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ABSTRACT 
Context. Constructing quadcopter control algorithms is an area of keen interest because controlling them is fundamentally 

complex despite the quadcopter’s mechanical simplicity. The key problem of quadcopter control systems is to effectively couple 
three translational and three rotational freedom degrees of motion to perform unique target manoeuvres. In addition, these tasks are 
relevant due to the high demand for quadcopter in various human activities, such as cadastral aerial photography for monitoring hard-
to-reach areas and delivering cargo over short distances. They are also widely used in military affairs. 

Objective. This work objective is to develop and substantiate novel methods for algorithms constructing the high-precision 
control of a quadcopter spatial motion, allowing for its autonomous operation in all main flight modes: stabilization mode, position 
holding mode, automatic point-to-point flight mode, automatic takeoff and landing mode. 

Method. The given objective determined the use of the following research methods. Pontryagin’s maximum principle was 
applied to develop algorithms for calculating program trajectories for transferring a quadcopter from its current state to the given one. 
Lyapunov functions and modal control methods were used to synthesise and analyse quadcopter angular position control algorithms. 
Numerical modelling methods were used to verify and confirm the obtained theoretical results. 

Results. An approach for constructing algorithms for controlling the spatial quadcopter motion is proposed. It consists of two 
parts. The first part solves the problem of transferring a quadcopter from its current position to a given one. The second part proposes 
an original method to construct algorithms for quadcopter attitude control based on a dynamic equation for a quaternion. 

Conclusions. The proposed quadcopter motion mathematical model and methods for constructing control algorithms are verified 
by numerical modelling and can be applied to develop quadcopter control systems. 

KEYWORDS: quadcopter, quaternion, Pontryagin’s maximum principle, Hamiltonian, Lyapunov functions. 
 

ABBREVIATIONS 
BFF is a body fixed frame; 
EFF is an Earth fixed frame; 
UAV is a Unmanned Aerial Vehicle. 

 
NOMENCLATURE 

D  is a propeller diameter; 

EF  is a vector of the sum all forces acting on 

quadcopter in the EFF; 

EG  is a force of gravity; 

H  is a Hamiltonian; 
J  is a moment of inertia with respect to the BFF; 

rJ  is an inertia of the rotors; 

BL  is an angular momentum in the BFF; 

BM  is a moment of external forces given by 

projections on the BFF axes; 

gM  is a gyroscopic moment; 

iM  is a reactive torque from the rotation of the i-th 

propeller; 

uM  is a control moment; 

BiP , is a lift force created by the i-th propeller, given 

by projections on BFF axes; 

EiP  is a lift force created by the i-th propeller, given 

by projections on EFF axes; 

EEE ZYX ,,  are the EFF axes; 

BBB ZYX ,,  are the BFF axes; 

e  is a pointing error; 
g  is a gravitational acceleration on Earth; 

Bih  is an angular momentum of the i-th rotor given by 

projections on the BFF axes; 

mk  is a proportionality constants; 

pk  is a proportionality constants; 

  is a distance from the motor rotation shaft axis to 
the quadcopter centre of mass; 
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m  is a quadcopter mass; 

Bn  is a unit vector of BY  axis; 

En  is a unit vector of the propellers’ total thrust force 

given by the projections on the EFF axes; 

Er  is a vector of the quadcopter centre mass position 

in the EFF; 
u  is a control vector; 

EBΛ  is a quaternion of transition from EFF to BFF; 

),( 0 ttΦ  is a transition matrix of the extended system; 

  is a lift coefficient; 

  is a propeller power factor; 
EB
0  is a scalar part of the quaternion EBΛ ; 

EBλ  is a vector part of the quaternion EBΛ ; 

i  is a reactive moment on the shaft of the i-th rotor; 

  is an air density; 

  is an Euler roll angle; 

  is an Euler pitch angle; 
  is an Euler yaw angle; 

BE
Bω  is an angular velocity vector of BFF rotation rel-

ative to EFF, given by the projections onto the BFF axes; 

i  is an angular speed of the i-th rotor; 

~ is a conjugate quaternion notation; 
  is a quaternion multiplication operation symbol. 

 
INTRODUCTION 

Currently, work is actively underway in the field of 
developing new and improving existing UAV control 
systems. Miniature UAV multi-rotor type is an area of 
significant interest because of their unique features such 
as overall dimensions, the ability to fly in limited space 
and at very low speeds, vertical takeoff and landing and 
so on. These capabilities enable their use in various fields 
of activity, and for some tasks, they are indispensable. A 
diverse array of UAV applications can be found, for 
instance, in specialized literature reviews [1–3]. 

