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ABSTRACT 
Context. The semantic segmentation of vehicles in very high resolution aerial images is essential in developing intelligent trans-

portation systems. It allows for the automation of real-time traffic management and the detection of congestion and emergencies. 
Objective. This work aims to develop and evaluate the effectiveness of a neural network approach to semantic segmentation in 

very high resolution aerial images, which provides high detail and correct reproduction of object boundaries. 
Method. The DeepLab architecture with ResNet-101 as a backbone is used for gradient preservation and multiscale feature 

analysis. We trained on DOTA data and retrained on specialized sets with classes: vehicles, green areas, buildings, and roads. A loss 
function based on the Dice coefficient was applied to reduce the imbalance of classes. It effectively solves the class imbalance prob-
lem and improves the accuracy of segmenting objects of different sizes. Using ResNet-101 instead of Xception in the backbone net-
work allows us to maintain the gradient as the network depth increases. 

Results. Experimental studies have confirmed the effectiveness of the proposed approach, which achieves a segmentation accu-
racy of more than 90%, outperforming existing analogs. The use of multiscale feature analysis allows for preserving the texture fea-
tures of objects, reducing false classifications. A comparative study with U-Net, SegNet, FCN8s, and other methods confirms the 
higher performance of the proposed approach in terms of mIoU (82.3%) and Pixel Accuracy (95.1%). 

Conclusions. The experiments confirm the effectiveness of the proposed method of semantic segmentation of vehicles in ultra-
high spatial resolution images. Using DeepLab v3+ResNet-101 significantly improves the quality of vehicle segmentation in an ur-
banized environment. Excellent metric performance makes it promising for infrastructure monitoring and traffic planning tasks. Fur-
ther research will focus on adapting the model to new datasets. 

KEYWORDS: semantic segmentation, vehicles, deep neural networks, ResNet-101, DeepLab, multi-scale analysis, very high 
resolution images. 

 
ABBREVIATIONS 

UAVs is a Unmanned Aerial Vehicle; 
RGB is a red, green, blue; 
CNN is a convolutional neural network; 
FCNs is a fully convolutional network; 
RPN is a region proposal network; 
DOTA is a dataset for object detection; 
PA is a pixel accuracy; 
MA is a mean accuracy; 
mIoU is a mean intersection over the union; 
FP is a False Positive; 
FN is a False Negative; 
TN is a True Negative; 
TP is a True Positive. 

 
NOMENCLATURE 

X is an input image; 
f(a) is a function of structural features; 
P is a predicate that defines the segmentation rule; 
si,j is a name of the region si,j  S;

 
 

P(si,j) is an indication of the neighborhood model; 
 f(a) is a gradient;  
xm and xn  are elements of the pixel set X; 

F(w) is a neural network model; 
Xnorm is a normalized image; 
μ is a mean value of the image X;  
σ is a standard deviation of the image X; 
F(x, {Wi}) is a mapping function that represents a se-

quence of layers with parameters {Wi}; 
y is a residual building block; 
ϵ is a small positive number added to avoid division 

by zero in the case of no intersection between the pre-
dicted and real segments;  

D(p,q) is a measure of similarity between p and q; 
p is a predicted segmentation;  
q is a real segmentation; 
LDice is a loss function; 
TP is a number of correctly classified positive pixels;  
FP is a number of false positive pixels;  
FN is a number of false negative pixels;  
TN is a number of correctly classified negative pixels; 
N is a number of image pixel categories;  
TPi is a number of correctly classified pixels of class i;  
FPi is a number of false positive pixels for class i; 
FNi is a number of false negative pixels for class i. 
Ti is a total number of pixels of class i;  
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Xii is a total number of pixels with actual type i and 
prediction type i;  

Xji is a total number of pixels with actual type i and 
prediction type j. 

 
INTRODUCTION 

Uncrewed aerial vehicles (UAVs) are an effective tool 
for high-precision aerial surveys, providing fast and de-
tailed ultra-high-resolution images that can reach an accu-
racy of several centimeters [1]. It ensures high object de-
tail and provides operational aerial photography with 
minimal resource costs. One of the parameters affecting 
the quality of the data is the camera angle. Vertical imag-
ing (perpendicular to the camera’s optical axis) provides 
high accuracy but has a limited coverage area. Low-angle 
images (15°–30°) expand the coverage area of the scene, 
improve the depth of perspective, and allow for better 
analysis of objects in the image. Images acquired at high 
tilt angles (approximately 60°) provide a much wider 
coverage area, including horizons, making them suitable 
for complex analysis of traffic flows and urban environ-
ments.  

