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ABSTRACT 
Context. Semantic segmentation plays a critical role in computer vision tasks such as autonomous driving and urban scene 

understanding. While designing new model architectures can be complex, improving performance through ensemble techniques 
applied to existing models has shown promising potential. This paper investigates ensemble learning as a strategy to enhance 
segmentation accuracy without modifying the underlying U-Net architecture. 

Objective. The aim of this work is to develop and evaluate a homogeneous ensemble of U-Net models trained with distinct 
initialization and data augmentation techniques, and to assess the effectiveness of various ensemble aggregation strategies in 
improving segmentation performance on complex urban dataset. 

Method. The proposed approach constructs an ensemble of five structurally identical U-Net models, each trained with unique 
weight initialization and augmentation schemes to ensure prediction diversity. Several ensemble strategies are examined, including 
softmax averaging, max voting, proportional weighting, exponential weighting, and optimized weighted voting. Evaluation is 
conducted on the Cityscapes dataset using a range of segmentation metrics. 

Results. Experimental findings demonstrate that ensemble models outperform individual U-Net instances and the baseline in 
terms of accuracy, mean IoU, and specificity. The optimized weighted ensemble achieved the highest accuracy (87.56%) and mean 
IoU (0.6504), exceeding the best individual model by approximately 3%. However, these improvements come with a notable 
increase in inference time, highlighting a trade-off between accuracy and computational efficiency. 

Conclusions. The ensemble-based approach effectively enhances segmentation accuracy while leveraging existing model 
architectures. Although the increased computational cost presents a limitation for real-time applications, the method is well-suited for 
high-precision tasks. Future research will focus on reducing inference time and extending the ensemble methodology to other 
architectures and datasets. 

KEYWORDS: convolutional neural network, semantic segmentation, U-Net, ensemble learning, data augmentation techniques, 
model initialization, Cityscapes, urban scenes. 

 
ABBREVIATIONS 

CNN is a convolutional Neural Network; 
U-Net is a U-shaped network architecture; 
ELU is an Exponential Linear Unit; 
ReLU is a Rectified Linear Unit; 
IoU is a Intersection over Union; 
Mean IoU / mIoU is a Mean Intersection over Union; 
TP is a True Positive; 
FP is a False Positive; 
FN is a False Negative; 
TN is a True Negative; 
RGB is a Red Green Blue. 

 
NOMENCLATURE 

)(XF  is a convolutional neural network performing 

semantic segmentation; 
X  is an input image space; 
Y  is an output segmentation map (label space); 
x  is an input image; 
y  is a ground truth segmentation map; 

H  is a height of the input image; 
W  is a width of the input image; 
C  is a number of channels of the input image; 
ŷ  is a predicted segmentation output; 

kmaxarg
 
is a predicted class; 

ic  is a segmentation class; 

)(xFi  
is a prediction of the U-Net model in the 

ensemble; 

iw
 
is a weight assigned to the model in the ensemble; 

)(xE  is an ensemble output; 

finalŷ
 

is a final predicted class map from the 

ensemble; 
Metric  is a segmentation metric; 
accuracy  is an accuracy of a model; 

)( iFT
 
is an inference time of the model; 

)(ET  is a total inference time of the ensemble; 

IoU  is an intersection over union; 
N  is a normal distribution with mean; 
μ  is a variance; 

α  is a displacement intensity in elastic deformation; 
σ  is a standard deviation of Gaussian noise; 
w

 
is an ensemble weight vector; 

fan_in
 
is a number of input units; 

fan_out
 
is a number of output units. 

 
INTRODUCTION 

Deep learning has made impressive strides in image 
segmentation, especially when it comes to parsing 
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complex urban scenes. This task is essential for 
technologies like autonomous vehicles, smart traffic 
systems, and overall city infrastructure management. A 
widely recognized benchmark in this domain is the 
Cityscapes dataset [1], known for its high-resolution, 
finely annotated road scene images that have become 
standard for evaluating model performance. 

Architectures like U-Net have shown strong results in 
semantic segmentation, yet they still struggle with 
generalizing across varying conditions – think changes in 
lighting, weather, or city layouts. To mitigate these issues, 
ensemble learning has emerged as a valuable approach. 
By merging predictions from multiple models, it boosts 
accuracy and stabilizes results. While traditional 
ensemble methods often mix different types of models 
[2], a homogeneous ensemble – where multiple U-Net 
models are trained separately – offers a balance between 
performance and efficiency. This diversity, introduced 
through unique initializations and data augmentations, 
helps improve outcomes without the added complexity of 
mixing architectures. 

In this work, we investigate several homogeneous 
ensembling techniques – such as averaging, max pooling, 
and weighted voting – to see how each impacts 
segmentation results. We propose a U-Net-based 
ensemble tailored for urban image segmentation, using 
distinct augmentation and initialization variations, and run 
experiments to evaluate its effectiveness. Our analysis 
includes comparisons of accuracy, speed, and 
computational overhead to weigh the trade-offs of each 
method. 

The object of study in this research is semantic 
segmentation of urban scenes, specifically focusing on the 
challenges posed by varying environmental conditions, 
such as changes in lighting, weather, and occlusions. The 
study is conducted using the Cityscapes dataset, which 
provides high-resolution images of complex urban 
environments with 34 semantic classes. 

The subject of study is the method of constructing 
homogeneous U-Net ensembles to improve the accuracy 
and robustness of semantic segmentation in urban 
environments. This includes exploring different ensemble 
strategies to enhance generalization across diverse scenes 
while maintaining computational efficiency. 

