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ABSTRACT

Context. Constructing quadcopter control algorithms is an area of keen interest because controlling them is fundamentally
complex despite the quadcopter’s mechanical simplicity. The key problem of quadcopter control systems is to effectively couple
three translational and three rotational freedom degrees of motion to perform unique target manoeuvres. In addition, these tasks are
relevant due to the high demand for quadcopter in various human activities, such as cadastral aerial photography for monitoring hard-
to-reach areas and delivering cargo over short distances. They are also widely used in military affairs.

Objective. This work objective is to develop and substantiate novel methods for algorithms constructing the high-precision
control of a quadcopter spatial motion, allowing for its autonomous operation in all main flight modes: stabilization mode, position
holding mode, automatic point-to-point flight mode, automatic takeoff and landing mode.

Method. The given objective determined the use of the following research methods. Pontryagin’s maximum principle was
applied to develop algorithms for calculating program trajectories for transferring a quadcopter from its current state to the given one.
Lyapunov functions and modal control methods were used to synthesise and analyse quadcopter angular position control algorithms.
Numerical modelling methods were used to verify and confirm the obtained theoretical results.

Results. An approach for constructing algorithms for controlling the spatial quadcopter motion is proposed. It consists of two
parts. The first part solves the problem of transferring a quadcopter from its current position to a given one. The second part proposes
an original method to construct algorithms for quadcopter attitude control based on a dynamic equation for a quaternion.

Conclusions. The proposed quadcopter motion mathematical model and methods for constructing control algorithms are verified
by numerical modelling and can be applied to develop quadcopter control systems.

KEYWORDS: quadcopter, quaternion, Pontryagin’s maximum principle, Hamiltonian, Lyapunov functions.

ABBREVIATIONS M, is a reactive torque from the rotation of the i-th
BFF .is a body fixed frame; propeller;
EFF is an Earth fixed frame; M. is a control moment:
UAYV is a Unmanned Aerial Vehicle. v ) ’ i
Py, , is a lift force created by the i-th propeller, given
NOMENCLATURE by projections on BFF axes;
D is a propeller diameter; Pg; is a lift force created by the i-th propeller, given
Fp is a vector of the sum all forces acting on by projections on EFF axes;
quadcopter in the EFF; Xg,Yp, Z; are the EFF axes;
G is a force of gravity; X, Yy, Zy are the BFF axes;
H isa Hamiltoniaﬂ; e isa pointing error;

J is a moment of inertia with respect to the BFF;
J. is an inertia of the rotors;

L is an angular momentum in the BFF;

g is a gravitational acceleration on Earth;
hy,

1

r is an angular momentum of the i-th rotor given by

projections on the BFF axes;

M; is a moment of external forces given by k,, 1s a proportionality constants;
projections on the BFF axes; k, is a proportionality constants;
M, is a gyroscopic moment;

¢ 1is a distance from the motor rotation shaft axis to
the quadcopter centre of mass;
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m is a quadcopter mass;
ny is a unit vector of ¥ axis;

ng is a unit vector of the propellers’ total thrust force

given by the projections on the EFF axes;
rg 1is a vector of the quadcopter centre mass position

in the EFF;
u is a control vector;
A g is a quaternion of transition from EFF to BFF;

d(¢,,?) is a transition matrix of the extended system;
o is a lift coefficient;
B, is a propeller power factor;

ALP s a scalar part of the quaternion A 5 ;

A gp 1s a vector part of the quaternion A gz ;

L, is a reactive moment on the shaft of the i-th rotor;
p is an air density;

¢ is an Euler roll angle;

9 is an Euler pitch angle;
v is an Euler yaw angle;

ng is an angular velocity vector of BFF rotation rel-

ative to EFF, given by the projections onto the BFF axes;
o, is an angular speed of the i-th rotor;

~ is a conjugate quaternion notation;

o is a quaternion multiplication operation symbol.

INTRODUCTION

Currently, work is actively underway in the field of
developing new and improving existing UAV control
systems. Miniature UAV multi-rotor type is an area of
significant interest because of their unique features such
as overall dimensions, the ability to fly in limited space
and at very low speeds, vertical takeoff and landing and
so on. These capabilities enable their use in various fields
of activity, and for some tasks, they are indispensable. A
diverse array of UAV applications can be found, for
instance, in specialized literature reviews [1-3].