UAVs combine compactness, mobility, and efficiency, 
which makes it possible to obtain data in real-time and 
adapt the research methodology depending on the specif-
ics of the territory or object under observation. Equipped 
with various sensors (RGB cameras, multispectral and 
hyper-spectral sensors, LiDAR, and thermal imaging sys-
tems), UAVs provide multispectral information necessary 
for thematic image processing and environmental change 
analysis. Using UAVs for automated vehicle recognition 
and segmentation is an urgent task in security, logistics, 
and traffic management [2]. 

Traditional tracking methods based on ground-based 
cameras and satellite imagery have limitations associated 
with limited spatial coverage, high dependence on 
weather conditions, and delays in data updates. Using 
UAVs for vehicle recognition and segmentation can over-
come these shortcomings by providing adaptability to the 
information collection process, high spatial resolution, 
and the ability to update data quickly. 

Semantic segmentation is one of the approaches for 
automated analysis of UAV images. This computer vision 
method consists of classifying each pixel of an image 
according to its class [3]. Semantic segmentation allows 
for high-accuracy vehicle detection in complex urban and 
road scenes [4]. 

The research is relevant due to the need to develop 
new methods of vehicle recognition for intelligent trans-
portation systems, including traffic monitoring, logistics 
process management, and road safety improvement. The 
use of UAV imagery in combination with deep learning 
architecture will increase the accuracy and speed of auto-
mated vehicle detection in real-time. 

The object of study is the process of semantic seg-
mentation of vehicles in ultra-high-resolution images.  

Constructing a neural network model for semantic 
segmentation is complex and multi-component. It is 
caused by segmentation accuracy and stability of model 
training, which mainly depends on the amount and quality 
of training data, neural network architecture, choice of the 
loss function, and optimization strategies. In particular, it 
is necessary to balance computational costs and the 
model’s generalization ability to process ultra-high-
resolution images efficiently. It requires adaptation of 
feature extraction mechanisms and adjustment of the loss 
function to solve the class imbalance problem. 

The subject of study is a neural network methodol-
ogy for semantic vehicle segmentation based on the Dee-
pLab + ResNet architecture with multi-scale feature ex-
traction, loss function adaptation, and retraining on spe-
cialized datasets.  

The purpose of the work is to develop and evaluate 
the effectiveness of a neural network approach to seman-
tic segmentation in very high resolution aerial images, 
which provides high detail and correct reproduction of 
object boundaries.  

 
1 PROBLEM STATEMENT 

Suppose a set of image pixels X={xi,j} is given, where 
each pixel xi,j is characterized by structural features de-
fined by the function f(a). The predicate P is also given, 
establishing the segmentation rule f(a). 

The problem of image segmentation is to find a parti-
tion of the set P into S={si,j}, where si,j is connected to 
non-empty subsets such that for any two pixels xm, xn si,j 
the condition P(xm, xn)=True is fulfilled, i.e., they belong 
to the same segment according to the segmentation rule. 
The boundaries of the regions si,j are determined by the 
contrast gradient  f(a) and the spatial dependencies be-
tween neighboring pixels. The background region is the 
set of pixels with the highest or lowest contrast relative to 
the segmented regions. 

In general, segmentation can be considered f(а) → S. 
In particular, si,j is the name of the region si,j  S, and 

P(si,j) is an indication of the neighborhood model that 
characterizes the object. 

 
2 REVIEW OF THE LITERATURE 

The existing approaches to semantic vehicle segmen-
tation can be divided into traditional methods and meth-
ods based on deep learning. Conventional methods of 
vehicle segmentation involve manual feature extraction 
and machine learning methods, such as SVM, AdaBoost, 
and others, for classification [5]. These methods had sig-
nificant limitations, requiring extensive preprocessing to 
extract features and set thresholds. It makes them difficult 
to apply to complex scenes in aerial images containing 
small objects. In addition, traditional methods are usually 
only capable of extracting surface objects, which limits 
their effectiveness in analyzing more complex and vari-
able cases. 