The purpose of this work is to improve the 
generalization ability of U-Net models for urban scene 
segmentation by leveraging networks homogeneous 
ensembling. The study aims to demonstrate that a 
homogeneous ensemble of multiple U-Net models can 
achieve higher segmentation accuracy and robustness 
compared to a single U-Net, particularly in conditions 
found in real-world urban environments.  

 
1 PROBLEM STATEMENT 

Formally, the semantic segmentation task can be 
described as a pixel-wise classification problem, where 
the goal is to assign each pixel of an input image to one of 
the predefined semantic classes. 

Let the input image be denoted as Xx , where 
CWHRX  . The output segmentation map is denoted 

as Yy , where WHZY  , and each pixel value 

corresponds to a class label from the set of predefined 
classes },...,,{ 21 KcccC  .  

The model is a function YXF : , implemented 
using a deep convolutional neural network architecture, 
particularly U-Net. The output of the model is a 

probability tensor KWHxFy  ]1,0[)(ˆ , and the 

predicted class for each pixel is obtained by: 
 

Ck
kjiji xFy



 ,,, )(maxargˆ . 

 
Let’s define a set of n trained models  nFFF ,...,, 21  

each producing a prediction  xFy ii ˆ . We define the 

ensemble function E  as a weighted combination of the 

model outputs 



n

i
ii xFwxE

1

)()( , subject to 



n

i
iw

1

1 , 

0iw . The final prediction is obtained by taking the 

argmax over the ensembled output: 
 

.)(maxargˆ ,,
Ck

kjifinal xEy


  

 
The objective is to find the optimal weight vector 

),...,,( 21 nwwww   such that the ensemble prediction 

maximizes a chosen segmentation quality metric, such as 
the mean Intersection over Union (mIoU): 

 

)),((max yxEMetric
w

, 



n

i
iw

1

1 , .0iw  

 
Additionally, due to hardware limitations, inference 

must be performed on a CPU-based system, where 
parallel execution is not available, and models are 
evaluated sequentially. Let )( iFT  denote the execution 

time of model iF . The ensemble execution time is 

therefore: 
 

.)()(
1




n

i
iFTET  

 
The constraint is to keep inference time within an 

acceptable range maxT , defined based on application 

requirements: 
 

max)( TET  . 
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2 REVIEW OF THE LITERATURE 
Image segmentation [3] plays a key role in computer 

vision, and in robot vision, aiming to identify and outline 
objects within an image. Traditional methods – like 
thresholding [4], region growing [5], and edge detection 
[6] – have largely given way to deep learning-based 
approaches [7–9], which excel at learning layered features 
and handling complex textures. 

Among deep learning models, Convolutional Neural 
Networks (CNNs) [10] have become the backbone of 
many segmentation tasks. Fully Convolutional Networks 
(FCNs) [11] were among the earliest deep models to 
perform pixel-level classification, showing the potential 
of CNNs in segmentation. Yet, U-Net [12] – a fully 
convolutional encoder-decoder design with skip 
connections – has emerged as the preferred choice, 
especially in biomedical applications. Its symmetric 
structure allows it to retain spatial details, making it 
particularly suitable for use cases like autonomous 
driving. Enhanced versions, such as Attention U-Net [13] 
and Residual U-Net [14], add mechanisms for better 
feature focus and improved performance in complex 
datasets. 

Despite its strengths, U-Net and other single-model 
architectures often face challenges in generalizing across 
varied datasets. Differences in image quality, noise, and 
structural variations can lead to inconsistent results. These 
issues have encouraged the adoption of ensemble learning 
to boost consistency and resilience. 

Ensemble learning has long been explored as a way to 
enhance model reliability by combining multiple learners. 
Techniques like bagging [15], boosting [16], and stacking 
[17] have shown success in improving generalization 
through model diversity. Ensemble learning has 
demonstrated strong performance improvements across a 
variety of machine learning tasks even beyond computer 
vision. For instance, in time series forecasting [18], 
authors proposed an ensemble of adaptive predictors 
capable of real-time learning on multivariate non 
stationary sequences. In segmentation, deep learning 
ensembles are typically either heterogeneous or 
homogeneous. 

Heterogeneous ensembles [19], which mix various 
model types, can improve accuracy by capturing different 
feature perspectives. However, this comes at the cost of 
greater computational demands and system complexity. 
Homogeneous ensembles [20], on the other hand, use 
multiple instances of the same architecture, each trained 
under varied conditions – such as different initializations, 
hyperparameters, or data augmentations. Research [21] 
suggests that such homogeneous setups can match or even 
surpass heterogeneous ensembles, all while remaining 
more efficient. 

Several studies illustrate the promise of ensembling in 
segmentation. One work combined 3D CNNs for brain 
lesion detection [22], demonstrating reduced uncertainty 
through model fusion. Another leveraged a U-Net 
ensemble trained with diverse loss functions to improve 

lung nodule segmentation [23]. These examples underline 
the benefits of ensembles in reducing prediction variance 
and improving robustness. 

The importance of adaptivity in visual systems has 
been emphasized not only in segmentation architectures 
but also in image preprocessing approaches. For example, 
Smelyakov et al. [24] developed an adaptive image 
enhancement model for robotic vision systems, enabling 
real-time responsiveness to variable environmental 
conditions. 

The existing literature consistently shows that 
ensemble learning enhances both the accuracy and 
stability of segmentation models. While many studies 
have tested different ensemble strategies, few have taken 
a detailed look at the trade-offs between segmentation 
accuracy and scalability. Building on previous findings, 
this paper proposes a homogeneous ensemble of U-Net 
models, each trained with unique weight initializations 
and augmentation schemes, using optimized voting 
strategy. Various inference methods are evaluated to 
better understand how ensemble design choices affect 
segmentation performance and efficiency. 