One of the main directions in the field of UAVs is
related to increasing their flight autonomy. This, in turn,
places increased demands on equipment reliability,
control system intelligence, and the efficient use of power
sources. On the other hand, these features ensure ease of
use and reduce the cost of target tasks performed by
UAVs.

This work is devoted to the development of the
quadcopter spatial motion controlling algorithms, which
allow autonomous implementation of its flight main
modes: the stabilization mode in which the aircraft
automatically maintains the zero values of roll and pitch
angles and stabilizes the yaw angle; mode of keep a given
position in which the UAV automatically hovers over a
given point on the earth’s surface; mode of automatic
flight by points; automatic take-off and landing mode.

The object of the study is the process of controlling
the spatial motion of a quadcopter.
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The subject of the study is the synthesis of the
quadcopter spatial motion control laws in the form of
stationary feedback by state.

The purpose of the work is to develop algorithms for
controlling the spatial motion of a quadcopter.

1 PROBLEM STATEMENT

The spatial movement of the quadcopter, a mechanical
system with four propeller rotation engines and a
supporting rigid frame is considered. The kinematic
diagram of the quadcopter is shown in Fig. 1. On the
kinematic diagram, the axes Xz, ¥y and Z, form a
BFF, which is rigidly connected to the quadcopter, and
the axes X, ¥; and Z; form the EFF, in which the
observer is located. The propeller rotation engines are
rigidly fixed to the quadcopter frame, and the BFF’s X,

and Y, axes intersect the centres of these engines.

The quadcopter motion control is carried out by
applying control voltages to the propellers’ engines. As a
result of the propellers’ rotation angle speeds ®;, ©,,
®, and o, the lifting forces Py, Py,, Py, Py and
the corresponding reaction moments M,, M,, M; and
M, arise.

It is necessary to develop a quadcopter spatial motion
mathematical model and based on it synthesize the
algorithms for controlling the propeller angular velocities
o; to transfer the quadcopter from a current position to a

given one (hover point) and ensure the quadcopter’s
angular stabilization in this position.

Py,

PBS

Figure 1 — The quadcopter kinematic scheme

2 REVIEW OF THE LITERATURE
The research and development of quadcopter spatial
motion control have been the focus of many publications
for several decades. The advances in microcontrollers,
telecommunications, and quadcopter applications have
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significantly increased the number of publications on this
topic in recent years.

In studies [4-6], the control laws based on the
Lyapunov function are introduced. These laws establish
sufficient conditions for the asymptotic stability of a
closed-loop system. and specific methodologies for
determining the desired Lyapunov function are discussed.
The works [7-8] discussed the use of a sliding mode
control, which is simple and reliable, but requires
adaptation of the switching logic to the flight modes of
the quadcopter. In the work of [9], an approach that
combines the method of a nonlinear observer and sliding
mode control is proposed. In this approach, a nonlinear
observer predicts the impact of engine failures on the
quadcopter dynamics and ensures the stability of the
sliding mode to uncertainties and disturbances. In work
[10], a nested double-loop control scheme based on the
adaptive backstepping approach concerning uncertain
parameters is proposed. To avoid the analytic derivative
calculation of the virtual command, a command filter is
introduced into the designing procedure with a
compensated signal employed in the attitude error. The
backstepping-based formation control using the state
transformation technique and asymptotic stability analysis
based on Lyapunov’s theorem is presented in the paper
[11]. In [12], a highly complex controller is proposed that
combines an optimal H, controller with an integral
predictive controller supplemented by a Kalman filter
implementation. In the paper [13] a quadcopter model is
developed using the Hamiltonian approach is considered
and a nonlinear orientation controller for this model is
proposed. In paper [14] a new nonlinear robust control
algorithm with output feedback based on quaternions is
presented. The work [15] is devoted to modelling a
quadcopter based on certain physical parameters to build
a desired model before designing a specific control
system. According to the authors, this study should help
save time and costs on possible errors in designing
quadcopter control systems. Systematic literature reviews
such as [16-18] comprehensively analyse the main
modern control strategies for quadcopter UAVs.