Due to deep learning, in particular through the imple-
mentation of convolutional neural networks (CNNs) and 
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fully convolutional networks (FCNs), the situation has 
changed, and semantic segmentation methods have been 
significantly improved. The authors in [6] proposed a 
general multimodal deep learning system that uses five 
types of fusion networks to integrate features of hyper-
spectral imagery, LiDAR imagery, and SAR imagery to 
improve image segmentation performance. The Deeplab 
series of models [7] is based on increasing convolutional 
layers, which solves the problem of resolution reduction 
that occurs at the stage of maximum layer fusion. 

Two main categories of deep learning approaches to 
object detection are two-stage and one-stage algorithms. 
Two-stage algorithms, such as Fast R-CNN [8], identify 
regions of interest and localize and classify objects. For 
example, the method proposed in [9] showed satisfactory 
results for flying object detection using Faster R-CNN 
and VGG-16, achieving an average accuracy of 66% 
(mAP). However, these methods have a significant com-
putational complexity and may be less effective in detect-
ing small objects. In [10], parallel RPN (Region Proposal 
Networks) networks are used to improve the detection of 
dense areas in aerial photographs. The CNN-based 
method proposed by the authors of [11] uses Xception for 
classification and U-Net with ResNet18 as an encoder to 
accurately segment ships in optical satellite images, 
achieving an accuracy of over 84%. However, its applica-
tion to vehicle segmentation in ultra-high resolution aero-
space images has several limitations: differences in object 
characteristics, different spatial features of images, lack of 
specialized training, and limitations in selecting small 
structural objects when using U-Net. In [12], a method for 
detecting vehicles in aerial photographs using a convolu-
tional neural network with double focal loss (MFL CNN) 
was proposed. The authors emphasize the complexity of 
the vehicle detection task, in particular, due to their small 
size and complex image background. The paper demon-
strates the advantages of the proposed approach compared 
to the baseline models, which is confirmed by the results 
on the EAGLE and XWHEEL datasets. 

However, the complexity of the model and the two-
stage detection process do not meet real-time require-
ments. At the same time, one-step algorithms, such as 
YOLO [13, 14, 15], demonstrate significant advantages in 
speed and accuracy compared to two-step methods but 
also have certain limitations, particularly in solving false 
positives and complex background conditions. 

Deep learning algorithms have significantly improved 
the accuracy and efficiency of object detection, including 
vehicle detection. It can automatically learn from large 
data sets and does not depend on manual feature selection. 
However, problems remain unresolved: a large number of 
false positives in object detection arise because some non-
vehicle objects have a similar appearance to vehicles; 
existing CNN-based vehicle detectors always have two 
outputs: the coordinates of the bounding box and the 
probability that an object within this box is a vehicle 
arises in conditions of a complex background or high den-
sity of objects in the image. 

 

3 MATERIALS AND METHODS 
The neural network approach to semantic vehicle 

segmentation using UAV images based on the DeepLab + 
ResNet architecture using multi-level feature extraction is 
shown in Fig. 1. 

The method starts with the loading of an aerospace 
image. Then, the input image is processed by the Back-
bone network, which was initialized with weights ob-
tained during training on the DOTA dataset (Dataset for 
Object Detection in Aerial Images) [16] and then re-
trained on its specialized datasets for semantic segmenta-
tion with classes cars (individual vehicles, parking lots, 
roads); green area (vegetation, lawns, parks); buildings 
(residential and industrial buildings); roads (main high-
ways, secondary streets, intersections). At this stage, pre-
processing was performed [17]: normalization, scaling, 
and marking of objects to ensure correct training of the 
neural network by the formula (1): 
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Deep neural networks with many layers connected in 

series are prone to the vanishing gradient problem. This 
problem occurs in error backpropagation when the gradi-
ents used to update the network weights decrease expo-
nentially with the network depth approaching zero. As a 
result, the layers closer to the network input are practi-
cally not trained, limiting the network’s ability to learn 
complex dependencies. The proposed methodology solves 
this problem using the ResNet-101 network instead of 
Xception as the backbone network. It allows us to main-
tain the gradient as the network depth increases and effec-
tively extract features at different scales. It is achieved by 
adding the input to the output of one or more layers, al-
lowing the gradients to propagate to the previous layers. 
The final training block (a residual building block) can be 
defined by the formula (2) [18]: 

 
  xWxFy i  ),( . (2)