 
3 MATERIALS AND METHODS 

The Cityscapes dataset serves as a large-scale 
benchmark tailored for urban scene understanding, 
particularly focusing on tasks such as semantic 
segmentation, instance segmentation, and depth 
estimation. It features high-resolution imagery 
(2048×1024 pixels) captured from a vehicle-mounted 
camera as it navigates through 50 cities across Germany, 
Switzerland, and France. These images encompass a wide 
range of environmental conditions, including various 
weather scenarios and lighting settings throughout the 
day, thereby providing a comprehensive dataset for 
evaluating and training deep learning models used in 
autonomous driving and urban analysis. 

This dataset contains 5.000 finely annotated images, 
distributed across 2.975 for training, 500 for validation, 
and 1.525 for testing, with annotations for the test set not 
publicly available. Additionally, it offers 20.000 coarsely 
annotated images as a supplementary resource. The 
annotation schema spans 34 semantic categories, 
including classes such as roads, buildings, vegetation, 
vehicles, pedestrians, and traffic signs. Each pixel in the 
finely annotated set is labeled with a semantic class, 
allowing for precise pixel-wise learning. Due to its 
detailed labeling, high resolution, and inherent class 
imbalance, the Cityscapes dataset has become a gold 
standard for evaluating segmentation models like U-Net. 
Given these challenges, leveraging a homogeneous 
ensemble of U-Net models offers a promising approach to 
improving segmentation performance by reducing 
variance and enhancing generalization, particularly in 
urban environments with fine-grained structures, dynamic 
lighting, and frequent occlusions. 

To bolster the generalization capacity of the 
homogeneous U-Net ensemble, a diverse range of data 
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augmentation strategies was applied, with each of the five 
networks in the ensemble trained using a distinct 
transformation method. This approach promotes the 
learning of unique and complementary feature 
representations across models, thereby reducing 
overfitting and enhancing robustness on the Cityscapes 
dataset. Augmentations were chosen to simulate real-
world visual variability while preserving the fundamental 
structure and semantics of objects within the scene. Urban 
environments naturally involve variations in object 
distance, camera perspective, noise, occlusion, and image 
distortion. Therefore, the selected augmentations were 
designed to reflect these real-world variations while 
maintaining semantic integrity. 

Scaling was applied by randomly resizing input 
images within a predefined range. This helped the model 
develop scale-invariant features, which are critical for 
segmenting objects appearing at varying distances from 
the camera. Rotation was used to introduce random 
angular transformations, enhancing the model's ability to 
recognize and segment objects regardless of orientation – 
a common challenge in dynamic urban settings. Affine 
transformations, including shearing, translation, and 
reflection, were incorporated to introduce spatial diversity 
without disrupting the essential spatial structure of 
objects, thereby encouraging the model to generalize 
better under changes in viewpoint or alignment. One 
network in the ensemble was trained using elastic 
deformation, a technique adapted from medical imaging 
applications. This method simulates local, nonlinear 
distortions within the image, which is particularly useful 
for modeling real-world deformations in classes like 
pedestrians or vehicles, which often exhibit variable 
shapes and poses. Gaussian noise was added to simulate 
sensor noise, compression artifacts, and environmental 
distortions. This augmentation made the model more 
resilient to unpredictable visual noise and inconsistencies 
present in real-world imagery. 

By assigning a unique augmentation strategy to each 
model, the ensemble was exposed to a broad spectrum of 
visual conditions. This diversity in learning experiences 
encouraged the models to acquire distinct yet 
complementary internal representations. Consequently, 
the ensemble could capture a wider range of features and 
generalize more effectively across complex urban scenes 
with challenging visual variability. 

To improve training stability and ensure convergence 
across the homogeneous ensemble, each U-Net model 
was initialized using a distinct weight initialization 
technique. The importance of proper initialization in deep 
neural networks is well-established, particularly in 
preventing vanishing or exploding gradients, enhancing 
learning efficiency, and improving generalization 
performance. In this work, five different initialization 
strategies were employed: Glorot Normal, He Uniform, 
Orthogonal Initialization, LeCun Normal, and Random 
Normal. 

The Glorot Normal method [25], also referred to as 
Xavier Normal, initializes weights from a truncated 
normal distribution centered at zero, with variance scaled 
based on both the number of incoming and outgoing 
connections. Weights are initialized by sampling from a 
truncated normal distribution centered at 0 with a standard 
deviation of: 

 

fan_outfan_in

2


 . 

 
This technique helps maintain a balanced variance of 

activations across layers, which is particularly beneficial 
when using sigmoid or tanh activation functions.  

He Uniform initialization [26], designed for networks 
employing ReLU activations, samples weights from a 
uniform distribution scaled by the number of input units. 
This ensures that activations are well-scaled during 
forward propagation, improving training stability in deep 
architectures. Weights are initialized by sampling from a 
uniform distribution within [–limit, limit], where: 

 

fan_in

6
limit  . 

 
Orthogonal Initialization involves generating weight 

matrices that form an orthogonal basis, typically achieved 
through QR decomposition of randomly generated 
matrices. This approach helps preserve information flow 
during both forward and backward passes, making it 
especially effective for deep convolutional models. 
Weights are initialized by generating a random matrix and 
applying QR decomposition to obtain an orthogonal 
matrix. Specifically, for a weight matrix RQW  . 

LeCun Normal initialization [27] is similar in concept 
to Glorot Normal but scales weights based solely on the 
number of input units, offering improved stability for tanh 
and sigmoid-based networks of moderate depth. Weights 
are initialized by sampling from a truncated normal 
distribution centered at 0 with a standard deviation of: 

 

fan_in

1
σ  . 

