
p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2025. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. № 3

© Boiko V. O., 2025
DOI 10.15588/1607-3274-2025-3-6

UDC 004.93, 004.8

METHOD OF PARALLEL HYBRID SEARCH
FOR LARGE-SCALE CODE REPOSITORIES

Boiko V. O. – Assistant of the Department of Software Engineering, Khmelnytskyi National University, Khmelnyt-

skyi, Ukraine.

ABSTRACT
Context. Modern software systems contain extensive and growing codebases, making code retrieval a critical task for software

engineers. Traditional code search methods rely on keyword-based matching or structural analysis but often fail to capture the se-
mantic intent of user queries or struggle with unstructured and inconsistently documented code. Recently, semantic vector search and
large language models (LLMs) have shown promise in enhancing code understanding. The problem – is designing a scalable, accu-
rate, and hybrid code search method capable of retrieving relevant code snippets based on both textual queries and semantic context,
while supporting parallel processing and metadata enrichment.

Objective. The goal of the study is to develop a hybrid method for semantic code search by combining keyword-based filtering
and embedding-based retrieval enhanced with LLM-generated summaries and semantic tags. The aim is to improve accuracy and
efficiency in locating relevant code elements across large code repositories.

Method. A two-path search method with post-processing is proposed, where textual keyword search and embedding-based se-
mantic search are executed in parallel. Code blocks are preprocessed using GPT-4o model to generate natural-language summaries
and semantic tags.

Results. The method has been implemented and validated on a .NET codebase, demonstrating improved precision in retrieving
semantically relevant methods. The combination of parallel search paths and LLM-generated metadata enhanced both result quality
and responsiveness. Additionally, LLM-post-processing was applied to the top-most relevant results, enabling more precise identifi-
cation of code lines matching the query within retrieved snippets. Other results can be further refined on-demand.

Conclusions. Experimental findings confirm the operability and practical applicability of the proposed hybrid code search
framework. The system’s modular architecture supports real-time developer workflows, and its extensibility enables future improve-
ments through active learning and user feedback. Further research may focus on optimizing embedding selection strategies, integrat-
ing automatic query rewriting, and scaling across polyglot code environments.

KEYWORDS: hybrid code search, vector search, semantic embeddings, code summarization, LLM-generated metadata, cosine
similarity, textual relevance, class and method retrieval, class-based indexing, software engineering.

ABBREVIATIONS

AST is an abstract syntax tree;
LLM is a large language model;
RAG is a retrieval augmented generation;
NLP is a natural language processing;
AI is an artificial intelligence;
GPT is a generative pre-trained transformer;
HNSW is a hierarchical navigable small world;
MRR is an average inverse rank of the first relevant

search result.

NOMENCLATURE
B is a set of source code blocks;

ib is a source code block;

q is a user-supplied natural language query;

S is a set of summaries of code blocks;
E is a set of summary embeddings;
X is input data;
Y  is output data that represents search results;
f is a general representation of a function that per-

forms search based on input parameters;

iT is a maximum number of input tokens provided to

GPT-4o model;

maxT is a maximum tokens GPT-4o model can proc-

ess;

oT is a maximum amount of output tokens GPT-4o

model can produce;
)(ibC is a chunking function of a particular code

block;

imc is a chunk of a particular code block;

)(ijc is a length of a code chunk;

)(mjis  is a particular summary within a chunk ijc ;

is is a particular summary of a code block;

LLM is the general representation of summarization
function;

jv


 is an embedding vector of the j-th token in the se-

quence;

k is a number of tokens obtained after tokenizing is ;

M is an embedding model text-embedding-ada-002;
d is a space of embeddings;

ie


 is a raw sentence-level embedding vector;

iê is the L2-normalized embedding vector;

it is a token;

)(itIDF is an inverse document frequency function;

d is a text-based metadata;
),(qdB is a term frequency weight;

52

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2025. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. № 3

© Boiko V. O., 2025
DOI 10.15588/1607-3274-2025-3-6

),(25 qdBM is the lexical relevance score between

the user’s query q and the textual representation d of a

code unit;
 is a weighting coefficient (in range [0, 1]) that bal-

ances keyword-based vs. semantic-based relevance;
)(ibS is a hybrid relevance score assigned to code

block ib ;

)(TopK is a function that returns the K highest-

scoring elements from the input set;
Y is a set of top-K ranked results;
L is a total loss across all examples, evaluated using a

binary cross-entropy loss function;
)(ibGPTR is a function that refines exact lines of

code inside a code block ib using GPT-4o model;

topY is a set of the top most relevant search results.

INTRODUCTION

Effective code retrieval is pivotal in modern software
development, enabling developers to efficiently locate
and reuse existing code snippets. Traditional code search
methods have predominantly relied on keyword-based
approaches, which, while straightforward, often fail to
capture the nuanced semantics of programming languages
and the intent behind code implementations. This limita-
tion becomes particularly evident in large-scale code-
bases, where the sheer volume and complexity of code
can hinder accurate retrieval.

Recent advancements in artificial intelligence and
natural language processing have introduced semantic
search techniques that utilize embeddings to represent
code and queries in a continuous vector space. These em-
beddings facilitate the retrieval of code snippets based on
semantic similarity rather than exact keyword matches,
thereby enhancing search relevance. However, solely re-
lying on semantic embeddings can overlook the precision
offered by traditional keyword searches, especially when
specific syntax or identifiers are involved.

The object of study is the process of searching and
retrieving relevant code fragments from large-scale and
semantically diverse software codebases.

The subject of study is the methods and models for
hybrid code search that combine textual keyword match-
ing, semantic embedding-based retrieval, and metadata-
enriched indexing.

The known code search approaches and algorithms
described by various authors and applied across different
domains, including traditional keyword-based [1–2, 4]
and structural analysis methods [3], are often limited in
capturing the semantic context of code, especially in large
and heterogeneous codebases. These methods typically
rely on exact textual matches or static syntactic represen-
tations, which restrict their effectiveness in scenarios
where the user query expresses intent rather than specific
code tokens.

However, several recent studies [5–9] have explored
semantic search or other not straightforward techniques
based on neural models to enhance retrieval relevance.
While these approaches demonstrate improvements in
understanding code semantics, they generally do not pro-
vide a unified method that combines semantic search,
keyword filtering, and metadata-based enrichment into a
parallel and scalable architecture suitable for practical use
in real-world software engineering environments.