One of the main directions in the field of UAVs is 
related to increasing their flight autonomy. This, in turn, 
places increased demands on equipment reliability,  
control system intelligence, and the efficient use of power 
sources. On the other hand, these features ensure ease of 
use and reduce the cost of target tasks performed by 
UAVs. 

This work is devoted to the development of the 
quadcopter spatial motion controlling algorithms, which 
allow autonomous implementation of its flight main 
modes: the stabilization mode in which the aircraft 
automatically maintains the zero values of roll and pitch 
angles and stabilizes the yaw angle; mode of keep a given 
position in which the UAV automatically hovers over a 
given point on the earth’s surface; mode of automatic 
flight by points; automatic take-off and landing mode. 

The object of the study is the process of controlling 
the spatial motion of a quadcopter. 

The subject of the study is the synthesis of the 
quadcopter spatial motion control laws in the form of 
stationary feedback by state. 

The purpose of the work is to develop algorithms for 
controlling the spatial motion of a quadcopter. 

 
1 PROBLEM STATEMENT 

The spatial movement of the quadcopter, a mechanical 
system with four propeller rotation engines and a 
supporting rigid frame is considered. The kinematic 
diagram of the quadcopter is shown in Fig. 1. On the 
kinematic diagram, the axes BX , BY  and BZ  form a 

BFF, which is rigidly connected to the quadcopter, and 
the axes EX , EY  and EZ  form the EFF, in which the 

observer is located. The propeller rotation engines are 
rigidly fixed to the quadcopter frame, and the BFF’s BX  

and BY  axes intersect the centres of these engines. 

The quadcopter motion control is carried out by 
applying control voltages to the propellers’ engines. As a 
result of the propellers’ rotation angle speeds 1 , 2 , 

3  and 4 , the lifting forces 1BP , 2BP , 3BP , 4BP  and 

the corresponding reaction moments 1M , 2M , 3M  and 

4M  arise. 

It is necessary to develop a quadcopter spatial motion 
mathematical model and based on it synthesize the 
algorithms for controlling the propeller angular velocities 

i  to transfer the quadcopter from a current position to a 

given one (hover point) and ensure the quadcopter’s 
angular stabilization in this position. 

 

 
 

Figure 1 – The quadcopter kinematic scheme 
 

2 REVIEW OF THE LITERATURE 
The research and development of quadcopter spatial 

motion control have been the focus of many publications 
for several decades. The advances in microcontrollers, 
telecommunications, and quadcopter applications have 
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significantly increased the number of publications on this 
topic in recent years. 

In studies [4–6], the control laws based on the 
Lyapunov function are introduced. These laws establish 
sufficient conditions for the asymptotic stability of a 
closed-loop system. and specific methodologies for 
determining the desired Lyapunov function are discussed. 
The works [7–8] discussed the use of a sliding mode 
control, which is simple and reliable, but requires 
adaptation of the switching logic to the flight modes of 
the quadcopter. In the work of [9], an approach that 
combines the method of a nonlinear observer and sliding 
mode control is proposed. In this approach, a nonlinear 
observer predicts the impact of engine failures on the 
quadcopter dynamics and ensures the stability of the 
sliding mode to uncertainties and disturbances. In work 
[10], a nested double-loop control scheme based on the 
adaptive backstepping approach concerning uncertain 
parameters is proposed. To avoid the analytic derivative 
calculation of the virtual command, a command filter is 
introduced into the designing procedure with a 
compensated signal employed in the attitude error. The 
backstepping-based formation control using the state 
transformation technique and asymptotic stability analysis 
based on Lyapunov’s theorem is presented in the paper 
[11]. In [12], a highly complex controller is proposed that 
combines an optimal H∞ controller with an integral 
predictive controller supplemented by a Kalman filter 
implementation. In the paper [13] a quadcopter model is 
developed using the Hamiltonian approach is considered 
and a nonlinear orientation controller for this model is 
proposed. In paper [14] a new nonlinear robust control 
algorithm with output feedback based on quaternions is 
presented.The work [15] is devoted to modelling a 
quadcopter based on certain physical parameters to build 
a desired model before designing a specific control 
system. According to the authors, this study should help 
save time and costs on possible errors in designing 
quadcopter control systems. Systematic literature reviews 
such as [16–18] comprehensively analyse the main 
modern control strategies for quadcopter UAVs. 

