adaptability makes them well suited for optimizing
dynamic systems that require resilience and long-term
viability.

The developed transport network optimization method
consists of two stages:

1. Input data is pre-processed: using the Kruskal
algorithm, a minimum spanning tree (MST) is created,
which forms a basic network with the minimum total
length of paths between key points (for example, cities).

2. Using evolution strategy to improve MST by
adding “usefull” segments to enhance connectivity,
reduce travel time, and increase network resilience while
maintaining cost efficiency.

MST Path
1
250 7
Mo 2
104
68 4 24 48
200 18 B
2
o
150
-
100
17
958,
50
24
8 10
44
o4

T T T
200 250 300

x

Figure 5 — Example of MST using Kruskal’s method
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Kruskal’s algorithm is a well-known greedy algorithm
designed to find a minimum spanning tree (MST) within a
weighted graph. This algorithm operates on the principle
of incrementally adding edges that possess the least
weight, all while ensuring that no loops are formed. The
process continues until every nodes in the graph is
connected, resulting in a robust structure. Schematic
representation of algorithm is on Fig. 6.

By utilizing the minimum spanning tree, we can
establish a network that guarantees the connectivity of all
points at the lowest possible cost. This foundational
network serves as a solid base for future additions to the
transport infrastructure. As new edges are added, the
efficiency of the network can be significantly improved,
paving the way for a more effective and responsive
transportation system. In essence, Kruskal’s algorithm not
only provides a solution to the problem of connectivity
but also lays the foundation for ongoing development in

the next stage.
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Figure 6 — Schematic representation of Kruskal algorithm

The second stage of the method uses an evolutionary
strategy to gradually improve the network structure. It
begins with forming an initial population of agents, where
each agent represents a set of additional edges added to
the minimal spanning tree. These extra edges help refine
the network, making it more efficient.

Next, each agent is scored using a fitness function
that considers several factors. Let us have a set of vertices
P={p1, P2, P3---Pn} > representing key nodes in the

network, and a list of edges E, representing the paths
between points in the agent. To form an optimal network,
we can set the following fitness function f , that

considers listed metrics:

1. Total Graph Length: Total sum of edges, used to
reduce the cost of building new roads.

For instance, let L(E) be the total length of all edges

in the set E . This metric can be represented into the

fitness function (1):
L= >.d(e).
(1

ecE
the goal is to find a combination E that L is minimal
while fulfilling other conditions.

Average distance between any pair of points:
Minimizing this value ensures that the points in the
network are not too far apart, improving overall

efficiency. Let D,, represent the average of the

minimum distances between any pair of points in the
network (2):

1
S|

Davr -

2 1(pi, pj),

pi’ijP

)
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is a formalized representation of the definition of the set
of all shortest paths between all points.

2. Extra Edge Penalty: To prevent excessive network
complexity, the algorithm imposes a penalty when the
number of extra edges surpasses a predefined threshold.
This threshold is set as a permissible ratio of the total
number of points—for instance, 1.1, which allows up to
10% additional edges. When this limit is exceeded, a
penalty is introduced (3):

% * i %
S:{g (E| OLIPD,IfIEI>0t|PI, 3)

in the experiments performed A= 0.01.
Then the final fitness function can be expressed as (4):

F=w*L+Dgyq+S. 4)

During the third step, agents undergo changes via
crossover and mutation. Crossover in this method is
performed by selecting common additional edges that are
present in two parent agents. This strategic choice is
designed to preserve the fundamental structure of each
solution, ensuring that the strengths of both parents are
retained in the child.

Following this, the algorithm introduces an element of
diversity and potential for further optimization. This is
achieved by randomly selecting unique edges from each
parent and incorporating them into the shared edges. To
illustrate, consider a scenario where one agent possesses
four extra edges while another has six, with three of those
edges being common to both. In this case, the new agent
will inherit the three common edges, but it will also
receive three randomly chosen unique edges from each
parent. This approach guarantees that the total number of
additional segments in the offspring matches the
maximum number found in either parent. This process is
visually represented in Figure 7.

A B c D A B C E F G

A B 5 E D G
Figure 7 — Crossover operation

By employing this method, the algorithm effectively
maintains a stable foundation derived from both parent
agents. At the same time, it explores new possibilities by
integrating unique elements. This dual approach not only
preserves the valuable characteristics of the parent
solutions but also enhances the search for optimal
solutions, making the overall process efficient and robust.

