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ABSTRACT
Context. Semantic segmentation plays a critical role in computer vision tasks such as autonomous driving and urban scene
understanding. While designing new model architectures can be complex, improving performance through ensemble techniques
applied to existing models has shown promising potential. This paper investigates ensemble learning as a strategy to enhance
segmentation accuracy without modifying the underlying U-Net architecture.
Objective. The aim of this work is to develop and evaluate a homogeneous ensemble of U-Net models trained with distinct
initialization and data augmentation techniques, and to assess the effectiveness of various ensemble aggregation strategies in

improving segmentation performance on complex urban dataset.

Method. The proposed approach constructs an ensemble of five structurally identical U-Net models, each trained with unique
weight initialization and augmentation schemes to ensure prediction diversity. Several ensemble strategies are examined, including
softmax averaging, max voting, proportional weighting, exponential weighting, and optimized weighted voting. Evaluation is
conducted on the Cityscapes dataset using a range of segmentation metrics.

Results. Experimental findings demonstrate that ensemble models outperform individual U-Net instances and the baseline in
terms of accuracy, mean IoU, and specificity. The optimized weighted ensemble achieved the highest accuracy (87.56%) and mean
IoU (0.6504), exceeding the best individual model by approximately 3%. However, these improvements come with a notable
increase in inference time, highlighting a trade-off between accuracy and computational efficiency.

Conclusions. The ensemble-based approach effectively enhances segmentation accuracy while leveraging existing model
architectures. Although the increased computational cost presents a limitation for real-time applications, the method is well-suited for
high-precision tasks. Future research will focus on reducing inference time and extending the ensemble methodology to other

architectures and datasets.

KEYWORDS: convolutional neural network, semantic segmentation, U-Net, ensemble learning, data augmentation techniques,

model initialization, Cityscapes, urban scenes.

ABBREVIATIONS
CNN is a convolutional Neural Network;
U-Net is a U-shaped network architecture;
ELU is an Exponential Linear Unit;
ReLU is a Rectified Linear Unit;
IoU is a Intersection over Union;
Mean IoU / mloU is a Mean Intersection over Union;
TP is a True Positive;
FP is a False Positive;
FN is a False Negative;
TN is a True Negative;
RGB is a Red Green Blue.

NOMENCLATURE

F(X) is a convolutional neural network performing
semantic segmentation;

X' is an input image space;

Y is an output segmentation map (label space);

X is an input image;

y is a ground truth segmentation map;

H is a height of the input image;

W is a width of the input image;

C is a number of channels of the input image;

Yy is a predicted segmentation output;

argmaxy is a predicted class;
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Cj is a segmentation class;

F(x) is a prediction of the U-Net model in the
ensemble;

W; is a weight assigned to the model in the ensemble;

E(X) is an ensemble output;

Vinar 1S a final predicted class map from the
ensemble;

Metric is a segmentation metric;

accuracy is an accuracy of a model;

T(FR) is an inference time of the model;

T(E) is a total inference time of the ensemble;

loU is an intersection over union;

N is a normal distribution with mean;

[ is a variance;

a is a displacement intensity in elastic deformation;

o is a standard deviation of Gaussian noise;

W is an ensemble weight vector;

fan_in is a number of input units;

fan_out is a number of output units.

INTRODUCTION

Deep learning has made impressive strides in image
segmentation, especially when it comes to parsing
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complex urban scenes. This task is essential for
technologies like autonomous vehicles, smart traffic
systems, and overall city infrastructure management. A
widely recognized benchmark in this domain is the
Cityscapes dataset [1], known for its high-resolution,
finely annotated road scene images that have become
standard for evaluating model performance.

Architectures like U-Net have shown strong results in
semantic segmentation, yet they still struggle with
generalizing across varying conditions — think changes in
lighting, weather, or city layouts. To mitigate these issues,
ensemble learning has emerged as a valuable approach.
By merging predictions from multiple models, it boosts
accuracy and stabilizes results. While traditional
ensemble methods often mix different types of models
[2], a homogeneous ensemble — where multiple U-Net
models are trained separately — offers a balance between
performance and efficiency. This diversity, introduced
through unique initializations and data augmentations,
helps improve outcomes without the added complexity of
mixing architectures.

In this work, we investigate several homogeneous
ensembling techniques — such as averaging, max pooling,
and weighted voting — to see how each impacts
segmentation results. We propose a U-Net-based
ensemble tailored for urban image segmentation, using
distinct augmentation and initialization variations, and run
experiments to evaluate its effectiveness. Our analysis
includes comparisons of accuracy, speed, and
computational overhead to weigh the trade-offs of each
method.

The object of study in this research is semantic
segmentation of urban scenes, specifically focusing on the
challenges posed by varying environmental conditions,
such as changes in lighting, weather, and occlusions. The
study is conducted using the Cityscapes dataset, which
provides high-resolution images of complex urban
environments with 34 semantic classes.

The subject of study is the method of constructing
homogeneous U-Net ensembles to improve the accuracy
and robustness of semantic segmentation in urban
environments. This includes exploring different ensemble
strategies to enhance generalization across diverse scenes
while maintaining computational efficiency.

The purpose of this work is to improve the
generalization ability of U-Net models for urban scene
segmentation by leveraging networks homogeneous
ensembling. The study aims to demonstrate that a
homogeneous ensemble of multiple U-Net models can
achieve higher segmentation accuracy and robustness
compared to a single U-Net, particularly in conditions
found in real-world urban environments.

