
p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 3 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 3 

 
 

© Bashtovyi A. V., Fechan A. V.,  2025 
DOI 10.15588/1607-3274-2025-3-2  
 

МАТЕМАТИЧНЕ 
ТА КОМП’ЮТЕРНЕ МОДЕЛЮВАННЯ 

 

MATHEMATICAL 
AND COMPUTER MODELING 

 
 

UDC 004.42 
 

EVALUATING FAULT RECOVERY IN DISTRIBUTED APPLICATIONS 
FOR STREAM PROCESSING APPLICATIONS: BUSINESS INSIGHTS 

BASED ON METRICS 
 
Bashtovyi A. V. – Post-graduate student of the Department of Software, Lviv Polytechnic National University, 

Lviv, Ukraine. 
Fechan A. V. – Dr. Sc., Professor of the Software Department, Lviv Polytechnic National University, Lviv, 

Ukraine. 
 

ABSTRACT 
Context. Stream processing frameworks are widely used across industries like finance, e-commerce, and IoT to process real-time 

data streams efficiently. However, most benchmarking methodologies fail to replicate production-like environments, resulting in an 
incomplete evaluation of fault recovery performance. The object of this study is to evaluate stream processing frameworks under 
realistic conditions, considering preloaded state stores and business-oriented metrics. 

Objective. The aim of this study is to propose a novel benchmarking methodology that simulates production environments with 
varying disk load states and introduces SLO-based metrics to assess the fault recovery performance of stream processing frame-
works. 

Method. The methodology involves conducting a series of experiments. The experiments were conducted on synthetic data gen-
erated by application using Kafka Streams in a Docker-based virtualized environment. The experiments evaluate system performance 
under three disk load scenarios: 0%, 50%, and 80% disk utilization. Synthetic failures are introduced during runtime, and key metrics 
such as throughput, latency, and consumer lag are tracked using JMX, Prometheus, and Grafana. The Business Fault Tolerance Im-
pact (BFTI) metric is introduced to aggregate technical indicators into a simplified value, reflecting the business impact of fault re-
covery. 

Results. The developed indicators have been implemented in software and investigated for solving the problems of Fisher’s Iris 
classification. The approach for evaluating fault tolerance in distributed stream processing systems has been implemented, addition-
ally, the investigated effect on system performance under different disk utilization. 

Conclusions. The findings underscore the importance of simulating real-world production environments in stream processing 
benchmarks. The experiments demonstrate that disk load significantly affects fault recovery performance. Systems with disk utiliza-
tion exceeding 80% show increased recovery times by 2.7 times and latency degradation up to fivefold compared to 0% disk load. 
The introduction of SLO-based metrics highlights the connection between system performance and business outcomes, providing 
stakeholders with more intuitive insights into application resilience. The findings underscore the importance of simulating real-world 
production environments in stream processing benchmarks. The BFTI metric provides a novel approach to translating technical per-
formance into business-relevant indicators. Future work should explore adaptive SLO-based metrics, framework comparisons, and 
long-term performance studies to further bridge the gap between technical benchmarks and business needs. 

KEYWORDS: fault-tolerance, Kafka Streams, benchmarking, distributed systems, performance measurement, stream process-
ing, SLO(Service level objectives). 

 
ABBREVIATIONS 

BFTI – Business Fault Tolerance Impact; 
SLA  – Service Level Agreement; 
SLO  – Service Level Objective; 
IoT   – Internet of Things; 
JMX – Java Management Extensions; 
CPU – Central Processing Unit; 
RAM – Random Access Memory; 
e2e – End-to-End; 
API – Application Programming Interface; 
VM – Virtual Machine; 
I/O – Input/Output. 

NOMENCLATURE 
BFTI  is a Business Fault Tolerance Impact, aggre-

gated metric for evaluating the business impact of fault 
tolerance based on SLO indicators; 

D is a disk usage for the state store in stream process-
ing application. 

L(t) is a lag at a specific point of time t; 
Lnormalised (t)  is a normalised consumer lag at a specific 

t point; 
Lmax is a max allowed lag defined by stakeholders; 
Latency (t) is a event processing delay at a specific t 

point; 

17



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 3 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 3 

 
 

© Bashtovyi A. V., Fechan A. V.,  2025 
DOI 10.15588/1607-3274-2025-3-2  
 

ΔLatency is a latency difference; 
Latencyactual is an actual latency limit during faults; 
LatencySLO is a maximum allowed latency as per the 

SLO; 
n is a number of measurements of lag; 
ti is a time point during the total measured time; 
Ttotal is the total time of an experiment; 
Throughput(t) is a number of events processed by the 

system at a specific t point; 
ΔThroughput is a throughput difference; 
Throughputnormal is an average number of 

events/records processed per second when the system is 
operating normally; 

Throughputfault is a number of events processed per se-
cond during the fault period; 

Δ(t) is a vector of normalized deviations for metrics; 
Δt is an interval between measurements; 
S is a distributed processing system; 
Vlag is a SLO based lag; 
w1 is a weight coefficient for Vlag in BFTI formula; 
w2 is a weight coefficient for calculated throughput in 

BFTI formula; 
w3  is a weight coefficient for latency in BFTI formula; 
Xtarget is a vector target values for metrics; 
X(t) is a single value that represents how systems per-

forms across different(latency, throughput, consumer lag) 
specific t point. 

 
INTRODUCTION 

In today’s data-driven world, stream processing 
frameworks have become essential for handling real-time 
data streams across industries such as finance, e-
commerce, and IoT. Fragkoulis et al.in their work [1] talk 
about how increasing volume and velocity of data have 
driven significant advancements in stream processing 
technologies, including the adoption of serverless com-
puting, edge streaming, enhanced query capabilities, and 
hardware acceleration. While serverless architectures of-
fer flexibility and cost efficiency, they also introduce 
challenges in state management and low-latency process-
ing. Similarly, edge computing reduces latency by bring-
ing processing closer to data sources but requires light-
weight techniques, particularly for IoT environments [2]. 
Hardware acceleration using GPUs, FPGAs, and near-
memory computing further enhances performance, mak-
ing stream processing frameworks increasingly powerful 
and widely adopted. As stream processing applications 
gain traction, ensuring their performance, reliability, scal-
ability, and fault tolerance becomes critical. They are 
even considered as a supportive tool in migration to dis-
tributed systems[3]. Metrics such as throughput, latency, 
and resource utilization are key indicators of system effi-
ciency and stability, aiding in detecting and mitigating 
failures that could impact business operations. Bench-
marking is a common approach used to evaluate these 
metrics, providing insights into system behavior under 
various conditions. Fault tolerance, in particular, is a cru-
cial aspect of stream processing, enabling systems to re-
cover from failures and maintain uninterrupted data proc-