Despite the effectiveness of this approach, a complete
mutation remains essential. Without it, there is a risk that
parents sharing the same genome may stagnate in their
evolutionary journey. In this method, mutation is
executed through a random selection among three distinct
actions: removing, replacing, or adding an edge.
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In cases where addition is the chosen action, a new
edge is introduced to the list of additional edges. This new
edge is selected from those that have not yet been utilized.
However, it is important to note that this addition can
only occur if the total number of additional edges does not
surpass the predetermined maximum limit.

When the deletion option is chosen, one edge is
randomly eliminated from the agent’s set of additional
edges. This action not only simplifies the path but also
encourages the exploration of more streamlined solutions.

On the other hand, if the replacement option is
selected, a randomly chosen additional edge is substituted
with a new one. This new edge is drawn from the pool of
available edges, deliberately excluding those already
incorporated into the agent’s structure. This strategy
ensures variability while maintaining a constant total
number of additional edges.

Reamaove A B (4 = F A B c F
Add A B c E F A B C [ F G
Replace A B C E F A B c E G

Figure 8 — Visualization of mutation types

This implementation of mutation strategy is designed
to maintain balance of solution stability and exploration,
ensuring that the agent maintains path connectivity and
optimality while simultaneously discovering new possible
solutions.

The fourth step of the algorithm involves iterative
improving through evaluation, crossover. This process is
repeated for a predetermined number of epochs, allowing
the system to gradually enhance the quality of solutions.

With each iteration, the population of agents
undergoes continuous improvement, driven by the
selection of the most promising candidates. Over time,
this iterative process minimizes the gap between the best
and worst performing agents, moving toward an optimal
solution.

As the algorithm progresses (See Fig. 9), weaker
solutions are gradually eliminated, while stronger ones
propagate, ensuring that each generation is more refined
than the last. By the final epoch, the selection process has
filtered the population to its most effective configuration.
Ultimately, the agent exhibiting the highest performance
is chosen as the best solution.

The clustering coefficient is a metric that measures the
likelihood that neighbors of a node in a graph are also
connected to each other, forming a triangle. This
coefficient indicates the local density of connections for
each node and helps to understand the structure of the
graph at a local level. Figures 10 (a) and 10 (b) illustrate
the differences in the structure of graphs with different
clustering coefficients: in a graph with high clustering.
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Figure 9 — Schematic representation of proposed algorithm
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Figure 10 — Example of graphs with different clustering

coefficient

The clustering coefficient for an individual node is
defined as the ratio of the number of existing connections
between its neighbors to the maximum possible number
of such connections. The local clustering coefficient for a
vertex indicates how much its neighbors are also
neighbors with each other. It is defined as follows (5):

2T (v)
c =<\
local (V) k,(k, —1) &)
The higher the clustering coefficient, the more the
node is part of a tightly connected group where its
neighbors also interact closely with one another.

High values of the clustering coefficient indicate that
the graph tends to form strongly connected local groups,
or “clusters”. The clustering coefficient for a graph
(global) is given by (6):

3Ntrian les
Cglobal =—— (6)
N groups

a triangle in a graph is a group of three vertices where
each one is connected to the other two, while groups of
three vertices are simply all possible triplets of vertices,
regardless of whether they are connected.

The clustering coefficient for the entire graph allows
for the assessment of the overall tendency to form such
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local clusters. For a random graph, this coefficient is
always equal to 0, as nodes are only connected to nodes
with which they have the shortest paths, without forming
triangles, which are the basis for clustering. For an agent,
the clustering coefficient is equal to 0, meaning that the
agent maintains separate lines of communication but does
not engage in close connections with other nodes.

In the process of solving optimization problems, it is
important to consider and compare several approaches to
achieve effective results. This study examines two
methods: the slime mold method, which simulates the
behavior of slime mold in finding the optimal path
between food sources, and the evolutionary strategy,
which is based on improving the MST. Both methods
have distinct mechanisms for search, self-organization,
and adaptation, which define their unique advantages and
limitations. Comparative Tables 3—6 presents an analysis
of the stages of these methods, from initialization to
optimization. The goal of this comparison is to identify
the most suitable method for solving optimization
problems under the given conditions.

Table 3 — Initialization stage comparison
Initialization

Slime particles are created, and a grid of
food and pheromones is generated
Combinations of all possible paths between
vertices are created, and an initial population
of agents is formed, where each agent is a list
of paths.