 
Finally, one network was initialized using a Random 

Normal distribution with manually specified mean and 
standard deviation, providing a baseline for comparing the 
effectiveness of more sophisticated initializers. Weights 
are initialized by sampling from a normal distribution: 

 

),(~ 2NW . 

 
The assignment of initialization methods to specific 

augmentation strategies was done purposefully to enhance 
model diversity and learning dynamics. For 
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augmentations that alter spatial characteristics – such as 
scaling or affine transformations – initialization 
techniques like Glorot Normal and Orthogonal 
Initialization were chosen, as they preserve activation 
variance even under substantial input variation. Rotation-
based augmentations, which introduce directional shifts 
without distorting spatial structure, were paired with He 
Uniform initialization due to its suitability for ReLU-
based networks and its ability to facilitate rapid early 
learning. Elastic deformation, which applies localized and 
nonlinear distortions, was combined with LeCun Normal 
initialization, providing a low-variance starting point that 
helps avoid overfitting in early training phases. The 
combination of Gaussian noise augmentation and Random 
Normal initialization introduced variability both at the 
data and model initialization level, offering a useful 
control scenario for measuring the effects of structured 
randomness. 

This strategic pairing of augmentations and 
initializations promoted heterogeneity in feature 
representations and error patterns across the ensemble, 
which is essential for achieving high segmentation 
accuracy through ensemble learning. The result is a more 
resilient and generalizable model, capable of handling the 
diverse challenges inherent in urban scene segmentation. 

To establish a baseline for evaluating the effectiveness 
of the proposed homogeneous U-Net ensemble, a standard 
U-Net model was implemented. This model, widely 
recognized in semantic segmentation tasks, is particularly 
well-suited for applications involving urban scenes, such 
as those found in the Cityscapes dataset. The U-Net 
architecture (Fig. 1) adopts a symmetric encoder-decoder 
structure, which enables accurate pixel-level classification 
– an essential capability for high-resolution urban 
segmentation. 

 

 
 

Figure 1 – Unet baseline acrhitecture 
 

The network’s architecture is composed of two main 
components. The encoder, also known as the contracting 
path, systematically reduces the spatial dimensions of the 
input image while extracting progressively higher-level 
features. Each block in the encoder includes two 
convolutional layers followed by Batch Normalization 
and ReLU activations, with Max Pooling layers applied 
between blocks to downsample the feature maps. At each 
stage of downsampling, the number of feature channels 
doubles, beginning from 64 and reaching up to 1024, 

allowing the model to learn increasingly abstract 
representations of the input scene. 

In the decoder, or expanding path, the spatial 
resolution of the feature maps is gradually restored using 
transposed convolutions. To retain fine-grained spatial 
information lost during the encoding process, skip 
connections linking corresponding layers between the 
encoder and decoder. After each upsampling step, the 
upsampled feature map is concatenated with its encoder 
counterpart, followed by two convolutional layers and 
Batch Normalization, which further refine the 
segmentation outputs. The network concludes with a 1×1 
convolutional layer that projects the final feature map to 
the desired number of segmentation classes, and a 
softmax activation function is applied to produce the class 
probabilities for each pixel. 

The baseline model is configured to accept input 
images of size 256×256×3, with a total parameter count 
of approximately 35.8 million. Training was conducted 
using categorical cross-entropy as the loss function, 
optimized with the Adam algorithm and an initial learning 
rate of 0.001. The training set was processed in mini-
batches of 16 images, and the network was trained for up 
to 30 epochs, with early stopping triggered based on the 
validation loss to prevent overfitting. 

This baseline U-Net model serves as a reference point 
against which the ensemble approach is assessed. By 
comparing its performance with that of the ensemble – 
composed of multiple U-Net variants trained with 
different augmentation strategies and initialization 
schemes – it becomes possible to quantify the benefits of 
ensemble learning in enhancing segmentation accuracy 
and robustness. 

To improve segmentation accuracy and enhance the 
generalization capabilities beyond what a single U-Net 
model can offer, an ensemble of five U-Net networks was 
constructed. While all five models shared the same 
architectural design as the baseline U-Net, they differed in 
their training setup through distinct combinations of 
weight initialization and data augmentation strategies. 
This intentional diversification enabled the ensemble to 
learn a wider array of feature representations, ultimately 
leading to stronger performance on complex urban 
segmentation tasks within the dataset. 

The diversity within the ensemble was introduced 
through two complementary mechanisms. The first 
involved using different weight initialization schemes for 
each model, which encouraged unique learning dynamics 
by altering the starting conditions of training. The 
initializers applied – Glorot Normal, He Uniform, 
Orthogonal, LeCun Normal, and Random Normal – each 
influenced the convergence path in different ways, 
thereby promoting model independence and reducing the 
risk of all networks settling into similar local minima. The 
second mechanism of diversification relied on data 
augmentation. Each U-Net model was trained using a 
specific transformation technique – ranging from scaling 
and rotation to affine transformation, elastic deformation, 
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and Gaussian noise. These augmentations simulated a 
variety of real-world conditions found in urban 
environments, compelling each network to adapt to 
distinct types of variability, which in turn increased the 
ensemble's robustness to unseen data. 

To combine the outputs from the ensemble, multiple 
prediction aggregation strategies were explored, each 
offering a different method of consolidating the networks’ 
decisions. The first approach involved averaging the 
softmax probability outputs of each model on a pixel-wise 
basis. This method smoothed out individual 
inconsistencies and allowed the final segmentation map to 
reflect a balanced consensus across all predictions. An 
alternative strategy employed a maxing operation, 
selecting the highest softmax probability across the 
ensemble for each pixel. This method emphasized high-
confidence predictions by giving more weight to 
confident outputs from any individual model. 