 
3 MATERIALS AND METHODS 

Let’s assume that the origin of the coordinate system 
EFF coincides with the centre of mass of the quadcopter 
at the initial moment of movement, the EFF EY  axis 

coincides with the direction of the local vertical at this 
point, the EX  axis is directed along the line of the given 

flight course, and the EZ  axis is defined as 

EEE YXZ  . Considering the small durations of the 

time intervals of the quadcopter’s autonomous flight, the 
rotation of the Earth can be neglected and the EFF 
coordinate system will be considered inertial (stationary) 
in the first approximation. The BFF axes are rigidly 
associated with the quadcopter body and the BFF origin 
coincides with the quadcopter centre of mass. Let’s 
assume that the BFF axes coincide with the quadcopter’s 

main central axes of inertia. In this case, the dynamic 
control characteristics are significantly improved and the 
equations of rotational motion of the quadcopter are 
simplified. 

The relative orientation of EFF and BFF is defined as 
follows. The position of the coordinate system BFF 
relative to the coordinate system EFF is determined by the 
quaternion EBΛ . The BFF angular orientation relative 

EFF is given by three rotations: the first rotation is 
performed around the EX  axis by an angle  , the second 

rotation is performed around the Z   axis by an angle  , 
the third rotation is performed around the BY  axis by an 

angle   (Fig. 2). 

In this case, the quaternion EBΛ  is defined by the 

expression 
 

EB
EB

EB λΛ  0 ,  (1) 

 
where the scalar part is 
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and the vector part is 

 
Figure 2 – Sequence of rotations for transforming from BFF to 

EFF 
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The system of equations for the quadcopter centre of 

mass motion in EFF by Newton’s second law has the 
following form 

 

EEm Fr  .   (4) 
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Let’s assume that only the thrust forces iP  of the 

aerodynamic propellers ( 4,3,2,1i ) and the force of 

gravity act on the quadcopter. In this case, 
 

EEEEEEEE GPGPPPPF  4321 , (5) 

 
where 


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











0

1

0

mgEG .   (6) 

 
The direction of the force iP  coincides with the 

positive direction of the BY  axis of BFF 

 

BiBi p nP  .   (7) 

 
The unit vector Bn  of BY  axis and modulus ip  of the 

forces iP  are determined by expressions 
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42 , Dkkp pipii  P .  (9) 

 
Projecting the vector BiP  (7) onto the EFF axes gives 

 

EiEi p nP  ,   (10) 

 
where 
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Thus, the following equation describes the motion of 

the quadcopter centre of mass 
 

EEpE km Gnr  )( 2
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To obtain the equation of the rotational motion of the 

quadcopter relative to the centre of mass, consider the 
equation for the angular momentum L  of the “carrying 
body + rotors” system. This equation in BFF has the form 

 

)( 4321  Br
BE
BB J nJL ω . (13) 

 
According to the theorem on change of angular 

momentum [19], the change of the vector L  in time is 
described by the equation 

 

BB
BE
BB MLL  ω ,  (14) 

 
where the moment BM  is the sum of the moments iM  

created by the thrust forces BiP  of the propellers. 

According to Fig. 1, it can be written 
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Let us write equation (14) as follows 
 

BgBr
BE
B J MMnJ  )( 4321 ω . (16) 

 
In equation (16), the gyroscopic moment gM  caused by 

the rotation of the quadcopter body and rotors is 
determined by the expression 
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For the angular momentum of the i-th rotor, the 

following expression is valid 
 

)( iB
BE
BrBi J  nh ω .  (18) 

 
Therefore, taking into account (14), it can be obtained 
 

iBiB
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where the reactive torque on the shaft of the i-th rotor is 
determined by the formulas 
 

pmimii kDkkD /, 5225
  . (20) 

 
The presence of the torque i  in equation (19) reflects 

the fact that when the propeller rotates, due to air 
resistance, a moment arises that prevents this rotation. To 
overcome this moment, the same torque is required on the 
engine shaft in the opposite direction. From equation (19) 
it follows 
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Multiplying equation (21) by the vector T
Bn  gives 
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T
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Whence, given that rBr
T
B JJ nn , it follows 
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Substituting expression (23) into equation (16) and the 
necessary transformations yield 

