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ABSTRACT 
Context. Modern software systems contain extensive and growing codebases, making code retrieval a critical task for software 

engineers. Traditional code search methods rely on keyword-based matching or structural analysis but often fail to capture the se-
mantic intent of user queries or struggle with unstructured and inconsistently documented code. Recently, semantic vector search and 
large language models (LLMs) have shown promise in enhancing code understanding. The problem – is designing a scalable, accu-
rate, and hybrid code search method capable of retrieving relevant code snippets based on both textual queries and semantic context, 
while supporting parallel processing and metadata enrichment. 

Objective. The goal of the study is to develop a hybrid method for semantic code search by combining keyword-based filtering 
and embedding-based retrieval enhanced with LLM-generated summaries and semantic tags. The aim is to improve accuracy and 
efficiency in locating relevant code elements across large code repositories. 

Method. A two-path search method with post-processing is proposed, where textual keyword search and embedding-based se-
mantic search are executed in parallel. Code blocks are preprocessed using GPT-4o model to generate natural-language summaries 
and semantic tags. 

Results. The method has been implemented and validated on a .NET codebase, demonstrating improved precision in retrieving 
semantically relevant methods. The combination of parallel search paths and LLM-generated metadata enhanced both result quality 
and responsiveness. Additionally, LLM-post-processing was applied to the top-most relevant results, enabling more precise identifi-
cation of code lines matching the query within retrieved snippets. Other results can be further refined on-demand. 

Conclusions. Experimental findings confirm the operability and practical applicability of the proposed hybrid code search 
framework. The system’s modular architecture supports real-time developer workflows, and its extensibility enables future improve-
ments through active learning and user feedback. Further research may focus on optimizing embedding selection strategies, integrat-
ing automatic query rewriting, and scaling across polyglot code environments.  

KEYWORDS: hybrid code search, vector search, semantic embeddings, code summarization, LLM-generated metadata, cosine 
similarity, textual relevance, class and method retrieval, class-based indexing, software engineering. 

 
ABBREVIATIONS 

AST is an abstract syntax tree; 
LLM is a large language model; 
RAG is a retrieval augmented generation; 
NLP is a natural language processing; 
AI is an artificial intelligence; 
GPT is a generative pre-trained transformer; 
HNSW is a hierarchical navigable small world; 
MRR is an average inverse rank of the first relevant 

search result. 
 

NOMENCLATURE 
B  is a set of source code blocks; 

ib  is a source code block; 

q  is a user-supplied natural language query; 

S  is a set of summaries of code blocks; 
E  is a set of summary embeddings; 
X  is input data; 
Y   is output data that represents search results; 
f  is a general representation of a function that per-

forms search based on input parameters; 

iT  is a maximum number of input tokens provided to 

GPT-4o model; 

maxT is a maximum tokens GPT-4o model can proc-

ess; 

oT  is a maximum amount of output tokens GPT-4o 

model can produce; 
)( ibC  is a chunking function of a particular code 

block; 

imc  is a chunk of a particular code block; 

)( ijc  is a length of a code chunk; 

)( mjis   is a particular summary within a chunk ijc ; 

is  is a particular summary of a code block; 

LLM  is the general representation of summarization 
function; 

jv


 is an embedding vector of the j-th token in the se-

quence; 

k  is a number of tokens obtained after tokenizing is ; 

M  is an embedding model text-embedding-ada-002; 
d  is a space of embeddings; 

ie


 is a raw sentence-level embedding vector; 

iê  is the L2-normalized embedding vector; 

it  is a token; 

)( itIDF  is an inverse document frequency function; 

d  is a text-based metadata; 
),( qdB  is a term frequency weight; 
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),(25 qdBM  is the lexical relevance score between 

the user’s query q  and the textual representation d  of a 

code unit; 
  is a weighting coefficient (in range [0, 1]) that bal-

ances keyword-based vs. semantic-based relevance; 
)( ibS  is a hybrid relevance score assigned to code 

block ib ; 

)(TopK  is a function that returns the K highest-

scoring elements from the input set; 
Y  is a set of top-K ranked results; 
L  is a total loss across all examples, evaluated using a 

binary cross-entropy loss function; 
)( ibGPTR  is a function that refines exact lines of 

code inside a code block ib  using GPT-4o model; 

topY  is a set of the top most relevant search results. 

 
INTRODUCTION 

Effective code retrieval is pivotal in modern software 
development, enabling developers to efficiently locate 
and reuse existing code snippets. Traditional code search 
methods have predominantly relied on keyword-based 
approaches, which, while straightforward, often fail to 
capture the nuanced semantics of programming languages 
and the intent behind code implementations. This limita-
tion becomes particularly evident in large-scale code-
bases, where the sheer volume and complexity of code 
can hinder accurate retrieval. 

Recent advancements in artificial intelligence and 
natural language processing have introduced semantic 
search techniques that utilize embeddings to represent 
code and queries in a continuous vector space. These em-
beddings facilitate the retrieval of code snippets based on 
semantic similarity rather than exact keyword matches, 
thereby enhancing search relevance. However, solely re-
lying on semantic embeddings can overlook the precision 
offered by traditional keyword searches, especially when 
specific syntax or identifiers are involved.  