The purpose of the work is to develop a method and
incorporate it into an efficient and scalable hybrid model
for semantic code search, which combines keyword-based
filtering, embedding-based retrieval, and LLM-generated
metadata. The proposed model is intended to serve as a
practical framework for software engineers to search and
retrieve relevant code fragments from large-scale code-
bases based on both natural language queries and struc-
tural context.

1 PROBLEM STATEMENT

Suppose we have a set of source code chunks
},...,,{ 21 nbbbB  from a software codebase, and a user-

supplied natural language query q , which represents the

search intent. Each chunk Bbi  contains one or more

code blocks.
The task is to develop a method that will perform an

accurate hybrid code search method to retrieve a set of
relevant source code sections according to the natural
language query q .

This can be represented by the following model:

,:

},ˆ{},{},,,,{

YXf

eEsSqESBX ii




 (1)

where the function f from input X generates an output Yʹ
which represents the search results.

2 REVIEW OF THE LITERATURE

A typical keyword search is often carried out using al-
gorithms such as Rabin-Karp or Knuth-Morris-Pratt.
These algorithms are commonly employed in the devel-
opment of frameworks designed to detect plagiarism in
text documents, as outlined in the study [1]. However,
these algorithms are not effective for code search, as they
can only detect specific text patterns based on explicitly
defined key phrases. As a result, they are not suitable for
tasks that demand more advanced search techniques.

Pattern matching search, or Regex search, is a versa-
tile tool that enables flexible string matching by defining
complex patterns. It is widely supported across various
programming languages, as it is integrated into text proc-
essing libraries. In a particular publication [2], RunEx is a
code search tool designed for programming instructors to
easily identify patterns and mistakes in students’ code. It
enhances traditional search methods by incorporating
runtime values and provides a user-friendly interface for

53

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2025. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. № 3

© Boiko V. O., 2025
DOI 10.15588/1607-3274-2025-3-6

constructing expressive queries. RunEx outperforms base-
line systems in accuracy and introduces a new approach
for analyzing student code at scale. However, the indus-
trial program code is a much more complex structure than
simple text, so other methods for code search are re-
quired.

The methods mentioned earlier are useful only for tex-
tual search. However, they cannot be employed for proc-
essing difficult code structures. For this, the abstract syn-
tax tree analysis is applicable. For example, paper [3]
introduces the similarity detection technique that uses
richer structural information while ensuring reasonable
execution time. It generates syntax trees from program
code, extracts connected n-gram structure tokens, and
compares them using cosine correlation in the vector
space model.

In general, there are a lot of AST-based methods are
used and already provided in the most integrated devel-
opment environments to enhance code detection, correc-
tion, syntax highlighting, and search by dependency ref-
erences. However, understanding the AST is not always
needed. For example, publication [4] proposes a model
designed to improve code search by combining the advan-
tages of deep learning models like DeepCS with indexing
techniques for faster search. This model identifies and
removes irrelevant keywords, performs fuzzy search with
key query terms using Elasticsearch, and re-ranks results
based on sequential token matching.

However, even using Elasticsearch database for index-
ing, standard search utilities don’t support semantic
search, which has become even more popular and effec-
tive with generative AI development in the last few years.
The paper [5] introduces an annotation-based code search
engine that addresses information loss by extracting fea-
tures from code annotations from five perspectives.
Unlike current models that treat code annotations as sim-
ple natural language, the engine preserves structural in-
formation. This approach is much better since it includes
deep learning, but it still does not support search queries
in a natural language despite its proximity to semantic
search.

The paper [6] proposes an efficient and accurate se-
mantic code search framework using a cascaded approach
with fast and slow models. The fast model, a transformer
encoder, optimizes a scalable index for quick retrieval,
while the slow model re-ranks the top K results to im-
prove accuracy. To reduce memory costs, both models are
jointly trained with shared parameters. This improves
accuracy and efficiency but does not integrate keyword-
based filtering or metadata, and the cascaded approach
adds complexity.

Another publication [7] introduces RepoRift, a code
search approach that leverages RAG-powered agents to
improve the accuracy of code retrieval. By enhancing user
queries with relevant information from GitHub reposito-
ries, the agents provide more contextually aligned and
informative inputs to embedding models. The approach
also incorporates a multi-stream ensemble technique to
further improve retrieval accuracy. It introduces context-

awareness but relies on external repositories and augmen-
tation agents, which may not generalize or scale in enter-
prise environments.

The report [8] presents a novel code retrieval system
using the Dense Passage Retrieval technique, which
measures functional similarity between code snippets for
relevance. By leveraging large-scale pre-trained language
models like CodeBERT and Starencoder, the system effi-
ciently retrieves similar code based on natural language
descriptions or source code queries. However, it uses pure
embedding-based retrieval, without support for text-based
filtering, tag-based classification, or enriched metadata.

Another paper [9] proposes a code semantic enrich-
ment approach to improve deep code search by aligning
the semantics of code snippets with developers’ queries.
Recognizing that code represents low-level implementa-
tion and queries are high-level, the approach enriches
code snippets with descriptions of similar code implemen-
tations. Based on a large-scale analysis of a large amount
of Java code-description pairs, the method uses syntactic
similarity to retrieve similar code for each snippet, en-
hancing its semantic representation. The model is trained
using an attention mechanism to map pairs of enriched
code and query into a shared vector space. To further im-
prove representation quality, a multi-perspective co-
attention mechanism with Convolutional Neural Net-
works is applied to capture local correlations. This ap-
proach bridges the semantic gap, but it still does not inte-
grate parallel keyword retrieval, nor does it utilize tags or
structured metadata for boosting precision.

Chen et al. use both types of search in their retriever
and feed results to an LLM. Authors in a conference pa-
per [10] proposed a retrieval-augmented framework for
improving code suggestions by combining traditional
information retrieval methods and deep learning-based
code search with large LLMs. Their system includes a
retriever that supports multiple query types (e.g., method
headers, natural language), a formulator that constructs
prompts using retrieved code, and a generator based on
LLMs like ChatGPT. The study demonstrates that incor-
porating semantically relevant code snippets significantly
enhances code generation quality. However, their frame-
work does not explicitly mention summarizing context or
performing line-level GPT-based retrieval. Instead, they
concatenate retrieved code snippets with the query for the
LLM to consume.

While recent advancements in code search emphasize
deep learning and semantic retrieval, each of the reviewed
approaches addresses only part of the challenge – and
none in the research area offers a unified and effective
framework for a code-based search.