       BgB
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or taking into account formula (20) it follows 
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Let us introduce the following matrix into 

consideration 
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Then equation (25) can be written in the following form 
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An equation describing the quadcopter angular 

orientation is needed to fully describe its spatial motion. 
This equation has the following form when a quaternion 
is used [19]: 
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Thus, the spatial motion of the quadcopter is described 

by the following system of differential equations 
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where 
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The algorithms for controlling the spatial motion of a 

quadcopter were built on the assumption that on board the 
quadcopter there is information about the vector Er , the 

angular velocity vector BE
Bω  and the orientation of the 

frame BFF relative to the frame EFF in the form of a 
quaternion EBΛ . The main tasks of spatial motion control 

are solved using the following algorithms: 
– algorithm for determining the required orientation of 

the propellers thrust vector in the EFFs, which ensures the 
transfer of the quadcopter from the current position to the 
desired one; 

– algorithm for calculating the torque, which ensures 
that the real direction of the thrust force coincides with 
the calculated one; 

– algorithm for calculating the torque, which ensures 
stabilization of the yaw angle. 

Let us introduce the following variables Erx 1 , 

Erx 2 , uF E  and write equation (4) in Cauchy form 
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For system (31), the following terminal control 

problem is formulated: find a control u  that transfers 
system (31) from the current state )( 0tx  at time 0t  to the 

given state )( 1tx  at time 1t  and provides the minimum of 

the functional 
1

0

2

2

1
)(

t

t
dtV uu . The times 0t  and 1t  

are given. 
This problem can be formulated as a two-point 

boundary value problem, represented as a Hamiltonian 
system with a maximum condition for the control 
Hamiltonian (Pontryagin’s maximum principle [20]). 

To solve this problem, let us set the boundary 
conditions for system (31) in the form 
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and the Hamiltonian has the form 
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21,μμ  are the three dimensional vectors. The optimality 

conditions are of the form 
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From condition (37) it follows 
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Substituting condition (38) into equation (36) yields 

the equation of a two-point boundary value problem in the 
form of an extended system 
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The solution to system (39) can be written as 
 

),(),()(),()( 00120011 ttttttt μΦΦ  xx  (40) 

 
)(),()( 0022 tttt μΦμ  ,   (41) 

 

where 









),(0

),(),(
),(

022

012011
0 tt

tttt
tt

Φ

ΦΦ
Φ  is the transition 

matrix of the extended system. The initial value of the 
vector )(tμ  is found by the formula  

 

        )](),()()[,()( 00111101
1

120 ttttttt xx ΦΦμ   .    (42) 

 

The calculated control values u , trajectory )(tE
r  and 

velocity )(tE
r  when moving the quadcopter from the 

current position to the desired one can be found as follows 
 

2μμ  TBu ,  (43) 

 

)()( 1 ttE xr  ,   (44) 

 

)()( 2 ttE xr  .   (45) 

 
In this case, according to equation (4), the calculated 
force is determined by the expression 
 

  urF mtmt EE )()(  .  (46) 

 

The force )(* tEF  is the calculated total force. The real 

total force )(tEF  will differ from the calculated one due 

to the presence of disturbing forces. The difference in 
forces will lead to the quadcopter moving along a certain 
trajectory )(tEr  different from the calculated trajectory 

)(tE
r . To eliminate this phenomenon, it is necessary to 

add a stabilizing component in the form of feedback on 
the state through the thrust force of the propellers. To find 
this component, consider the equation of the pointing 
error 

 

)()( tt EE
 rre .   (47) 

 
This error can be found by subtracting equation (46) from 
equation (4): 

 

FFFrre   )()())()(()( * ttttmtm EEEE  , (48) 

 
which means 
 

FFF  
EE .   (49) 

 
Let us choose F  such that 
 

)( eKeKF 21  m ,  (50) 

 
where 
 
       .3,2,1),(),( 2211  ikdiagkdiag ii KK  (51) 

 
Then equation (48) can be written as 
 

)()( eKeKe 21  t .  (52) 

 
According to the main theorem on the asymptotic 

stability of a linear system, equation (52) for 01 ik  and 

02 ik  is asymptotically stable and the quadcopter state 

vector will tend to the calculated one. In this case, the 
required direction of the force )(tEP  in the basis EFF will 

be determined by the expression 
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)( .  (53) 

 
Comparing (53) with (11), the equation for determining 

the required pitch  and roll   angles can be obtained: 
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n , (54) 

 