3 MATERIALS AND METHODS
Let’s assume that the origin of the coordinate system
EFF coincides with the centre of mass of the quadcopter
at the initial moment of movement, the EFF Y, axis
coincides with the direction of the local vertical at this
point, the X, axis is directed along the line of the given
flight and the Zg

Z; =Xy xYg. Considering the small durations of the

course, axis is defined as
time intervals of the quadcopter’s autonomous flight, the
rotation of the Earth can be neglected and the EFF
coordinate system will be considered inertial (stationary)
in the first approximation. The BFF axes are rigidly
associated with the quadcopter body and the BFF origin
coincides with the quadcopter centre of mass. Let’s
assume that the BFF axes coincide with the quadcopter’s
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main central axes of inertia. In this case, the dynamic
control characteristics are significantly improved and the
equations of rotational motion of the quadcopter are
simplified.

The relative orientation of EFF and BFF is defined as
follows. The position of the coordinate system BFF
relative to the coordinate system EFF is determined by the
quaternion Agz. The BFF angular orientation relative
EFF is given by three rotations: the first rotation is
performed around the X axis by an angle ¢, the second
rotation is performed around the Z’ axis by an angle 9,
the third rotation is performed around the Y axis by an
angle vy (Fig. 2).

In this case, the quaternion Az is defined by the
expression

App =15 +hpp, (1)
where the scalar part is

XEOB = cosﬂcosgcosg+sinisingsing, 2)
2 2 2 2 2 2

and the vector part is

Zg
- ’
zZ Zy
Figure 2 — Sequence of rotations for transforming from BFF to
EFF
. 3 9.
SIHECOS—COSE - cosgsm—smE
2 2 2 2 2 2
. .9 S .
Apg =| — sin L sin 2 cos ¥+ cos L cos ~sin L | 3)

cosgsin§c0s£+ singcosgsinE
2 2 2 2 2 2

The system of equations for the quadcopter centre of
mass motion in EFF by Newton’s second law has the
following form

miy = F.
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Let’s assume that only the thrust forces P, of the
aerodynamic propellers (i=1,2,3,4) and the force of
gravity act on the quadcopter. In this case,

Fp =Py +Ppy+ Py + Ppy +Gp = P + Gy, (5

where
0

G, =mg| —1]. (6)
0

The direction of the force P, coincides with the

positive direction of the ¥ axis of BFF

Py, = png. (7

The unit vector ny of Y axis and modulus p; of the

forces P, are determined by expressions
0
ng=| 1], ®)
0

pi =|P|=k,0f, k,=apD". ©)

Projecting the vector Py, (7) onto the EFF axes gives

Py = ping, (10)
where
—sin 9
ng =|cos3coso |. (11

cos Isin ¢

Thus, the following equation describes the motion of
the quadcopter centre of mass

miy :kp(co12+co§+m§+co‘2‘)n5+GE.

(12)

To obtain the equation of the rotational motion of the
quadcopter relative to the centre of mass, consider the
equation for the angular momentum L of the “carrying
body + rotors” system. This equation in BFF has the form

_ g BE
Ly =Joy +Jng(0+0,-0;-0,). (13)
According to the theorem on change of angular

momentum [19], the change of the vector L in time is
described by the equation
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Ly=-03" xLy+My, (14)
where the moment M is the sum of the moments M,
created by the thrust forces Pg of the propellers.
According to Fig. 1, it can be written

p3— D (93_0012
Mgz=10|0 :kpf 0 (15)
Py =Py (x)%—(x)i

Let us write equation (14) as follows
Jor5" +J.ng (o) +d, — 03 —0y) =M, + My . (16)

In equation (16), the gyroscopic moment M, caused by

the rotation of the quadcopter body and rotors is
determined by the expression

M, =-03" xLg =

=— 0 x(JOLE +J,nz(0, + 0, — o3 —oy)). (17)

For the angular momentum of the i-th rotor, the
following expression is valid

BE
hy =J (0 +nzo;) .

(18)
Therefore, taking into account (14), it can be obtained
J (@5 +ngo;) + 05" x(J, (@5 +ny0;)) =0, (19)

where the reactive torque on the shaft of the i-th rotor is
determined by the formulas

w, =B,D0; =k, k, =p,D’/k,.  (20)

The presence of the torque p; in equation (19) reflects

the fact that when the propeller rotates, due to air
resistance, a moment arises that prevents this rotation. To
overcome this moment, the same torque is required on the
engine shaft in the opposite direction. From equation (19)
it follows

Jonp®; =ngp, —J,05 —05 x(J, (05 +nz0,). (21)
Multiplying equation (21) by the vector n g gives

T . Ty -BE
ngJ.ngo;, =n;, —nzJ.op .