Slime Mould

Evolution Strategy

Evolution strategy | MST is generated, combinations of all
based on MST | possible paths between vertices are created,
improvement and an initial population of agents is formed,
(Proposed method) where each agent is an addition to the MST.
Table 4 — Search stage comparison
Search
Slime Mould A leader particle is selected to indicate the

general direction for others; agents move and
leave pheromone hints for other particles.
Each agent is evaluated through a fitness
function.

Evolution Strategy

Evolution strategy | Each agent is evaluated through a fitness
based on MST | function; the average path, total path is
improvement calculated, and a penalty is added if the
(Proposed method) number of paths exceeds the allowed limit.

Table 5 — Self organizing stage comparison
Self-organizing

Using the diffusion process, the slime

improves the system.

Agents are sorted by fitness value (agents

that could not build a connected path/graph

are excluded).

Agents are sorted by fitness value.

Slime Mould

Evolution Strategy

Evolution

based on
improvement
(Proposed method)

strategy
MST
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Table 6 — Information processing stage comparison
Information Processing
Slime Mould Due to the physical properties of pheromones,
non-optimal segments are “dried up” and
important segments remain.
Evolution The top 50% of the best-fitted agents are selected.
Strategy Agents randomly form pairs that undergo classical
crossover (with the preservation of graph
connectivity) with a chance of random mutation.
Evolution The top 50% of the best-fitted agents are selected.
strategy based | Agents randomly form pairs that undergo
on MST | crossover with a chance of random mutation. This
improvement allows for the reproduction of the initial population
(Proposed size while maintaining fitness and diversity.
method)

Based on the analysis of the stages of work of each
method, certain conclusions can be drawn regarding their
effectiveness. The evolutionary strategy based on
improving the MST has proven to be more adaptable for
situations where flexibility and the ability to adapt are
important, as its mechanisms of crossover and mutation
allow for the preservation of a diversity of solutions
within the population of agents. This strategy promotes a
higher adaptability of agents to changing conditions,
which positively affects the effectiveness of optimization
in complex networks.

The slime method also has advantages in terms of the
speed of self-organization due to the physical properties
of pheromones, which allow for the identification of
important segments and the “drying out” of non-optimal
ones. Therefore, for tasks that require a quick
convergence to an optimal solution, the slime method is
also appropriate. Given the advantages of the evolutionary
strategy for adaptive environments, it is advisable to use it
as the primary method for further experiments.

4 EXPERIMENTS

Conducting experiments is of great importance, as it
allows us to evaluate how effectively the system improves
transportation efficiency and reduces travel time. These
experiments measure the performance of the optimization
algorithms and assess their ability to handle real-world
challenges such as congestion and disruptions. Moreover,
the results help validate the evolutionary strategy’s
transformation of minimum cost distance into optimal
paths while extending the minimal spanning tree for
practical applications, offering valuable insights into
network optimization.

To implement the evolutionary algorithm system,
Python was chosen as the primary programming language
due to its versatility, readability, and extensive ecosystem
of libraries. Python is widely recognized for its simplicity
and cross-platform compatibility, making it an ideal
choice for developing diverse software solutions. In
particular, the following libraries and tools were used to
develop the application:

— NetworkX: This library specializes in analyzing and
visualizing complex networks and graphs. It was used for
constructing minimum spanning trees, checking graph
connectivity, and visualizing transportation networks.
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— NumPy is a library for scientific computing in
Python. Essential for numerical computations, NumPy
excels at handling large, multi-dimensional arrays with
performance optimizations through C-based
implementation.

— Pandas: Known for its robust data manipulation
capabilities, Pandas offers the DataFrame structure, which
facilitates efficient data cleaning, filtering, grouping, and
aggregation.

— Matplotlib & Seaborn: These libraries provided tools
for creating high-quality visualizations, from basic plots
to more advanced data representations.

This section focuses on identifying the optimal
parameters for an evolutionary strategy, which are critical
for ensuring the algorithm’s efficiency and performance.
Specifically, we examine key parameters such as the
number of epochs and population size. These parameters
significantly influence both the quality of the solutions
obtained and the convergence speed of the algorithm.

The number of epochs determines the iterations of the
optimization process. A higher number of epochs allows
the algorithm to fine-tune its search for the best solutions.
However, it also increases the execution time. Striking a
balance between learning efficiency and execution speed
is essential for parameter optimization.