)(arcsin)( 1 tnt E
  ,  (55) 
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  .  (56) 

 
In the hover mode 0)( 1 tEr . Then, according to 

expression (6), EE t GP )( 1  and 
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Thus, when hovering, the required direction of the 

total thrust force of the propellers coincides with the 
direction of the local vertical. In this case 

 

0)( 1  t ,   (58) 

 

0)( 1  t ,   (59) 

 

and the program yaw angle )(t  is a free parameter 

selected based on the quadcopter yaw angle requirements. 
Now we will perform the synthesis of control of the 

angular motion of the quadcopter, ensuring the 
coincidence of the real direction of the thrust force of the 
propellers with the calculated one. Let us consider the 

quaternion mapping 
BN  of the vector 

Bn . Its scalar part 

0)( 
Bscal N , and vector part   BBvect nN )( . Since the 

quaternion 
BN  is a normalized quaternion, the 

quaternion equation is valid for it [21] 
 

  BBnB NNUN
2 ,  (60) 

 
where nU  is an arbitrary quaternion with a zero scalar 

part, specifying which can form the required character of 

the change in the vector 
Bn  projections on the BFF axes. 

In this case, the quaternion nU  satisfies the constraint 

 

0)
~

( 
nBscal UN  .  (61) 

 
From constraint (61) it follows 
 

0)( 
n

T
B Un .   (62) 

 
The vector form of equation (63) is 
 

  BBnB nnun
2

 .  (63) 

 
Let us represent the control nu  as follows 

 

τ 
BBn nnu .  (64) 

 
With this choice of nu , the relation (62) will hold for any 

τ . Taking into account (64), equation (63) can be written 
as 
 

  BBBBB nnnnn
2*  τ .    (65) 

 
Let us decompose the left-hand side of equation (65) 

into two components: perpendicular 
Bn  and parallel 

Bn : 

 

 
B

T
BBBBB nnnnnn     

  BBBB nnnn
2

τ .   (66) 

 
Taking into account (64) and (65) transforming (66) gives 
 







  

BB
T

B
T

BBBB nnnnnnn
2*** )(  τ  

 





  BBB nnn

22
 .  (67) 

 
From relation (67) it follows 
 

 BB nn τ* ,   (68) 

 
where   is an arbitrary parameter. Since α is an arbitrary 
parameter, when solving various problems of controlling 

the motion of the vector 
Bn  it can be set equal to zero 

( 0 ). In this case, the dynamic model for synthesizing 
the control τ  takes on a simple form 
 

τ*
Bn .   (69) 

 
This equation is a linear equation with constant 
coefficients and allows the application of well-developed 
methods of the theory of linear systems with constant 
coefficients in the synthesis of control laws. 

The control nu  is virtual, the real control is the 

control moment uM . Therefore, when using equation 

(69) to solve the problem of controlling the orientation of 
the quadcopter, it is necessary to know the dependence of 
the rotational moment uM  on the elements of the control 

vector nu . According to the work [22], this dependence 

has the form 
 

  ))(( punJMM  
nBgu ,  (70) 

 
where 

      BBB
BE
B nnnp  ~~ω ,  (71) 
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  BB
BE
BB nnn  ~ω ,  (72) 

EBEEBB ΛΛ    nn
~~ ,  (73) 

pnn  
B

BE
BB ω~ ,  (74) 

 

EBBEBB ΛΛ    nn
~~ .  (75) 

 
In order for the real direction of the propellers’ thrust 

to coincide with the calculated one, it is necessary to find 
the control nu  that ensures asymptotic stability of the 

equilibrium position 
 

BB nn  .  (76) 

 
To do this, we will use the equation of motion of the 

vector 
Bn  in the form (69), and as a result 

 

τ
Bn .    (77) 

Consider the control error 
 

BB nne   .   (78) 

 
Given that Bn  is a constant vector, the following equation 

is valid for the error 
 

τBe .    (79) 