(22)

Whence, given that nyJ,n, =J, , it follows
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. K T . BE

0, = J—’ N0y .
Substituting expression (23) into equation (16) and the
necessary transformations yield

Jog” =—ny(u +u, - “H)+ M, +Mp.

(23)

r

24

or taking into account formula (20) it follows

Jorg" = -ngk, (o] +0; —0F —0))+ M, + M. (25)
Let us introduce the following matrix into
consideration
—k,t 0 k,l 0
F = _km km _km km (26)
0 k,0 0 —kyt

Then equation (25) can be written in the following form
27)

An equation describing the quadcopter angular
orientation is needed to fully describe its spatial motion.
This equation has the following form when a quaternion
isused [19]:

n =—( )’xEB, hpp =N 05 +hgpx@p" . (28)

Thus, the spatial motion of the quadcopter is described
by the following system of differential equations

miy =k ((012 +co§ +c0§ +mi)n5 +Gg;

JmB =M, (29)

JEB _ _( )TXEB’

XEB —XEB(OB +hpp X0,

where
o
o2
M,=F| (30)

3
O

The algorithms for controlling the spatial motion of a
quadcopter were built on the assumption that on board the
quadcopter there is information about the vector rz, the
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angular velocity vector ng and the orientation of the

frame BFF relative to the frame EFF in the form of a
quaternion A g . The main tasks of spatial motion control

are solved using the following algorithms:

— algorithm for determining the required orientation of
the propellers thrust vector in the EFFs, which ensures the
transfer of the quadcopter from the current position to the
desired one;

— algorithm for calculating the torque, which ensures
that the real direction of the thrust force coincides with
the calculated one;

— algorithm for calculating the torque, which ensures
stabilization of the yaw angle.

Let us introduce the following variables x; =rg,

x, =¥y, Fp =u and write equation (4) in Cauchy form

x=Ax+ Bu, 31
where
1 0 0
0 I 0 X
A= , B= , X = ,I,=|0 1 0
0 0 I, X,
0 0 1

For system (31), the following terminal control
problem is formulated: find a control u that transfers
system (31) from the current state x(t,) at time t to the

given state x(t|) at time t; and provides the minimum of
. 1oy 2 .
the functional V(u):EI ||u|| dt. The times t, and t,
lo

are given.

This problem can be formulated as a two-point
boundary value problem, represented as a Hamiltonian
system with a maximum condition for the control
Hamiltonian (Pontryagin’s maximum principle [20]).

To solve this problem, let us set the boundary
conditions for system (31) in the form

x(tg) =rg(ty), x5 (ty) =1 (ty), (32)
xl(tl):rE(tl),xz(tl):fE(tl), (33)

and the Hamiltonian has the form
_ %||u||2 +n' (Ax+ Bu). (34)

In expression (34) p = (lh ] , 1s the related variable and
i,

W,, L, are the three dimensional vectors. The optimality
conditions are of the form
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OH

—=—p=Ap, (35)
ox
a—H:.ic:Ax+Bu, (36)
op
a—H=u+BTu:O. (37)
Ou
From condition (37) it follows
u=-B"p. (38)

Substituting condition (38) into equation (36) yields
the equation of a two-point boundary value problem in the
form of an extended system

~ B (x(®) ., (4 BB"
Y_QY+(0]GE,Y(1)—[u(t)j,Q—[o _ATJ.(39)

The solution to system (39) can be written as

X(1) = @y (2,19)X(1) + @15 (2,19 )1lto), (40)

n(1) = @y (1,29)1(ty) (41)
D, (t,1) P@,(.1))

0 D,,(t,1)
matrix of the extended system. The initial value of the
vector p(z) is found by the formula

where ®(t,,¢) :( j is the transition

1(tg) = @5 (4. 1) [x (1) — @y (1, 10)X(1)] . (42)

The calculated control values u”, trajectory rz(¢) and

velocity rz(f) when moving the quadcopter from the
current position to the desired one can be found as follows

*

W =-B'p=p,, (43)
e =x(), (44)
Fi(t) = x,(0). (45)

In this case, according to equation (4), the calculated
force is determined by the expression