essing [4]. Techniques such as checkpointing, state recov-
ery, and replication are widely used to ensure data conti-
nuity and resilience [5][6]. This resilience is increasingly 
essential as applications expand in scale and complexity, 
underscoring the need for robust benchmarking to evalu-
ate recovery times and fault-tolerance effectiveness [7]. 
However, despite advancements in benchmarking meth-
odologies, many existing studies focus on clean-state 
conditions, often using synthetic data that does not accu-
rately reflect real-world production environments. Current 
benchmarking approaches often fail to consider the im-
pact of preloaded state stores on system performance, 
leading to an incomplete understanding of how state ac-
cumulation affects latency and recovery times. The ap-
proach[8] presented by Van Dongen G, et al., lacks repre-
sentation of real-world scenarios where state stores are 
progressively populated, impacting latency and recovery 
time. Another research on stream-processing cost tracking 
[9] in the same manner does not consider the effect of 
compound time on the system performance. 

Introducing a benchmark methodology that simulates 
production-like environments, including preloaded state 
stores, would allow for a more accurate assessment of 
system performance under realistic load conditions, which 
is crucial for decision-making regarding resource alloca-
tion and infrastructure needs [10]. Our study addresses 
this gap by introducing a benchmarking methodology that 
evaluates stream processing performance under varying 
state loads, simulating real-world conditions more accu-
rately. Additionally, while most research primarily tracks 
technical metrics such as latency and throughput, there is 
a lack of business-oriented insights that connect system 
performance with user experience and operational effi-
ciency. To resolve the existing gap, we integrate SLO-
based metrics, providing a framework that translates tech-
nical performance indicators into business-relevant in-
sights. 

The object of study is the process of evaluation of 
fault recovery in distributed stream processing applica-
tions under realistic conditions, considering preloaded 
state stores and business-oriented metrics. 

The subject of study is benchmarking methodologies 
for assessing fault tolerance in stream processing frame-
works, focusing on the impact of state store accumulation, 
synthetic failures, and business-driven SLO metrics. 

The purpose of the work is to develop and validate a 
benchmarking methodology that simulates production 
environments with varying state loads, integrates SLO-
based metrics, and provides insights into the business 
impact of fault recovery in stream processing applica-
tions.  

 
1 PROBLEM STATEMENT 

Let’s assume that S distributed stream processing sys-
tem is provided, which constantly ingests and processes 
events in real time. The system maintains local state in an 
embedded state store that resides on disk. The system’s 
performance is defined by the following primary metrics: 

18



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 3 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 3 

 
 

© Bashtovyi A. V., Fechan A. V.,  2025 
DOI 10.15588/1607-3274-2025-3-2  
 

– Latency (t)  R0; 
– Throughput (t)  R0; 
– L (t)  R0. 
Each of these metrics can degrade under fault condi-

tions and contributes to the system’s overall performance 
loss. However, monitoring them separately requires de-
tailed technical analysis, making it difficult for non-
technical stakeholders to evaluate the system’s health 
quickly and effectively. 

Let’s assume that target values for these metrics must 
be: 

 
Xtarget = [ LatencySLO , Throughputnormal, Lmax ]. (1)
 
Let’s define the vector of normalized deviations from 

expected behavior: 
 

Δ(t) = [ΔLatency (t), ΔThroughput(t), Lnormalised (t)]. (2)
 
This vector represents the normalized deviations from 

the target values. By aggregating these deviations into a 
single value, we aim to simplify the monitoring process. It 
is required to build a mathematical model of a single 
normalised value X(t)  R0  that encapsulates the sys-
tem’s overall performance at time t and provides a single 
value which represents value of three metrics in the sys-
tem at point t. Which must be adjustable from the priori-
ties and requirements perspective. 

The second objective is to analyze the behavior of S 
under varying levels of disk usage D in the embedded 
state store. The research’s goal is to evaluate how changes 
in disk state store utilization D influence the system’s 
real-time performance metrics and the resulting value of 
X(t), providing insights for optimizing resilient stream 
processing in production-like environments. 

 
2 REVIEW OF THE LITERATURE 

SLO metrics are commonly referenced in fault toler-
ance research, they are rarely explicitly defined or struc-
tured to provide meaningful insights for stakeholders. 
Most studies focus on system stability from an engineer-
ing perspective, overlooking how technical failures trans-
late into business impacts such as service availability and 
user satisfaction [11]. Existing benchmarking methodolo-
gies do not simulate production environments where state 
stores are preloaded and continuously evolving. 

There are studies that have explored benchmarking 
methodologies for stream processing frameworks, with a 
strong emphasis on scalability and fault tolerance. The 
paper [12] offers provides insights into the scalability of 
frameworks like Apache Flink, Kafka Streams, and Ha-
zelcast Jet within cloud-native microservice architectures. 
The study focuses on scaling challenges, particularly in 
dynamic resource allocation and fault recovery. However, 
it primarily addresses short-term scalability and does not 
extensively explore fault tolerance under long-term opera-
tional conditions, where large state accumulation and 
multi-fault scenarios may arise. This limitation highlights 

the need for research that considers fault recovery in sys-
tems with extensive state persistence. Another study [13] 
provides a comprehensive classification of fault tolerance 
techniques in stream processing systems, emphasizing 
their importance in preventing erroneous results and sys-
tem unavailability. The authors highlight that failures in 
processing nodes or communication networks can lead to 
severe disruptions, impacting user experience and causing 
financial losses. The study introduces an evaluation 
framework for fault tolerance mechanisms in Apache 
Flink assessing efficiency in failure recovery. Key future 
research directions include adaptive checkpointing, inte-
gration with modern hardware, and parallel recovery 
mechanisms. Despite these advancements, the study does 
not account for real-world scenarios where applications 
run continuously, accumulating state over time. 