1 PROBLEM STATEMENT
Formally, the semantic segmentation task can be
described as a pixel-wise classification problem, where
the goal is to assign each pixel of an input image to one of
the predefined semantic classes.
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Let the input image be denoted as Xe X , where
X < RPW>XC  The output segmentation map is denoted
as yeY, where Y CZHXW, and each pixel value

corresponds to a class label from the set of predefined
classes C ={c,Cy,...,CK } .
The model is a functionF: X —Y , implemented

using a deep convolutional neural network architecture,
particularly U-Net. The output of the model is a

tensor § = F(x) e [0,1]"W>*K " and  the
predicted class for each pixel is obtained by:

probability

¥i,j =argmax F(X); j i -
keC

Let’s define a set of n trained models {Fl, F,..., Fn}
each producing a prediction ¥; = F,(X) We define the
ensemble function E as a weighted combination of the

n n
model outputs E(X)=> w;F(X), subject to > w; =1,
i=1 i=1
W; 20. The final prediction is obtained by taking the
argmax over the ensembled output:

Y final = argmax E(X); j -
keC

The objective is to find the optimal weight vector
W= (W,W,,...,W,) such that the ensemble prediction

maximizes a chosen segmentation quality metric, such as
the mean Intersection over Union (mloU):

n
max Metric(E(x),y), > W =1, w; >0.
W i=1

Additionally, due to hardware limitations, inference
must be performed on a CPU-based system, where
parallel execution is not available, and models are
evaluated sequentially. Let T(F) denote the execution
time of model F;. The ensemble execution time is

therefore:
n
T(E)= ZT(Fi ).
i=1

The constraint is to keep inference time within an
acceptable range T,,., defined based on application
requirements:

T(E)<T

max °
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2 REVIEW OF THE LITERATURE

Image segmentation [3] plays a key role in computer
vision, and in robot vision, aiming to identify and outline
objects within an image. Traditional methods — like
thresholding [4], region growing [5], and edge detection
[6] — have largely given way to deep learning-based
approaches [7-9], which excel at learning layered features
and handling complex textures.

Among deep learning models, Convolutional Neural
Networks (CNNs) [10] have become the backbone of
many segmentation tasks. Fully Convolutional Networks
(FCNs) [11] were among the earliest deep models to
perform pixel-level classification, showing the potential
of CNNs in segmentation. Yet, U-Net [12] — a fully
convolutional encoder-decoder design  with  skip
connections — has emerged as the preferred choice,
especially in biomedical applications. Its symmetric
structure allows it to retain spatial details, making it
particularly suitable for use cases like autonomous
driving. Enhanced versions, such as Attention U-Net [13]
and Residual U-Net [14], add mechanisms for better
feature focus and improved performance in complex
datasets.

Despite its strengths, U-Net and other single-model
architectures often face challenges in generalizing across
varied datasets. Differences in image quality, noise, and
structural variations can lead to inconsistent results. These
issues have encouraged the adoption of ensemble learning
to boost consistency and resilience.

Ensemble learning has long been explored as a way to
enhance model reliability by combining multiple learners.
Techniques like bagging [15], boosting [16], and stacking
[17] have shown success in improving generalization
through model diversity. Ensemble learning has
demonstrated strong performance improvements across a
variety of machine learning tasks even beyond computer
vision. For instance, in time series forecasting [18],
authors proposed an ensemble of adaptive predictors
capable of real-time learning on multivariate non
stationary sequences. In segmentation, deep learning
ensembles are typically either heterogeneous or
homogeneous.

Heterogeneous ensembles [19], which mix various
model types, can improve accuracy by capturing different
feature perspectives. However, this comes at the cost of
greater computational demands and system complexity.
Homogeneous ensembles [20], on the other hand, use
multiple instances of the same architecture, each trained
under varied conditions — such as different initializations,
hyperparameters, or data augmentations. Research [21]
suggests that such homogeneous setups can match or even
surpass heterogeneous ensembles, all while remaining
more efficient.

Several studies illustrate the promise of ensembling in
segmentation. One work combined 3D CNNs for brain
lesion detection [22], demonstrating reduced uncertainty
through model fusion. Another leveraged a U-Net
ensemble trained with diverse loss functions to improve

© Hmyria I. O., Kravets N. S., 2025
DOI 10.15588/1607-3274-2025-3-7

66

lung nodule segmentation [23]. These examples underline
the benefits of ensembles in reducing prediction variance
and improving robustness.

The importance of adaptivity in visual systems has
been emphasized not only in segmentation architectures
but also in image preprocessing approaches. For example,
Smelyakov et al. [24] developed an adaptive image
enhancement model for robotic vision systems, enabling
real-time responsiveness to variable environmental
conditions.

The existing literature consistently shows that
ensemble learning enhances both the accuracy and
stability of segmentation models. While many studies
have tested different ensemble strategies, few have taken
a detailed look at the trade-offs between segmentation
accuracy and scalability. Building on previous findings,
this paper proposes a homogeneous ensemble of U-Net
models, each trained with unique weight initializations
and augmentation schemes, using optimized voting
strategy. Various inference methods are evaluated to
better understand how ensemble design choices affect
segmentation performance and efficiency.

3 MATERIALS AND METHODS
The Cityscapes dataset serves as a large-scale
benchmark tailored for urban scene understanding,

particularly focusing on tasks such as semantic
segmentation, instance segmentation, and depth
estimation. It features high-resolution imagery

(2048x1024 pixels) captured from a vehicle-mounted
camera as it navigates through 50 cities across Germany,
Switzerland, and France. These images encompass a wide
range of environmental conditions, including various
weather scenarios and lighting settings throughout the
day, thereby providing a comprehensive dataset for
evaluating and training deep learning models used in
autonomous driving and urban analysis.

This dataset contains 5.000 finely annotated images,
distributed across 2.975 for training, 500 for validation,
and 1.525 for testing, with annotations for the test set not
publicly available. Additionally, it offers 20.000 coarsely
annotated images as a supplementary resource. The
annotation schema spans 34 semantic categories,
including classes such as roads, buildings, vegetation,
vehicles, pedestrians, and traffic signs. Each pixel in the
finely annotated set is labeled with a semantic class,
allowing for precise pixel-wise learning. Due to its
detailed labeling, high resolution, and inherent class
imbalance, the Cityscapes dataset has become a gold
standard for evaluating segmentation models like U-Net.
Given these challenges, leveraging a homogeneous
ensemble of U-Net models offers a promising approach to
improving segmentation performance by reducing
variance and enhancing generalization, particularly in
urban environments with fine-grained structures, dynamic
lighting, and frequent occlusions.