The object of study is the process of searching and 
retrieving relevant code fragments from large-scale and 
semantically diverse software codebases.  

The subject of study is the methods and models for 
hybrid code search that combine textual keyword match-
ing, semantic embedding-based retrieval, and metadata-
enriched indexing. 

The known code search approaches and algorithms 
described by various authors and applied across different 
domains, including traditional keyword-based [1–2, 4] 
and structural analysis methods [3], are often limited in 
capturing the semantic context of code, especially in large 
and heterogeneous codebases. These methods typically 
rely on exact textual matches or static syntactic represen-
tations, which restrict their effectiveness in scenarios 
where the user query expresses intent rather than specific 
code tokens. 

However, several recent studies [5–9] have explored 
semantic search or other not straightforward techniques 
based on neural models to enhance retrieval relevance. 
While these approaches demonstrate improvements in 
understanding code semantics, they generally do not pro-
vide a unified method that combines semantic search, 
keyword filtering, and metadata-based enrichment into a 
parallel and scalable architecture suitable for practical use 
in real-world software engineering environments. 

The purpose of the work is to develop a method and 
incorporate it into an efficient and scalable hybrid model 
for semantic code search, which combines keyword-based 
filtering, embedding-based retrieval, and LLM-generated 
metadata. The proposed model is intended to serve as a 
practical framework for software engineers to search and 
retrieve relevant code fragments from large-scale code-
bases based on both natural language queries and struc-
tural context. 

 
1 PROBLEM STATEMENT 

Suppose we have a set of source code chunks 
},...,,{ 21 nbbbB   from a software codebase, and a user-

supplied natural language query q , which represents the 

search intent. Each chunk Bbi   contains one or more 

code blocks. 
The task is to develop a method that will perform an 

accurate hybrid code search method to retrieve a set of 
relevant source code sections according to the natural 
language query q .  

This can be represented by the following model: 
 

,:

},ˆ{},{},,,,{

YXf

eEsSqESBX ii




 (1)

 
where the function f from input X generates an output Yʹ 
which represents the search results. 

 
2 REVIEW OF THE LITERATURE 

A typical keyword search is often carried out using al-
gorithms such as Rabin-Karp or Knuth-Morris-Pratt. 
These algorithms are commonly employed in the devel-
opment of frameworks designed to detect plagiarism in 
text documents, as outlined in the study [1]. However, 
these algorithms are not effective for code search, as they 
can only detect specific text patterns based on explicitly 
defined key phrases. As a result, they are not suitable for 
tasks that demand more advanced search techniques. 

Pattern matching search, or Regex search, is a versa-
tile tool that enables flexible string matching by defining 
complex patterns. It is widely supported across various 
programming languages, as it is integrated into text proc-
essing libraries. In a particular publication [2], RunEx is a 
code search tool designed for programming instructors to 
easily identify patterns and mistakes in students’ code. It 
enhances traditional search methods by incorporating 
runtime values and provides a user-friendly interface for 
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constructing expressive queries. RunEx outperforms base-
line systems in accuracy and introduces a new approach 
for analyzing student code at scale. However, the indus-
trial program code is a much more complex structure than 
simple text, so other methods for code search are re-
quired. 

The methods mentioned earlier are useful only for tex-
tual search. However, they cannot be employed for proc-
essing difficult code structures. For this, the abstract syn-
tax tree analysis is applicable. For example, paper [3] 
introduces the similarity detection technique that uses 
richer structural information while ensuring reasonable 
execution time. It generates syntax trees from program 
code, extracts connected n-gram structure tokens, and 
compares them using cosine correlation in the vector 
space model. 

In general, there are a lot of AST-based methods are 
used and already provided in the most integrated devel-
opment environments to enhance code detection, correc-
tion, syntax highlighting, and search by dependency ref-
erences. However, understanding the AST is not always 
needed. For example, publication [4] proposes a model 
designed to improve code search by combining the advan-
tages of deep learning models like DeepCS with indexing 
techniques for faster search. This model identifies and 
removes irrelevant keywords, performs fuzzy search with 
key query terms using Elasticsearch, and re-ranks results 
based on sequential token matching. 

However, even using Elasticsearch database for index-
ing, standard search utilities don’t support semantic 
search, which has become even more popular and effec-
tive with generative AI development in the last few years. 
The paper [5] introduces an annotation-based code search 
engine that addresses information loss by extracting fea-
tures from code annotations from five perspectives. 
Unlike current models that treat code annotations as sim-
ple natural language, the engine preserves structural in-
formation. This approach is much better since it includes 
deep learning, but it still does not support search queries 
in a natural language despite its proximity to semantic 
search. 

The paper [6] proposes an efficient and accurate se-
mantic code search framework using a cascaded approach 
with fast and slow models. The fast model, a transformer 
encoder, optimizes a scalable index for quick retrieval, 
while the slow model re-ranks the top K results to im-
prove accuracy. To reduce memory costs, both models are 
jointly trained with shared parameters. This improves 
accuracy and efficiency but does not integrate keyword-
based filtering or metadata, and the cascaded approach 
adds complexity. 