F} (1) = mity (1) = mu”. (46)

The force F, E* (#) is the calculated total force. The real
total force Fj(¢) will differ from the calculated one due
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to the presence of disturbing forces. The difference in
forces will lead to the quadcopter moving along a certain
trajectory rp(¢) different from the calculated trajectory

rz(¢) . To eliminate this phenomenon, it is necessary to

add a stabilizing component in the form of feedback on
the state through the thrust force of the propellers. To find
this component, consider the equation of the pointing
error

e=rp(t)-rp(1). (47)

This error can be found by subtracting equation (46) from
equation (4):

mé(t) = m(¥p (1) =5 (1)) = Fy (6) = Fi(0) = AF , (48)

which means

Fp=F,+AF . (49)
Let us choose AF such that
AF =-m(K e+ K ,e) , (50)
where
K, =diag(ky;), K, =diag(k,;), i=1,2,3. (51)
Then equation (48) can be written as
e(t)=—(K,e+ K,e). (52)

According to the main theorem on the asymptotic
stability of a linear system, equation (52) for k;; >0 and
ky; >0 is asymptotically stable and the quadcopter state

vector will tend to the calculated one. In this case, the
required direction of the force Py (¢) in the basis EFF will

be determined by the expression

P(t) _ Fy(0-G;
P ||Fe()-Ge

ng(t) = | (33)

Comparing (53) with (11), the equation for determining
the required pitch 9" and roll @ angles can be obtained:

P —sin §”
* t * *
ng(t) =L)= cos9 coso , (54)
[Pz @) " ino®
cos 9’ sin@
9 (t) = —arcsinn/ (1), (55)
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nyg (1)

nyp(t

¢@"(t) = —arctan (56)

In the hover mode #g(f)=0. Then, according to
expression (6), Py (t,)=-G and

0
. Py(ty)  Gg(y)
)= =— =1 57
) P Gz 0 7

Thus, when hovering, the required direction of the
total thrust force of the propellers coincides with the
direction of the local vertical. In this case

9"(1)=0, (58)

9(t,) =0, (59)
and the program yaw angle y”(¢) is a free parameter

selected based on the quadcopter yaw angle requirements.

Now we will perform the synthesis of control of the
angular motion of the quadcopter, ensuring the
coincidence of the real direction of the thrust force of the
propellers with the calculated one. Let us consider the

quaternion mapping N of the vector nj . Its scalar part
scal (N) =0, and vector part vect(N}y)=nj. Since the
Nj s
quaternion equation is valid for it [21]

quaternion a normalized quaternion, the

.. . 2
Ny =U, -|[N3] N5, (60)

where U, is an arbitrary quaternion with a zero scalar
part, specifying which can form the required character of
the change in the vector nj projections on the BFF axes.

In this case, the quaternion U, satisfies the constraint

scal (N oU,)=0. 61)
From constraint (61) it follows
(ny) U, =0. (62)
The vector form of equation (63) is
it —u, |z n 63)

Let us represent the control #, as follows
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U,=—NyXNpXT. (64)

With this choice of u, , the relation (62) will hold for any

7 . Taking into account (64), equation (63) can be written
as

no»
ook _ * * S 2 * 65
Hp =—npgxXngxXT—|ng|| ng. (65)

Let us decompose the left-hand side of equation (65)
into two components: perpendicular nj and parallel nj:

* * .ok * KT eek
—NpXNpXHg+Rgnp Ay =
(66)

_ * * .k 2 *
=—ngXxnpxT—|ng| ng.

Taking into account (64) and (65) transforming (66) gives

2 -
np =

3
np

* * .ok _ *T KT
—npxngx(ng —‘r)—(nB ng +

(il il i 67
From relation (67) it follows
jiy =T+any, (68)

where o is an arbitrary parameter. Since a is an arbitrary
parameter, when solving various problems of controlling

the motion of the vector mj it can be set equal to zero
(a=0). In this case, the dynamic model for synthesizing
the control T takes on a simple form

(69)