To bolster the generalization capacity of the
homogeneous U-Net ensemble, a diverse range of data
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augmentation strategies was applied, with each of the five
networks in the ensemble trained using a distinct
transformation method. This approach promotes the
learning of wunique and complementary feature
representations  across models, thereby reducing
overfitting and enhancing robustness on the Cityscapes
dataset. Augmentations were chosen to simulate real-
world visual variability while preserving the fundamental
structure and semantics of objects within the scene. Urban
environments naturally involve variations in object
distance, camera perspective, noise, occlusion, and image
distortion. Therefore, the selected augmentations were
designed to reflect these real-world variations while
maintaining semantic integrity.

Scaling was applied by randomly resizing input
images within a predefined range. This helped the model
develop scale-invariant features, which are critical for
segmenting objects appearing at varying distances from
the camera. Rotation was used to introduce random
angular transformations, enhancing the model's ability to
recognize and segment objects regardless of orientation —
a common challenge in dynamic urban settings. Affine
transformations, including shearing, translation, and
reflection, were incorporated to introduce spatial diversity
without disrupting the essential spatial structure of
objects, thereby encouraging the model to generalize
better under changes in viewpoint or alignment. One
network in the ensemble was trained using -elastic
deformation, a technique adapted from medical imaging
applications. This method simulates local, nonlinear
distortions within the image, which is particularly useful
for modeling real-world deformations in classes like
pedestrians or vehicles, which often exhibit variable
shapes and poses. Gaussian noise was added to simulate
sensor noise, compression artifacts, and environmental
distortions. This augmentation made the model more
resilient to unpredictable visual noise and inconsistencies
present in real-world imagery.

By assigning a unique augmentation strategy to each
model, the ensemble was exposed to a broad spectrum of
visual conditions. This diversity in learning experiences
encouraged the models to acquire distinct yet
complementary internal representations. Consequently,
the ensemble could capture a wider range of features and
generalize more effectively across complex urban scenes
with challenging visual variability.

To improve training stability and ensure convergence
across the homogeneous ensemble, each U-Net model
was initialized using a distinct weight initialization
technique. The importance of proper initialization in deep
neural networks is well-established, particularly in
preventing vanishing or exploding gradients, enhancing
learning efficiency, and improving generalization
performance. In this work, five different initialization
strategies were employed: Glorot Normal, He Uniform,
Orthogonal Initialization, LeCun Normal, and Random
Normal.
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The Glorot Normal method [25], also referred to as
Xavier Normal, initializes weights from a truncated
normal distribution centered at zero, with variance scaled
based on both the number of incoming and outgoing
connections. Weights are initialized by sampling from a
truncated normal distribution centered at 0 with a standard

deviation of:
2
o= |——F.
fan_in + fan_out

This technique helps maintain a balanced variance of
activations across layers, which is particularly beneficial
when using sigmoid or tanh activation functions.

He Uniform initialization [26], designed for networks
employing ReLU activations, samples weights from a
uniform distribution scaled by the number of input units.
This ensures that activations are well-scaled during
forward propagation, improving training stability in deep
architectures. Weights are initialized by sampling from a
uniform distribution within [—limit, limit], where:

- / 6
limit = — .
fan_in

Orthogonal Initialization involves generating weight
matrices that form an orthogonal basis, typically achieved
through QR decomposition of randomly generated
matrices. This approach helps preserve information flow
during both forward and backward passes, making it
especially effective for deep convolutional models.
Weights are initialized by generating a random matrix and
applying QR decomposition to obtain an orthogonal
matrix. Specifically, for a weight matrix W =QxR .

LeCun Normal initialization [27] is similar in concept
to Glorot Normal but scales weights based solely on the
number of input units, offering improved stability for tanh
and sigmoid-based networks of moderate depth. Weights
are initialized by sampling from a truncated normal
distribution centered at 0 with a standard deviation of:

f 1
c= — .
fan_in

Finally, one network was initialized using a Random
Normal distribution with manually specified mean and
standard deviation, providing a baseline for comparing the
effectiveness of more sophisticated initializers. Weights
are initialized by sampling from a normal distribution:

W ~N(u,0?).

The assignment of initialization methods to specific
augmentation strategies was done purposefully to enhance
For

model diversity and learning
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augmentations that alter spatial characteristics — such as
scaling or affine transformations — initialization
techniques like Glorot Normal and Orthogonal
Initialization were chosen, as they preserve activation
variance even under substantial input variation. Rotation-
based augmentations, which introduce directional shifts
without distorting spatial structure, were paired with He
Uniform initialization due to its suitability for ReLU-
based networks and its ability to facilitate rapid early
learning. Elastic deformation, which applies localized and
nonlinear distortions, was combined with LeCun Normal
initialization, providing a low-variance starting point that
helps avoid overfitting in early training phases. The
combination of Gaussian noise augmentation and Random
Normal initialization introduced variability both at the
data and model initialization level, offering a useful
control scenario for measuring the effects of structured
randomness.

This strategic pairing of augmentations and
initializations promoted heterogeneity in feature
representations and error patterns across the ensemble,
which is essential for achieving high segmentation
accuracy through ensemble learning. The result is a more
resilient and generalizable model, capable of handling the
diverse challenges inherent in urban scene segmentation.