Another publication [7] introduces RepoRift, a code 
search approach that leverages RAG-powered agents to 
improve the accuracy of code retrieval. By enhancing user 
queries with relevant information from GitHub reposito-
ries, the agents provide more contextually aligned and 
informative inputs to embedding models. The approach 
also incorporates a multi-stream ensemble technique to 
further improve retrieval accuracy. It introduces context-

awareness but relies on external repositories and augmen-
tation agents, which may not generalize or scale in enter-
prise environments. 

The report [8] presents a novel code retrieval system 
using the Dense Passage Retrieval technique, which 
measures functional similarity between code snippets for 
relevance. By leveraging large-scale pre-trained language 
models like CodeBERT and Starencoder, the system effi-
ciently retrieves similar code based on natural language 
descriptions or source code queries. However, it uses pure 
embedding-based retrieval, without support for text-based 
filtering, tag-based classification, or enriched metadata. 

Another paper [9] proposes a code semantic enrich-
ment approach to improve deep code search by aligning 
the semantics of code snippets with developers’ queries. 
Recognizing that code represents low-level implementa-
tion and queries are high-level, the approach enriches 
code snippets with descriptions of similar code implemen-
tations. Based on a large-scale analysis of a large amount 
of Java code-description pairs, the method uses syntactic 
similarity to retrieve similar code for each snippet, en-
hancing its semantic representation. The model is trained 
using an attention mechanism to map pairs of enriched 
code and query into a shared vector space. To further im-
prove representation quality, a multi-perspective co-
attention mechanism with Convolutional Neural Net-
works is applied to capture local correlations. This ap-
proach bridges the semantic gap, but it still does not inte-
grate parallel keyword retrieval, nor does it utilize tags or 
structured metadata for boosting precision. 

Chen et al. use both types of search in their retriever 
and feed results to an LLM. Authors in a conference pa-
per [10] proposed a retrieval-augmented framework for 
improving code suggestions by combining traditional 
information retrieval methods and deep learning-based 
code search with large LLMs. Their system includes a 
retriever that supports multiple query types (e.g., method 
headers, natural language), a formulator that constructs 
prompts using retrieved code, and a generator based on 
LLMs like ChatGPT. The study demonstrates that incor-
porating semantically relevant code snippets significantly 
enhances code generation quality. However, their frame-
work does not explicitly mention summarizing context or 
performing line-level GPT-based retrieval. Instead, they 
concatenate retrieved code snippets with the query for the 
LLM to consume. 

While recent advancements in code search emphasize 
deep learning and semantic retrieval, each of the reviewed 
approaches addresses only part of the challenge – and 
none in the research area offers a unified and effective 
framework for a code-based search. 
 

3 MATERIALS AND METHODS 
Modern code search systems are challenged by the 

semantic gap between a developer’s natural language 
query and the structure and behavior of source code. Tra-
ditional keyword-based approaches, while efficient and 
interpretable, often fail to capture the intent behind a 
query when relevant code does not share lexical similarity 
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with the input terms. Conversely, purely embedding-
based semantic search can retrieve contextually aligned 
results but lacks explainability and may yield less precise 
matches when queries involve specific identifiers or do-
main terms. 

To address these limitations, this work introduces a 
hybrid code search method that combines the strengths of 
both paradigms: the precision of keyword-based retrieval 
and the contextual depth of embedding-based semantic 
search. This hybrid architecture is further enriched 
through the integration of LLM-driven summarization and 
semantic tagging, allowing the system to index not just 
raw code, but also its abstracted intent and purpose. The 
method consists of 3 phases: indexing, retrieval, and post-
processing. Each is described further. 

The indexing phase serves as the preparatory stage in 
the hybrid code search system, where raw source code 
files are transformed into structured, queryable data suit-
able for both keyword-based and embedding-based re-
trieval. In information retrieval systems, indexing refers 
to the process of analyzing and organizing source material 
in a way that enables efficient and accurate search. Within 
the context of this work, indexing involves parsing source 
code files, extracting metadata, generating natural lan-
guage summaries, and creating vector representations of 
these summaries for storage and subsequent retrieval. 

Code summarization is an effective technique for im-
proving code comprehension, maintenance, and reuse by 
automatically generating natural language descriptions of 
source code [11], so this method is used to provide de-
scriptive text for code blocks for further search. 

Each file in the codebase is processed independently. 
The content of the file is read and passed through a natu-
ral language model to generate a descriptive summary that 
captures the file’s functional role and behavioral seman-
tics. This summary is intended to reflect how a human 
developer might describe the purpose of the file in natural 
terms, which enhances its compatibility with natural lan-
guage queries. For most files, especially those of modest 
length, the summarization is performed in a single pass 
using the LLM of the GPT-4o model. The entire file con-
tent is provided as input, and a concise, high-level sum-
mary is returned. 

However, in the case of large files – particularly those 
exceeding the context window of the language model – a 
token-based chunking strategy is employed.  