 
It is obvious that the law of control 
 

 BnKeK 21τ   (80) 

 
provides asymptotic stability to the equilibrium position 

0e , 0e . In this case, the control nu  will be 

determined by the relation (64), and the real control 
moment uM  by the relation (70). To calculate the 

moment uM , it is necessary to know the vectors 
En  and 


En . There are two ways to find these variables: analytical 

and numerical. Analytical is very cumbersome, so in this 

case, given that 
En  is a smooth analytical function of 

time, it is easier to do it numerically. 
To construct an algorithm for stabilizing the yaw 

angle, let us consider the quaternion EBΛ . According to 

[21], the following equation is valid for it 
 

EBEBEB ΛΛΛ
2  U ,  (81) 

 
where U  is an arbitrary quaternion, specifying which 

can form the desired angular motion of the BFF relative 
EFF. In this case, the moment uM  is determined by the 

expression 

BE
B

BE
BEBu ωωλ JuJM   )(2 , (82) 

 
where u  is the vector part of a quaternion U . The 

quaternion EBΛ  is a normalized quaternion and has only 

three independent coordinates, the fourth coordinate is 
determined from the condition 1EBΛ . Let us choose 

its vector part EBλ  as independent coordinates and 

consider the equation that describes its change in time 
 

  EBEB
T
EB

EB
EB λλλλ 





  

 2
0u . (83) 

 
In [21] it is shown that the control law 
 

0,0, 2121  kkkk EBEB λλ u  (84) 

 
ensures asymptotic stability of the equilibrium position 
 

)000(),000(  T
EB

T
EB λλ  ,  (85) 

 
and as a consequence the asymptotic stability of the 
equilibrium position 
 

0,1  EBEB ΛΛ  ,  (86) 

 
that is, the stabilization of BFF relative to EFF. 

 
4 EXPERIMENTS 

A numerical simulation of the proposed algorithms 
was carried out to analyze the qualitative features of the 
algorithm. The parameters of the quadcopter model are 
presented in Table 1. The flight from the starting point to 
a given one with coordinates 

T
E t )4000;300;1000()( 1 r  and hovering over it were 

simulated. The initial values of the quadcopter angular 
orientation (for which the graphs below are given) were 

set as follows: ω 0BE
B  , 10 , 10  and 10 . 

After hovering, the quadcopter should turn around at an 

angle 45 . The flight time from the starting point to 

the given one was chosen to be 300 seconds. 
 

Table 1 – Quadcopter model parameters 
 

Parameter Description Value Units 
g  Gravity 9.81 m/s2 

m Mass 0.468 kg 
ℓ Distance 0.225 m 
Jr Rotor Inertia 3.4·10–5 kg·m2 
Jx Roll Inertia 4.9·10–3 kg·m2 
Jy Pitch Inertia 4.9·10–3 kg·m2 
Jz Yaw Inertia 8.8·10–3 kg·m2 

kp 
Proportionality 
Constant 

2.9·10–5  

km 
Proportionality 
Constant 

1.1·10–6  
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5 RESULTS 
Figure 3 shows graphs of changes in the coordinates 

of the centre of mass of the quadcopter over time, Fig. 4 
shows graphs of changes in the centre of mass velocities 
over time, Fig. 5 shows the orientation angles of the 
quadcopter, and Fig. 6 shows the angular velocities. 

 

6 DISCUSSION 
In this study, the quadcopter was examined as a 

control object, its flight mechanics analyzed, and a novel 
methods for synthesizing algorithms for spatial motion 
control of the quadcopter were proposed. Based on the 
obtained quadcopter motion model, algorithms for 
controlling the quadcopter’s spatial motion were 
developed, namely, an algorithm for determining the 
required direction of the propeller thrust to translate the 
quadcopter from its current position to the desired one 
and algorithms for its angular motion control. 

 
Figure 3 – Change of position coordinates over time 

 

 
Figure 4 – Change the position coordinate velocities over time 

 

 
 

Figure 5 – Change the quadcopter orientation angles over time 

 
Figure 6 – Change the quadcopter angular speeds over time 

 
The algorithm development process consists of two 

main parts. The first part is creating an algorithm to move 
a quadcopter from its current position to a specified one. 
For this, the approach from [23] was used, its essence is 
to construct an analytical solution to the boundary value 
problem for a linear stationary system without control 
constraints. This approach gives acceptable results when 
the system is not affected by external disturbances and 
there are no measurement errors. The calculated direction 

Bn  of the propellers’ thrust force due to disturbing forces 

may differ from the actual direction Bn . To eliminate this 

phenomenon, a stabilizing component in the state 
feedback form was added to the analytical algorithm for 
solving a two-point boundary value problem. 