To establish a baseline for evaluating the effectiveness
of the proposed homogeneous U-Net ensemble, a standard
U-Net model was implemented. This model, widely
recognized in semantic segmentation tasks, is particularly
well-suited for applications involving urban scenes, such
as those found in the Cityscapes dataset. The U-Net
architecture (Fig. 1) adopts a symmetric encoder-decoder
structure, which enables accurate pixel-level classification
— an essential capability for high-resolution urban
segmentation.

LT

Figure 1 — Unet baseline acrhitecture

Segmontation mask

The network’s architecture is composed of two main
components. The encoder, also known as the contracting
path, systematically reduces the spatial dimensions of the
input image while extracting progressively higher-level
features. Each block in the encoder includes two
convolutional layers followed by Batch Normalization
and ReLU activations, with Max Pooling layers applied
between blocks to downsample the feature maps. At each
stage of downsampling, the number of feature channels
doubles, beginning from 64 and reaching up to 1024,

© Hmyria I. O., Kravets N. S., 2025
DOI 10.15588/1607-3274-2025-3-7

68

allowing the model to learn
representations of the input scene.

In the decoder, or expanding path, the spatial
resolution of the feature maps is gradually restored using
transposed convolutions. To retain fine-grained spatial
information lost during the encoding process, skip
connections linking corresponding layers between the
encoder and decoder. After each upsampling step, the
upsampled feature map is concatenated with its encoder
counterpart, followed by two convolutional layers and
Batch Normalization, which further refine the
segmentation outputs. The network concludes with a 1x1
convolutional layer that projects the final feature map to
the desired number of segmentation classes, and a
softmax activation function is applied to produce the class
probabilities for each pixel.

The baseline model is configured to accept input
images of size 256x256%3, with a total parameter count
of approximately 35.8 million. Training was conducted
using categorical cross-entropy as the loss function,
optimized with the Adam algorithm and an initial learning
rate of 0.001. The training set was processed in mini-
batches of 16 images, and the network was trained for up
to 30 epochs, with early stopping triggered based on the
validation loss to prevent overfitting.

This baseline U-Net model serves as a reference point
against which the ensemble approach is assessed. By
comparing its performance with that of the ensemble —
composed of multiple U-Net variants trained with
different augmentation strategies and initialization
schemes — it becomes possible to quantify the benefits of
ensemble learning in enhancing segmentation accuracy
and robustness.

To improve segmentation accuracy and enhance the
generalization capabilities beyond what a single U-Net
model can offer, an ensemble of five U-Net networks was
constructed. While all five models shared the same
architectural design as the baseline U-Net, they differed in
their training setup through distinct combinations of
weight initialization and data augmentation strategies.
This intentional diversification enabled the ensemble to
learn a wider array of feature representations, ultimately
leading to stronger performance on complex urban
segmentation tasks within the dataset.

The diversity within the ensemble was introduced
through two complementary mechanisms. The first
involved using different weight initialization schemes for
each model, which encouraged unique learning dynamics
by altering the starting conditions of training. The
initializers applied — Glorot Normal, He Uniform,
Orthogonal, LeCun Normal, and Random Normal — each
influenced the convergence path in different ways,
thereby promoting model independence and reducing the
risk of all networks settling into similar local minima. The
second mechanism of diversification relied on data
augmentation. Each U-Net model was trained using a
specific transformation technique — ranging from scaling
and rotation to affine transformation, elastic deformation,
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and Gaussian noise. These augmentations simulated a
variety of real-world conditions found in urban
environments, compelling each network to adapt to
distinct types of variability, which in turn increased the
ensemble's robustness to unseen data.

To combine the outputs from the ensemble, multiple
prediction aggregation strategies were explored, each
offering a different method of consolidating the networks’
decisions. The first approach involved averaging the
softmax probability outputs of each model on a pixel-wise
basis. This method smoothed out individual
inconsistencies and allowed the final segmentation map to
reflect a balanced consensus across all predictions. An
alternative strategy employed a maxing operation,
selecting the highest softmax probability across the
ensemble for each pixel. This method emphasized high-
confidence predictions by giving more weight to
confident outputs from any individual model.

Beyond these basic ensemble strategies, a more
refined weighted voting method was developed to
optimize how each model contributed to the final output.
Here, the influence of each network was proportional to
its validation accuracy, ensuring that more reliable models
had a stronger impact on the final segmentation results.
To further refine this weighting scheme, an exponential
scaling mechanism was introduced, amplifying the
contributions of the top-performing models while still
allowing all ensemble members to participate in the
decision-making process. This balance maintained the
diversity benefits of ensembling while increasing the
precision of the final predictions.

To optimize the distribution of weights among the
models, a grid search procedure was performed. Rather
than assigning equal weights, the goal was to identify the
optimal weight vector w=[w1,w2,...,wN] that would yield
the highest segmentation accuracy, as measured by the
Dice score across the entire validation set. This
optimization process ensured that the ensemble not only
leveraged the strengths of individual models but also fine-
tuned their contributions to achieve maximal overall
performance.The ensemble prediction is computed as a
weighted sum of the individual model predictions:

Y = W|P|

=

1

To ensure model contributions remain meaningful and
balanced, we enforce the following constraints on the
weights:

N
0<w; <L, Yw~1.
i=1

This formulation prevents any single model from
dominating the ensemble while allowing flexibility for
weight adjustments.
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The optimization process seeks to maximize the dice
score:

N A
ZZ(YI 'Yi ) +&
Dice(Y,Y) = hi=1 -

DY +Zf+s.

i=1 i=1

We define the objective function as:

N
22 (YY) +e

max —=L

w N N '
ZYi +ZYi +&
i=1 i=1

We wuse constrained numerical optimization or
Powell’s method [28] to solve for the optimal weight
vector.

4 EXPERIMENTS

The experiment was conducted using the Cityscapes
dataset, which was divided into 2,975 training images and
500 for validation. To ensure consistency, all input
images were resized and normalized prior to training,
enhancing numerical stability and model convergence.
The dataset was also shuffled randomly to avoid any
learning bias, and mini-batches of size 16 were used to
optimize computational efficiency.