Hg=T.
This equation is a linear equation with constant
coefficients and allows the application of well-developed
methods of the theory of linear systems with constant

coefficients in the synthesis of control laws.
The control u, is virtual, the real control is the

control moment M, . Therefore, when using equation

(69) to solve the problem of controlling the orientation of
the quadcopter, it is necessary to know the dependence of
the rotational moment M, on the elements of the control

vector u, . According to the work [22], this dependence

has the form

Mu =_Mg_J(n;X(un_p))v (70)
where

p=—o xliy it )+ iy, 71
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iy =—05 xnl+n}, (72)
’72 :AEBOﬁZ“OAEBa (73)
ﬁ; =—05 xny+p, (74)
np=AggoiigoApp. (75)

In order for the real direction of the propellers’ thrust
to coincide with the calculated one, it is necessary to find
the control u, that ensures asymptotic stability of the

equilibrium position
ny=ng. (76)

To do this, we will use the equation of motion of the
vector njy in the form (69), and as a result

Hy=1. (77)
Consider the control error
e=ny—ng. (78)

Given that ny is a constant vector, the following equation
is valid for the error

€ ="T. (79)
It is obvious that the law of control
1=-K,e—K,nj (80)

provides asymptotic stability to the equilibrium position
e=0, e¢=0. In this case, the control u, will be

determined by the relation (64), and the real control
moment M, by the relation (70). To calculate the
moment M, it is necessary to know the vectors n, and

iy . There are two ways to find these variables: analytical
and numerical. Analytical is very cumbersome, so in this
case, given that ny is a smooth analytical function of

time, it is easier to do it numerically.
To construct an algorithm for stabilizing the yaw
angle, let us consider the quaternion A ;. According to

[21], the following equation is valid for it
.. L2
App :UA_HAEBH App, (81)

where U, is an arbitrary quaternion, specifying which

can form the desired angular motion of the BFF relative
EFF. In this case, the moment M, is determined by the

expression
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M, =20 (kg xuy)+05" xJobt, (82)
where u, is the vector part of a quaternion U, . The
quaternion Az is a normalized quaternion and has only
three independent coordinates, the fourth coordinate is
determined from the condition ||A EB" =1. Let us choose
its vector part Az as independent coordinates and
consider the equation that describes its change in time

. . 2 . .

hpp =uy _((7“%3) + )"ZB}"EBJ;"EB . (83)
In [21] it is shown that the control law

Uy =—kihgg —kohgg, k>0, ky>0 (84)

ensures asymptotic stability of the equilibrium position

AL, =00 0), AL, =0 00, (85)

and as a consequence the asymptotic stability of the
equilibrium position

Az =1, Ay =0, (86)

that is, the stabilization of BFF relative to EFF.

4 EXPERIMENTS
A numerical simulation of the proposed algorithms
was carried out to analyze the qualitative features of the
algorithm. The parameters of the quadcopter model are
presented in Table 1. The flight from the starting point to
a given one with coordinates

rg(t,) = (1000; 300; —4000)” and hovering over it were

simulated. The initial values of the quadcopter angular
orientation (for which the graphs below are given) were

set as follows: o)gE =0, ¢=10", y=-10° and 3=10".
After hovering, the quadcopter should turn around at an
angle y =45". The flight time from the starting point to
the given one was chosen to be 300 seconds.

Table 1 — Quadcopter model parameters

Parameter | Description Value Units

g Gravity 9.81 m/s’

m Mass 0.468 kg

4 Distance 0.225 m

J, Rotor Inertia 3.4-107 kg-m2

J: Roll Inertia 4.9-10° | kgm®

J, Pitch Inertia 4.910° | kgm?

J. Yaw Inertia 8.8-107 kg~m2
Proportionality s

ko Constant 2.9-10
Proportionality 6

fon Constant 11110

OPEN a ACCESS




p-ISSN 1607-3274 PagioenexrpoHika, iHpopmaTuka, ynpasmainss. 2025. Ne 2
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. Ne 2

5 RESULTS
Figure 3 shows graphs of changes in the coordinates
of the centre of mass of the quadcopter over time, Fig. 4
shows graphs of changes in the centre of mass velocities
over time, Fig. 5 shows the orientation angles of the
quadcopter, and Fig. 6 shows the angular velocities.