Population Size Population size directly impacts the
diversity of solutions explored during optimization.
Larger populations offer more options for evolutionary
selection, increasing the likelihood of finding a global
optimum. On the other hand, excessively large
populations can complicate the optimization process and
increase computational costs.

To identify the optimal algorithm parameters, a series
of experiments were conducted. Two primary metrics
were used for evaluation:

— Execution time: How long the method takes to

complete.

— Fitness of the best agent: Calculated using the

objective function described earlier.

The goal was to balance execution speed and result
accuracy, maximizing system resource efficiency.

Experiment Time vs Epochs

1000 B
—— Population 5

— Population 10
—— Population 15
—— Population 20
—— Population 25
—— Population 30

800

600 1

Experiment Time

200 //

T T T y T v T T

10 12 14 16 18 20 22 24
Epochs

Figure 11 — Relationship between execution time and the
number of epochs for different population sizes

Analysis reveals that increasing both population size
and the number of epochs gradually extends the execution
time. This is because larger populations require more
processing time.
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Fitness Result vs Epochs
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Figure 12 — Relationship between fitness results and the number
of epochs for different population sizes

The Fig. 11-12 shows that increasing epochs does not
always lead to consistent fitness improvements. For
example, populations of 15 and 20 exhibit instability in
later stages.

Based on the experiments, the optimal parameter
combination is a population size of 25 agents and 15
epochs. This choice is supported by a clear trend of
fitness improvement with increasing epochs, as observed
in the fitness-epochs graph. This balance ensures efficient
resource utilization while maintaining high solution
quality.

Using the optimal parameters (25 agents and 15
epochs), a comparison was conducted to evaluate the
efficiency of the developed method against the slime
mold algorithm. For the slime mold algorithm, 350
epochs were used, as this provided sufficient time for the
agents to grow and form optimal paths. The Tokyo
subway system was also included as a benchmark
example for comparison.

The evaluation was based on the criterion of the
average distance between each pair of points (2).

This approach allowed us to determine how well the
optimal paths identified by the algorithms align with real-
world transportation routes and whether they could
provide more efficient connections between stations
compared to the existing subway network. MST is
displayed on Figure 13. The calculations and results are
presented in Tables 7-9. For better visualization, each
table includes comparison between MST and generated
system (red edges are common for MST and generated

system, green are present only in generated system).
MST Path

Figure 13 — Generated MST
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Table 7 — Calculation and analysis of Tokyo railway system
Tokyo railway

Original Path

MST vs Original Tokio system

5 RESULTS

In this chapter, we will evaluate the performance of
the various algorithms employed to optimize
transportation networks. It is crucial to assess not only the
visual representations of the results but also to quantify
those using relevant metrics. As described in the previous
section, the average distance, total distance, and clustering
coefficient were estimated for each algorithm. The results
of the calculations are given in Table 10.

Table 10 — Comparison of each system

|Average distance AVG oL _19712896 _ 005
1S14° " 12544
Total distance L= t=17386
teE
Cluster}ng 3N¢riangles
coefficient Cylobal = =
Ngroups

jas there is no triangle in the system

Table 8 — Calculation and analysis of Slime Mould system
Slime Mould method

Slime Mould Path MST vs Ev Slime Mould system

xa %J

Ry
" (t/)\

|Average distance AVG = Ta- 24887816 _ oc 40
IS acs 12544
Total distance L=Yt=1676.67
teE
Clustering coefficient 3Ntriangles 3
C =———=—=0.04
global N 75
groups

Table 9 — Calculation and analysis of system generated by
proposed method

Proposed method

Best Agent Path MST vs Ev Agent system

<0 i
Ry

el

Average distance avgo_L Sa- 1930396.16
12544

S 1acs

=153.89

Total distance L=>t=1527.66

teE

Clustering

. 3 Ntriangles
coefficient =

C = =
global
N groups

as there is no triangle in the system
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Tokyo Slime Mould Proposed
system method
Average 157.15 198.40 153.88
distance
Total distance 1738.65 1676.667 1527.66
Clustering
coefficient 0 0.04 0

Let us compare the effectiveness of the systems: each
algorithm demonstrates different results regarding the
average distance between pairs of points. The actual
Tokyo railway system, which served as the benchmark,
showed a score of 157.15. The slime algorithm, while it
identified some optimal paths, had a worse score of
198.40, indicating lower efficiency compared to the
benchmark. The developed method achieved the best
result of 153.88.