For the baseline, a standard U-Net model was
deployed without explicit weight initialization — weights
were set to zero by default. The Exponential Linear Unit
(ELU) activation function was used throughout the
network to support better gradient flow and accelerate
convergence in deeper layers. An early stopping strategy
was applied, halting training automatically once the
validation loss ceased to improve, thus preventing
overfitting and reducing computational overhead.

Performance was evaluated using a suite of metrics,
including Mean Intersection over Union (Mean IoU),
pixel accuracy, precision, sensitivity, and specificity.
These metrics offered a comprehensive view of model
performance, capturing both pixel-level accuracy and
class-level segmentation effectiveness. This baseline
served as a critical reference point for assessing the
effectiveness of the proposed homogenecous ensemble
approach.

The first ensemble model maintained the baseline
architecture but introduced Glorot Normal initialization to
ensure balanced activation variance across layers. The
activation function was switched to sigmoid to produce
smoother probability maps suitable for segmentation
tasks. Additionally, scaling augmentation was applied,
randomly zooming input images to simulate changes in
object size and distance. These modifications aimed to
improve stability, generalization, and robustness to scale
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variance while preserving compatibility with the overall
ensemble structure.

The second U-Net also retained the base architecture
but employed He Normal initialization, tailored for ReLU
activations, to facilitate deeper gradient flow. Rotation-
based augmentation was introduced, with input images
randomly rotated up to 30 degrees to simulate real-world
changes in camera angle. Nearest-neighbor interpolation
was used to maintain pixel quality. This configuration
allowed the model to develop rotation-invariant features,
enhancing its performance in dynamic urban
environments.

The third model applied Orthogonal initialization to
promote stable training by preserving variance throughout
deep layers, in conjunction with ELU activation to
support gradient propagation. Affine transformations —
including translation, scaling, shearing, and minor
rotations — were used as augmentations to introduce
spatial diversity. This combination encouraged the model
to learn features invariant to subtle spatial distortions
typical in real-world imagery.

The fourth model employed LeCun Normal
initialization, optimized for tanh activations, and was
paired with Elastic Deformation as the augmentation
technique. By introducing smooth, localized warping
through parameterized displacement fields (a = 10, 6 = 4),
the model became better equipped to generalize across
irregular object shapes and occlusions. This setup enabled
the model to develop fine-grained sensitivity to structural
deformations commonly seen in urban environments.

The final U-Net used Random Normal initialization to
introduce variability in early learning trajectories.
Gaussian noise was added to the input during training to
simulate sensor-level imperfections, using a standard
deviation of ¢ = 0.05. The ELU activation function was
retained to aid in stable convergence. This model served
to improve robustness under noisy conditions, rounding
out the ensemble with additional stochastic diversity.

Upon training the five U-Net models, they were
integrated into a homogeneous ensemble to capitalize on
their individual strengths and improve segmentation
accuracy, robustness, and generalization. To achieve this,
three distinct ensemble strategies were explored:
averaging, maxing, and weighted voting — each offering a
different method for aggregating pixel-wise predictions.

In the averaging ensemble, the probability
distributions generated by each model were averaged for
every pixel. This approach mitigated the noise and
uncertainty present in individual model outputs, yielding
smoother and more balanced segmentation maps. It was
particularly effective at improving generalization by
consolidating diverse prediction patterns across the
ensemble.

The maxing ensemble took a different approach,
selecting the highest softmax probability across all five
models for each pixel. This strategy emphasized confident
predictions, allowing the most certain model to determine
the final class decision per pixel. While this method
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enhanced decisiveness, it also introduced the risk of
amplifying isolated high-confidence errors, depending on
the reliability of individual networks.

To further refine prediction quality, a weighted voting
ensemble was implemented. Here, each model’s
prediction was weighted according to its validation
performance. The first weighting scheme assigned
weights proportional to each model’s validation accuracy,
allowing higher-performing models to contribute more
significantly to the final segmentation output.

The second approach used exponential scaling,
amplifying differences between strong and weak models
by applying an exponential function to the accuracy
scores. This method increased the influence of top
performers while still preserving the diversity contributed
by other networks. Finally, a grid search optimization was
conducted to identify the optimal weight vector

W= [W1 S W, 5, Wy ]. This involved evaluating different

weight configurations on a subset of 10 validation images.
The aim was to maximize the Dice score across the
ensemble, ensuring that the final weighted output
delivered the highest possible segmentation accuracy.

5 RESULTS

Once the ensemble models were constructed and
integrated using the proposed aggregation strategies, a
comprehensive evaluation was carried out to compare
their performance against the baseline U-Net. This
analysis focused on measuring segmentation accuracy,
generalization, and robustness across both individual and
ensemble models. All models were tested on the same
validation set using consistent evaluation metrics, which
included Mean Intersection over Union (Mean IoU), pixel
accuracy, precision, sensitivity, specificity, and execution
time measured in seconds per image. This consistent
methodology ensured a fair comparison and provided a
granular understanding of how each configuration
performed. The training accuracy graph (Fig. 2) illustrates
the learning progression of multiple U-Net models
compared to the baseline over 25 epochs.

e g—a—t—t
—t—r——" it
p— p_—

0.9

%.///:/_ g

| Ensemble models
’ = Unet-1
03 ‘ Unet-2
| — Unet:3
| — Unet4
— Unet-5
. = Baseline

=

Accuracy

0 5 1 15 20 P
Epach
Figure 2 — Training accuracy across networks

Training accuracy trends revealed that all models
experienced a rapid increase in performance within the
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first five epochs, reflecting effective initial feature
learning from the dataset. The baseline U-Net, though
following a similar pattern, consistently trailed behind the
other models. Among the ensemble components, U-Net-2
and U-Net-3 achieved the highest accuracy throughout
training, indicating their ability to extract and generalize
critical features. U-Net-5, on the other hand, consistently
recorded the lowest accuracy, suggesting challenges in
learning effective feature representations. By epoch 15,
most models began to converge, with accuracy
improvements tapering off and stabilizing near the 90%
mark — except for U-Net-5, which continued to
underperform. The baseline model remained consistently
below the performance of all U-Net variants, reaffirming
the benefits introduced by tailored augmentation and
initialization strategies in the ensemble.