Rather than attempting to identify logical or syntactic 
boundaries within the file, the content is split into fixed-
size chunks that fit within the model’s token limit, con-
sidering space for system instructions and output. The 
maximum input token can be represented by the following 
formula (2): 

 
.max oi TTT   (2)

 
Each chunk is summarized individually, and to main-

tain context coherence across the file, the summary of the 
preceding chunk is passed along as part of the input when 

processing the next chunk. The idea of coherent summari-
zation and semantic continuity is described in the paper 
[12]. This sequential summarization strategy enables the 
aggregation of a consistent and comprehensive summary, 
even for files that cannot be processed in a single request. 
Once all chunks are processed, their summaries are 
merged and refined to form a single summary represent-
ing the entire file. Formula (3) represents a chunking 
function: 
 

.)(

},,...,,{)(

max

21

Tc

cccbC

ij

imiii




  (3)

 
Each chunk is summarized individually using LLM 

(4): 
 

).,...,,,( )()2()1( mjijijiijij ssscLLMs   (4)

 
This is a chained summarization process to maintain 

coherence across chunks. Then, final code block summary 
is constructed (5): 

 
).,...,,( 21 imiii sssLLMs   (5)

 
The sequential summarization continues on the mod-

ule or folder level and finally leads to the summary of the 
whole repository. 

Following the natural language summary generation, 
the system computes a semantic embedding of the sum-
mary using a pre-trained embedding model. This embed-
ding is a high-dimensional vector that captures the seman-
tic meaning of the text and enables efficient similarity 
comparisons with query embeddings during retrieval. The 
selected embedding model for this process is OpenAI’s 
text-embedding-ada-002, which has demonstrated strong 
performance in encoding semantic representations across 
diverse domains. Each vector is associated with the corre-
sponding file and stored in a vector search database to 
facilitate cosine similarity queries during semantic re-
trieval [13]. However, we should take into account that 
the embedding model has a token input limit as well, 
which is 8191 [14]. Thus, there is a need to pass a small 
portion of a summary to this model. The embedding proc-
ess consists of the following steps: tokenization, comput-
ing dense representation, and normalization. 

Tokenization is the process of breaking down text into 
smaller units called tokens, which can be words, sub-
words, or characters. This step is foundational in NLP, 
enabling models to analyze and understand text data. Ef-
fective tokenization is crucial for the performance of sub-
sequent NLP tasks. The following formula (6) represents 
the tokenization process [15]: 

 
.},,...,,{ 21 eki Tkttts   (6)
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After tokenization, each token is mapped to a dense 
vector, known as an embedding. These embeddings are 
continuous vector representations in a high-dimensional 
space, capturing semantic and syntactic information about 
the tokens. Dense embeddings allow models to discern 
relationships between words based on their contextual 
usage [16]. OpenAI uses the mean pooling across tokens 
to obtain the final sentence-level embedding. Formula (7) 
represents of how a sentence or document embedding is 
generated: 

 

.,
1

)(
1

d
j

k

j
jii vv

k
sMe  




 (7)

 

Normalization adjusts these dense vectors to ensure 
consistent scaling and distribution, which is vital for the 
stability and performance of neural networks. Techniques 
like layer normalization standardize the inputs across fea-
tures, facilitating faster convergence during training and 
improving generalization. Formula (8) represents a proc-
ess of how the normalized vector (directional embedding) 
is calculated: 

 

.ˆ
i

i
i e

e
e 


  (8)

 

Now, the final formula is a concise and normalized 
representation of how an embedding vector is computed 
for a text summary (8): 
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Instead of asking the GPT-4o model to generate the 

overall summary, there is a need to make a prompt and 
point that the model should return summaries of each 
meaningful block of code in the file and represent it in a 
JSON format. Fig. 1 illustrates the template of the com-
pletion request to generate the summary of the file. 

 

 
Figure 1 – Prompts to set up the code summarization  

assistant 

The system employs Qdrant as the underlying vector 
database to support high-performance semantic code 
search. Qdrant is selected for its efficient handling of 
high-dimensional vector spaces, making it particularly 
suitable for storing and querying dense embedding vec-
tors derived from code summaries. Its ability to perform 
approximate nearest neighbor search using methods like 
HNSW ensures fast and scalable similarity retrieval 
across large codebases. 

In addition to vector indexing, Qdrant offers real-time 
filtering and payload-based queries, allowing search re-
sults to be refined using additional metadata without post-
processing overhead. This functionality is crucial for hy-
brid search systems that require filtering by attributes 
such as file names, method names, or code block posi-
tions. As a result, Qdrant supports multi-modal retrieval 
by combining semantic similarity scores with structured 
filters. 

The system stores not only the normalized embeddings 
of summarized code chunks, but also custom metadata 
(payload) including the full file path, the name and type 
of the code block (e.g., class, method), and the corre-
sponding line range within the file. This enables precise 
result mapping back to the original source files, as well as 
advanced use cases such as highlighting specific lines or 
linking results to developer tools [17]. The structure of the 
Quadrant data record is shown in Fig. 2. 