Based on the comparative studies conducted, the
developed method (using optimal parameters: 25 agents
and 15 epochs) demonstrated the highest efficiency. It
provided a shorter average distance between stations
compared to the actual Tokyo railway system and
achieved this improvement alongside a reduction in the
overall path length, indicating its potential for further use
in optimizing transportation networks.

Moreover, the total distance metric further emphasizes
the advantages of the proposed method. With a total
distance of 1527.66, it outperformed both the Tokyo
system and the Slime Mould algorithm, which recorded
total distances of 1738.65 and 1676.67, respectively. This
reduction in total distance not only signifies a more
efficient routing of transportation but also suggests
potential cost savings and reduced travel times for users.

The clustering coefficient, while not as critical in this
context, also provides insight into the connectivity of the
network. The proposed method maintained a clustering
coefficient of 0, similar to the Tokyo system, while the
Slime Mould algorithm achieved a coefficient of 0.04.
This indicates that the proposed method retains a level of
simplicity in its structure, which can be beneficial for
implementation and scalability.

In conclusion, the results indicate that the proposed
method is not only effective in optimizing transportation
networks but also demonstrates a significant improvement
over existing systems. Future work should focus on
refining the algorithm further, potentially incorporating
more complex models or hybrid approaches that could
enhance performance even more. By exploring advanced
techniques such as machine learning or multi-agent
systems, we can continue to push the boundaries of
transportation network optimization.
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6 DISCUSSION

Conducted research aimed at developing a geospatial
multi-agent system for optimizing transportation
networks. A comprehensive analysis of the subject area
was performed, focusing on existing solutions and
identifying promising research directions.

The study revealed several critical challenges in
planning optimal transportation systems, particularly the
dynamic nature and complexity of transportation
networks. An additional issue is the necessity for the
system to adapt to environmental changes, which is vital
due to the constant evolution of routes and the emergence
of obstacles. To address these challenges, a novel
approach was proposed that enhances the minimum
spanning tree (MST) using evolutionary strategies.

The results indicate that the developed system can
effectively plan optimal transportation connections
between cities. This system has the potential to
significantly reduce travel time and costs, benefiting both
passengers and transportation operators. Further research
should aim to refine the methods for assessing
environmental factors and the costs associated with
selected routes, as well as improve existing metrics and
develop new criteria for evaluating efficiency.

Additionally, integrating the system with neural
network models could lead to a more in-depth analysis
and optimization of transportation routes, particularly in
complex urban environments where traditional methods
may be inadequate. By utilizing neural networks to
process geographical maps and spatial data, the system
can generate structured input data that enhances route
planning and urban development strategies. This
integration has the potential to revolutionize our approach
to urban transportation planning, making it more adaptive
and efficient in response to ever-changing conditions.

CONCLUSIONS

The conducted research on developing a geospatial
multi-agent system for optimizing transportation networks
has yielded significant insights into the complexities and
dynamic nature of transportation planning. The study’s
findings underscore the practical significance of the
proposed system, which demonstrates the capability to
effectively plan optimal transportation connections
between cities. This advancement has the potential to
substantially reduce travel time and costs, providing
tangible benefits for both passengers and transportation
operators.

Scientific Novelty: The research contributes to the
scientific community by introducing a novel approach
that combines evolutionary strategies with traditional
transportation planning methods. This innovative
perspective not only addresses existing challenges but
also opens new avenues for exploration in the field of
transportation optimization.

Practical Significance: The results of this research
are particularly relevant for wurban planners and
transportation authorities, as they offer a novel solution to
the pressing challenges of optimizing transportation
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networks. By enhancing the minimum spanning tree
(MST) with evolutionary strategies, the system can adapt
to environmental changes and evolving routes, thereby
improving the overall efficiency of transportation
systems.

Prospects for Further Research: The prospects for
further research are promising, particularly in the areas of
algorithm refinement and the development of new
evaluation metrics for transportation efficiency.
Investigating the application of the proposed system
across various practical scenarios, including urban and
rural settings, could yield valuable insights. Additionally,
exploring the potential of machine learning and artificial
intelligence in conjunction with the multi-agent system
may lead to breakthroughs in adaptive transportation
planning, ultimately revolutionizing how we approach
urban mobility in response to changing demands.