 
The encoder consists of a sequence of 1×1 convolu-

tional layers to reduce the dimensionality of features 
without losing information and 3×3 convolution with 
ReLU activation, supplemented by MaxPooling opera-
tions for hierarchical aggregation of spatial and contextual 
information. The Multi-Scale Features mechanism pro-
vides multi-scale processing, including layers of global 
convolutional smoothing (Image Pooling) and further 
transformation through 1×1 convolution with ReLU acti-
vation. It allows the neural network to simultaneously 
analyze local and international contexts, improving the 
segmentation accuracy of objects of different sizes, in-
cluding vehicles. However, multi-class segmentation 
faces the problem of class imbalance.  
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Figure 1 – Diagram of the proposed approach to semantic vehicle segmentation 

 

It is when the number of samples of one class signifi-
cantly exceeds that of others, leading to poorer recogni-
tion of less represented classes. In the worst cases, the 
model may completely ignore underrepresented classes if 
the number of their training samples is insufficient. For 
this reason, our method uses a customized loss function 
based on the Dice coefficient by the formula (3):  

 

i

2 2

2

( , )

N

i i

N N

i i
i i

p q

D p q

p q




 



 
. (3)

 

The loss function is formulated using its complement 
by the formula (4): 

 

1 ( , ).DiceL D p q   (4)
 

The decoder restores the spatial resolution of the seg-
mentation image by sequentially using Transposed Con-
volution operations, which allow for the gradual restora-
tion of the object structure. In addition, concatenation 
(skip connections) with the corresponding encoder layers 
is applied to preserve high-level information and improve 
segmentation detail. The final convolution layer (1×1 
Convolution) reduces the image to the required channels 
for each segmentation class. 

The proposed DeepLab + ResNet architecture effi-
ciently extracts multi-scale features, contributing to seg-

mentation accuracy by preserving spatial and semantic 
information. 

 

4 EXPERIMENTS 
For the experiments, we used a dataset consisting of 

images obtained from UAVs at a height of 15 cm and 
corresponding reference segmentation masks. The refer-
ence masks were created manually by experts, which en-
sured high quality annotations. The test images are pre-
sented as JPG files of 3037 x 3672 pixels, and the annota-
tion file is given in XML format. The annotation contains 
the corresponding coordinates of the four vertices of the 
vehicle. The dataset was divided into training, validation, 
and testing. The training set of 1500 images was used to 
train the model, the validation set of 500 images was used 
to set hyperparameters and monitor the training process, 
and the test set was used to evaluate the model’s generali-
zation ability. The training was performed until the value 
of the loss function stabilized on the validation set. Aug-
mentation of the data (methods of rotation, reflection, and 
scaling of images) was used to improve the model’s gen-
eralization ability. 

Three metrics were used to evaluate the quality of 
segmentation: pixel accuracy (PA), mean accuracy (MA), 
and mean intersection over the union (mIoU).  

Pixel accuracy (PA) is one of the leading indicators 
that determines the level of segmentation accuracy at the 
level of individual pixels. It is the ratio of correctly classi-
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fied pixels to the total number of pixels in the image. 
Formula (5) shows the calculation of PA [19]: 

 

TNFNFPTP

TP
PA


 . (5)

 

Pixel accuracy allows you to evaluate how well the 
model copes with the classification of each pixel, which is 
vital for segmentation at the level of a detailed image and 
for the accurate selection of vehicles in satellite images. 

Mean accuracy (MA) is an indicator that reflects the 
average classification accuracy across all categories of 
objects in an image. This indicator makes it possible to 
assess how effectively the model copes with segmenting 
all types of objects in the image. Formula (6) shows the 
calculation [19]: 
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Average precision provides a generalized measure of 
segmentation performance across all classes and indicates 
how well the model performs with different types of ob-
jects in the image. 

The mean intersection of union (mIoU) is the most 
widely used indicator for assessing the quality of segmen-
tation, as it allows us to determine the degree of coinci-
dence between the segmentation results and the actual 
pixel values in the image. The mean intersection of union 
allows us to consider not only the accuracy for individual 
classes but also the overall level of segmentation, consid-
ering all categories of objects. Formula (7) shows the cal-
culation [19]: 
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The mIoU metric is one of the best indices for a com-
prehensive assessment of segmentation results, as it al-
lows for accuracy for both positive and negative pixels 
and provides a balanced evaluation based on all classes. 
Since this indicator considers intersections and merges 
between segmented courses, it gives a more objective 
assessment of the model quality, which is especially im-
portant for tasks with several class objects (for example, 
vehicles, roads, and other elements in images). In the ex-
perimental studies, the above metrics are used to compare 
the effectiveness of different segmentation models and to 
evaluate the results obtained using the proposed DeepLab 
+ ResNet architecture. In particular, in the context of re-
search on ultra-high spatial resolution images, the evalua-
tion using PA, MA, and mIoU allows for a detailed analy-
sis of the quality of vehicle segmentation. 