 

 
Figure 2 – A data structure for vector database Qdrant 

 

In parallel to vector indexing, the system prepares the 
indexed data for keyword-based search. Summaries of 
code blocks, as well as additional metadata, are indexed 
using Elasticsearch. This database is selected due to its 
support for full-text search, fuzzy matching, BM25 rank-
ing, and scalable indexing capabilities. These features 
make it particularly suitable for handling keyword queries 
where precise or partial text matches are desired [18]. The 
data structure is mostly the same as for vector database, 
but instead of embeddings – summaries and tags are 
saved.  

By separating the vector-based search functionality 
and the text-based search pipeline, the indexing phase 
ensures that both retrieval modes can be executed inde-
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pendently and efficiently. When the code base is changed, 
the system detects changes and re-generates summaries 
with their dense vectors only for an updated file. It can 
happen in the background once per some time range or 
while a search happens if the system detects that the code 
base has changed. 

After this phase, the indexed codebase contains struc-
tured, searchable entries for each file, consisting of its 
metadata, summaries and their dense vectors, and key-
word-indexed content. This structured representation sup-
ports fast and accurate retrieval in the subsequent stages 
of the system. Fig. 3 illustrates the activity diagram of an 
indexing phase. 

The retrieval phase constitutes the core of the hybrid 
search mechanism and is responsible for identifying rele-
vant source code blocks based on user-supplied natural 
language queries. This phase integrates two parallel re-
trieval processes: traditional keyword-based search and 
semantic vector-based search. Both processes operate 
over the indexed representation of the codebase generated 
during the previous phase to maximize the relevance and 
completeness of the search results. 

Upon receiving a natural language query, the system 
performs keyword-based retrieval by submitting the query 
to a full-text search engine, such as Elasticsearch. This 
engine operates over the textual content indexed during 

the indexing phase, particularly focusing on the code 
block summaries and the generated semantic tags. Stan-
dard ranking techniques, including the BM25 scoring 
function (10), are employed to identify documents that 
contain direct lexical overlap with the query terms. This 
retrieval path provides high precision, especially for que-
ries that include domain-specific keywords, identifiers, or 
terminology that match the indexed content directly. 
 

).,()(),(25
1

qdBtIDFqdBM
n

i
i 


 (10)

 

In parallel, the system conducts semantic retrieval by 
encoding the user query into a high-dimensional embed-
ding using the same embedding model employed during 
indexing. In this case, the model used is OpenAI’s text-
embedding-ada-002, which produces vector representa-
tions that reflect the semantic meaning of the input text. 
The resulting query embedding is then compared against 
the stored file embeddings in a vector database using co-
sine similarity as the distance metric (11):  

 

.1ˆˆ,ˆˆ)ˆ,ˆcos(  iqiqiq eeeeee  (11)

 

 
Figure 3 – Activity diagram of indexing phase 
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This retrieval path enables the system to capture con-
ceptual and contextual similarities between the query and 
the code summaries, even when there is no direct lexical 
correspondence. 

The results from both retrieval paths are processed in-
dependently and can be returned as separate ranked lists 
or integrated into a unified ranking. In cases where both 
engines yield results for the same file, these results can be 
merged, with ranking adjusted based on predefined 
weighting or scoring strategies. Each retrieved file entry 
includes associated metadata such as the file name, path, 
summary, and optionally the top-matching tags or score 
explanations from both retrieval methods (12): 

 

)}).(|({
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The dual retrieval strategy enables the system to re-

spond effectively to a wide range of queries, from those 
requiring strict keyword matches to those involving ab-
stract or concept-driven search intent. It also supports 
fallback mechanisms in cases where one of the retrieval 
paths returns no results or results of low relevance. This 
phase concludes with the identification of candidate files 
that are passed to the next stage of the pipeline for more 
granular analysis and line-level code identification. Fig. 4 
illustrates the activity diagram of a retrieval phase. 

Following the retrieval of candidate source code 
blocks through text-based and semantic search mecha-
nisms, the post-processing phase is responsible for nar-
rowing down the search results to the most relevant seg-
ments of code at a finer granularity. This stage is particu-
larly important when user queries pertain to specific func-
tional behavior or logic that is confined to specific code 
lines, rather than the code block as a whole. 

To enable this refinement, each retrieved code block is 
further analyzed using an LLM, which operates on the full 
content of it, its summary, and the original user query. 

The objective of the model is to determine which parts of 
the code are most likely to satisfy the semantic intent of 
the query. This is achieved by prompting the model with 
both the query and the block-level context, asking it to 
identify and return the specific lines or regions of interest 
within the code. If training or evaluation with ground 
truth matches, we may define a binary relevance label 

}1,0{iy  indicating whether code block if  is relevant to 

query q , and predicted score )(ˆ ii fSy  . We can evalu-

ate with binary cross-entropy loss: 
 

 .)ˆ1log()1()ˆlog(
1




n

i
iiii yyyyL  (13)

 
The model receives as input the user’s natural lan-

guage query, the code block summary that was previously 
generated and indexed, and the source code in a line 
range.  