The graph Fig. 3 illustrates the validation accuracy of
different U-Net models and the baseline over 25 epochs.

Validation Accuracy Across Networks
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Figure 3 — Validation accuracy across networks

Validation accuracy followed a similar trajectory,
offering further insight into the generalization capabilities
of each model on unseen data. All models showed sharp
improvements in validation accuracy during the initial
training phase, mirroring their training performance. U-
Net-2, U-Net-3, and U-Net-4 achieved the highest early-
stage validation scores, indicating robust learning
dynamics and generalization from augmented and well-
initialized architectures. In contrast, U-Net-5 lagged
significantly behind, maintaining a noticeably lower
accuracy curve throughout training. The baseline model
started with low initial accuracy but gradually improved,
though by the fifth epoch, all U-Net variants had
surpassed it. This confirmed the value of ensemble
diversification  strategies in  enhancing  model
generalization.

By the end of training, the validation accuracy of most
U-Net models converged between 82% and 84%, while
the baseline plateaued slightly below this range. U-Net-5
remained a notable outlier, stabilizing around 57%, which
suggests either insufficient regularization or overfitting to
the training data. After epoch 10, most models displayed
stable accuracy with minimal variation, indicating
convergence. U-Net-2 and U-Net-3 maintained superior
performance throughout, reflecting their consistency
across both training and validation phases. The observed
gap between training accuracy (approaching 90%) and
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validation accuracy (around 80%) across models points to
potential overfitting — a likely result of dataset limitations
and model complexity.

To assess the performance of the models, several
evaluation metrics were employed, each designed to
capture different aspects of segmentation accuracy and
classification quality. One of the core metrics used was
sparse categorical accuracy, which is particularly suitable
when ground truth labels are provided as integer-encoded
class indices rather than one-hot encoded vectors. This
metric computes the proportion of correctly classified
pixels by comparing the predicted class index —
determined by the highest predicted probability — with the
actual class label for each pixel:

N
accuracy = LZl(argmaX Pic=VYi)-
i=l1 ¢

Another key metric is the Mean Intersection over
Union (Mean IoU), a standard in semantic segmentation
tasks. Mean IoU quantifies the average overlap between
predicted and ground truth segmentation masks across all
considered classes. However, given the class imbalance
inherent to the Cityscapes dataset — where some classes
dominate the dataset while others are infrequently
represented — Mean IoU was computed over a targeted
subset of six representative classes: 7 (road), 11
(building), 20 (traffic sign), 21 (vegetation), 23 (sky), and
26 (car). These selected categories encompass both large
structural elements and smaller, yet semantically
important, urban objects. This focused evaluation offers a
more meaningful representation of model performance in
real-world scenarios, rather than being skewed by rare or
less relevant classes. IoU is calculated as following:

TP

loU=———.
TP+ FP+FN
Precision was also utilized to evaluate how reliable the
model’s positive predictions were. It measures the
proportion of pixels that were correctly predicted as
belonging to a particular class out of all pixels the model
assigned to that class:

TP

precision = ————.
TP +FP

In contrast, Sensitivity, also referred to as Recall,
measures the model’s ability to detect all relevant pixels
that belong to a given class. This is calculated as the ratio
of True Positives to the sum of True Positives and False
Negatives:

TP

sensitivity = ———.
v TP+FN
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Finally, Specificity was included to assess how well
the model avoids false alarms. It evaluates the proportion
of correctly identified negative pixels — those that do not
belong to a particular class — relative to all true negatives
and false positives. In this case, True Negatives refer to
pixels correctly classified as not part of the target class,
and False Positives indicate pixels that were incorrectly
predicted as belonging to it:

observed in U-Net-2 at 0.4050, while the optimized
ensemble closely followed with a precision of 0.3980,
demonstrating its ability to maintain segmentation
accuracy while effectively limiting false positives.
Specificity, which measures how accurately negative
pixels are classified, remained consistently high across all
configurations. The optimized ensemble achieved the
highest specificity at 0.9953, indicating its strong capacity

to reduce false positive classifications without
. TN compromising performance. This reliability in identifying
specificity = TN+FP background or non-target areas is especially valuable in

Result values of metrics are displayed in Table 1.

The results outlined in the table highlight the clear
advantage of ensemble strategies over both the baseline
and individual U-Net models. The most effective
configuration — the ensemble with optimized weights —
achieved the highest accuracy, reaching 0.8756. This
marks an approximate 4.7% improvement over the
baseline model, which recorded an accuracy of 0.8360.
These findings are consistent with trends observed in the
training and validation accuracy curves, where ensemble
methods consistently surpassed the performance of
individual networks, particularly in the later stages of
training.

In terms of segmentation quality, the mean
Intersection over Union (Mean IoU) also shows a notable
boost. The optimized weight ensemble attained a Mean
IoU of 0.6504, outperforming the baseline’s 0.6145 by a
margin of 3.6%. Beyond overall accuracy and IoU,
additional evaluation metrics such as precision,
sensitivity, and specificity provide deeper insight into the
segmentation behavior of each model. Precision, which
quantifies the correctness of positive pixel classifications,
varied across configurations. The highest precision was

high-precision segmentation tasks.

While ensemble approaches deliver substantial gains
in accuracy and segmentation quality, these
improvements come with increased computational
demands. The baseline U-Net offered the fastest inference
speed, processing an image in 0.1604 seconds. In contrast,
the optimized ensemble required 0.4135 seconds per
image — roughly 2.6 times longer.