 
3 MATERIALS AND METHODS 

In this section, we propose our own method for 
benchmarking stream processing applications based on 
the basic metrics. In the end, evaluation and experiment 
details are presented. As we discussed previously, stake-
holders may be interested in knowing how stream proc-
essing systems perform in general without technical de-
tails in debt. We concentrate on the business-related SLO 
metric, which is supposed to be straightforward and rep-
resentative of business and engineering needs. Despite the 
fact, that the basic metrics like throughput, and latency 
are less conductive; they represent core system perform-
ance. In the following sections, we define core metrics of 
the system which are used for formulating our SLO met-
ric. 

The throughput metric represents the number of 
events per certain time mark. The metric is considered to 
be a status quo for most event-based applications. We 
define throughput as a number of processed events per 
second on the instance in general. For our experiment, we 
had to understand the change in throughput under differ-
ent states of the application. The change is calculated 
based on the difference between throughput under normal 
conditions and throughput when some parts of the system 
are under a fault. In this way, we can define how faults 
affect the throughput.  The change is stated as throughput 
difference which is declared by the formula(3): 

 

ΔThroughput = Throughputnormal – Throughputfault. (3)
 

The latency metric represents the time delay from 
when an event is generated or received to when it is fully 
processed and produces a result. In event-based applica-
tions, latency is a critical measure of system responsive-
ness. Increased latency impacts customer experience and 
can lead to missed business opportunities in real-time 
applications. We describe latency as the average time 
taken to process each event from the moment it enters the 
system to when it completes processing on the instance. 
As with throughput, we calculate ΔLatency as the differ-
ence in latency observed under normal conditions versus 

19



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 3 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 3 

 
 

© Bashtovyi A. V., Fechan A. V.,  2025 
DOI 10.15588/1607-3274-2025-3-2  
 

when fault conditions are introduced into the system by 
the formula(4):  
 

ΔLatency = Latencyactual – LatencySLO. (4)
 

This comparison will allow us to quantify the influ-
ence of faults on latency. In addition to ΔLatency, we 
defined LatencySLO, which describes a certain latency 
threshold acceptable by business requirements. Some ap-
plications, like the critical financial sector strictly require 
minimum latency for the operations in a system. This 
value is quite subjective and depends on the business 
needs. The best way to establish Latency SLO latency is 
by defining limitations for a certain business process by 
stakeholders based on the monitoring and recording of an 
average Latency for a specific time frame. Total latency is 
calculated by the formula(5): 

 

SLOLatency

Latency
Latency


 . (5)

 
Consumer lag refers to the difference between the last 

message produced to a Kafka topic and the last message 
consumed by a downstream consumer. It indicates how 
far behind the consumer is in processing the data, which 
can occur due to factors such as high data production 
rates, network bottlenecks, slow processing by the appli-
cation, failures, network delays, or other reasons. The 
actual consumer lag L(t) at time t is normalized and de-
fined by formula(6): 
 

   








 1,min

max
dnormalaise L

tL
tL . (6)

 
Basically, Lnormalised (t) = 0 when there is no lag and 

Lnormalised (t)  = 1 when the lag reaches or exceeds Lmax. 
The formula is Vlag designed to quantify the proportion 

of time during which a Kafka Streams application experi-
ences consumer lag violations relative to a defined SLO 
threshold, specifically , which is defined by the stake-
holders based on both business expectations and tracking 
average or common lag in the production system. The 
actual formula(7): 

 

     n
i inormalized

total
lag ttL

T
V 1

1
. (7)

 
This metric allows for precise monitoring of applica-

tion performance by assessing how often and for how 
long the system fails to meet the lag criteria, which is 
critical for maintaining real-time processing guarantees. 
The use of time-weighted integration ensures that the met-
ric reflects the severity and duration of SLO violations, 
enabling more accurate diagnosis and optimization of 
stream processing topologies. This makes it an essential 
tool for evaluating fault tolerance and ensuring that the 
application meets business-critical requirements. Since 

the formula uses time-weighted experiments measure-
ments must be conducted at least for two time points with 
the specified time differences. By normalizing lag values 
to the range [0, 1] and aggregating them over time, the 
formula provides a clear, comparable, and actionable 
measure of performance degradation under varying work-
loads or fault scenarios. The resulting value 0 means there 
is no lag on the consumer while 1 means lag is severe 
respectively to the defined lag threshold Lmax. Based on 
the previously mentioned formulas, we defined Business 
Fault Tolerance Impact (BFTI) metric which is designed 
to quantify the overall business impact of a fault in Kafka 
Streams by considering the direct effects on SLOs, recov-
ery time, throughput reduction, and their subsequent im-
pact on operational costs, which is described by the for-
mula(8): 
 

 .3

21

Latencyw

Throughput

Throughput
wVwBFTI

normal
lag













 (8)

 
This metric provides a view of how system perform-

ance during failures translates to operational impact on 
the business. The results of the formula are represented in 
a value that is in the range of [0,1]. Lower BFTI values 
indicate high fault tolerance, meaning the application re-
covers quickly from failures with minimal impact on 
throughput, latency, or SLO violations. Higher BFTI val-
ues suggest poor fault tolerance, indicating significant 
performance degradation during failures, such as pro-
longed recovery times, high lag, or unacceptably high 
latency. In the Table 1 we have defined a reference table 
to simplify the interpretation of results. 
 

Table 1 – BFTI formula results interpretation 

BFTI 
output 

Explanation Description 

(0 – 0.3] Excellent fault tolerance The system performs 
reliably under failure 
conditions. No immediate 
action is required. 

(0.3–0.6] Good fault tolerance Minor impact on perform-
ance during failures. 
Monitor specific bottle-
necks (e.g., lag or la-
tency).  

(0.6–0.8] Moderate fault tolerance Noticeable performance 
degradation. Review 
system capacity and fail-
ure recovery mechanisms. 

(0.8–1.0] Poor fault tolerance Critical issues with fault 
handling. Immediate 
optimization or adding 
new instance is required. 

 

20



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 3 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 3 

 
 

© Bashtovyi A. V., Fechan A. V.,  2025 
DOI 10.15588/1607-3274-2025-3-2  
 

Additionally, the formula introduces weighted priori-
tization based on business-critical metrics. Weights re-
lated to 3 main measurements: throughput, latency, and 
Vlag. A larger weight coefficient means a larger impact 
and priority for the respective measurement. If throughput 
is more critical than latency and Vlag than w2 > w3 and  
w2 > w1. 