3 MATERIALS AND METHODS
Modern code search systems are challenged by the

semantic gap between a developer’s natural language
query and the structure and behavior of source code. Tra-
ditional keyword-based approaches, while efficient and
interpretable, often fail to capture the intent behind a
query when relevant code does not share lexical similarity

54

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2025. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. № 3

© Boiko V. O., 2025
DOI 10.15588/1607-3274-2025-3-6

with the input terms. Conversely, purely embedding-
based semantic search can retrieve contextually aligned
results but lacks explainability and may yield less precise
matches when queries involve specific identifiers or do-
main terms.

To address these limitations, this work introduces a
hybrid code search method that combines the strengths of
both paradigms: the precision of keyword-based retrieval
and the contextual depth of embedding-based semantic
search. This hybrid architecture is further enriched
through the integration of LLM-driven summarization and
semantic tagging, allowing the system to index not just
raw code, but also its abstracted intent and purpose. The
method consists of 3 phases: indexing, retrieval, and post-
processing. Each is described further.

The indexing phase serves as the preparatory stage in
the hybrid code search system, where raw source code
files are transformed into structured, queryable data suit-
able for both keyword-based and embedding-based re-
trieval. In information retrieval systems, indexing refers
to the process of analyzing and organizing source material
in a way that enables efficient and accurate search. Within
the context of this work, indexing involves parsing source
code files, extracting metadata, generating natural lan-
guage summaries, and creating vector representations of
these summaries for storage and subsequent retrieval.

Code summarization is an effective technique for im-
proving code comprehension, maintenance, and reuse by
automatically generating natural language descriptions of
source code [11], so this method is used to provide de-
scriptive text for code blocks for further search.

Each file in the codebase is processed independently.
The content of the file is read and passed through a natu-
ral language model to generate a descriptive summary that
captures the file’s functional role and behavioral seman-
tics. This summary is intended to reflect how a human
developer might describe the purpose of the file in natural
terms, which enhances its compatibility with natural lan-
guage queries. For most files, especially those of modest
length, the summarization is performed in a single pass
using the LLM of the GPT-4o model. The entire file con-
tent is provided as input, and a concise, high-level sum-
mary is returned.

However, in the case of large files – particularly those
exceeding the context window of the language model – a
token-based chunking strategy is employed.

Rather than attempting to identify logical or syntactic
boundaries within the file, the content is split into fixed-
size chunks that fit within the model’s token limit, con-
sidering space for system instructions and output. The
maximum input token can be represented by the following
formula (2):

.max oi TTT  (2)

Each chunk is summarized individually, and to main-

tain context coherence across the file, the summary of the
preceding chunk is passed along as part of the input when

processing the next chunk. The idea of coherent summari-
zation and semantic continuity is described in the paper
[12]. This sequential summarization strategy enables the
aggregation of a consistent and comprehensive summary,
even for files that cannot be processed in a single request.
Once all chunks are processed, their summaries are
merged and refined to form a single summary represent-
ing the entire file. Formula (3) represents a chunking
function:

.)(

},,...,,{)(

max

21

Tc

cccbC

ij

imiii




 (3)

Each chunk is summarized individually using LLM

(4):

).,...,,,()()2()1(mjijijiijij ssscLLMs  (4)

This is a chained summarization process to maintain

coherence across chunks. Then, final code block summary
is constructed (5):

).,...,,(21 imiii sssLLMs  (5)

The sequential summarization continues on the mod-

ule or folder level and finally leads to the summary of the
whole repository.

Following the natural language summary generation,
the system computes a semantic embedding of the sum-
mary using a pre-trained embedding model. This embed-
ding is a high-dimensional vector that captures the seman-
tic meaning of the text and enables efficient similarity
comparisons with query embeddings during retrieval. The
selected embedding model for this process is OpenAI’s
text-embedding-ada-002, which has demonstrated strong
performance in encoding semantic representations across
diverse domains. Each vector is associated with the corre-
sponding file and stored in a vector search database to
facilitate cosine similarity queries during semantic re-
trieval [13]. However, we should take into account that
the embedding model has a token input limit as well,
which is 8191 [14]. Thus, there is a need to pass a small
portion of a summary to this model. The embedding proc-
ess consists of the following steps: tokenization, comput-
ing dense representation, and normalization.

Tokenization is the process of breaking down text into
smaller units called tokens, which can be words, sub-
words, or characters. This step is foundational in NLP,
enabling models to analyze and understand text data. Ef-
fective tokenization is crucial for the performance of sub-
sequent NLP tasks. The following formula (6) represents
the tokenization process [15]:

.},,...,,{ 21 eki Tkttts  (6)

55

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2025. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. № 3

© Boiko V. O., 2025
DOI 10.15588/1607-3274-2025-3-6

After tokenization, each token is mapped to a dense
vector, known as an embedding. These embeddings are
continuous vector representations in a high-dimensional
space, capturing semantic and syntactic information about
the tokens. Dense embeddings allow models to discern
relationships between words based on their contextual
usage [16]. OpenAI uses the mean pooling across tokens
to obtain the final sentence-level embedding. Formula (7)
represents of how a sentence or document embedding is
generated:

.,
1

)(
1

d
j

k

j
jii vv

k
sMe  




 (7)

Normalization adjusts these dense vectors to ensure
consistent scaling and distribution, which is vital for the
stability and performance of neural networks. Techniques
like layer normalization standardize the inputs across fea-
tures, facilitating faster convergence during training and
improving generalization. Formula (8) represents a proc-
ess of how the normalized vector (directional embedding)
is calculated:

.ˆ
i

i
i e

e
e 


 (8)

Now, the final formula is a concise and normalized
representation of how an embedding vector is computed
for a text summary (8):

.)(
1

)(ˆ
1




k

j
jii tM

k
sMe (9)

Instead of asking the GPT-4o model to generate the

overall summary, there is a need to make a prompt and
point that the model should return summaries of each
meaningful block of code in the file and represent it in a
JSON format. Fig. 1 illustrates the template of the com-
pletion request to generate the summary of the file.

Figure 1 – Prompts to set up the code summarization

assistant

The system employs Qdrant as the underlying vector
database to support high-performance semantic code
search. Qdrant is selected for its efficient handling of
high-dimensional vector spaces, making it particularly
suitable for storing and querying dense embedding vec-
tors derived from code summaries. Its ability to perform
approximate nearest neighbor search using methods like
HNSW ensures fast and scalable similarity retrieval
across large codebases.

In addition to vector indexing, Qdrant offers real-time
filtering and payload-based queries, allowing search re-
sults to be refined using additional metadata without post-
processing overhead. This functionality is crucial for hy-
brid search systems that require filtering by attributes
such as file names, method names, or code block posi-
tions. As a result, Qdrant supports multi-modal retrieval
by combining semantic similarity scores with structured
filters.