Then, hybrid retrieval with a refinement is shown in 
formula (14): 

 
}.|)({ YbbGPTRY ii   (14)

 
Thus, the entire formula expresses that every code 

block retrieved by the initial hybrid search is further re-
fined using LLM, and the resulting set contains the final, 
context-aware, and human-readable answers that the sys-
tem returns to the user. This operation ensures that the 
output is not just a ranked list of code blocks but a tar-
geted extraction of meaningfully relevant code fragments. 

The prompt structure, which is represented in Fig. 5, 
encourages the model to scan the code in context and lo-
cate logic segments that exhibit semantic alignment with 
the query. In some cases, the model may return an exact 
set of line numbers that correspond to the requested func-
tionality. 
 

 
Figure 4 – Activity diagram of retrieval phase
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Figure 5 – Example of prompts for code lines retrieving within a 

post-processing stage 
To optimize performance and reduce inference time, 

only the most relevant results (typically the top five ac-
cording to the hybrid scoring function) are selected for 
automatic refinement. The remaining results are excluded 
from immediate processing and may be refined on de-
mand, based on user interaction. This selective approach 
ensures scalability while still allowing detailed semantic 
analysis when needed. Thus, the final formula of hybrid 
search with refinement of top 5 the most relevant results 
is presented (15): 

)}.\(|{

}|)({

),5,(

topii

topii

top

YYbb

YbbGPTRY

YTopKY









  (15)

The granularity of analysis in this phase is intended to 
improve the specificity and relevance of search results. 
While previous stages identify files likely to contain rele-
vant content, this phase identifies and highlights the exact 
implementation points within those files. The output of 
this step may be a ranked list of method names, code ex-
cerpts, or line ranges, depending on how the model is 
instructed and the formatting required for downstream 
presentation. Fig. 6 illustrates the post-processing phase. 

The proposed hybrid code retrieval method integrates 
structured indexing, dual-mode retrieval, and LLM-
assisted post-processing to address the challenges of se-
mantic code search in large codebases. Beginning with 
context-aware summarization and embedding during the 
indexing phase, the system enables flexible querying 
through parallel keyword-based and vector-based search 
mechanisms. The retrieval process balances lexical preci-
sion and semantic understanding, while the final line-level 
refinement phase leverages large language models to iso-
late the most relevant code fragments based on user in-
tent. Together, these components form a scalable and con-
text-sensitive search pipeline that supports both broad 
discovery and fine-grained code navigation. 

 
Figure 6 – Post-processing phase

4 EXPERIMENTS 
To evaluate the applicability and effectiveness of the 

proposed hybrid code search method, a set of experiments 
was conducted using a real-world software codebase. The 
system was implemented in a .NET-based environment, 
incorporating components for indexing, vector storage, 
text search, and OpenAI API integration for both summa-
rization and post-retrieval code refinement. 

The primary goal of the experiments was to assess the 
ability of the system to retrieve semantically relevant code 
segments based on natural language queries. A test code-
base in the domain of service management was selected, 
containing multiple classes and methods written in C#. 
This environment enabled the evaluation of the pipeline 
across different levels of abstraction – from file-level in-
dexing to line-level code extraction. 

The indexing phase was implemented as a standalone 
preprocessing utility that analyzed all .cs files in the 
selected codebase. Each file was passed through a 
summarization module based on OpenAI’s GPT-4o 
model. In cases where a file exceeded the input length 
limitations, a recursive chunking strategy was applied, 
and the final summary was constructed by aggregating 
context-enriched chunk-level summaries. 

The generated summaries were then embedded using 
the text-embedding-ada-002 model, and the resulting 
vectors were stored in a local instance of Qdrant, a high-
performance vector database. Simultaneously, the 
summaries and metadata – including generated semantic 
tags – were indexed using a locally hosted Elasticsearch 
instance to support keyword-based retrieval. 
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Natural language queries were submitted through a 
simple web interface. Upon query submission, both text-
based search and embedding-based retrieval were 
performed in parallel. Retrieved results were displayed to 
the user along with cosine similarity scores and matched 
summaries. 

Following initial retrieval, the full source code of 
selected files was passed to GPT-4o for code analysis. 
The model was prompted with the original query and the 
code block summary and instructed to return the most 
relevant methods or code blocks in structured JSON 
format, including estimated line numbers and explanatory 
notes. This allowed for refined pinpointing of logic 
relevant to the user’s intent. 

A representative example query “Find places where 
service orders are filtered by ID” was tested on the in-
dexed codebase. The system successfully retrieved a 
method named SearchOrders located in the OrderSer-
vice.cs file. The post-processing phase highlighted the 
exact lines performing filtering based on the CustomerId 
field. The result was presented with the matched method, 
its position in the file, and a step-by-step explanation of 
the code logic. 
 

5 RESULTS 
To evaluate the performance and responsiveness of the 

implemented hybrid code search pipeline, a series of ex-
periments were conducted using a codebase consisting of 
25 C# source files. The average file size was approxi-
mately 30–40 KB, and the files varied in structural com-
plexity, encompassing service classes, data repositories, 
and utility methods. The objective of the evaluation was 
to confirm the system’s ability to index, retrieve, and re-
fine relevant code fragments using the described key-
word-based, embedding-based, and LLM-assisted meth-
ods. 