Among the individual models, U-Net-4 exhibited the
lowest execution time at 0.1512 seconds, making it a
compelling option for applications that prioritize speed
over marginal gains in accuracy. Nevertheless, the
superior accuracy and segmentation fidelity achieved by
ensemble configurations justify their use in domains
where precision is paramount and computational cost is
secondary.

Overall, the findings clearly demonstrate that
ensemble methods offer meaningful improvements in
both accuracy and IoU compared to standalone models.
The ensemble with optimized weights emerges as the
most effective approach, achieving the best overall
balance: high accuracy (0.8756), strong IoU (0.6504), and
leading specificity (0.9953).

Table 1 — Networks metrics

. Ensemble Ensemble
Bis:h Unet-1 Unet-2 | Unet-3 UTt— Unet-5 Erzf;rlr;(l;le En(saevml)ale optimize | proportional elin(s)ir;lrilizl
g d weights weights P

accuracy 0.8360 | 0.8265 0.8462 | 0.8365 | 0.8223 | 0.5754 0.8458 0.8672 0.8756 0.8620 0.8622
mean IoU | 0.6145 | 0.6103 0.6284 | 0.6324 | 0.5898 | 0.3463 0.5931 0.6346 0.6504 0.6380 0.6410
precision 0.3783 | 0.3368 0.4050 | 0.3820 | 0.3297 | 0.1650 0.2922 0.2991 0.3980 0.3005 0.3003
sensitivity | 0.3094 | 0.2893 0.3269 | 0.3047 | 0.3056 | 0.1623 0.2409 0.2480 0.2576 0.2485 0.2485
specificity | 0.9944 | 0.9940 | 0.9947 | 0.9944 | 0.9940 | 0.9852 0.9946 0.9952 0.9953 0.9952 0.9952
time per

- 0.1604 | 0.1524 | 0.1618 | 0.1570 | 0.1512 | 0.1627 0.3611 0.3710 0.4135 0.3947 0.4584

6 DISCUSSION to enhance segmentation accuracy while keeping

In this study, we explored the effect of ensemble
methods on convolutional neural networks applied to
semantic segmentation tasks. The proposed method
integrates multiple U-Net networks and aggregates their
outputs using an optimized weighting technique, aiming
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computational demands within practical limits.

Our research began with a literature review,
examining established techniques for improving semantic
segmentation, particularly those focused on single-model
refinement and ensemble learning. While individual
model optimizations can yield modest improvements, the
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reviewed studies consistently highlight ensemble learning
as a more effective approach for increasing model
robustness and generalization. However, these benefits
are often accompanied by a notable rise in computational
cost.

To assess the proposed approach, we implemented and
evaluated several U-Net models, each combined through
different ensembling strategies — namely max voting,
simple averaging, optimized weighting, proportional
weighting, and exponential weighting. Across all
configurations, the ensemble models outperformed
standalone networks in terms of both accuracy and mean
Intersection over Union (IoU). The ensemble using
optimized weights delivered the best results, achieving an
accuracy of 87.56% and a mean IoU of 0.6504,
outperforming the top-performing individual U-Net by
roughly 3%. These gains, however, came at the cost of
increased inference time, a factor that becomes
particularly relevant in time-sensitive or real-time
applications, even though it stays within acceptable limits.

Our findings further underscore that ensemble
performance is most effective when constituent models
produce diverse yet complementary predictions.
Variability among the individual U-Net models was
evident, with some excelling in precision and others in
sensitivity. Through ensembling, these strengths were
combined, effectively balancing the trade-offs inherent in
each individual model and producing a more stable and
consistent segmentation output.

Despite these advantages, the study also sheds light on
the limitations of ensemble learning. Running multiple
networks in  sequence  substantially  increases
computational requirements, especially on systems
without hardware acceleration. This poses challenges for
deployment in scenarios where real-time inference is
critical. Moreover, ensemble models did not show
significant gains in specificity, suggesting that some
segmentation errors are systemic and may persist
regardless of the aggregation strategy.

Overall, the results demonstrate that ensemble
techniques offer meaningful improvements in semantic
segmentation performance and model generalization
across diverse classes. Yet, the balance between
performance gains and computational efficiency remains
a key consideration. Future research should focus on
optimizing ensemble methodologies to reduce overhead,
potentially through model distillation, parallel inference
strategies, or lightweight ensembling techniques, all while
preserving segmentation quality.

CONCLUSIONS

The paper analyses the effectiveness of ensemble
methods for convolutional neural networks in solving the
semantic segmentation task.

The scientific novelty of the presented work lies in
the development of a weighted ensemble approach based
on five U-Net models sharing the same architecture, but
each trained using distinct augmentation strategies and
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weight initialization techniques. This design improves
segmentation accuracy and consistency without altering
the network structure itself. By applying an optimized
weighting mechanism during ensemble prediction, the
proposed method achieves notable improvements in both
accuracy and mean IoU when compared to individual
models, while maintaining a high level of specificity.
These results demonstrate that ensembling is a viable and
efficient strategy for enhancing semantic segmentation
performance using existing architectures.

The practical significance of the research is
underscored by the fact that the ensemble models were
trained and evaluated on a real-world dataset, validating
their relevance for practical deployment. The findings
support the recommendation of this ensemble strategy for
applications that demand high segmentation accuracy,
such as autonomous driving systems. However, the
increased computational overhead introduced by
ensemble methods should be carefully considered,
particularly in scenarios requiring real-time processing.