The system stores not only the normalized embeddings
of summarized code chunks, but also custom metadata
(payload) including the full file path, the name and type
of the code block (e.g., class, method), and the corre-
sponding line range within the file. This enables precise
result mapping back to the original source files, as well as
advanced use cases such as highlighting specific lines or
linking results to developer tools [17]. The structure of the
Quadrant data record is shown in Fig. 2.

Figure 2 – A data structure for vector database Qdrant

In parallel to vector indexing, the system prepares the
indexed data for keyword-based search. Summaries of
code blocks, as well as additional metadata, are indexed
using Elasticsearch. This database is selected due to its
support for full-text search, fuzzy matching, BM25 rank-
ing, and scalable indexing capabilities. These features
make it particularly suitable for handling keyword queries
where precise or partial text matches are desired [18]. The
data structure is mostly the same as for vector database,
but instead of embeddings – summaries and tags are
saved.

By separating the vector-based search functionality
and the text-based search pipeline, the indexing phase
ensures that both retrieval modes can be executed inde-

56

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2025. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. № 3

© Boiko V. O., 2025
DOI 10.15588/1607-3274-2025-3-6

pendently and efficiently. When the code base is changed,
the system detects changes and re-generates summaries
with their dense vectors only for an updated file. It can
happen in the background once per some time range or
while a search happens if the system detects that the code
base has changed.

After this phase, the indexed codebase contains struc-
tured, searchable entries for each file, consisting of its
metadata, summaries and their dense vectors, and key-
word-indexed content. This structured representation sup-
ports fast and accurate retrieval in the subsequent stages
of the system. Fig. 3 illustrates the activity diagram of an
indexing phase.

The retrieval phase constitutes the core of the hybrid
search mechanism and is responsible for identifying rele-
vant source code blocks based on user-supplied natural
language queries. This phase integrates two parallel re-
trieval processes: traditional keyword-based search and
semantic vector-based search. Both processes operate
over the indexed representation of the codebase generated
during the previous phase to maximize the relevance and
completeness of the search results.

Upon receiving a natural language query, the system
performs keyword-based retrieval by submitting the query
to a full-text search engine, such as Elasticsearch. This
engine operates over the textual content indexed during

the indexing phase, particularly focusing on the code
block summaries and the generated semantic tags. Stan-
dard ranking techniques, including the BM25 scoring
function (10), are employed to identify documents that
contain direct lexical overlap with the query terms. This
retrieval path provides high precision, especially for que-
ries that include domain-specific keywords, identifiers, or
terminology that match the indexed content directly.

).,()(),(25
1

qdBtIDFqdBM
n

i
i 


 (10)

In parallel, the system conducts semantic retrieval by
encoding the user query into a high-dimensional embed-
ding using the same embedding model employed during
indexing. In this case, the model used is OpenAI’s text-
embedding-ada-002, which produces vector representa-
tions that reflect the semantic meaning of the input text.
The resulting query embedding is then compared against
the stored file embeddings in a vector database using co-
sine similarity as the distance metric (11):

.1ˆˆ,ˆˆ)ˆ,ˆcos( iqiqiq eeeeee (11)

Figure 3 – Activity diagram of indexing phase

57

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2025. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. № 3

© Boiko V. O., 2025
DOI 10.15588/1607-3274-2025-3-6

This retrieval path enables the system to capture con-
ceptual and contextual similarities between the query and
the code summaries, even when there is no direct lexical
correspondence.

The results from both retrieval paths are processed in-
dependently and can be returned as separate ranked lists
or integrated into a unified ranking. In cases where both
engines yield results for the same file, these results can be
merged, with ranking adjusted based on predefined
weighting or scoring strategies. Each retrieved file entry
includes associated metadata such as the file name, path,
summary, and optionally the top-matching tags or score
explanations from both retrieval methods (12):

)}).(|({

],1,0[),ˆ,ˆcos()1(

),(25)(

ii

iq

ii

bSBbTopKY

ee

dqBMbS






 (12)

The dual retrieval strategy enables the system to re-

spond effectively to a wide range of queries, from those
requiring strict keyword matches to those involving ab-
stract or concept-driven search intent. It also supports
fallback mechanisms in cases where one of the retrieval
paths returns no results or results of low relevance. This
phase concludes with the identification of candidate files
that are passed to the next stage of the pipeline for more
granular analysis and line-level code identification. Fig. 4
illustrates the activity diagram of a retrieval phase.

Following the retrieval of candidate source code
blocks through text-based and semantic search mecha-
nisms, the post-processing phase is responsible for nar-
rowing down the search results to the most relevant seg-
ments of code at a finer granularity. This stage is particu-
larly important when user queries pertain to specific func-
tional behavior or logic that is confined to specific code
lines, rather than the code block as a whole.

To enable this refinement, each retrieved code block is
further analyzed using an LLM, which operates on the full
content of it, its summary, and the original user query.

The objective of the model is to determine which parts of
the code are most likely to satisfy the semantic intent of
the query. This is achieved by prompting the model with
both the query and the block-level context, asking it to
identify and return the specific lines or regions of interest
within the code. If training or evaluation with ground
truth matches, we may define a binary relevance label

}1,0{iy indicating whether code block if is relevant to

query q , and predicted score)(ˆ ii fSy  . We can evalu-

ate with binary cross-entropy loss:

 .)ˆ1log()1()ˆlog(
1




n

i
iiii yyyyL (13)

The model receives as input the user’s natural lan-

guage query, the code block summary that was previously
generated and indexed, and the source code in a line
range.

Then, hybrid retrieval with a refinement is shown in
formula (14):

}.|)({ YbbGPTRY ii  (14)

Thus, the entire formula expresses that every code

block retrieved by the initial hybrid search is further re-
fined using LLM, and the resulting set contains the final,
context-aware, and human-readable answers that the sys-
tem returns to the user. This operation ensures that the
output is not just a ranked list of code blocks but a tar-
geted extraction of meaningfully relevant code fragments.

The prompt structure, which is represented in Fig. 5,
encourages the model to scan the code in context and lo-
cate logic segments that exhibit semantic alignment with
the query. In some cases, the model may return an exact
set of line numbers that correspond to the requested func-
tionality.

