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ABSTRACT

Context. The semantic segmentation of vehicles in very high resolution aerial images is essential in developing intelligent trans-
portation systems. It allows for the automation of real-time traffic management and the detection of congestion and emergencies.

Objective. This work aims to develop and evaluate the effectiveness of a neural network approach to semantic segmentation in
very high resolution aerial images, which provides high detail and correct reproduction of object boundaries.

Method. The DeepLab architecture with ResNet-101 as a backbone is used for gradient preservation and multiscale feature
analysis. We trained on DOTA data and retrained on specialized sets with classes: vehicles, green areas, buildings, and roads. A loss
function based on the Dice coefficient was applied to reduce the imbalance of classes. It effectively solves the class imbalance prob-
lem and improves the accuracy of segmenting objects of different sizes. Using ResNet-101 instead of Xception in the backbone net-
work allows us to maintain the gradient as the network depth increases.

Results. Experimental studies have confirmed the effectiveness of the proposed approach, which achieves a segmentation accu-
racy of more than 90%, outperforming existing analogs. The use of multiscale feature analysis allows for preserving the texture fea-
tures of objects, reducing false classifications. A comparative study with U-Net, SegNet, FCN8s, and other methods confirms the
higher performance of the proposed approach in terms of mIoU (82.3%) and Pixel Accuracy (95.1%).

Conclusions. The experiments confirm the effectiveness of the proposed method of semantic segmentation of vehicles in ultra-
high spatial resolution images. Using DeepLab v3+ResNet-101 significantly improves the quality of vehicle segmentation in an ur-
banized environment. Excellent metric performance makes it promising for infrastructure monitoring and traffic planning tasks. Fur-
ther research will focus on adapting the model to new datasets.

KEYWORDS: semantic segmentation, vehicles, deep neural networks, ResNet-101, DeepLab, multi-scale analysis, very high
resolution images.

ABBREVIATIONS
UAVs is a Unmanned Aerial Vehicle;
RGB is a red, green, blue;
CNN is a convolutional neural network;
FCNs is a fully convolutional network;
RPN is a region proposal network;
DOTA is a dataset for object detection;
PA is a pixel accuracy;
MA is a mean accuracy;
mloU is a mean intersection over the union;
FP is a False Positive;
FN is a False Negative;
TN is a True Negative;
TP is a True Positive.

NOMENCLATURE
X is an input image;
fla) is a function of structural features;
P is a predicate that defines the segmentation rule;
s;;is a name of the region s;; € S;
P(s;;) is an indication of the neighborhood model;
V fla) is a gradient;
X, and x, are elements of the pixel set .X;
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F(w) is a neural network model;

X,orm 18 @ normalized image;

W is a mean value of the image .X;

o is a standard deviation of the image X;

F(x, {Wi}) is a mapping function that represents a se-

quence of layers with parameters {Wi};

v is a residual building block;
€ is a small positive number added to avoid division

by zero in the case of no intersection between the pre-
dicted and real segments;

D(p,q) is a measure of similarity between p and ¢,

p is a predicted segmentation;

q is a real segmentation;

Lpice 18 a loss function;

TP is a number of correctly classified positive pixels;
FP is a number of false positive pixels;

FN is a number of false negative pixels;

TN is a number of correctly classified negative pixels;
N is a number of image pixel categories;

TP; is a number of correctly classified pixels of class i;
FP; is a number of false positive pixels for class i;
FN; is a number of false negative pixels for class i.

T; is a total number of pixels of class i;
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X;; is a total number of pixels with actual type i and
prediction type i;

Xj; is a total number of pixels with actual type i and
prediction type .

INTRODUCTION

Uncrewed aerial vehicles (UAVs) are an effective tool
for high-precision aerial surveys, providing fast and de-
tailed ultra-high-resolution images that can reach an accu-
racy of several centimeters [1]. It ensures high object de-
tail and provides operational aerial photography with
minimal resource costs. One of the parameters affecting
the quality of the data is the camera angle. Vertical imag-
ing (perpendicular to the camera’s optical axis) provides
high accuracy but has a limited coverage area. Low-angle
images (15°-30°) expand the coverage area of the scene,
improve the depth of perspective, and allow for better
analysis of objects in the image. Images acquired at high
tilt angles (approximately 60°) provide a much wider
coverage area, including horizons, making them suitable
for complex analysis of traffic flows and urban environ-
ments.