During the indexing phase, all files were successfully 
processed without failure. Summarization of each file or 
chunk (for larger files) was completed using the OpenAI 
GPT-4o model, followed by embedding generation with 
the text-embedding-ada-002 model. Vector data was 
stored in a Qdrant instance running locally, while summa-
ries and tags were indexed using a local Elasticsearch 
server. 

To test retrieval performance, 10 queries were se-
lected, each representing typical developer requests such 
as “Find where service orders are filtered by ID” or 
“Show methods that generate auth tokens.” For each 
query, both search paths were executed in parallel. On 
average, the system returned relevant results within 0.90 
to 1.0 seconds, including post-processing by GPT for line-
level code matching only for the most relevant results. 

The average time for OpenAI API calls during post-
retrieval refinement was approximately 0.94 seconds, 

while the combined time for vector search and keyword 
search was under 500 milliseconds. These results indicate 
that the system can operate within practical response 
times suitable for interactive use. During testing, the stan-
dard Tier 1 subscription was used. In high-throughput 
scenarios, batch processing or queuing would be neces-
sary to avoid exceeding request quotas. 

To better understand the effectiveness of the proposed 
hybrid code search method, a benchmarking comparison 
(Table 1) was conducted against two baseline approaches: 

– baseline A – traditional keyword-based retrieval us-
ing Elasticsearch with BM25 scoring; 

– baseline B – embedding-only semantic search using 
text-embedding-ada-002 vectors in Qdrant without key-
word filtering or refinement; 

– proposed hybrid approach – parallel execution of 
both search strategies, followed by GPT-based post-
processing for line-level code matching. 

The evaluation dataset consisted of 10 developer-like 
queries formulated in natural language. Relevance was 
manually assessed by analyzing whether the retrieved 
code matched the intended logic or functionality de-
scribed in the query. The evaluation was performed using 
the following metrics:  

– top-1 precision – if the top result was relevant; 
– top-5 recall – the proportion of relevant items among 

the top 5; 
– MRR – average inverse rank of the first relevant re-

sult [19]; 
– average response time – total time to produce the fi-

nal result, including post-processing. 
The hybrid approach significantly outperforms both 

baselines in terms of retrieval quality, particularly for 
queries with complex or abstract semantics. The use of 
LLM-based summarization and refinement contributes to 
higher Top-1 precision and MRR scores, demonstrating 
the system’s ability to retrieve not only relevant files but 
also the most accurate code segments within them. 

While the hybrid method with refinement introduces 
additional latency due to post-processing, the average 
response time of approximately 0.94 seconds remains 
within acceptable bounds for interactive search tasks and 
it has been optimizing by handling a refinement of the 
most relevant result and the rest of results are intended to 
be processed on demand by user interaction. In compari-
son, embedding-only search is faster but occasionally less 
precise due to the absence of textual disambiguation and 
LLM refinement. 

The results confirm the system’s ability to produce ac-
curate, context-sensitive, and developer-usable code 
search outputs across a heterogeneous codebase while 
maintaining acceptable execution times for all processing 
stages. 

Table 1 – Benchmarking comparison 
Method Top-1 precision Top-5 recall MRR Average time (s) 

Baseline A (BM25) 0.58 0.69 0.61 0.40 
Baseline B (Embeddings) 0.75 0.88 0.80 0.28 
Hybrid 0.91 1.00 0.92 0.94 
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6 DISCUSSION 
The proposed hybrid code retrieval method demon-

strates practical applicability for source code search 
across large-scale and heterogeneous codebases. In com-
parison to prior research in code search and semantic re-
trieval [4–10], this approach eliminates the need for train-
ing custom models by leveraging general-purpose, pre-
trained language models. Unlike domain-specific models, 
which often require fine-tuning on large, curated datasets, 
the use of GPT-based APIs allows the system to remain 
flexible and adaptable to a broad range of programming 
styles and query types without retraining. 

While custom-trained models may exhibit strong per-
formance in narrow domains, they often suffer from lim-
ited generalization when applied to unfamiliar codebases 
or other programming languages. The hybrid method pre-
sented in this work benefits from the broad domain cover-
age and general language understanding embedded in 
OpenAI’s GPT models, enabling it to interpret developer 
queries more naturally and perform code summarization 
in a context-aware manner. 

An advantage of the system lies in its layered architec-
ture, which combines the precision of keyword-based 
retrieval with the semantic depth of vector-based embed-
ding search. The addition of GPT-based post-processing 
further enhances the system’s ability to localize relevant 
code fragments within files, aligning search outputs with 
user intent. The results of the experiments confirm that 
the hybrid method achieves higher precision and recall 
compared to standalone search methods, especially for 
abstract or semantically rich queries. 

However, the system also inherits limitations from its 
reliance on external APIs. The OpenAI GPT models, 
while highly capable, are constrained by token-based lim-
its and subscription-dependent rate quotas. These con-
straints may impact the scalability of the method in high-
throughput or real-time search scenarios. To mitigate this, 
the system includes a chunking and recursive summariza-
tion strategy to handle large files, ensuring full coverage 
of the codebase even when input sizes exceed model ca-
pacity. 