6 DISCUSSION

In this study, the quadcopter was examined as a
control object, its flight mechanics analyzed, and a novel
methods for synthesizing algorithms for spatial motion
control of the quadcopter were proposed. Based on the
obtained quadcopter motion model, algorithms for
controlling the quadcopter’s spatial motion were
developed, namely, an algorithm for determining the
required direction of the propeller thrust to translate the
quadcopter from its current position to the desired one
and algorithms for its angular motion control.
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The algorithm development process consists of two
main parts. The first part is creating an algorithm to move
a quadcopter from its current position to a specified one.
For this, the approach from [23] was used, its essence is
to construct an analytical solution to the boundary value
problem for a linear stationary system without control
constraints. This approach gives acceptable results when
the system is not affected by external disturbances and
there are no measurement errors. The calculated direction

ny of the propellers’ thrust force due to disturbing forces
may differ from the actual direction n;. To eliminate this

phenomenon, a stabilizing component in the state
feedback form was added to the analytical algorithm for
solving a two-point boundary value problem.

In the second part, a novel method for constructing a
quadcopter angular motion control algorithm was
proposed, based on the motion of vector quaternion
equation developed by authors in the works [21, 22]. The
use of a dynamic quaternion equation of motion of the
vector has greatly simplified control synthesis, reducing it
to a set of second-order integrating links. In many cases,
the control synthesis problem has an analytical solution
for such systems. Control algorithms derived from this
model are implemented much more simply than those
synthesized from the traditional model, which includes
the dynamical Euler equation and the kinematic equation
for the quaternion.

The proposed algorithms were numerically simulated,
and the results demonstrated that the quadcopter flew
from the starting point to the target point within 300
seconds. It then turned at a 45-degree angle and hovered
over the target location. The results confirmed the
proposed algorithms’ efficiency in controlling the
quadcopter’s spatial movement.

CONCLUSIONS

A mathematical model of a quadcopter motion as a
control object was developed. Based on this model the
algorithms for quadcopter spatial motion control were
constructed. Control algorithms include determining the
required direction of the propellers’ thrust force to
transfer the quadcopter from the current position to the
given one and control angular motion, which ensures the
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coincidence of the real direction of the propellers’ thrust
force with the calculated one and yaw angle stabilization.

The scientific novelty of the obtained results is that
the quadcopter angular motion control algorithms
developed based on the dynamic equation for the
quaternion [21]. To eliminate the difference between the
real direction of the thrust force and the calculated one a
stabilizing component in the form of feedback on the state
was added to the known analytical algorithm for solving a
two-point boundary value problem. This significantly
improved the accuracy of guiding the quadcopter to the
given position.

The practical significance of the obtained results is
that the developed algorithms allow the implementation
of all main modes of quadcopter autonomous flight:
stabilization mode in which the quadcopter automatically
keeps zero roll and pitch angles and stabilizes the yaw
angle; mode of maintaining a given position in which the
quadcopter automatically hovers over a given point on the
earth’s surface; mode of automatic flight along points;
modes of automatic takeoff and landing.

Prospects for further research will focus on study-
ing the qualitative aspects of quadcopter control processes
affected by external disturbances and onboard sensor er-
rors and developing algorithms for autonomous naviga-
tion without using GPS information.
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TEPMIHAJIBHE KEPYBAHHS TIPOCTOPOBHUM PYXOM KBA/JIPOKOIITEPA

€dumenko M. B. — n1-p TexH. Hayk, npodecop, npodecop kadeapu iHbopManiiHUX TEXHONOTH €1eKTPOHHHUX 3ac00iB
HarnionaneHoro yHiBepcutety «3anopi3bka MOJITEXHIKa», 3amopixoks, YKpaiHa.

Kynepmeros P. K. — kaH1. TexH. HayK, JDOLCHT, 3aBigyBad KadeIpH KOMII'IOTCPHHX CHCTEM Ta Mepex HarioHamsHOrO
YHIBEpCHUTETY «3aIopi3bKka MOMiTeXHiKay, 3anopixoks, YKpaiHa.