Recommendations for Further Research: To build
upon the findings of this study, it is recommended that
future research focus on refining methods for assessing
environmental factors and the associated costs of selected
routes. Additionally, exploring the integration of neural
network models into the system could provide deeper
insights into route optimization, especially in complex
urban environments. This integration could facilitate the
processing of geographical maps and spatial data, leading
to more structured input data that enhances route planning
and urban development strategies.
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PO3POBKA IHHOBALIITHUAX NIAXOAIB JJIsl ONTUMI3ZALI MEPEX 3A JOIIOMOT' OO TEOITPOCTOPOBHX
BAFATOKOMIIOHEHTHHUX CUCTEM

Boiiko H. 1. — kaHI. €KOHOM. HayK, JOICHT, JOIEHT kadenpu CHUCTEM IITYYHOTO iHTeNeKTy, HamioHanbHUI yHIBEpCHTET
«JIpBiBCBKa MoniTexHiKay, JIbBiB, YKpaiHa.

Cananuiii T. O. — crynent kadeapu CucteMm mTy4Horo iHTenekty, HamioHanpuuid yHiBepcuTeT «JIbBIBCbKa MOJITEXHIKa»,
JIbBiB, YKpaiHa.

AHOTAIIA

AKTyanbHicTb. Po3po0OKka reonpocTopoBoi GaratareHTHOI CHCTEMH [UIsl ONTHMIi3allii TPAaHCIOPTHUX MEPEX € BaXKJIMBOKO JUIS
ITiABUIEHHST €()eKTHBHOCTI Ta 3MEHIIECHHS 9acy rmojopoxi. Lle mepenbavae BUKOpUCTaHHS QJITOPUTMIB ONTHMI3allil Ta MOJETIOBAaHHS
MOBE/IIHKH areHTiB y MeXax Mepexi.

Meta po6oTn € po3poOka reonpocTopoBOi OaraTareHTHOI CUCTEMH JUIs ONTHUMI3allil TPAHCIIOPTHUX MEPEX, 30Cepe/KyIOUH
yBary Ha IOKpalleHHi e(peKTHBHOCTI Mepexi Ta MiHiMi3alii 4acy MOZOpPOXKi LULIXOM 3aCTOCYBAaHHs IIE€PEOBUX AITOPUTMIB
OITUMI3alii Ta MOJEIIOBaHHS HA OCHOBI areHTiB.

MerToa. 3anponoHOBaHUi METOJ ONTHMI3aLli TPAaHCIIOPTHUX MEPEX MOEIHYE 0a30By CTPYKTYPY 3 PO3IIMPEHUM YTOYHEHHSM Y
JIBa €Taly: TorepeaHs oOpoOka Ta ONTHMI3allisl eBOMIOLIHHOT cTparerii. Ha mepmomy erami OyIayeThesi MiHIMAIBHE OCTOBHE JIEPEBO
3a JOMOMOrow anroputmy Kpyckana st BCTAHOBICHHS HaWKOpOTHIOl Mepexi Oe3 IeTenb, sika 3’€HYE BCi KIIOYOBI TOYKH,
BPaXOBYIOUH HPHPOAHI MEPEIIKOAN Ta iCHyrodl MapmpyTH. Lle 3abe3nedye eKOHOMIYHO eeKTHBHY Ta peanicTHiHy 0a30BY JIiHIIO.
Jpyruit etan yZoCKOHAIIOE MEPEXY 3a JOIMOMOTOI0 €BOJIIOLIHHOT CTpaTerii, e areHTH, 110 NPeCTaBIsI0Th Bapialil MiHIMaJIbHOTO
OCTOBOT'O JIepeBa, ONTHMI3YIOThCS 3a JONOMOro0 (yHKIIi HPUCTOCYBaHHS, sika OajaHCye 3arajbHy NOBXHHY LUIIXY, CEPEeIHIO
BiZICTaHb 70 By3JiB i wTpadu 3a HaaMipHi kpai. OnTuMi3allis BUKOPUCTOBYE KPOCOBEp IUIsl MOEJHAHHS PIlICHb 1 MyTAI{IO IS
BBEJICHHsI PI3HOMAHITHOCTI uepe3 Moaudikarii kpais. L{ei mpoiiec, MOBTOPIOETHCS MPOTATOM 0araTb0X €MoX, MOCTYIIOBO MOKPAIYye
MEpEeXy, B Pe3yJbTaTi HYOr0 CTBOPIOETHCS ONTHUMI30BaHUH LUIAX, SKMH MiHIMI3y€ BHTPATH, MOKPAILy€ MiIKIIOYEHHS Ta MOBAXKAE
00MEKeHHS TTO/IaHi B PEXKIMI PealbHOTO Jacy.