UAVs combine compactness, mobility, and efficiency,
which makes it possible to obtain data in real-time and
adapt the research methodology depending on the specif-
ics of the territory or object under observation. Equipped
with various sensors (RGB cameras, multispectral and
hyper-spectral sensors, LIDAR, and thermal imaging sys-
tems), UAVs provide multispectral information necessary
for thematic image processing and environmental change
analysis. Using UAVs for automated vehicle recognition
and segmentation is an urgent task in security, logistics,
and traffic management [2].

Traditional tracking methods based on ground-based
cameras and satellite imagery have limitations associated
with limited spatial coverage, high dependence on
weather conditions, and delays in data updates. Using
UAVs for vehicle recognition and segmentation can over-
come these shortcomings by providing adaptability to the
information collection process, high spatial resolution,
and the ability to update data quickly.

Semantic segmentation is one of the approaches for
automated analysis of UAV images. This computer vision
method consists of classifying each pixel of an image
according to its class [3]. Semantic segmentation allows
for high-accuracy vehicle detection in complex urban and
road scenes [4].

The research is relevant due to the need to develop
new methods of vehicle recognition for intelligent trans-
portation systems, including traffic monitoring, logistics
process management, and road safety improvement. The
use of UAV imagery in combination with deep learning
architecture will increase the accuracy and speed of auto-
mated vehicle detection in real-time.

The object of study is the process of semantic seg-
mentation of vehicles in ultra-high-resolution images.
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Constructing a neural network model for semantic
segmentation is complex and multi-component. It is
caused by segmentation accuracy and stability of model
training, which mainly depends on the amount and quality
of training data, neural network architecture, choice of the
loss function, and optimization strategies. In particular, it
is necessary to balance computational costs and the
model’s generalization ability to process ultra-high-
resolution images efficiently. It requires adaptation of
feature extraction mechanisms and adjustment of the loss
function to solve the class imbalance problem.

The subject of study is a neural network methodol-
ogy for semantic vehicle segmentation based on the Dee-
pLab + ResNet architecture with multi-scale feature ex-
traction, loss function adaptation, and retraining on spe-
cialized datasets.

The purpose of the work is to develop and evaluate
the effectiveness of a neural network approach to seman-
tic segmentation in very high resolution aerial images,
which provides high detail and correct reproduction of
object boundaries.

1 PROBLEM STATEMENT

Suppose a set of image pixels X={x;;} is given, where
each pixel x;; is characterized by structural features de-
fined by the function f{a). The predicate P is also given,
establishing the segmentation rule f{a).

The problem of image segmentation is to find a parti-
tion of the set P into S={s;;}, where s;; is connected to
non-empty subsets such that for any two pixels x,, x, € s;;
the condition P(x,, x,)=True is fulfilled, i.e., they belong
to the same segment according to the segmentation rule.
The boundaries of the regions s;; are determined by the
contrast gradient V f{a) and the spatial dependencies be-
tween neighboring pixels. The background region is the
set of pixels with the highest or lowest contrast relative to
the segmented regions.

In general, segmentation can be considered fla) — S.

In particular, s;; is the name of the region s;; €S, and
P(s;;) is an indication of the neighborhood model that
characterizes the object.

2 REVIEW OF THE LITERATURE

The existing approaches to semantic vehicle segmen-
tation can be divided into traditional methods and meth-
ods based on deep learning. Conventional methods of
vehicle segmentation involve manual feature extraction
and machine learning methods, such as SVM, AdaBoost,
and others, for classification [5]. These methods had sig-
nificant limitations, requiring extensive preprocessing to
extract features and set thresholds. It makes them difficult
to apply to complex scenes in aerial images containing
small objects. In addition, traditional methods are usually
only capable of extracting surface objects, which limits
their effectiveness in analyzing more complex and vari-
able cases.