 
4 EXPERIMENTS 

In this section we describe our technical setup used for 
experiments, actual experiment methodology and archite-
cure. The technologies were selected based on our experi-
ence, usage in production, popularity, and expertise. 
Moreover, the selected tools mimic real-world production 
deployments. Our experiment replicated real-world 
stream processing environments using a Docker-based 
virtual machine setup managed via Docker Compose 
(v2.32.4). Containers were configured with 8 GB RAM, 
40 GB disk space, and an 8-core CPU. Apache Kafka 
(vcp-kafka:7.1.0-1-ubi8) served as the message broker, 
while Kafka Streams (v3.8.1) with Spring Boot (v3.4.1) 
handled stream processing. Metrics were tracked using 
JMX, with Prometheus(v2.54.1) for data collection and 
Grafana for real-time visualization. The experiments ran 
on two Kafka client instances to evaluate distributed 
processing performance, ensuring a high-throughput and 
reproducible benchmarking environment. 

For the experiment, we created a sample infrastructure 
based on the state-of-the-art technologies discussed 
above. Fig 1. shows the architectural solution. Kafka 
Streams was chosen as the core client library for our 
stream processing experiments due to our experience with 
it, its seamless integration with Kafka-based ecosystems, 
and its suitability for projects requiring rapid deployment 
[14]. As a lightweight, client-side library, it simplifies 
real-time data processing without the need for additional 
infrastructure, unlike other solutions that may require 
dedicated servers. Kafka Streams also supports essential 
features such as fault tolerance, stateful processing, and 
windowing, making it a practical and efficient choice for 
high-velocity data streams in agile business environments. 
We defined producer application and consumer applica-
tion, message broker, metrics aggregator, and visualiza-
tion of the metrics. To collect data and state we set JMX 
exporters that publish metrics from consumer applications 
and message brokers to monitor the metrics defined 
above. 

For the producer, we created a data-generator app, that 
operated continuously throughout the experiment, provid-
ing a consistent workload that enabled detailed tracking of 
individual metrics across iterations. The data generator 
generates synthetic data at a rate of 700 events per second 
for two specific topics. This rate was chosen to ensure 
optimal resource utilization and maintain clarity in ex-
perimental conditions. In our experiment, these are tutor-
in and lesson-in topics, ids for the models are generated 
iteratively, beginning from 0. We took a synthetic exam-
ple from the educational domain, tutors can have multiple 
lessons attached to them.  

 
Figure 1 – The architecture of the experimental application 

 
Tutor topic events are not necessarily related to unique 

tutors, so multiple events can be connected to a single 
business entity. The app allows a flexible configuration 
change for the rate of the events and other parameters. 
Fig. 2 shows the Kafka Stream topology used by consum-
ers in our application. The topology consists of two 
source processors, multiple intermediary processors, and 
one sink processor where eventual results are recorded. 
The application consumes input events from two different 
topic which are populated by the producer app. There are 
two live instances of consumer applications. The metrics 
we measure are calculated based on the values from two 
instances, hence the moments one instance is not working 
metrics should reflect that accordingly. Consumer appli-
cations expose all existing build-in metrics via JMX to 
Prometheus. 
 

 
Figure 2 – Synthetic topology architecture 

 

 
 
 

21



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 3 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 3 

 
 

© Bashtovyi A. V., Fechan A. V.,  2025 
DOI 10.15588/1607-3274-2025-3-2  
 

In order to measure the effect of storage capacity on 
the processing throughput our topology contains state-
ful operation – aggregation. Stateful processing helps 
us understand the relationships between events and 
leverage these relationships for more advanced stream 
processing use cases. To support stateful operations, 
we need a way of storing and retrieving the remem-
bered data, or state, required by each stateful operator 
in our application (e.g., count, aggregate, join, etc.). 
The storage abstraction that addresses these needs in 
Kafka Streams is called a state store, and since a single 
Kafka Streams application can leverage many stateful 
operators, a single application may contain several 
state stores. There are two options for how Kafka 
Streams can handle stateful operations, in memory and 
disk storage state. The memory state is efficient in 
terms of processing and fast operations. On the other 
hand disk storage has significant benefits in compari-
son to the in-memory: A state can exceed the size of 
available memory. In the event of failure, persistent 
stores can be restored quicker than in-memory stores. 
Since the application state is persisted to disk, Kafka 
Streams does not need to replay the entire topic to re-
build the state store whenever the state is lost (e.g., due 
to system failure, instance migration, etc.). It just needs 
to replay whatever data is missing between the time the 
application went down and when it came back up. 

For our application, every individual Kafka Streams 
instance preserves its own disk-based state store. When 
an individual application fails on the restart it checks 
out local state stores and restores all of the relevant 
values. If an application cannot be started on the same 
instance then a new instance has to be started. In this 
scenario, the state store will not be replicated on the 
new instance automatically and the application has to 
restore a state from scratch. Since every state store is 
backed by Kafka Topics it is quite a simple task to do. 
The application has to replay all of the messages avail-
able in backed topics and restore the state. In order to 
speed up instance state store recovery there are multi-
ple techniques that can be used. One of them is to have 
disk memory saved somewhere in the durable storage 
so after instance replacement there is a way to simply 
use the existing disk instead of replaying Kafka mes-
sages. Since the focus of the experiment is to provide 
insights on the efficient and rapid state recovery we 
based our experiment on the persistent disk state store 
for the applications. We conducted a detailed series of 
experiments over a total execution time of more than 
24 hours to evaluate system performance and fault tol-
erance under varying conditions. The experiment con-
sisted of six iterations, with each iteration running for 2 
hours to gather metrics systematically. Within each 
iteration, we assessed fault tolerance by introducing 
synthetic failures, randomly terminating one instance 
multiple times during the execution period to simulate 

real-world disruption scenarios. We determined the 
instance exactly after 30 minutes of beginning an inter-
action. To ensure robust and unbiased results, we re-
peated the experiments under three different disk load 
conditions, with two iterations per load state. Eventu-
ally, we took average results per two interactions. For 
the first set of iterations, the disk state was empty, rep-
resenting 0% capacity utilization. The subsequent set 
of iterations simulated a slightly(0%), partially(about 
50%), and heavily(more than 80%) loaded state. This 
approach allowed us to observe the system’s behavior 
across varying levels of resource utilization, ensuring 
the reliability and accuracy of the evaluation outcomes. 
In order to load a disk for our experiment we decided 
to generate data synthetically, thereby populating indi-
vidual instance stores with relevant events which are 
aggregated on the instances. This mimics the real-
world scenarios when an application works for days 
and stores a lot of data in state storage. To monitor disk 
load during the experiments, we utilized the Prome-
theus metrics disk_free_bytes and disk_total_bytes. 
These metrics allowed us to calculate the percentage of 
disk capacity utilized at any given time, providing a 
clear representation of the disk load for each test sce-
nario. This approach ensured precise tracking of disk 
usage, which was critical for evaluating the impact of 
varying disk load states on system performance and 
fault tolerance. 