In the second part, a novel method for constructing a 
quadcopter angular motion control algorithm was 
proposed, based on the motion of vector quaternion 
equation developed by authors in the works [21, 22]. The 
use of a dynamic quaternion equation of motion of the 
vector has greatly simplified control synthesis, reducing it 
to a set of second-order integrating links. In many cases, 
the control synthesis problem has an analytical solution 
for such systems. Control algorithms derived from this 
model are implemented much more simply than those 
synthesized from the traditional model, which includes 
the dynamical Euler equation and the kinematic equation 
for the quaternion. 

The proposed algorithms were numerically simulated, 
and the results demonstrated that the quadcopter flew 
from the starting point to the target point within 300 
seconds. It then turned at a 45-degree angle and hovered 
over the target location. The results confirmed the 
proposed algorithms’ efficiency in controlling the 
quadcopter’s spatial movement. 

 
CONCLUSIONS 

A mathematical model of a quadcopter motion as a 
control object was developed. Based on this model the 
algorithms for quadcopter spatial motion control were 
constructed. Control algorithms include determining the 
required direction of the propellers’ thrust force to 
transfer the quadcopter from the current position to the 
given one and control angular motion, which ensures the 
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coincidence of the real direction of the propellers’ thrust 
force with the calculated one and yaw angle stabilization. 

The scientific novelty of the obtained results is that 
the quadcopter angular motion control algorithms 
developed based on the dynamic equation for the 
quaternion [21]. To eliminate the difference between the 
real direction of the thrust force and the calculated one a 
stabilizing component in the form of feedback on the state 
was added to the known analytical algorithm for solving a 
two-point boundary value problem. This significantly 
improved the accuracy of guiding the quadcopter to the 
given position. 

The practical significance of the obtained results is 
that the developed algorithms allow the implementation 
of all main modes of quadcopter autonomous flight: 
stabilization mode in which the quadcopter automatically 
keeps zero roll and pitch angles and stabilizes the yaw 
angle; mode of maintaining a given position in which the 
quadcopter automatically hovers over a given point on the 
earth’s surface; mode of automatic flight along points; 
modes of automatic takeoff and landing. 

Prospects for further research will focus on study-
ing the qualitative aspects of quadcopter control processes 
affected by external disturbances and onboard sensor er-
rors and developing algorithms for autonomous naviga-
tion without using GPS information. 
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AНОТАЦІЯ 

Актуальність. Побудова алгоритмів керування квадрокоптером є областю підвищеного інтересу, оскільки керу-
вання квадрокоптером принципово складна задача, незважаючи на його механічну простоту. Ключовою проблемою 
систем управління квадрокоптерами є ефективне поєднання трьох поступальних та трьох обертальних ступенів сво-
боди руху для виконання унікальних цільових маневрів. Крім того, ці задачі актуальні у зв’язку з високою затребува-
ністю квадрокоптерів у різних видах діяльності людини, таких як кадастрова аерофотозйомка для моніторингу важ-
кодоступних територій, доставка вантажів на невеликі відстані, військова справа тощо. 

Мета роботи – розробка та обґрунтування нових методів побудови алгоритмів високоточного керування просто-
ровим рухом квадрокоптера, що забезпечують його автономну роботу у всіх основних режимах польоту: режим ста-
білізації, режим утримання положення, режим автоматичного польоту з точки в точку, режим автоматичного зльоту 
та посадки. 

Метод. Поставлена мета зумовила використання наступних методів дослідження. Для розробки алгоритмів розра-
хунку програмних траєкторій переведення квадрокоптера з поточного стану в заданий застосовано принцип макси-
муму Понтрягіна. Для синтезу та аналізу алгоритмів керування кутовим положенням квадрокоптера використано 
функції Ляпунова та методи модального керування. Для перевірки та підтвердження отриманих теоретичних резуль-
татів використано методи чисельного моделювання. 

Результати. Запропоновано методику побудови алгоритмів керування просторовим рухом квадрокоптера, що 
складається з двох частин. Перша частина містить удосконалений метод побудови алгоритма переведення квадрокоп-
тера з поточного положення в задане. У другій частині запропоновано оригінальний метод побудови алгоритмів ке-
рування орієнтацією квадрокоптера на основі динамічного рівняння для кватерніону. 

Висновки. Запропонована математична модель руху квадрокоптера та методи побудови алгоритмів керування ве-
рифіковані чисельним моделюванням та можуть бути застосовані для розробки систем керування квадрокоптерами. 

КЛЮЧОВІ СЛОВА: квадрокоптер, кватерніон, принцип максимуму Понтрягіна, гамільтоніан, функції Ляпуно-
ва. 
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