 

5 RESULTS 
Table 1 shows the results of correctly and incorrectly 

classified pixels. 

Table 1 – Number of correctly and incorrectly classified pixels 
for different models 

Model TP TN FP 
DeepLab v3 8200 9500 1200 
U-Net 8100 9400 1300 
SegNet 7000 9200 1600 
FCN8s 6800 9100 1700 
ENet 6600 8900 2000 
Proposed method 8600 9700 900 

Table 2 shows the results for the Loss metric. 
 

Table 2 – Loss function values during training and validation 

Model Epochs Loss (training) Loss (valida-
tion) 

DeepLab v3 100 0.7 0.8 
U-Net 100 0.8 0.9 
SegNet 100 0.4 0.5 
FCN8s 100 0.5 0.6 
ENet 100 0.6 0.7 
Proposed method 100 0.3 0.4 

 

Table 3 shows the results of training and validation 
accuracy for different models. 

 

Table 3 – Training accuracy and validation results for different 
models 

Model Epochs Accuracy 
(training) 

Accuracy 
(validation) 

DeepLab v3 100 0.91 0.88 
U-Net 100 0.9 0.85 
SegNet 100 0.85 0.8 
FCN8s 100 0.8 0.65 
ENet 100 0.75 0.7 
Proposed method 100 0.95 0.9 

 
Table 4 shows the results for the Pixel Accuracy (PA) 

metric. 
 

Table 4 – PA metric results 
Model PA (%) 
DeepLab v3 91.8 
U-Net 90.1 
SegNet 81.2 
FCN8s 86.4 
ENet 74.8 
Proposed method 95.1 

 

Table 5 shows the results for the Mean Intersection 
over Union (mIoU) metric. 

 

Table 5 – Results of the mIoU metric 
Model mIoU (%) 
DeepLab v3 74.0 
U-Net 73.3 
SegNet 56.7 
FCN8s 56.7 
ENet 70.8 
Proposed method 82.3 

 
Figure 2 shows the results of UAV image segmenta-

tion obtained using the proposed method. The image con-
sists of three parts: the original image (Fig. 2a), a seg-
mented image (Fig. 2b), and detected vehicles (Fig. 2c) 
with color coding of different classes of objects.  
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Legend  trees;  grass;  roads;  vehicles;  unclassified 
a b с 

Figure 2 – UAV images: a – original dataset; b – result of proposed neural network approach to semantic vehicle segmentation; c – 
result of segmentation of the class “vehicles” on the original image using the proposed neural network approach 

 

6 DISCUSSION 
The results of the experimental study demonstrate the 

superiority of the proposed neural network approach over 
existing segmentation approaches in terms of key quality 
assessment metrics. The analysis of Loss, Accuracy, PA, 
and mIoU indicators confirms the effectiveness of train-
ing and high segmentation accuracy. 

The results presented in Table 1 allow us to evaluate 
the effectiveness of various segmentation methods based 
on the TP, TN, FP, and FN metrics. The proposed method 
demonstrates the highest TP (8600) and TN (9700) val-
ues, indicating its ability to identify target objects and 
accurately classify the background. In addition, the pro-
posed method has the lowest FP (900) and FN (600) val-
ues, which indicates a reduced number of false positive 
and false negative classifications. It confirms its high ac-
curacy in detecting target objects while minimizing seg-
mentation errors. Compared to other models, such as 
DeepLab v3, U-Net, and SegNet, the proposed method 
shows a better balance between correct and false classifi-
cations, making it practical for the semantic segmentation 
of transport vehicles. 

The Loss metric reflects the discrepancy between the 
predicted and actual values, i.e., the lower the Loss value, 
the better the model fits the training data. According to 
Table 2, the proposed method demonstrates the lowest 
Loss values at the training (0.3) and validation (0.4) 
stages. It indicates that the proposed neural network archi-
tecture minimizes errors during training and generalizes 
acquired knowledge well to new and unknown data (vali-
dation sample). The low difference between the Loss val-
ues on the training and validation samples indicates the 
stability of the learning process and the absence of over-
training. 