Figure 4 – Activity diagram of retrieval phase

58

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2025. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. № 3

© Boiko V. O., 2025
DOI 10.15588/1607-3274-2025-3-6

Figure 5 – Example of prompts for code lines retrieving within a

post-processing stage
To optimize performance and reduce inference time,

only the most relevant results (typically the top five ac-
cording to the hybrid scoring function) are selected for
automatic refinement. The remaining results are excluded
from immediate processing and may be refined on de-
mand, based on user interaction. This selective approach
ensures scalability while still allowing detailed semantic
analysis when needed. Thus, the final formula of hybrid
search with refinement of top 5 the most relevant results
is presented (15):

)}.\(|{

}|)({

),5,(

topii

topii

top

YYbb

YbbGPTRY

YTopKY









 (15)

The granularity of analysis in this phase is intended to
improve the specificity and relevance of search results.
While previous stages identify files likely to contain rele-
vant content, this phase identifies and highlights the exact
implementation points within those files. The output of
this step may be a ranked list of method names, code ex-
cerpts, or line ranges, depending on how the model is
instructed and the formatting required for downstream
presentation. Fig. 6 illustrates the post-processing phase.

The proposed hybrid code retrieval method integrates
structured indexing, dual-mode retrieval, and LLM-
assisted post-processing to address the challenges of se-
mantic code search in large codebases. Beginning with
context-aware summarization and embedding during the
indexing phase, the system enables flexible querying
through parallel keyword-based and vector-based search
mechanisms. The retrieval process balances lexical preci-
sion and semantic understanding, while the final line-level
refinement phase leverages large language models to iso-
late the most relevant code fragments based on user in-
tent. Together, these components form a scalable and con-
text-sensitive search pipeline that supports both broad
discovery and fine-grained code navigation.

Figure 6 – Post-processing phase

4 EXPERIMENTS
To evaluate the applicability and effectiveness of the

proposed hybrid code search method, a set of experiments
was conducted using a real-world software codebase. The
system was implemented in a .NET-based environment,
incorporating components for indexing, vector storage,
text search, and OpenAI API integration for both summa-
rization and post-retrieval code refinement.

The primary goal of the experiments was to assess the
ability of the system to retrieve semantically relevant code
segments based on natural language queries. A test code-
base in the domain of service management was selected,
containing multiple classes and methods written in C#.
This environment enabled the evaluation of the pipeline
across different levels of abstraction – from file-level in-
dexing to line-level code extraction.

The indexing phase was implemented as a standalone
preprocessing utility that analyzed all .cs files in the
selected codebase. Each file was passed through a
summarization module based on OpenAI’s GPT-4o
model. In cases where a file exceeded the input length
limitations, a recursive chunking strategy was applied,
and the final summary was constructed by aggregating
context-enriched chunk-level summaries.

The generated summaries were then embedded using
the text-embedding-ada-002 model, and the resulting
vectors were stored in a local instance of Qdrant, a high-
performance vector database. Simultaneously, the
summaries and metadata – including generated semantic
tags – were indexed using a locally hosted Elasticsearch
instance to support keyword-based retrieval.

59

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2025. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. № 3

© Boiko V. O., 2025
DOI 10.15588/1607-3274-2025-3-6

Natural language queries were submitted through a
simple web interface. Upon query submission, both text-
based search and embedding-based retrieval were
performed in parallel. Retrieved results were displayed to
the user along with cosine similarity scores and matched
summaries.

Following initial retrieval, the full source code of
selected files was passed to GPT-4o for code analysis.
The model was prompted with the original query and the
code block summary and instructed to return the most
relevant methods or code blocks in structured JSON
format, including estimated line numbers and explanatory
notes. This allowed for refined pinpointing of logic
relevant to the user’s intent.

A representative example query “Find places where
service orders are filtered by ID” was tested on the in-
dexed codebase. The system successfully retrieved a
method named SearchOrders located in the OrderSer-
vice.cs file. The post-processing phase highlighted the
exact lines performing filtering based on the CustomerId
field. The result was presented with the matched method,
its position in the file, and a step-by-step explanation of
the code logic.

5 RESULTS
To evaluate the performance and responsiveness of the

implemented hybrid code search pipeline, a series of ex-
periments were conducted using a codebase consisting of
25 C# source files. The average file size was approxi-
mately 30–40 KB, and the files varied in structural com-
plexity, encompassing service classes, data repositories,
and utility methods. The objective of the evaluation was
to confirm the system’s ability to index, retrieve, and re-
fine relevant code fragments using the described key-
word-based, embedding-based, and LLM-assisted meth-
ods.

During the indexing phase, all files were successfully
processed without failure. Summarization of each file or
chunk (for larger files) was completed using the OpenAI
GPT-4o model, followed by embedding generation with
the text-embedding-ada-002 model. Vector data was
stored in a Qdrant instance running locally, while summa-
ries and tags were indexed using a local Elasticsearch
server.

To test retrieval performance, 10 queries were se-
lected, each representing typical developer requests such
as “Find where service orders are filtered by ID” or
“Show methods that generate auth tokens.” For each
query, both search paths were executed in parallel. On
average, the system returned relevant results within 0.90
to 1.0 seconds, including post-processing by GPT for line-
level code matching only for the most relevant results.

The average time for OpenAI API calls during post-
retrieval refinement was approximately 0.94 seconds,

while the combined time for vector search and keyword
search was under 500 milliseconds. These results indicate
that the system can operate within practical response
times suitable for interactive use. During testing, the stan-
dard Tier 1 subscription was used. In high-throughput
scenarios, batch processing or queuing would be neces-
sary to avoid exceeding request quotas.

To better understand the effectiveness of the proposed
hybrid code search method, a benchmarking comparison
(Table 1) was conducted against two baseline approaches:

– baseline A – traditional keyword-based retrieval us-
ing Elasticsearch with BM25 scoring;

– baseline B – embedding-only semantic search using
text-embedding-ada-002 vectors in Qdrant without key-
word filtering or refinement;

– proposed hybrid approach – parallel execution of
both search strategies, followed by GPT-based post-
processing for line-level code matching.

The evaluation dataset consisted of 10 developer-like
queries formulated in natural language. Relevance was
manually assessed by analyzing whether the retrieved
code matched the intended logic or functionality de-
scribed in the query. The evaluation was performed using
the following metrics:

– top-1 precision – if the top result was relevant;
– top-5 recall – the proportion of relevant items among

the top 5;
– MRR – average inverse rank of the first relevant re-

sult [19];
– average response time – total time to produce the fi-

nal result, including post-processing.
The hybrid approach significantly outperforms both

baselines in terms of retrieval quality, particularly for
queries with complex or abstract semantics. The use of
LLM-based summarization and refinement contributes to
higher Top-1 precision and MRR scores, demonstrating
the system’s ability to retrieve not only relevant files but
also the most accurate code segments within them.