Due to deep learning, in particular through the imple-
mentation of convolutional neural networks (CNNs) and
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fully convolutional networks (FCNs), the situation has
changed, and semantic segmentation methods have been
significantly improved. The authors in [6] proposed a
general multimodal deep learning system that uses five
types of fusion networks to integrate features of hyper-
spectral imagery, LIDAR imagery, and SAR imagery to
improve image segmentation performance. The Deeplab
series of models [7] is based on increasing convolutional
layers, which solves the problem of resolution reduction
that occurs at the stage of maximum layer fusion.

Two main categories of deep learning approaches to
object detection are two-stage and one-stage algorithms.
Two-stage algorithms, such as Fast R-CNN [8], identify
regions of interest and localize and classify objects. For
example, the method proposed in [9] showed satisfactory
results for flying object detection using Faster R-CNN
and VGG-16, achieving an average accuracy of 66%
(mAP). However, these methods have a significant com-
putational complexity and may be less effective in detect-
ing small objects. In [10], parallel RPN (Region Proposal
Networks) networks are used to improve the detection of
dense areas in aerial photographs. The CNN-based
method proposed by the authors of [11] uses Xception for
classification and U-Net with ResNet18 as an encoder to
accurately segment ships in optical satellite images,
achieving an accuracy of over 84%. However, its applica-
tion to vehicle segmentation in ultra-high resolution aero-
space images has several limitations: differences in object
characteristics, different spatial features of images, lack of
specialized training, and limitations in selecting small
structural objects when using U-Net. In [12], a method for
detecting vehicles in aerial photographs using a convolu-
tional neural network with double focal loss (MFL CNN)
was proposed. The authors emphasize the complexity of
the vehicle detection task, in particular, due to their small
size and complex image background. The paper demon-
strates the advantages of the proposed approach compared
to the baseline models, which is confirmed by the results
on the EAGLE and XWHEEL datasets.

However, the complexity of the model and the two-
stage detection process do not meet real-time require-
ments. At the same time, one-step algorithms, such as
YOLO [13, 14, 15], demonstrate significant advantages in
speed and accuracy compared to two-step methods but
also have certain limitations, particularly in solving false
positives and complex background conditions.

Deep learning algorithms have significantly improved
the accuracy and efficiency of object detection, including
vehicle detection. It can automatically learn from large
data sets and does not depend on manual feature selection.
However, problems remain unresolved: a large number of
false positives in object detection arise because some non-
vehicle objects have a similar appearance to vehicles;
existing CNN-based vehicle detectors always have two
outputs: the coordinates of the bounding box and the
probability that an object within this box is a vehicle
arises in conditions of a complex background or high den-
sity of objects in the image.
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3 MATERIALS AND METHODS

The neural network approach to semantic vehicle
segmentation using UAV images based on the DeepLab +
ResNet architecture using multi-level feature extraction is
shown in Fig. 1.

The method starts with the loading of an aerospace
image. Then, the input image is processed by the Back-
bone network, which was initialized with weights ob-
tained during training on the DOTA dataset (Dataset for
Object Detection in Aerial Images) [16] and then re-
trained on its specialized datasets for semantic segmenta-
tion with classes cars (individual vehicles, parking lots,
roads); green area (vegetation, lawns, parks); buildings
(residential and industrial buildings); roads (main high-
ways, secondary streets, intersections). At this stage, pre-
processing was performed [17]: normalization, scaling,
and marking of objects to ensure correct training of the
neural network by the formula (1):

_X-u(X)
norm — O(X) : (1)

Deep neural networks with many layers connected in
series are prone to the vanishing gradient problem. This
problem occurs in error backpropagation when the gradi-
ents used to update the network weights decrease expo-
nentially with the network depth approaching zero. As a
result, the layers closer to the network input are practi-
cally not trained, limiting the network’s ability to learn
complex dependencies. The proposed methodology solves
this problem using the ResNet-101 network instead of
Xception as the backbone network. It allows us to main-
tain the gradient as the network depth increases and effec-
tively extract features at different scales. It is achieved by
adding the input to the output of one or more layers, al-
lowing the gradients to propagate to the previous layers.
The final training block (a residual building block) can be
defined by the formula (2) [18]:

y=F(x,Wp+x. )