The Accuracy metric measures the percentage of cor-
rectly classified pixels and is an essential indicator of the 
model’s performance in segmentation tasks. The Valida-
tion accuracy reflects the ability of the model to general-
ize the acquired knowledge to new knowledge, which is 
vital for assessing its generalization ability and resistance 

to customization. According to Table 3, the proposed 
method demonstrates the highest validation accuracy 
(90%), indicating its ability to classify pixels in new im-
ages effectively. It also achieves high accuracy on the 
training set (95%), indicating good model convergence. 
DeepLab v3 (88%) and U-Net (85%) show slightly lower 
validation accuracy results but still demonstrate relatively 
effective generalization. The SegNet (80%), FCN8s 
(65%), and ENet (70%) models have significantly lower 
validation accuracy values, indicating limited generaliza-
tion ability and higher validation error. 

In Table 4, the proposed method achieves the highest 
Pixel Accuracy (95.1%), which is higher than the results 
of all other considered models, including PSANet 
(94.8%), DANet (94.6%), and OCNet (92.1%). The high 
PA accuracy indicates the model’s ability to effectively 
identify objects in the image, minimizing background 
noise classification errors and false vehicle detections. 

The mIoU metric is one of the key indicators for as-
sessing image segmentation quality. It determines the 
degree of correspondence between the predicted and ac-
tual object segments by calculating the ratio of their inter-
section area to the area of their union. A high mIoU value 
indicates the model’s ability to accurately identify object 
boundaries, reducing the number of misclassified pixels to 
ensure high segmentation accuracy. The proposed method 
reached 82.3%, which is significantly higher than Dee-
pLab v3 (74.0%), ENet (70.8%), and U-Net (73.3%). At 
the same time, SegNet and FCN8s have the same value 
(56.7%), which indicates their limited ability to separate 
objects accurately. 

Experimental results show that the proposed method 
demonstrates high efficiency in vehicle segmentation in 
UAV images, achieving the best results in terms of PA 
and mIoU metrics and a low Loss value. It is a testament 
to its ability to classify peak villages and segment objects 
accurately. 

The high values of PA and mIoU achieved by the pro-
posed method can be explained by using multiscale fea-
tures and transposed convolutions, which allow for effec-
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tive detection and segmentation of objects of different 
sizes and shapes. The low value of Loss indicates practi-
cal model training. 

A visual analysis of the results confirms the effective-
ness of the proposed method in the task of semantic seg-
mentation of vehicles. As shown in Figure 2, the proposed 
method provides clear and accurate detection of vehicles, 
which is confirmed by the quality of the binary mask and 
color segmented image. 

In particular, vehicles are correctly identified on the 
binary mask without significant gaps or false positive 
segmentations. In addition, the segmented image demon-
strates high accuracy in separating classes of objects such 
as roads, green spaces, and buildings. An essential factor 
is that the proposed method effectively distinguishes ob-
jects with similar spectral characteristics, which is often a 
problem for traditional approaches. 

Compared to existing models, the proposed method 
demonstrates better preservation of object contours and 
minimization of noise in segmentation. It is essential for 
applications requiring a high level of detail in the results, 
such as traffic monitoring, parking zone analysis, and 
urban planning. 

The experimental results show that the proposed 
method demonstrates high efficiency in vehicle segmenta-
tion in UAV images, achieving the best results in terms of 
PA and mIoU metrics and a low value of Loss. It reflects 
its ability to classify peak villages and segment objects 
accurately. 

The high values of PA and mIoU achieved by the pro-
posed method can be explained by using multiscale fea-
tures and transposed convolutions, which allow for effec-
tive detection and segmentation of objects of different 
sizes and shapes. The low value of Loss indicates the 
model’s practical training. 

CONCLUSIONS 
The paper proposes a neural network approach to se-

mantic segmentation of vehicles in ultra-high spatial reso-
lution images. Using the DeepLab + ResNet architecture 
with multiscale feature extraction and a loss function 
based on the Dice coefficient allows for achieving high 
accuracy of vehicle segmentation, particularly in the con-
text of multi-class segmentation, where it is essential to 
solve the problem of class imbalance effectively.  