Beyond these basic ensemble strategies, a more 
refined weighted voting method was developed to 
optimize how each model contributed to the final output. 
Here, the influence of each network was proportional to 
its validation accuracy, ensuring that more reliable models 
had a stronger impact on the final segmentation results. 
To further refine this weighting scheme, an exponential 
scaling mechanism was introduced, amplifying the 
contributions of the top-performing models while still 
allowing all ensemble members to participate in the 
decision-making process. This balance maintained the 
diversity benefits of ensembling while increasing the 
precision of the final predictions. 

To optimize the distribution of weights among the 
models, a grid search procedure was performed. Rather 
than assigning equal weights, the goal was to identify the 
optimal weight vector w=[w1,w2,...,wN] that would yield 
the highest segmentation accuracy, as measured by the 
Dice score across the entire validation set. This 
optimization process ensured that the ensemble not only 
leveraged the strengths of individual models but also fine-
tuned their contributions to achieve maximal overall 
performance.The ensemble prediction is computed as a 
weighted sum of the individual model predictions:  
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To ensure model contributions remain meaningful and 

balanced, we enforce the following constraints on the 
weights: 
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This formulation prevents any single model from 

dominating the ensemble while allowing flexibility for 
weight adjustments. 

The optimization process seeks to maximize the dice 
score: 
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We define the objective function as: 
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We use constrained numerical optimization or 

Powell’s method [28] to solve for the optimal weight 
vector. 
 

4 EXPERIMENTS 
The experiment was conducted using the Cityscapes 

dataset, which was divided into 2,975 training images and 
500 for validation. To ensure consistency, all input 
images were resized and normalized prior to training, 
enhancing numerical stability and model convergence. 
The dataset was also shuffled randomly to avoid any 
learning bias, and mini-batches of size 16 were used to 
optimize computational efficiency. 

For the baseline, a standard U-Net model was 
deployed without explicit weight initialization – weights 
were set to zero by default. The Exponential Linear Unit 
(ELU) activation function was used throughout the 
network to support better gradient flow and accelerate 
convergence in deeper layers. An early stopping strategy 
was applied, halting training automatically once the 
validation loss ceased to improve, thus preventing 
overfitting and reducing computational overhead. 

Performance was evaluated using a suite of metrics, 
including Mean Intersection over Union (Mean IoU), 
pixel accuracy, precision, sensitivity, and specificity. 
These metrics offered a comprehensive view of model 
performance, capturing both pixel-level accuracy and 
class-level segmentation effectiveness. This baseline 
served as a critical reference point for assessing the 
effectiveness of the proposed homogeneous ensemble 
approach. 

The first ensemble model maintained the baseline 
architecture but introduced Glorot Normal initialization to 
ensure balanced activation variance across layers. The 
activation function was switched to sigmoid to produce 
smoother probability maps suitable for segmentation 
tasks. Additionally, scaling augmentation was applied, 
randomly zooming input images to simulate changes in 
object size and distance. These modifications aimed to 
improve stability, generalization, and robustness to scale 
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variance while preserving compatibility with the overall 
ensemble structure. 

The second U-Net also retained the base architecture 
but employed He Normal initialization, tailored for ReLU 
activations, to facilitate deeper gradient flow. Rotation-
based augmentation was introduced, with input images 
randomly rotated up to 30 degrees to simulate real-world 
changes in camera angle. Nearest-neighbor interpolation 
was used to maintain pixel quality. This configuration 
allowed the model to develop rotation-invariant features, 
enhancing its performance in dynamic urban 
environments. 

The third model applied Orthogonal initialization to 
promote stable training by preserving variance throughout 
deep layers, in conjunction with ELU activation to 
support gradient propagation. Affine transformations – 
including translation, scaling, shearing, and minor 
rotations – were used as augmentations to introduce 
spatial diversity. This combination encouraged the model 
to learn features invariant to subtle spatial distortions 
typical in real-world imagery. 

The fourth model employed LeCun Normal 
initialization, optimized for tanh activations, and was 
paired with Elastic Deformation as the augmentation 
technique. By introducing smooth, localized warping 
through parameterized displacement fields (α = 10, σ = 4), 
the model became better equipped to generalize across 
irregular object shapes and occlusions. This setup enabled 
the model to develop fine-grained sensitivity to structural 
deformations commonly seen in urban environments. 

The final U-Net used Random Normal initialization to 
introduce variability in early learning trajectories. 
Gaussian noise was added to the input during training to 
simulate sensor-level imperfections, using a standard 
deviation of σ = 0.05. The ELU activation function was 
retained to aid in stable convergence. This model served 
to improve robustness under noisy conditions, rounding 
out the ensemble with additional stochastic diversity. 

Upon training the five U-Net models, they were 
integrated into a homogeneous ensemble to capitalize on 
their individual strengths and improve segmentation 
accuracy, robustness, and generalization. To achieve this, 
three distinct ensemble strategies were explored: 
averaging, maxing, and weighted voting – each offering a 
different method for aggregating pixel-wise predictions. 

In the averaging ensemble, the probability 
distributions generated by each model were averaged for 
every pixel. This approach mitigated the noise and 
uncertainty present in individual model outputs, yielding 
smoother and more balanced segmentation maps. It was 
particularly effective at improving generalization by 
consolidating diverse prediction patterns across the 
ensemble. 