PesyabTaTn. Pe3ynpraT 3acTOCYBaHHS €BOJIOIIIHOI CTpaTerii Ta METOXNIB MiHIMalIbHOI BapTOCTI BiACTaHI Oysn AETalbHO
npoaHaiizoBaHi. s eBomrowiitHoi crparterii Oynu omiHEeHi Taki METPHUKH, K e()eKTUBHICTD IUIAXIB 1 OOUHCIIIOBAIBHI BUTPATH, L0
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MIPOJEMOHCTPYBAJIO 3HAYHI MOKpalleHHs B onTuMizanii Mepexi. Y Bunaaky MST, xoya mero Hamas 6a30By CTPYKTypy Ajs BUOOPY
[UIAXiB, Bi3yaJIbHI Ta YMCIIOBI OIHKH MiIKPECTIA OOMEXKEHHS B PO3B’S3aHHI CKIATHHUX pealbHUX oOMexeHb. [IOpiBHSIHHSA LUX
METOZIB 3 €TaJJOHAMH, TAKUMH 5K 3aJ1i3HUYHA Mepeka ToKio Ta alrOpUTM CIM30BOI IB1JTi, BUSBUIIO TIEpEBAry €BOIIOLIHHOTO MiAXO0TY
B TeHepalii ONTHMAaJbHUX HUIAXiB. BHCHOBKM HigKpecIrolOTh HEOOXITHICTH iHTErpamil NepeoBHX alrOPUTMIB ISl HOAANIBIIOTO
BJJOCKOHAJICHHSI OITUMIi3allii IUIAXiB i IPOEKTYBaHHI MEPEK.
BucaoBkn. JlocnikeHHs YCIIIIHO PO3pOONIIO Fe0NPOCTOPOBY OaraToareHTHy CHCTEMY JUIs ONITHMI3allil TPaHCIIOPTHUX MEPEeK,
JOCSITHYBIIH ITOCTABJICHUX LLIEH NUITXOM BUPIMICHHS KJIIOYOBUX IIPOOJIeM y IUIaHYBaHHI TPaHCIIOPTHOI Mepeki. JletanbHuid aHami3
iCHYIOUHX DillleHb BUSBHB JAWHAMIYHUI 1 CKJIAQJHUN XapaKTep TPAHCIOPTHUX CHCTEM i MiAKPECIUB HEOOXIAHICTh afamnTauii 10 3MiH
HaBKOJIMIIIHBOTO CEPE/IOBHUINA, TAKUX SIK HOBI MapuipyTH abo Mepelkoju. 3amporoHOBaHUM MiAXi[ PO3IMIUPHB MiHIMaIbHE
OXOIUTIOI0YE JEPEeBO 3a JOMOMOTOI0 EBONIOLIHHOI cTpaTerii, 3a0e3medynMBIIM THYYKICTh 1 MIBUIKY afanTamito. Pesymerati
MIPOIEMOHCTPYBAIN €(PEKTUBHICTh CHCTEMH B IUIaHYBAaHHI ONTUMAaJbHAX MIXMICBKUX TPaHCIIOPTHHX Mepex. MaiOyTHs poboTa
MO€ BJIOCKOHAIIUTH CKOJIOT14HI OLIHKH, IIOKPALIUTH OL[IHKY BapTOCTI MapLIpyTy, PO3LIMPUTH OKa3HUKH, BU3HAYUTH HOBI KPUTEPIi
HPOYKTHBHOCTI Ta iHTErpyBaTH MOJENi HEHPOHHHX MEPEeX IS MOAAIBLIOrO IiJABHIICHHS MOXJIMBOCTEH ONTHUMIi3alil, 0cOOINBO
JUTSE MICBKHX MEPEXK.
KJIFOYOBI CJIOBA: reonpocTopoBa MyJIbTHareHTHa CHCTEMa, ONTHMI3allis TPAHCIIOPTHUX MEPEX, €BOJIIOLIHHA CTpaTeris.
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