Experimental studies have shown that the proposed 
method achieves high segmentation accuracy, outper-
forming the results of other well-known architectures 
such as U-Net, SegNet, FCN8s, and ENet. In particular, 
the analysis of the Loss metric showed that the proposed 
method demonstrates the lowest values at the training and 
validation stages, which indicates the stability of the train-
ing process and the efficient generalization of the model. 
Similarly, the Accuracy validation results confirmed the 
proposed method’s high efficiency, which reached 95% 
accuracy on the training set and 90% on the validation set, 
which exceeds the results of other models. It indicates the 
effectiveness of pre-training on specialized datasets, adap-
tation of the loss function, and application of multiscale 
feature extraction mechanisms. 

The scientific novelty of the results is that a neural 
network approach was proposed for the semantic segmen-
tation of vehicles in ultra-high spatial resolution images. 
This approach is based on the DeepLab + ResNet archi-
tecture with multi-level feature extraction. The use of 
retraining on specialized datasets, adaptation of the loss 
function, and the application of mechanisms for multis-
cale feature extraction and concatenation (feature fusion) 
allows for achieving significantly higher accuracy and 
efficiency compared to other known models such as U-
Net, SegNet, FCN8s, and ENet. The method also consid-
ers the problem of class imbalance in multi-object seg-
mentation, for which a customized loss function based on 
the Dice coefficient was proposed, which increases the 
efficiency of recognizing classes with low representation. 

The practical significance of the proposed approach 
lies in its ability to provide accurate and efficient vehicle 
segmentation in UAV images for real-time traffic moni-
toring, congestion detection, and emergencies. 

Prospects for further research include optimizing 
the neural network architecture, expanding the dataset, 
using additional data sources, developing methods for 
real-time operation, adapting to different lighting and 
weather conditions, segmenting video streams, and 3D 
segmentation. These research areas will improve the accu-
racy and efficiency of vehicle segmentation in ultra-high 
spatial resolution images and expand the possibilities of 
its application in various industries. 
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AНОТАЦІЯ 
Актуальність. Семантична сегментація транспортних засобів на аерокосмічних зображеннях надвисокого просторового 

розрізнення є важливим завданням для розвитку інтелектуальних транспортних систем, дозволяє автоматизувати управлін-
ня дорожнім рухом у реальному часі, виявляти затори та аварійні ситуації. 

Мета роботи – розробка та оцінка ефективності нейромережевого підходу для сегментації транспортних засобів на ае-
рокосмічних зображеннях надвисокого розрізнення, що забезпечує високу деталізацію та коректне відтворення границь 
об’єктів.  

Метод. Використано архітектуру DeepLab із ResNet-101 як Backbone для збереження градієнтів і багатомасштабного 
аналізу ознак. Проведено навчання на даних DOTA та донавчання на спеціалізованих наборах із класами: транспортні засо-
би, зелені зони, будівлі, дороги. Для зменшення дисбалансу класів застосовано функцію втрат на основі коефіцієнта Dice. 
Це дозволяє ефективно вирішити проблему дисбалансу класів та покращити точність сегментації об’єктів різних розмірів. 
Використання ResNet-101 замість Xception у магістральній мережі дозволяє зберегти градієнт при збільшенні глибини ме-
режі. 

Результати. Експериментальні дослідження підтвердили ефективність запропонованого підходу, що досягає точності 
сегментації понад 90%, перевершуючи існуючі аналоги. Використання багатомасштабного аналізу ознак дозволяє зберігати 
текстурні особливості об’єктів, зменшуючи хибні класифікації. Порівняльний аналіз із методами U-Net, SegNet, FCN8s та 
іншими підтверджує вищу продуктивність запропонованого підходу за метриками mIoU (82.3%) та Pixel Accuracy (95.1%). 

Висновки. Експерименти підтверджують ефективність запропонованого методу семантичної сегментації транспортних 
засобів на зображеннях надвисокого просторового розрізнення. Використання DeepLab v3+ ResNet-101 значно покращує 
якість сегментації транспортних засобів в урбанізованому середовищі. Високі метричні показники роблять його перспекти-
вним для застосування у задачах інфраструктурного моніторингу та планування дорожнього руху. Подальші дослідження 
будуть зосереджені на адаптації моделі до нових наборів даних. 

КЛЮЧОВІ СЛОВА: семантична сегментація, транспортні засоби, глибокі нейронні мережі, ResNet-101, DeepLab, бага-
томасштабний аналіз, зображення надвисокого розрізнення. 
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