AHOTANIA

AkTtyansnicTh. [Io0yn0Ba anroputmiB KepyBaHHS KBaJIPOKONTEPOM € 00JIACTIO MiBHILEHOTO IHTEPECY, OCKUIBKU Kepy-
BaHHS KBaJPOKONITEPOM MPHUHIMIIOBO CKJIaJHA 3a]ada, He3BAKAIOUM Ha HOro MexaHidHy HpocToTy. KirroduoBoro mpobiemMoro
CHCTEM YIPAaBIiHHA KBaJPOKONTEPAMU € e(eKTUBHE MOEAHAHHS TPhOX IOCTYNAIbHUX Ta TPbOX OOCPTAIbHUX CTYIEHIB CBO-
0011 pyXy IJisi BAKOHAHHSI YHIKQJIBHHX I[IIbOBUX MaHeBpiB. KpiM Toro, 11 3a1a4i akTyaibHi y 3B’513Ky 3 BUCOKOIO 3aTpeOyBa-
HICTIO KBaJPOKOINTEPIB y Pi3HUX BUAAX IisUILHOCTI JIOJUHU, TAKUX SIK KaAacTpoBa aepooTO3HOMKA A MOHITOPUHIY BaK-
KOAOCTYITHUAX TEPUTOPIii, TOCTABKA BAHTaXXIB HA HEBEJIMKI BiZICTaHi, BIiiCHKOBA CIIpaBa TOIIIO.

Meta po6oTu — po3poOKa Ta OOIpYHTYBaHHS HOBUX METOJIIB MOOYIOBH aJrOPUTMIB BUCOKOTOYHOTO KEPYBaHHS MPOCTO-
POBUM PYXOM KBaIpOKOINTepa, M0 3a0e3MeuyloTh HOro aBTOHOMHY POOOTY y BCiX OCHOBHHX PEKHMAaX MOJBOTY: PEKUM CTa-
Oinizawii, pe>kuM yTpUMaHHS MOJOXKEHHS, PEXKUM aBTOMAaTHUYHOTO MOJbOTY 3 TOUKH B TOUKY, PEKUM aBTOMATUYHOI'O 3/1bOTY
Ta MOCAJIKH.

Mertop. [TocraBieHa MeTa 3yMOBHJIa BAKOPUCTAHHS HACTYITHUX METOAIB JIOCHTiKeHHS. [yt po3poOKH aaropuTMiB pospa-
XYHKY IPOTPaMHHX TPAEKTOPIH MepeBeAeHHsT KBaIPOKONTepa 3 MOTOYHOIO CTAaHy B 3aJaHWH 3aCTOCOBAHO NMPHUHIMI MAKCH-
mymy Ilontparina. Jas cMHTe3y Ta aHaji3y alrOpUTMIB KEpyBaHHS KyTOBUM IOJOXKEHHSM KBaJAPOKONTEPAa BHUKOPUCTAHO
¢bynkuii JIsmyHoBa Ta METOAW MOJAJIBHOTO KepyBaHHS. J{JIsl mepeBipKy Ta MiATBEPIKESHHS OTPHMAHHUX TEOPETHYHUX PE3YIIb-
TaTiB BUKOPUCTAHO METOJH YHCEIBHOTO MOJEIIOBAHHS.

Pe3yabTaTi. 3anpornoHOBaHO METOIMKY TOOYIOBH alrOPUTMIB KEpPyBaHHS NPOCTOPOBHM PYXOM KBaIpOKONTEpa, L0
CKJIQIA€ThCA 3 ABOX YacTUH. Ilepina yacTuHa MICTUTh YAOCKOHAJIEHUH MEeTO MOOYA0BH aJlrOPUTMa MEPEBECHHS KBaAPOKOII-
Tepa 3 MOTOYHOTO TOJIOKEHHS B 3afaHe. Y NpYTii 4aCTHHI 3alpOIIOHOBAHO OPUTIHAIBHUI METOJ MOOYIOBU alrOPUTMIB Ke-
PYBaHHS Opi€HTALI€I0 KBaAPOKONTEPa Ha OCHOBI JUHAMIYHOTO PiBHSIHHS JUIS KBATEPHIOHY.

BucHoBku. 3ariponoHOBaHa MaTeMaTU4HA MOJEJb PYXY KBaJpOKONTEpa Ta METOIU MOOYA0BH aJrOPUTMIB KEpYBaHH: Be-
pUdiKOBaHI YNCETBHIM MOJICITIOBAHHIM Ta MOXYTh OyTH 3aCTOCOBaHI Jisi pO3pOOKH CHCTEM KepPYBaHHS KBaJIPOKONTEPAMHU.

KJ/JIIOYOBI CJIOBA: kBafpokonTep, KBaTepHiOH, IPUHIMI MakcuMyMy lIoHTpsAriHa, raminbToHiaH, QyHkuii JIismyHo-
Ba.
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