Throughput generally refers to the rate at which a 
system processes data. In Kafka consumers, we meas-
ured it as the number of records consumed per second 
from our source topics. Meaning that if records were 
consumed successfully then the records will be proc-
essed by the next nodes in the topology. For the 
throughput, we decided to measure throughput for in-
dividual instances and sum this value up. We selected 
kafka_consumer_records_consumed_total, which is a 
counter metric that increments whenever a Kafka con-
sumer successfully processes a record. It directly re-
flects the number of records consumed over time, mak-
ing it a reliable proxy for measuring throughput. Since 
the metric is cumulative we decided to take a rate of 
this metric and measure the number of records con-
sumed per 1 minute. End-to-end (e2e) latency meas-
ures the total time taken for a record to traverse from 
the source topic to the sink topic within a Kafka 
Streams topology. This metric captures the processing 
delays introduced at each node in the topology, includ-
ing computation, state store interactions, and any in-
termediate transformations. Measuring e2e latency 
helps us understand the overall performance of the data 
pipeline and identify potential bottlenecks. For this 
measurement, we chose the kaf-
ka_stream_processor_node_record_e2e_latency_avg 
metric, which represents the average latency for re-
cords processed by each processor node in the topol-

22



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 3 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 3 

 
 

© Bashtovyi A. V., Fechan A. V.,  2025 
DOI 10.15588/1607-3274-2025-3-2  
 

ogy. This metric provides granularity at the processor 
node level, allowing us to analyze and aggregate the 
latency for the entire topology. To calculate the e2e 
latency for individual instances and across the applica-
tion, we averaged the metric across all processor nodes 
and instances. Since latency is not cumulative, we used 
an average calculation instead of a rate: 
avg(kafka_stream_processor_node_record_e2e_latency
_avg). This setup allows us to evaluate the latency at 
each processor node. To calculate the overall e2e la-
tency for the entire topology, we aggregated the metric 
across all nodes and instances: This approach ensures 
that we capture the average e2e latency for processing 
records, giving us insights into the system’s overall 
responsiveness and helping to pinpoint areas for opti-
mization. 

The Vlag metric uses the kaf-
ka_consumer_fetch_manager_records_lag_avg metric, 
which represents the average consumer lag in Kafka 
consumers. This metric is aggregated and normalized 
over time to reflect the proportion of lag violations 
across the system. The base metric kaf-
ka_consumer_fetch_manager_records_lag_avg is col-
lected for each consumer group and topic. We applied 
the metric for our two input topics. Since the metric is 
tracked across two running instances it is aggregated 
by topic only and normalized for value to be in [0,1] 
range. 

Implementing the BFTI formula within Prometheus 
involved monitoring and calculating essential metrics 
directly from the Kafka Streams application. It is de-
signed to evaluate the system’s fault tolerance based on 
three critical components: SLO-based lag, throughput 
degradation, and latency increase. These components 
are derived from the metrics above and provide a quan-
titative measure of the system’s performance under 
fault conditions. Each component incorporates argu-
ments that must be defined collaboratively by stake-
holders and the engineering team. These arguments are 
based on system behaviour during normal operation 
and the tolerable thresholds established for each metric. 
For instance, tolerable limits for latency or throughput 
degradation may reflect SLO agreements or operational 
baselines. The table 2, shows values we have set for 
these arguments, ensuring alignment with real-world 
operational expectations and providing a framework 
for accurately assessing the system’s resilience. This 
structured approach allows for reproducible evaluation 
and fosters a deeper understanding of the system’s fault 
tolerance characteristics. 

 
 
 
 
 
 

Table 2 – Input arguments for the experiment 

Argument Value Description 

 w1, w2, w3 1 Determine the relative 
importance of each fac-
tor lag violation, 
throughput degradation, 
and latency increase. 

Lmax  1000 
messages 

Lag SLO Threshold. The 
maximum acceptable 
consumer lag beyond 
which SLO is considered 
violated. 

LatencySLO 35sec The end-to-end latency 
threshold that defines 
acceptable performance. 

Throughputnormal 500 
messages/sec 

The normal or expected 
throughput of the Kafka 
Streams application 
under fault-free condi-
tions 

 
5 RESULTS 

This section presents the findings from our experi-
ments. Our analysis showed a positive correlation be-
tween system failures and changes in key performance 
metrics, including those measured by the SLO metric. In 
the first iteration, no synthetic data was preloaded onto 
the hard drive, resulting in a 0% load from experimental 
data. However, due to Kafka’s internal metadata storage, 
the actual disk utilization was approximately 24%. 

Metrics gathered under these baseline conditions 
served as benchmarks for defining SLO constraints during 
subsequent experiments. As illustrated on Fig. 3a, e2e 
latency significantly increased during an instance shut-
down, doubling its normal value during the restoration 
period of the second instance. This spike is consistent 
with expectations, as live instances require additional time 
to rebalance and synchronize with the data generation rate 
during failures. Once the disrupted instance was restored, 
latency returned to baseline levels, reflecting the system’s 
recovery capabilities under fault conditions. Initially, the 
system maintained a stable load, with throughput exhibit-
ing relatively consistent, non-volatile values. Addition-
ally, we can see(Fig. 3b), throughput was not significantly 
impacted by instance failures. In fact, brief increases in 
throughput were observed, indicating that the active in-
stances temporarily accelerated processing to catch up on 
event backlogs. Figure 4 illustrates the effect of instance 
failures on SLO-based lag. The experiment reveals a dra-
matic spike in consumer lag, with values increasing from 
a regular average of 112 messages to over 15,000 mes-
sages in a short period. This behaviour aligns with expec-
tations, as the number of incoming events remained con-
stant while the number of active instances available to 
process these events was temporarily reduced. Conse-
quently, the accumulation of unprocessed messages 
caused the lag to escalate rapidly during the failure pe-
riod. 