The maxing ensemble took a different approach, 
selecting the highest softmax probability across all five 
models for each pixel. This strategy emphasized confident 
predictions, allowing the most certain model to determine 
the final class decision per pixel. While this method 

enhanced decisiveness, it also introduced the risk of 
amplifying isolated high-confidence errors, depending on 
the reliability of individual networks. 

To further refine prediction quality, a weighted voting 
ensemble was implemented. Here, each model’s 
prediction was weighted according to its validation 
performance. The first weighting scheme assigned 
weights proportional to each model’s validation accuracy, 
allowing higher-performing models to contribute more 
significantly to the final segmentation output.  

The second approach used exponential scaling, 
amplifying differences between strong and weak models 
by applying an exponential function to the accuracy 
scores. This method increased the influence of top 
performers while still preserving the diversity contributed 
by other networks. Finally, a grid search optimization was 
conducted to identify the optimal weight vector 

],...,,[ 21 Nwwww  . This involved evaluating different 

weight configurations on a subset of 10 validation images. 
The aim was to maximize the Dice score across the 
ensemble, ensuring that the final weighted output 
delivered the highest possible segmentation accuracy. 

 
5 RESULTS 

Once the ensemble models were constructed and 
integrated using the proposed aggregation strategies, a 
comprehensive evaluation was carried out to compare 
their performance against the baseline U-Net. This 
analysis focused on measuring segmentation accuracy, 
generalization, and robustness across both individual and 
ensemble models. All models were tested on the same 
validation set using consistent evaluation metrics, which 
included Mean Intersection over Union (Mean IoU), pixel 
accuracy, precision, sensitivity, specificity, and execution 
time measured in seconds per image. This consistent 
methodology ensured a fair comparison and provided a 
granular understanding of how each configuration 
performed. The training accuracy graph (Fig. 2) illustrates 
the learning progression of multiple U-Net models 
compared to the baseline over 25 epochs. 

 

 
Figure 2 – Training accuracy across networks 

 
Training accuracy trends revealed that all models 

experienced a rapid increase in performance within the 
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first five epochs, reflecting effective initial feature 
learning from the dataset. The baseline U-Net, though 
following a similar pattern, consistently trailed behind the 
other models. Among the ensemble components, U-Net-2 
and U-Net-3 achieved the highest accuracy throughout 
training, indicating their ability to extract and generalize 
critical features. U-Net-5, on the other hand, consistently 
recorded the lowest accuracy, suggesting challenges in 
learning effective feature representations. By epoch 15, 
most models began to converge, with accuracy 
improvements tapering off and stabilizing near the 90% 
mark – except for U-Net-5, which continued to 
underperform. The baseline model remained consistently 
below the performance of all U-Net variants, reaffirming 
the benefits introduced by tailored augmentation and 
initialization strategies in the ensemble. 

The graph Fig. 3 illustrates the validation accuracy of 
different U-Net models and the baseline over 25 epochs. 

 

 
Figure 3 – Validation accuracy across networks 

 
Validation accuracy followed a similar trajectory, 

offering further insight into the generalization capabilities 
of each model on unseen data. All models showed sharp 
improvements in validation accuracy during the initial 
training phase, mirroring their training performance. U-
Net-2, U-Net-3, and U-Net-4 achieved the highest early-
stage validation scores, indicating robust learning 
dynamics and generalization from augmented and well-
initialized architectures. In contrast, U-Net-5 lagged 
significantly behind, maintaining a noticeably lower 
accuracy curve throughout training. The baseline model 
started with low initial accuracy but gradually improved, 
though by the fifth epoch, all U-Net variants had 
surpassed it. This confirmed the value of ensemble 
diversification strategies in enhancing model 
generalization. 

By the end of training, the validation accuracy of most 
U-Net models converged between 82% and 84%, while 
the baseline plateaued slightly below this range. U-Net-5 
remained a notable outlier, stabilizing around 57%, which 
suggests either insufficient regularization or overfitting to 
the training data. After epoch 10, most models displayed 
stable accuracy with minimal variation, indicating 
convergence. U-Net-2 and U-Net-3 maintained superior 
performance throughout, reflecting their consistency 
across both training and validation phases. The observed 
gap between training accuracy (approaching 90%) and 

validation accuracy (around 80%) across models points to 
potential overfitting – a likely result of dataset limitations 
and model complexity. 

To assess the performance of the models, several 
evaluation metrics were employed, each designed to 
capture different aspects of segmentation accuracy and 
classification quality. One of the core metrics used was 
sparse categorical accuracy, which is particularly suitable 
when ground truth labels are provided as integer-encoded 
class indices rather than one-hot encoded vectors. This 
metric computes the proportion of correctly classified 
pixels by comparing the predicted class index – 
determined by the highest predicted probability – with the 
actual class label for each pixel: 
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Another key metric is the Mean Intersection over 

Union (Mean IoU), a standard in semantic segmentation 
tasks. Mean IoU quantifies the average overlap between 
predicted and ground truth segmentation masks across all 
considered classes. However, given the class imbalance 
inherent to the Cityscapes dataset – where some classes 
dominate the dataset while others are infrequently 
represented – Mean IoU was computed over a targeted 
subset of six representative classes: 7 (road), 11 
(building), 20 (traffic sign), 21 (vegetation), 23 (sky), and 
26 (car). These selected categories encompass both large 
structural elements and smaller, yet semantically 
important, urban objects. This focused evaluation offers a 
more meaningful representation of model performance in 
real-world scenarios, rather than being skewed by rare or 
less relevant classes. IoU is calculated as following: 

 

FNFPTP

TP
IoU


 . 