While the hybrid method with refinement introduces
additional latency due to post-processing, the average
response time of approximately 0.94 seconds remains
within acceptable bounds for interactive search tasks and
it has been optimizing by handling a refinement of the
most relevant result and the rest of results are intended to
be processed on demand by user interaction. In compari-
son, embedding-only search is faster but occasionally less
precise due to the absence of textual disambiguation and
LLM refinement.

The results confirm the system’s ability to produce ac-
curate, context-sensitive, and developer-usable code
search outputs across a heterogeneous codebase while
maintaining acceptable execution times for all processing
stages.

Table 1 – Benchmarking comparison
Method Top-1 precision Top-5 recall MRR Average time (s)

Baseline A (BM25) 0.58 0.69 0.61 0.40
Baseline B (Embeddings) 0.75 0.88 0.80 0.28
Hybrid 0.91 1.00 0.92 0.94

60

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2025. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. № 3

© Boiko V. O., 2025
DOI 10.15588/1607-3274-2025-3-6

6 DISCUSSION
The proposed hybrid code retrieval method demon-

strates practical applicability for source code search
across large-scale and heterogeneous codebases. In com-
parison to prior research in code search and semantic re-
trieval [4–10], this approach eliminates the need for train-
ing custom models by leveraging general-purpose, pre-
trained language models. Unlike domain-specific models,
which often require fine-tuning on large, curated datasets,
the use of GPT-based APIs allows the system to remain
flexible and adaptable to a broad range of programming
styles and query types without retraining.

While custom-trained models may exhibit strong per-
formance in narrow domains, they often suffer from lim-
ited generalization when applied to unfamiliar codebases
or other programming languages. The hybrid method pre-
sented in this work benefits from the broad domain cover-
age and general language understanding embedded in
OpenAI’s GPT models, enabling it to interpret developer
queries more naturally and perform code summarization
in a context-aware manner.

An advantage of the system lies in its layered architec-
ture, which combines the precision of keyword-based
retrieval with the semantic depth of vector-based embed-
ding search. The addition of GPT-based post-processing
further enhances the system’s ability to localize relevant
code fragments within files, aligning search outputs with
user intent. The results of the experiments confirm that
the hybrid method achieves higher precision and recall
compared to standalone search methods, especially for
abstract or semantically rich queries.

However, the system also inherits limitations from its
reliance on external APIs. The OpenAI GPT models,
while highly capable, are constrained by token-based lim-
its and subscription-dependent rate quotas. These con-
straints may impact the scalability of the method in high-
throughput or real-time search scenarios. To mitigate this,
the system includes a chunking and recursive summariza-
tion strategy to handle large files, ensuring full coverage
of the codebase even when input sizes exceed model ca-
pacity.

Moreover, while the current pipeline performs well in
general software engineering contexts, future improve-
ments may involve domain-adaptive summarization or the
incorporation of static analysis techniques (e.g., AST
matching or control flow analysis) to further enrich search
quality. Another promising direction involves integrating
the hybrid method into development environments allow-
ing for contextual, in-line code discovery and reuse dur-
ing software maintenance or refactoring tasks.

CONCLUSIONS

The hybrid code search method was developed and
implemented as a solution that combines keyword-based
retrieval, vector-based semantic search, and LLM-driven
summarization and refinement. The system was tested on
real-world codebases and evaluated using standard search
effectiveness metrics to validate its practical applicability.

The scientific novelty of the obtained results lies in
the integration of multiple retrieval modalities into a uni-
fied pipeline, enhanced by recursive summarization and
line-level reasoning via GPT model. The proposed
method introduces a structured, context-aware approach
to code retrieval, enabling semantic alignment between
developer queries and relevant code segments across a
large-scale codebase.

The practical significance of the obtained results is
reflected in the method’s ability to automate code re-
trieval tasks without relying on rigid structures or manu-
ally crafted rules. This flexibility allows developers to
search using natural language and receive highly relevant
results at both the file and method levels. The modular
architecture facilitates integration into software engineer-
ing workflows, development environments, and documen-
tation systems.

Prospects for further research include exploring op-
timization strategies to reduce dependency on API rate
limits and improve runtime performance in large-scale
deployments. Additional directions may involve the use
of static code analysis techniques, domain-adaptive sum-
marization models, and the expansion of hybrid retrieval
methods into other software engineering domains, includ-
ing automated documentation, test generation, and intelli-
gent code navigation tools.

REFERENCES
1. Kumar Vivek, Chinmay Bhatt, Varsha Namdeo A frame-

work for document plagiarism detection using Rabin Karp
method, International Journal of Innovative Research in
Technology and Management, 2021, Vol. 5, pp. 17–30.

2. Zhang Ashley Ge, Chen Yan, Oney Steve RunEx: Augment-
ing Regular-Expression Code Search with Runtime Values,
Proceedings of the 2023 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC), 2023,
pp. 145–155. DOI: 10.1109/VL-HCC57772.2023.00024

3. Karnalim Oscar, Simon Syntax Trees and Information Re-
trieval to Improve Code Similarity Detection, Proceedings
of the Twenty-Second Australasian Computing Education
Conference (ACE 2020), 2020, pp. 48–55. DOI:
10.1145/3373165.3373171

4. Liu Chao, Xia Xin, Lo David, Liu Zhiwei, Hassan Ah-
med E., Li Shanping CodeMatcher: Searching Code Based
on Sequential Semantics of Important Query Words. Ithaca,
arXiv, 2020, 36 p. (Preprint / arXiv; 2005.14373). DOI:
10.1145/3465403

5. Kong Xianglong, Chen Hongyu, Yu Ming, Zhang Lixiang
Boosting Code Search with Structural Code Annotation,
Electronics, 2022, Vol. 11, No. 19, P. 3053. DOI:
10.3390/electronics11193053

6. Gotmare Khilesh Deepak, Li Junnan, Joty Shafiq, Hoi Ste-
ven C. H. Cascaded Fast and Slow Models for Efficient Se-
mantic Code Search. Ithaca: arXiv, 2021, 12 p. (Preprint /
arXiv; 2110.07811). DOI: 10.48550/arXiv.2110.07811

7. Jain Sarthak, Dora Aditya, Sam Ka Seng, Singh Prabhat
LLM Agents Improve Semantic Code Search. Ithaca, arXiv,
2024, 12 p. (Preprint / arXiv; 2408.11058). DOI:
10.48550/arXiv.2408.11058

8. Khan M. A. M. Development of a code search engine using
natural language processing technique: Graduate thesis.

61

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2025. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. № 3

© Boiko V. O., 2025
DOI 10.15588/1607-3274-2025-3-6

IUT, Department of Computer Science and Engineering,
2023, 65 p.