 

23



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 3 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 3 

 
 

© Bashtovyi A. V., Fechan A. V.,  2025 
DOI 10.15588/1607-3274-2025-3-2  
 

 
Figure 3 – Latency and throughput affected by instance shutdown at 66 minute of experiment 

 

 
Figure 4 – Failures effect on Vlag latency 

 

In the next phase of the experiment, we introduced 
varying levels of disk load and conducted additional itera-
tions using the same methodology described earlier. The 
results, summarized in Table 3, reveal the impact of disk 
load on throughput, latency, and overall application per-
formance. Notably, the system maintained stable per-
formance when disk utilization remained below 80%, 
with state restoration occurring relatively quickly and 
without significant degradation in the basic operational 
characteristics of the instances. However, when disk utili-
zation exceeded 80%, the system exhibited marked per-
formance degradation. Latency following a fault in-
creased nearly fivefold compared to regular latency under 
minimal disk load conditions. Additionally, recovery time 
was prolonged, taking approximately 2.7 times longer 
than under a 0% disk load. Throughput also declined sig-
nificantly, dropping to less than half of the normal rate 
observed under lighter disk load conditions.  

 

Table 3 – Experiment results for the defined metrics 

Disk load Metric 

0% <50% >80% 

Latency, sec 87 121 445 

Throughput, 
ops/sec 

912 819 331 

Vlag 0.21 0.34 0.54 

BFTI 0.31 0.41 1 

 

6 DISCUSSION 
The findings in the section above highlight the critical 

role of disk utilization in maintaining the performance and 
fault recovery capabilities of the system. While author[15] 
extensively evaluated stream processing frameworks un-
der failure scenarios, their benchmark primarily focused 
on stateless or short-lived workloads with empty state 
stores. In contrast, our approach simulates production-
grade conditions with preloaded persistent states and 
long-running streams, uncovering fault recovery delays 
that were not visible in prior benchmarks. This highlights 
both a methodological extension and deeper insight into 
the behavior of stateful applications under disk-intensive 
loads. Additionally, no authors provide a standardized 
methods for stream processing app tracking. Based on the 
experiment results represented in Table 3 BFTI formula 
provides stakeholders with a comprehensive measure of 
the overall fault tolerance and performance stability based 

24



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 3 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 3 

 
 

© Bashtovyi A. V., Fechan A. V.,  2025 
DOI 10.15588/1607-3274-2025-3-2  
 

on the single output. We can see the BFTI definition cor-
relates with increased latency, lower throughput, and in-
creased Vlag. The formula simply represents an aggrega-
tion of all of the results in a simple manner. It simplifies 
decisions and saves time for interested people mainly 
because they can take a look at individual value instead of 
monitoring the whole system for different metrics. If the 
following and deeper analysis is required then engineer-
ing teams can elaborate on discovery and investigate vari-
ous metrics of the system. However, it is the next step 
after monitoring BFTI results. The impact of a failure on 
one instance is straightforward: the application processes 
fewer events at a slower pace. But the long-term effects of 
such failures are more critical. Our analysis shows that 
latency and throughput remain degraded for a consider-
able period even after the affected instance has restarted. 
This occurs because the data generator continues to pro-
duce events during the failure, leading to a backlog of 
unprocessed events. As a result, some events remain de-
layed while the failed instance recovers and the system 
rebalances. For stakeholders, this means the system han-
dles business tasks at a reduced efficiency, potentially 
affecting operational timelines and customer satisfaction. 
The metrics reveal that it took over an hour for the appli-
cation to recover to its initial performance levels, indicat-
ing that fault recovery is not instantaneous and can disrupt 
normal operations for an extended period. This recovery 
lag underscores the importance of considering fault-
tolerance strategies to minimize downtime and ensure 
smoother operations. One potential mitigation strategy is 
scaling the application dynamically in response to fail-
ures. For example, when an instance fails, a new instance 
could be launched alongside restarting the failed one. 
However, this approach has limitations it requires the 
number of Kafka partitions to be equal to or greater than 
the total number of instances, and scaling down later can 
introduce additional overhead due to rebalancing. More-
over, this solution may be resource-intensive and could 
temporarily impact throughput and overall performance. 
These findings highlight the need for careful planning of 
fault-tolerance mechanisms that balance recovery speed, 
resource allocation, and system performance, ensuring 
minimal disruption to both operations and stakeholder 
expectations. 

 

CONCLUSIONS 
The study addressed critical gaps in benchmarking 

methodologies for stream processing frameworks by sim-
ulating production-like environments and introducing 
SLO-based metrics to evaluate fault-tolerance perform-
ance. Key findings demonstrate that while systems main-
tain stable performance under moderate disk loads, per-
formance degrades significantly when disk utilization 
exceeds 80%. The increased latency, throughput reduc-
tion, and prolonged recovery times observed under heavy 
disk loads underline the importance of robust fault-
tolerance mechanisms. Furthermore, the incorporation of 
SLO-based metrics provided meaningful insights into 
how technical disruptions affect business outcomes, em-

phasizing the value of bridging the gap between engineer-
ing metrics and stakeholder objectives. 

The scientific novelty of the obtained results lies in 
the proposed methodology for evaluating fault recovery in 
stream processing applications using preloaded state 
stores and business-driven performance indicators for the 
first time. Unlike existing approaches, this method inte-
grates SLO-based metrics to quantify the business impact 
of failures, providing a novel perspective on fault toler-
ance assessment. Additionally, our work introduces a new 
benchmarking framework that considers varying state 
loads, which enables a more realistic evaluation of stream 
processing resilience in production environments. 

The practical significance of the results is that the 
developed benchmarking methodology and BFTI metric 
allow practitioners to assess the reliability of stream proc-
essing applications with greater precision. The methodol-
ogy was validated through experiments, demonstrating its 
applicability for real-world deployments. The proposed 
approach can be directly integrated into performance 
monitoring systems, aiding decision-makers in optimizing 
resource allocation, failure recovery strategies, and sys-
tem resilience. 