Moreover, while the current pipeline performs well in 
general software engineering contexts, future improve-
ments may involve domain-adaptive summarization or the 
incorporation of static analysis techniques (e.g., AST 
matching or control flow analysis) to further enrich search 
quality. Another promising direction involves integrating 
the hybrid method into development environments allow-
ing for contextual, in-line code discovery and reuse dur-
ing software maintenance or refactoring tasks. 

 
CONCLUSIONS 

The hybrid code search method was developed and 
implemented as a solution that combines keyword-based 
retrieval, vector-based semantic search, and LLM-driven 
summarization and refinement. The system was tested on 
real-world codebases and evaluated using standard search 
effectiveness metrics to validate its practical applicability. 

The scientific novelty of the obtained results lies in 
the integration of multiple retrieval modalities into a uni-
fied pipeline, enhanced by recursive summarization and 
line-level reasoning via GPT model. The proposed 
method introduces a structured, context-aware approach 
to code retrieval, enabling semantic alignment between 
developer queries and relevant code segments across a 
large-scale codebase.  

The practical significance of the obtained results is 
reflected in the method’s ability to automate code re-
trieval tasks without relying on rigid structures or manu-
ally crafted rules. This flexibility allows developers to 
search using natural language and receive highly relevant 
results at both the file and method levels. The modular 
architecture facilitates integration into software engineer-
ing workflows, development environments, and documen-
tation systems. 

Prospects for further research include exploring op-
timization strategies to reduce dependency on API rate 
limits and improve runtime performance in large-scale 
deployments. Additional directions may involve the use 
of static code analysis techniques, domain-adaptive sum-
marization models, and the expansion of hybrid retrieval 
methods into other software engineering domains, includ-
ing automated documentation, test generation, and intelli-
gent code navigation tools. 
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МЕТОД ПАРАЛЕЛЬНОГО ГІБРИДНОГО ПОШУКУ ДЛЯ ВЕЛИКИХ РЕПОЗИТОРІЇВ КОДУ 
 

Бойко В. О. – асистент кафедри інженерії програмного забезпечення Хмельницького національного університету,  
Хмельницький, Україна. 

AНОТАЦІЯ 
Актуальність. Сучасні програмні системи містять великі кодові бази, що робить пошук коду критично важливим за-

вданням для розробників програмного забезпечення. Традиційні методи пошуку коду спираються на співставлення за клю-
човими словами або структурний аналіз, але часто не здатні відобразити семантичний зміст запитів користувачів або мають 
проблеми з неструктурованим та непослідовно задокументованим кодом. Останнім часом семантичний векторний пошук і 
великі мовні моделі (LLM) показали перспективи в покращенні розуміння коду. Проблема полягає в розробці масштабова-
ного, точного та гібридного методу пошуку коду, здатного знаходити відповідні фрагменти коду на основі як текстових 
запитів, так і семантичного контексту, при цьому підтримуючи паралельну обробку та пошуку на основі метаданих.  

Мета роботи – розробка гібридного методу семантичного пошуку коду шляхом комбінування фільтрації за ключовими 
словами та пошуку на основі вбудованих представлень, доповненого сумаризацією та семантичними тегами, згенерованими 
за допомогою LLM для підвищення точності та ефективності пошуку відповідних елементів коду у великих кодових репо-
зиторіях. 

Метод. Для досягнення мети дослідження розроблено метод пошуку з двома шляхами з пост-обробкою, де пошук за те-
кстовими ключовими словами та пошук на основі вбудовуваних семантичних представлень виконуються паралельно. Блоки 
коду попередньо обробляються за допомогою GPT-4o моделі для генерування сумаризації та семантичних тегів. 

Результати. Метод реалізовано та перевірено на кодовій базі .NET, що продемонструвало покращену точність при зна-
ходженні семантично релевантних методів. Комбінація паралельних шляхів пошуку та метаданих, згенерованих LLM, по-
кращила якість результатів. Для підвищення релевантності було застосовано LLM-постобробку яка виконується над 
найбільш релевантними результатами, що дозволяє точніше локалізувати потрібні рядки коду в межах знайдених 
фрагментів. Інші результати можуть бути оброблені на вимогу користувача. 

Висновки. Експериментальні результати підтвердили працездатність та практичну застосовність запропонованої гібри-
дної системи пошуку коду. Модульна архітектура системи підтримує робочі процеси розробників в реальному часі, а її роз-
ширюваність дозволяє впроваджувати майбутні покращення через активне навчання та зворотний зв’язок від користувачів. 
Подальші дослідження можуть бути спрямовані на оптимізацію стратегій вибору вбудованих представлень, інтеграцію ав-
томатичного переформатування запитів та масштабування у багатомовних кодових середовищах. 

КЛЮЧОВІ СЛОВА: гібридний пошук коду, векторний пошук, семантичні вбудовування, сумаризація коду, метадані, 
згенеровані LLM, косинусна схожість, текстова релевантність, пошук класів та методів, індексування на основі класів, ін-
женерія програмного забезпечення. 
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