 
Precision was also utilized to evaluate how reliable the 

model’s positive predictions were. It measures the 
proportion of pixels that were correctly predicted as 
belonging to a particular class out of all pixels the model 
assigned to that class: 

 

FPTP

TP
precision


 . 

 
In contrast, Sensitivity, also referred to as Recall, 

measures the model’s ability to detect all relevant pixels 
that belong to a given class. This is calculated as the ratio 
of True Positives to the sum of True Positives and False 
Negatives: 

 

FNTP
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Finally, Specificity was included to assess how well 
the model avoids false alarms. It evaluates the proportion 
of correctly identified negative pixels – those that do not 
belong to a particular class – relative to all true negatives 
and false positives. In this case, True Negatives refer to 
pixels correctly classified as not part of the target class, 
and False Positives indicate pixels that were incorrectly 
predicted as belonging to it: 

 

FPTN

TN


yspecificit . 

 
Result values of metrics are displayed in Table 1. 
The results outlined in the table highlight the clear 

advantage of ensemble strategies over both the baseline 
and individual U-Net models. The most effective 
configuration – the ensemble with optimized weights – 
achieved the highest accuracy, reaching 0.8756. This 
marks an approximate 4.7% improvement over the 
baseline model, which recorded an accuracy of 0.8360. 
These findings are consistent with trends observed in the 
training and validation accuracy curves, where ensemble 
methods consistently surpassed the performance of 
individual networks, particularly in the later stages of 
training. 

In terms of segmentation quality, the mean 
Intersection over Union (Mean IoU) also shows a notable 
boost. The optimized weight ensemble attained a Mean 
IoU of 0.6504, outperforming the baseline’s 0.6145 by a 
margin of 3.6%. Beyond overall accuracy and IoU, 
additional evaluation metrics such as precision, 
sensitivity, and specificity provide deeper insight into the 
segmentation behavior of each model. Precision, which 
quantifies the correctness of positive pixel classifications, 
varied across configurations. The highest precision was 

observed in U-Net-2 at 0.4050, while the optimized 
ensemble closely followed with a precision of 0.3980, 
demonstrating its ability to maintain segmentation 
accuracy while effectively limiting false positives. 

Specificity, which measures how accurately negative 
pixels are classified, remained consistently high across all 
configurations. The optimized ensemble achieved the 
highest specificity at 0.9953, indicating its strong capacity 
to reduce false positive classifications without 
compromising performance. This reliability in identifying 
background or non-target areas is especially valuable in 
high-precision segmentation tasks. 

While ensemble approaches deliver substantial gains 
in accuracy and segmentation quality, these 
improvements come with increased computational 
demands. The baseline U-Net offered the fastest inference 
speed, processing an image in 0.1604 seconds. In contrast, 
the optimized ensemble required 0.4135 seconds per 
image – roughly 2.6 times longer.  

Among the individual models, U-Net-4 exhibited the 
lowest execution time at 0.1512 seconds, making it a 
compelling option for applications that prioritize speed 
over marginal gains in accuracy. Nevertheless, the 
superior accuracy and segmentation fidelity achieved by 
ensemble configurations justify their use in domains 
where precision is paramount and computational cost is 
secondary. 

Overall, the findings clearly demonstrate that 
ensemble methods offer meaningful improvements in 
both accuracy and IoU compared to standalone models. 
The ensemble with optimized weights emerges as the 
most effective approach, achieving the best overall 
balance: high accuracy (0.8756), strong IoU (0.6504), and 
leading specificity (0.9953). 

 
Table 1 ‒ Networks metrics 

 
Baseli

ne 
Unet-1 Unet-2 Unet-3 

Unet-
4 

Unet-5 
Ensemble 

(max) 
Ensemble 

(avg) 

Ensemble 
optimize
d weights 

Ensemble 
proportional 

weights 

Ensemble 
exponential 

accuracy 0.8360 0.8265 0.8462 0.8365 0.8223 0.5754 0.8458 0.8672 0.8756 0.8620 0.8622 

mean IoU 0.6145 0.6103 0.6284 0.6324 0.5898 0.3463 0.5931 0.6346 0.6504 0.6380 0.6410 

precision 0.3783 0.3368 0.4050 0.3820 0.3297 0.1650 0.2922 0.2991 0.3980 0.3005 0.3003 

sensitivity 0.3094 0.2893 0.3269 0.3047 0.3056 0.1623 0.2409 0.2480 0.2576 0.2485 0.2485 

specificity 0.9944 0.9940 0.9947 0.9944 0.9940 0.9852 0.9946 0.9952 0.9953 0.9952 0.9952 

time per 
image, s 

0.1604 0.1524 0.1618 0.1570 0.1512 0.1627 0.3611 0.3710 0.4135 0.3947 0.4584 

 
6 DISCUSSION 

In this study, we explored the effect of ensemble 
methods on convolutional neural networks applied to 
semantic segmentation tasks. The proposed method 
integrates multiple U-Net networks and aggregates their 
outputs using an optimized weighting technique, aiming 

to enhance segmentation accuracy while keeping 
computational demands within practical limits. 

Our research began with a literature review, 
examining established techniques for improving semantic 
segmentation, particularly those focused on single-model 
refinement and ensemble learning. While individual 
model optimizations can yield modest improvements, the 
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reviewed studies consistently highlight ensemble learning 
as a more effective approach for increasing model 
robustness and generalization. However, these benefits 
are often accompanied by a notable rise in computational 
cost. 