Prospects for further research include refining the 
proposed benchmarking methodology to accommodate 
different types of state store implementations, such as 
distributed file systems or cloud-based storage solutions. 
Future work should also explore the development of adap-
tive SLO-based metrics that dynamically adjust based on 
workload variations and user-defined business priorities. 
Additionally, extending the study to compare fault recov-
ery across multiple stream processing frameworks, such 
as Apache Flink and Spark Streaming, would provide 
deeper insights into optimizing real-time data processing 
for various industry applications. 

 
REFERENCES 

1. Fragkoulis M., Carbone P., Kalavri V. et al. A survey on 
the evolution of stream processing systems, The VLDB 
Journal, 2024, Vol. 33, № 2, pp. 507–541. DOI: 
10.1007/s00778-023-00819-8 

2. Sasaki Y. A survey on IoT big data analytic systems: 
Current and future, IEEE Internet of Things Journal, 
2022, Vol. 9, № 2, pp. 1024–1036. DOI: 
10.1109/JIOT.2021.3131724 

3. Bashtovyi A., Fechan A. Change data capture for migra-
tion to event-driven microservices: Case study, Proc. of 
the IEEE Int. Conf. on Computer Science and Informa-
tion Technologies (CSIT), 2023,  pp. 1–4. DOI: 
10.1109/CSIT61576.2023.10324262 

4. Vogel A., Henning S., Perez-Wohlfeil E.  et al. A com-
prehensive benchmarking analysis of fault recovery in 
stream processing frameworks, Proc. of the 18th ACM 
Int. Conf. on Distributed and Event-Based Systems, 2024, 
pp. 171–182.  DOI: 10.48550/arXiv.2404.06203 

5. Marcotte P., Grégoire F., Petrillo F.  Multiple fault-
tolerance mechanisms in cloud systems: A systematic re-
view, 2019 IEEE Int. Conf. on Software Quality, Reli-
ability and Security Companion (QRS-C), 2019, pp. 337–
344. DOI: 10.1109/ISSREW.2019.00104 

25



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 3 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 3 

 
 

© Bashtovyi A. V., Fechan A. V.,  2025 
DOI 10.15588/1607-3274-2025-3-2  
 

6. Friedman E., Tzoumas K. Introduction to Apache Flink: 
Stream Processing for Real Time and Beyond. Sebasto-
pol, O’Reilly Media, 2016, 322 p. 

7. Wu H., Shang Z., Peng G., Wolter K. A reactive batching 
strategy of Apache Kafka for reliable stream processing 
in real-time, 2020 IEEE 31st Int. Symp. on Software Re-
liability Engineering (ISSRE), 2020, pp. 252–261. DOI: 
10.1109/ISSRE5003.2020.00028 

8. Van Dongen G., Van den Poel D.  Evaluation of stream 
processing frameworks for fault tolerance and perform-
ance metrics, IEEE Access, 2021, Vol. 9, pp. 102349–
102365. DOI: 10.1109/TPDS.2020.2978480 

9. Venkataraman S., Yang Z., Parashar M. et al. Cost of 
fault-tolerance on data stream processing, Proc. of the 
VLDB Endowment, 2017, Vol. 10, № 11, pp. 1478–1491. 
DOI: 10.1007/978-3-030-10549-5_2 

10. Grambow M. Benchmarking Microservice Platforms and 
Applications in the Cloud. Berlin, TU Berlin, 2024. [in 
press]. 

11. Henning S., Hasselbring W. Benchmarking scalability of 
stream processing frameworks deployed as microservices 

in the cloud, Journal of Systems and Software, 2024, 
Vol. 208, pp. 111879. – DOI: 10.1016/j.jss.2023.111879 

12. Wang X., Zhang C., Fang J.  et al. A comprehensive 
study on fault tolerance in stream processing systems, 
Frontiers of Computer Science, 2022, Vol. 16, P. 
162603. DOI: 10.1007/s11704-020-0248-x 

13. Hoseiny Farahabady M. R., Taheri J., Zomaya A. Y.  et 
al. A dynamic resource controller for resolving quality of 
service issues in modern streaming processing engines, 
2020 IEEE 19th Int. Symp. on Network Computing and 
Applications (NCA), 2020, pp. 1–8. DOI: 
10.1109/NCA51143.2020.9306697 

14. Van Dongen G., Van den Poel D. A performance analy-
sis of fault recovery in stream processing frameworks, 
IEEE Access, 2021, Vol. 9, pp. 93745–93763. DOI: 
10.1109/ACCESS.2021.3093208 

15. Van Dongen G. Open stream processing benchmark: an 
extensive analysis of distributed stream processing 
frameworks : Master’s thesis. Ghent, Ghent University, 
Faculty of Economics and Business Administration, 
2021,  112 p. 

Accepted 18.03.2025. 
Received 11.06.2025. 

 
УДК 004. 42 

ОЦІНКА ВІДНОВЛЕННЯ РОЗПОДІЛЕНИХ СИСТЕМ ПІСЛЯ ЗБОЇВ У ДОДАТКАХ ПОТОКОВОЇ 
ОБРОБКИ ДАНИХ: РОЗУМІННЯ МЕТРИК З ТОЧКИ ЗОРУ БІЗНЕСУ 

 
Баштовий А. В. – аспірант кафедри програмного забезпечення національного університету “Львівська 

політехніка”, Львів, Україна. 
Фечан А. В. – д-р техн. наук, професор кафедри програмного забезпечення, Національний університет “Львівська 

політехніка”, Львів, Україна. 
 

AНОТАЦІЯ 
Актуальність. Фреймворки потокової обробки даних широко використовуються в галузях фінансів, електронної 

комерції та IoT для ефективної обробки потоків даних у реальному часі. Проте більшість методологій тестування не 
відтворюють умови реальної роботи після впровадження, що призводить до неповної оцінки продуктивності 
відновлення після збоїв. Об’єктом дослідження є оцінка фреймворків потокової обробки у реалістичних умовах з 
урахуванням попередньо завантажених сховищ даних та бізнес-орієнтованих метрик. 

Мета роботи. Розробка нової методології оцінювання продуктивності відновлення після збоїв у фреймворках 
потокової обробки, яка імітує виробничі умови з різними рівнями завантаження диска та вводить SLO-орієнтовані 
метрики для оцінки. 