Prospects for further research include refining the
computational efficiency of the ensemble to reduce
inference time while preserving segmentation quality.
Future investigations may also explore the effectiveness
of the proposed ensembling strategy when applied to
alternative network architectures and larger, more diverse
datasets, thereby broadening its applicability across
different domains and use cases.
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CEIMEHTANIA MICBKHX CHEH 3A JOIIOMOI'OIO OJHOPIJHOI'O AHCAMBJIIO U-NET:
JOCJIIUKEHHSA HA JTATACETI CITYSCAPES

I'mups 1. O. — acnipant kadenpu mporpamHoi imkeHepii, XapKiBCbkuil HaIllOHAJIbHUM YHIBEPCUTET PaliOeleKTPOHIKH,
XapkiB, YkpaiHa.

Kpagenr H. C. — xanj. TexH. HayK, JOLEHT, AOLEHT KadeIpu IPOrpaMHoOi iHkeHepii, XapKiBCbKUH HallloHaNbHHUH
YHIBEPCHUTET palioelIeKTPOHIKH, XapKiB, YKpaiHa.

AHOTANIA

AxTyanbHicTb. CeMaHTHYHA CETMEHTALliS € KJIIOYOBUM 3aBJAHHSIM KOMII'IOTEPHOTO 30pYy, 30KpeMa B Takux cgepax, K
ABTOHOMHE BOJIHHS Ta aHaJi3 MIChbKHUX ciieH. CTBOPEHHSI HOBHX apXiTEKTyp € CKJIAIHHM 1 TPYJOMICTKHM IPOLECOM, OIHAK
MOJIIMIIEHHS] TOYHOCTI 3 JI0IIOMOT00 aHCaMOJIEBHX METO/IIB Ha OCHOBI BJKE€ ICHYIOUHX MOJIEJICH MOKa3y€e BUCOKUH MTOTEHILiall.
VY naniit poOOTi AOCHIIKYETHCS 3aCTOCYBAaHHS aHCAMOJICBOIO HABYAHHS SIK CTpaTeril MiABHMIICHHS TOUYHOCTI cerMeHTalii 6e3
moaudikanii apxitektypu U-Net.

Merta po6oTu — po3poOka Ta OLiHKa oxHOpizHOro ancamOmio mozeneil U-Net, HaBYaHHSA SIKUX 3IIHCHIOETHCS 13
BUKOPUCTAHHIM PI3HUX METOJIB iHiliami3alii Bar Ta 30UIbIICHHS] 00CATY JaHMX, a TAKOX BHUBYCHHS €(QEKTHBHOCTI Pi3HHX
cTpareriii arperatii ancamOJI0 sl MIABUILEHHS SKOCTI CErMEHTAlii Ha CKIIaJHNX YpOaHiCTUYHUX JaHUX.

Mertopa. 3anpornoHoBaHo aHcaMOIib 3 1°siTu Moeneit U-Net 3 0IHAaKOBOIO apXiTEKTYpOro, ajie Pi3HOI0 iHiliani3alie Bar
Ta MigXoJaMu 10 30UIbIICHHS 00CATY JaHUX, L0 3a0e3leuye pi3HOMAHITHICTb IPOrHO3iB. PO3MIHYTO KilbKa cTpaTerii
00'eIHAaHHS BUXIJHUX JAaHUX: CEpPeIHE 10 softmax, MakCUMyM, MPOMOpIiiiHEe 3BaXKyBaHHS, €KCIIOHEHI[IaJIbHE 3BaXKyBaHHS Ta
ONTUMIi30BaHe Barose rojocysanHs. OUiHIOBaHHA BUKOHaHO Ha nataceTi Cityscapes i3 BUKOPUCTAHHSIM CTaHIAPTHUX METPHK
CerMeHTaIlii.

Pe3ynbTraTu. Pe3ynbraTH €KCIEPUMEHTIB IOKA3ylOTh, 110 aHCaMOJeBI MOAENi CTaOLIbHO MHEPEBUIIYIOTh TOUHICTh
okpemux mozeneir U-Net ta 6a30BOi Mozeni 3a TakKMMHU IOKa3HHKAaMH, SK TOYHiCTh, cepeanid loU Ta cnenudivHicTs.
AHcamOIb 13 ONITUMI30BaHUM 3BA)XKYBaHHSM JI0CAT HalBUIIO1 TouHOCTI (87,56%) Ta cepeanboro loU (0,6504), nepeBuiuuBun
Halikpanly okpeMy Mozenb HpuonamsHo Ha 3%. BomHouac MOKpalieHHS SKOCTI CYHPOBODKYETHCS 30UIBIICHHSAM dacy
BUBEJICHHS Pe3yJIbTaTy, 0 BKa3ye Ha HEOOX1AHICTh KOMIIPOMiCY MK TOUHICTIO Ta 00UUCIIOBATIBHO €(EKTUBHICTIO.

BucHoBKH. 3ampornoHOBaHWI MiAXiJ HA OCHOBI aHCaMOIO e(pEeKTHBHO IMOKpAallye pe3yJbTaTH CErMeHTalli 0e3 3MiHU
apxiTekTypu Mozeni. He3paxkaroun Ha 3017bLIEHHS 0OUUCIIOBAIBHUX BUTPAT, METOJ € MPUAATHUM JUIS 3a/a4, e KPUTUIHO
Ba)KJIMBa TOYHICTH cerMenTaii. [lomanbmi gocimukeHHs OyayTh 30cepe/kKeH] Ha 3MEHIIeHHI Yacy BUBEIICHHS pe3yJbTary Ta
MOLIMPEHHI aHCaMOJIEeBOT'0 MiJXO/ly Ha 1HIII apXiTEeKTypH Ta 1aTaceTH.

KJIOYOBI CJIOBA: 3ropTkoBa HelpOHHa Mepeka, ceMaHTuuHa cermenTaiis, U-Net, aHcamOJeBe HaBUAHHS, METOIU
30inbLICHHS 00CATY AaHuX, iHilianizauis Bar, Cityscapes, ypOaHiCTHYHI CLIEHH.
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