9. Deng Zhongyang, Xu Ling, Liu Chao, Huangfu Luwen, Yan
Meng Code semantic enrichment for deep code search,
Journal of Systems and Software, 2024, Vol. 207,
P. 111856. DOI: 10.1016/j.jss.2023.111856

10. Chen Junkai, Hu Xing, Li Zhenhao, Gao Cuiyun, Xia Xin,
Lo David Code Search Is All You Need? Improving Code
Suggestions with Code Search, Proceedings of the
IEEE/ACM 46th International Conference on Software En-
gineering (ICSE 2024), Lisbon, Portugal, April 14–20,
2024, 2024, Article No. 73, pp. 1–13. DOI:
10.1145/3597503.3639085

11. Nate Suraj, Patil Om, Medar Shreenidhi, Deshmukh Jyoti A
Survey on Transformer-based Models in Code Summariza-
tion, International Research Journal on Advanced Engineer-
ing Hub (IRJAEH), 2025, Vol. 3, pp. 740–745. DOI:
10.47392/IRJAEH.2025.0103

12. Parmar Mihir, Deilamsalehy Hanieh, Dernoncourt Franck,
Yoon Seunghyun, Rossi Ryan A., Bui Trung Towards En-
hancing Coherence in Extractive Summarization: Dataset
and Experiments with LLMs, Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language Proc-
essing, 2024, pp. 19810–19820. DOI:
10.18653/v1/2024.emnlp-main.1106

13. Korade Nilesh Bhikaji, Salunke Mahendra B., Bhosle Amol,
Kumbharkar Prashant Babarao, Asalkar Gayatri, Khedkar
Rutuja G. Strengthening Sentence Similarity Identification
Through OpenAI Embeddings and Deep Learning, Interna-
tional Journal of Advanced Computer Science and Applica-

tions, 2024, Vol. 15, No. 4, pp. 821–829. DOI:
10.14569/IJACSA.2024.0150485

14. OpenAI. New and improved embedding model [Electronic
resource], OpenAI, Mode of access:
https://openai.com/index/new-and-improved-embedding-
model (date of access: 09.04.2025). – Title from screen.

15. Patil Rajvardhan, Boit Sorio, Gudivada Venkat N., Nandi-
gam Jagadeesh A Survey of Text Representation and Em-
bedding Techniques in NLP, IEEE Access, 2023, Vol. 11,
pp. 36120–36146. DOI: 10.1109/ACCESS.2023.3266377

16. Jiang Xue, Wang Weiren, Tian Shaohan, Wang Hao, Look-
man Turab, Su Yanjing Applications of natural language
processing and large language models in materials discov-
ery, npj Computational Materials, 2025, Vol. 11. DOI:
10.1038/s41524-025-01554-0

17. Qdrant. Qdrant Vector Database: High-performance vector
similarity search [Electronic resource], Qdrant Documenta-
tion. Mode of access: https://qdrant.tech/qdrant-vector-
database (date of access: 09.04.2025). – Title from screen.

18. Elastic. Elasticsearch: The Official Distributed Search &
Analytics Engine [Electronic resource], Elastic. Mode of ac-
cess: https://www.elastic.co/elasticsearch (date of access:
09.04.2025). Title from screen.

19. Hoyt Charles Tapley, Berrendorf Max, Galkin Mikhail,
Tresp Volker, Gyori Benjamin M. A Unified Framework for
Rank-based Evaluation Metrics for Link Prediction in
Knowledge Graphs. Ithaca: arXiv, 2022, 18 p. (Preprint /
arXiv; 2203.07544). DOI: 10.48550/arXiv.2203.07544

Received 12.04.2025.
Accepted 21.06.2025.

УДК 004.93, 004.8

МЕТОД ПАРАЛЕЛЬНОГО ГІБРИДНОГО ПОШУКУ ДЛЯ ВЕЛИКИХ РЕПОЗИТОРІЇВ КОДУ

Бойко В. О. – асистент кафедри інженерії програмного забезпечення Хмельницького національного університету,
Хмельницький, Україна.

AНОТАЦІЯ
Актуальність. Сучасні програмні системи містять великі кодові бази, що робить пошук коду критично важливим за-

вданням для розробників програмного забезпечення. Традиційні методи пошуку коду спираються на співставлення за клю-
човими словами або структурний аналіз, але часто не здатні відобразити семантичний зміст запитів користувачів або мають
проблеми з неструктурованим та непослідовно задокументованим кодом. Останнім часом семантичний векторний пошук і
великі мовні моделі (LLM) показали перспективи в покращенні розуміння коду. Проблема полягає в розробці масштабова-
ного, точного та гібридного методу пошуку коду, здатного знаходити відповідні фрагменти коду на основі як текстових
запитів, так і семантичного контексту, при цьому підтримуючи паралельну обробку та пошуку на основі метаданих.

Мета роботи – розробка гібридного методу семантичного пошуку коду шляхом комбінування фільтрації за ключовими
словами та пошуку на основі вбудованих представлень, доповненого сумаризацією та семантичними тегами, згенерованими
за допомогою LLM для підвищення точності та ефективності пошуку відповідних елементів коду у великих кодових репо-
зиторіях.

Метод. Для досягнення мети дослідження розроблено метод пошуку з двома шляхами з пост-обробкою, де пошук за те-
кстовими ключовими словами та пошук на основі вбудовуваних семантичних представлень виконуються паралельно. Блоки
коду попередньо обробляються за допомогою GPT-4o моделі для генерування сумаризації та семантичних тегів.

Результати. Метод реалізовано та перевірено на кодовій базі .NET, що продемонструвало покращену точність при зна-
ходженні семантично релевантних методів. Комбінація паралельних шляхів пошуку та метаданих, згенерованих LLM, по-
кращила якість результатів. Для підвищення релевантності було застосовано LLM-постобробку яка виконується над
найбільш релевантними результатами, що дозволяє точніше локалізувати потрібні рядки коду в межах знайдених
фрагментів. Інші результати можуть бути оброблені на вимогу користувача.

Висновки. Експериментальні результати підтвердили працездатність та практичну застосовність запропонованої гібри-
дної системи пошуку коду. Модульна архітектура системи підтримує робочі процеси розробників в реальному часі, а її роз-
ширюваність дозволяє впроваджувати майбутні покращення через активне навчання та зворотний зв’язок від користувачів.
Подальші дослідження можуть бути спрямовані на оптимізацію стратегій вибору вбудованих представлень, інтеграцію ав-
томатичного переформатування запитів та масштабування у багатомовних кодових середовищах.