To assess the proposed approach, we implemented and 
evaluated several U-Net models, each combined through 
different ensembling strategies – namely max voting, 
simple averaging, optimized weighting, proportional 
weighting, and exponential weighting. Across all 
configurations, the ensemble models outperformed 
standalone networks in terms of both accuracy and mean 
Intersection over Union (IoU). The ensemble using 
optimized weights delivered the best results, achieving an 
accuracy of 87.56% and a mean IoU of 0.6504, 
outperforming the top-performing individual U-Net by 
roughly 3%. These gains, however, came at the cost of 
increased inference time, a factor that becomes 
particularly relevant in time-sensitive or real-time 
applications, even though it stays within acceptable limits. 

Our findings further underscore that ensemble 
performance is most effective when constituent models 
produce diverse yet complementary predictions. 
Variability among the individual U-Net models was 
evident, with some excelling in precision and others in 
sensitivity. Through ensembling, these strengths were 
combined, effectively balancing the trade-offs inherent in 
each individual model and producing a more stable and 
consistent segmentation output. 

Despite these advantages, the study also sheds light on 
the limitations of ensemble learning. Running multiple 
networks in sequence substantially increases 
computational requirements, especially on systems 
without hardware acceleration. This poses challenges for 
deployment in scenarios where real-time inference is 
critical. Moreover, ensemble models did not show 
significant gains in specificity, suggesting that some 
segmentation errors are systemic and may persist 
regardless of the aggregation strategy. 

Overall, the results demonstrate that ensemble 
techniques offer meaningful improvements in semantic 
segmentation performance and model generalization 
across diverse classes. Yet, the balance between 
performance gains and computational efficiency remains 
a key consideration. Future research should focus on 
optimizing ensemble methodologies to reduce overhead, 
potentially through model distillation, parallel inference 
strategies, or lightweight ensembling techniques, all while 
preserving segmentation quality. 

 
CONCLUSIONS 

The paper analyses the effectiveness of ensemble 
methods for convolutional neural networks in solving the 
semantic segmentation task. 

The scientific novelty of the presented work lies in 
the development of a weighted ensemble approach based 
on five U-Net models sharing the same architecture, but 
each trained using distinct augmentation strategies and 

weight initialization techniques. This design improves 
segmentation accuracy and consistency without altering 
the network structure itself. By applying an optimized 
weighting mechanism during ensemble prediction, the 
proposed method achieves notable improvements in both 
accuracy and mean IoU when compared to individual 
models, while maintaining a high level of specificity. 
These results demonstrate that ensembling is a viable and 
efficient strategy for enhancing semantic segmentation 
performance using existing architectures. 

The practical significance of the research is 
underscored by the fact that the ensemble models were 
trained and evaluated on a real-world dataset, validating 
their relevance for practical deployment. The findings 
support the recommendation of this ensemble strategy for 
applications that demand high segmentation accuracy, 
such as autonomous driving systems. However, the 
increased computational overhead introduced by 
ensemble methods should be carefully considered, 
particularly in scenarios requiring real-time processing. 

Prospects for further research include refining the 
computational efficiency of the ensemble to reduce 
inference time while preserving segmentation quality. 
Future investigations may also explore the effectiveness 
of the proposed ensembling strategy when applied to 
alternative network architectures and larger, more diverse 
datasets, thereby broadening its applicability across 
different domains and use cases. 
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AНОТАЦІЯ 
Актуальність. Семантична сегментація є ключовим завданням комп’ютерного зору, зокрема в таких сферах, як 

автономне водіння та аналіз міських сцен. Створення нових архітектур є складним і трудомістким процесом, однак 
поліпшення точності за допомогою ансамблевих методів на основі вже існуючих моделей показує високий потенціал. 
У даній роботі досліджується застосування ансамблевого навчання як стратегії підвищення точності сегментації без 
модифікації архітектури U-Net. 

Мета роботи – розробка та оцінка однорідного ансамблю моделей U-Net, навчання яких здійснюється із 
використанням різних методів ініціалізації ваг та збільшення обсягу даних, а також вивчення ефективності різних 
стратегій агрегації ансамблю для підвищення якості сегментації на складних урбаністичних даних. 

Метод. Запропоновано ансамбль з п’яти моделей U-Net з однаковою архітектурою, але різною ініціалізацією ваг 
та підходами до збільшення обсягу даних, що забезпечує різноманітність прогнозів. Розглянуто кілька стратегій 
об'єднання вихідних даних: середнє по softmax, максимум, пропорційне зважування, експоненціальне зважування та 
оптимізоване вагове голосування. Оцінювання виконано на датасеті Cityscapes із використанням стандартних метрик 
сегментації. 

Результати. Результати експериментів показують, що ансамблеві моделі стабільно перевищують точність 
окремих моделей U-Net та базової моделі за такими показниками, як точність, середній IoU та специфічність. 
Ансамбль із оптимізованим зважуванням досяг найвищої точності (87,56%) та середнього IoU (0,6504), перевищивши 
найкращу окрему модель приблизно на 3%. Водночас покращення якості супроводжується збільшенням часу 
виведення результату, що вказує на необхідність компромісу між точністю та обчислювальною ефективністю. 

Висновки. Запропонований підхід на основі ансамблю ефективно покращує результати сегментації без зміни 
архітектури моделі. Незважаючи на збільшення обчислювальних витрат, метод є придатним для задач, де критично 
важлива точність сегментації. Подальші дослідження будуть зосереджені на зменшенні часу виведення результату та 
поширенні ансамблевого підходу на інші архітектури та датасети. 

КЛЮЧОВІ СЛОВА: згорткова нейронна мережа, семантична сегментація, U-Net, ансамблеве навчання, методи 
збільшення обсягу даних, ініціалізація ваг, Cityscapes, урбаністичні сцени. 
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