Метод. Методологія передбачає серію експериментів із використанням Kafka Streams у віртуалізованому се-
редовищі на базі Docker. Експерименти оцінюють продуктивність системи при трьох рівнях завантаження диска: 0%, 
50% та 80%. Під час роботи вводяться синтетичні збої, а ключові метрики, такі як пропускна здатність, затримка та 
відставання споживачів, відстежуються за допомогою JMX, Prometheus та Grafana. Запропонована метрика Впливу 
Бізнесу на Толерантність до Збоїв (BFTI) агрегує технічні показники у спрощене значення, що відображає бізнес-
ефекти відновлення після збоїв. 

Результати. Експерименти показують, що рівень завантаження диска суттєво впливає на продуктивність 
відновлення. При завантаженні диска понад 80% час відновлення збільшується у 2,7 рази, а затримка зростає до п’яти 
разів у порівнянні з 0% завантаження. Введення SLO-орієнтованих метрик підкреслює зв’язок між продуктивністю 
системи та бізнес-результатами, надаючи зацікавленим сторонам більш інтуїтивну оцінку стійкості програми. 

Висновки. Отримані результати підкреслюють важливість моделювання реальних виробничих умов у тестуванні 
фреймворків потокової обробки. Метрика BFTI пропонує новий підхід до перетворення технічних показників у 
бізнес-орієнтовані індикатори. Подальші дослідження повинні включати адаптивні SLO-метрики, порівняння 
фреймворків та дослідження продуктивності на довготривалих інтервалах для подальшого усунення розриву між 
технічними показниками та бізнес-потребами. 

КЛЮЧОВІ СЛОВА: потокова обробка даних, відмовостійкість, Kafka Streams, зняття метрик, розподілені систе-
ми, цілі рівня обслуговування (SLO), вимірювання продуктивності.  

 
  

26



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 3 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 3 

 
 

© Bashtovyi A. V., Fechan A. V.,  2025 
DOI 10.15588/1607-3274-2025-3-2  
 

ЛІТЕРАТУРА 
1. A survey on the evolution of stream processing systems / 

[M. Fragkoulis, P. Carbone, V. Kalavri et al.] // The 
VLDB Journal. – 2024. – Vol. 33, № 2. – P. 507–541. 
DOI: 10.1007/s00778-023-00819-8 

2. Sasaki Y. A survey on IoT big data analytic systems: 
Current and future / Y. Sasaki // IEEE Internet of Things 
Journal. – 2022. – Vol. 9, № 2. – P. 1024–1036. DOI: 
10.1109/JIOT.2021.3131724 

3. Bashtovyi A. Change data capture for migration to event-
driven microservices: Case study / A. Bashtovyi, 
A. Fechan // Proc. of the IEEE Int. Conf. on Computer 
Science and Information Technologies (CSIT). – 2023. – 
P. 1–4. DOI: 10.1109/CSIT61576.2023.10324262 

4. A comprehensive benchmarking analysis of fault recov-
ery in stream processing frameworks / [A. Vogel, 
S. Henning, E. Perez-Wohlfeil et al.] // Proc. of the 18th 
ACM Int. Conf. on Distributed and Event-Based Sys-
tems. – 2024. – P. 171–182. DOI: 
10.48550/arXiv.2404.06203 

5. Marcotte P. Multiple fault-tolerance mechanisms in 
cloud systems: A systematic review / P. Marcotte, 
F. Grégoire, F. Petrillo // 2019 IEEE Int. Conf. on Soft-
ware Quality, Reliability and Security Companion (QRS-
C). – 2019. – P. 337–344. DOI: 
10.1109/ISSREW.2019.00104 

6. Friedman E. Introduction to Apache Flink: Stream Proc-
essing for Real Time and Beyond / E. Friedman, 
K. Tzoumas. – Sebastopol : O’Reilly Media, 2016. – 
322 p. 

7. Wu H. A reactive batching strategy of Apache Kafka for 
reliable stream processing in real-time / H. Wu, 
Z. Shang, G. Peng, K. Wolter // 2020 IEEE 31st Int. 
Symp. on Software Reliability Engineering (ISSRE). – 
2020. – P. 252–261. – DOI: 
10.1109/ISSRE5003.2020.00028 

8. Van Dongen G. Evaluation of stream processing frame-
works for fault tolerance and performance metrics / 

G. Van Dongen, D. Van den Poel // IEEE Access. – 
2021. – Vol. 9. – P. 102349–102365. DOI: 
10.1109/TPDS.2020.2978480 

9. Venkataraman S. Cost of fault-tolerance on data stream 
processing / [S. Venkataraman, Z. Yang, M. Parashar et 
al.] // Proc. of the VLDB Endowment. – 2017. – Vol. 10, 
№ 11. – P. 1478–1491. DOI: 10.1007/978-3-030-10549-
5_2 

10. Grambow M. Benchmarking Microservice Platforms and 
Applications in the Cloud / M. Grambow. – Berlin : TU 
Berlin, 2024. – [in press]. 

11. Henning S. Benchmarking scalability of stream process-
ing frameworks deployed as microservices in the cloud / 
S. Henning, W. Hasselbring // Journal of Systems and 
Software. – 2024. – Vol. 208. – P. 111879. DOI: 
10.1016/j.jss.2023.111879 

12. A comprehensive study on fault tolerance in stream proc-
essing systems / [X. Wang, C. Zhang, J. Fang et al.] // 
Frontiers of Computer Science. – 2022. – Vol. 16. – 
P. 162603. DOI: 10.1007/s11704-020-0248-x 

13. A dynamic resource controller for resolving quality of 
service issues in modern streaming processing engines /  
[M. R. Hoseiny Farahabady, J. Taheri,  A. Y. Zomaya et 
al.] // 2020 IEEE 19th Int. Symp. on Network Computing 
and Applications (NCA). – 2020. – P. 1–8. DOI: 
10.1109/NCA51143.2020.9306697 

14. Van Dongen G. A performance analysis of fault recovery 
in stream processing frameworks / G. Van Dongen, 
D. Van den Poel // IEEE Access. – 2021. – Vol. 9. – 
P. 93745–93763. DOI: 10.1109/ACCESS.2021.3093208 

15. Van Dongen G. Open stream processing benchmark: an 
extensive analysis of distributed stream processing 
frameworks : Master’s thesis / G. Van Dongen. – Ghent : 
Ghent University, Faculty of Economics and Business 
Administration, 2021. – 112 p. 

 

 
 

27