КЛЮЧОВІ СЛОВА: гібридний пошук коду, векторний пошук, семантичні вбудовування, сумаризація коду, метадані,
згенеровані LLM, косинусна схожість, текстова релевантність, пошук класів та методів, індексування на основі класів, ін-
женерія програмного забезпечення.

62

p-ISSN 1607-3274 Радіоелектроніка, інформатика, управління. 2025. № 3
e-ISSN 2313-688X Radio Electronics, Computer Science, Control. 2025. № 3

© Boiko V. O., 2025
DOI 10.15588/1607-3274-2025-3-6

ЛІТЕРАТУРА
1. Kumar V. A framework for document plagiarism detection

using Rabin Karp method / Vivek Kumar, Bhatt Chinmay,
Namdeo Varsha // International Journal of Innovative Re-
search in Technology and Management. – 2021. – Vol. 5. –
P. 17–30.

2. Zhang A. G. RunEx: Augmenting Regular-Expression Code
Search with Runtime Values / Ashley Ge Zhang, Yan Chen,
Steve Oney // Proceedings of the 2023 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC). – 2023. – P. 145–155. DOI: 10.1109/VL-
HCC57772.2023.00024

3. Karnalim O. Syntax Trees and Information Retrieval to Im-
prove Code Similarity Detection / Oscar Karnalim, Simon //
Proceedings of the Twenty-Second Australasian Computing
Education Conference (ACE 2020). – 2020. – P. 48–55.
DOI: 10.1145/3373165.3373171

4. CodeMatcher: Searching Code Based on Sequential Seman-
tics of Important Query Words / [Chao Liu, Xin Xia, David
Lo et al.]. – Ithaca : arXiv, 2020. – 36 p. – (Preprint / arXiv;
2005.14373). DOI: 10.1145/3465403

5. Boosting Code Search with Structural Code Annotation /
[Xianglong Kong, Hongyu Chen, Ming Yu, Lixiang Zhang]
// Electronics. – 2022. – Vol. 11, No. 19. – P. 3053. DOI:
10.3390/electronics11193053

6. Cascaded Fast and Slow Models for Efficient Semantic
Code Search / [Khilesh Deepak Gotmare, Junnan Li, Shafiq
Joty, Steven C. H. Hoi]. – Ithaca: arXiv, 2021. – 12 p. –
(Preprint / arXiv; 2110.07811). DOI:
10.48550/arXiv.2110.07811

7. LLM Agents Improve Semantic Code Search / [Sarthak
Jain, Aditya Dora, Ka Seng Sam, Prabhat Singh]. – Ithaca:
arXiv, 2024. – 12 p. – (Preprint / arXiv; 2408.11058). DOI:
10.48550/arXiv.2408.11058

8. Khan M. A. M. Development of a code search engine using
natural language processing technique: Graduate thesis /
Mohammad Abdullah Matin Khan. – IUT, Department of
Computer Science and Engineering, 2023. – 65 p.

9. Code semantic enrichment for deep code search / [Zhongy-
ang Deng, Ling Xu, Chao Liu et al.] // Journal of Systems
and Software. – 2024. – Vol. 207. – P. 111856. DOI:
10.1016/j.jss.2023.111856

10. Code Search Is All You Need? Improving Code Suggestions
with Code Search / [Junkai Chen, Xing Hu, Zhenhao Li et
al.] // Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering (ICSE 2024), Lisbon,

Portugal, April 14–20, 2024. – 2024. – Article No. 73. –
P. 1–13. DOI: 10.1145/3597503.3639085

11. A Survey on Transformer-based Models in Code Summari-
zation / [Suraj Nate, Om Patil, Shreenidhi Medar, Jyoti
Deshmukh] // International Research Journal on Advanced
Engineering Hub (IRJAEH). – 2025. – Vol. 3. – P. 740–745.
DOI: 10.47392/IRJAEH.2025.0103

12. Towards Enhancing Coherence in Extractive Summariza-
tion: Dataset and Experiments with LLMs / [Mihir Parmar,
Hanieh Deilamsalehy, Franck Dernoncourt et al.] // Proceed-
ings of the 2024 Conference on Empirical Methods in Natu-
ral Language Processing. – 2024. – P. 19810–19820. DOI:
10.18653/v1/2024.emnlp-main.1106

13. Strengthening Sentence Similarity Identification Through
OpenAI Embeddings and Deep Learning / [Nilesh Bhikaji
Korade, Mahendra B. Salunke, Amol Bhosle et al.] // Inter-
national Journal of Advanced Computer Science and Appli-
cations. – 2024. – Vol. 15, No. 4. – P. 821–829. DOI:
10.14569/IJACSA.2024.0150485

14. OpenAI. New and improved embedding model [Electronic
resource] // OpenAI. – Mode of access:
https://openai.com/index/new-and-improved-embedding-
model (date of access: 09.04.2025). – Title from screen.

15. A Survey of Text Representation and Embedding Tech-
niques in NLP / [Rajvardhan Patil, Sorio Boit, Venkat N.
Gudivada, Jagadeesh Nandigam] // IEEE Access. – 2023. –
Vol. 11. – P. 36120–36146. DOI:
10.1109/ACCESS.2023.3266377

16. Applications of natural language processing and large lan-
guage models in materials discovery / [Xue Jiang, Weiren
Wang, Shaohan Tian et al.] // npj Computational Materials.
– 2025. – Vol. 11. DOI: 10.1038/s41524-025-01554-0

17. Qdrant. Qdrant Vector Database: High-performance vector
similarity search [Electronic resource] // Qdrant Documenta-
tion. – Mode of access: https://qdrant.tech/qdrant-vector-
database (date of access: 09.04.2025). – Title from screen.

18. Elastic. Elasticsearch: The Official Distributed Search &
Analytics Engine [Electronic resource] // Elastic. – Mode of
access: https://www.elastic.co/elasticsearch (date of access:
09.04.2025). – Title from screen.

19. A Unified Framework for Rank-based Evaluation Metrics
for Link Prediction in Knowledge Graphs / [Charles Tapley
Hoyt, Max Berrendorf, Mikhail Galkin et al.]. – Ithaca:
arXiv, 2022. – 18 p. – (Preprint / arXiv; 2203.07544). DOI:
10.48550/arXiv.2203.07544

63