The encoder consists of a sequence of 1x1 convolu-
tional layers to reduce the dimensionality of features
without losing information and 3x3 convolution with
ReLU activation, supplemented by MaxPooling opera-
tions for hierarchical aggregation of spatial and contextual
information. The Multi-Scale Features mechanism pro-
vides multi-scale processing, including layers of global
convolutional smoothing (Image Pooling) and further
transformation through 1x1 convolution with ReLU acti-
vation. It allows the neural network to simultaneously
analyze local and international contexts, improving the
segmentation accuracy of objects of different sizes, in-
cluding vehicles. However, multi-class segmentation
faces the problem of class imbalance.
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Figure 1 — Diagram of the proposed approach_to semantic vehicle segmentation

It is when the number of samples of one class signifi-
cantly exceeds that of others, leading to poorer recogni-
tion of less represented classes. In the worst cases, the
model may completely ignore underrepresented classes if
the number of their training samples is insufficient. For
this reason, our method uses a customized loss function
based on the Dice coefficient by the formula (3):

mentation accuracy by preserving spatial and semantic
information.

4 EXPERIMENTS
For the experiments, we used a dataset consisting of
images obtained from UAVs at a height of 15 cm and
corresponding reference segmentation masks. The refer-
ence masks were created manually by experts, which en-

N sured high quality annotations. The test images are pre-
ZZ bigi+ € sented as JPG files of 3037 x 3672 pixels, and the annota-
D(p,q) = NI—N . (3) tion file is given in XML format. The annotation contains

Yt +Y gt e
i i

The loss function is formulated using its complement
by the formula (4):

Lpjce =1-D(p.q). 4

The decoder restores the spatial resolution of the seg-
mentation image by sequentially using Transposed Con-
volution operations, which allow for the gradual restora-
tion of the object structure. In addition, concatenation
(skip connections) with the corresponding encoder layers
is applied to preserve high-level information and improve
segmentation detail. The final convolution layer (1x1
Convolution) reduces the image to the required channels
for each segmentation class.

The proposed DeepLab + ResNet architecture effi-
ciently extracts multi-scale features, contributing to seg-
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the corresponding coordinates of the four vertices of the
vehicle. The dataset was divided into training, validation,
and testing. The training set of 1500 images was used to
train the model, the validation set of 500 images was used
to set hyperparameters and monitor the training process,
and the test set was used to evaluate the model’s generali-
zation ability. The training was performed until the value
of the loss function stabilized on the validation set. Aug-
mentation of the data (methods of rotation, reflection, and
scaling of images) was used to improve the model’s gen-
eralization ability.

Three metrics were used to evaluate the quality of
segmentation: pixel accuracy (PA), mean accuracy (MA),
and mean intersection over the union (mloU).

Pixel accuracy (PA) is one of the leading indicators
that determines the level of segmentation accuracy at the
level of individual pixels. It is the ratio of correctly classi-
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fied pixels to the total number of pixels in the image.
Formula (5) shows the calculation of PA [19]:

e TP
TP+ FP+FN+TN

®)

Pixel accuracy allows you to evaluate how well the
model copes with the classification of each pixel, which is
vital for segmentation at the level of a detailed image and
for the accurate selection of vehicles in satellite images.

Mean accuracy (MA) is an indicator that reflects the
average classification accuracy across all categories of
objects in an image. This indicator makes it possible to
assess how effectively the model copes with segmenting
all types of objects in the image. Formula (6) shows the
calculation [19]:

1 X TP,
MA=—3 ———. (6)
N S TP, + FP, + FN;

Average precision provides a generalized measure of
segmentation performance across all classes and indicates
how well the model performs with different types of ob-
jects in the image.

The mean intersection of union (mloU) is the most
widely used indicator for assessing the quality of segmen-
tation, as it allows us to determine the degree of coinci-
dence between the segmentation results and the actual
pixel values in the image. The mean intersection of union
allows us to consider not only the accuracy for individual
classes but also the overall level of segmentation, consid-
ering all categories of objects. Formula (7) shows the cal-
culation [19]:

x. XN
il (XX
( T jz=1( ji = Xii)) @

N

mloU =

The mloU metric is one of the best indices for a com-
prehensive assessment of segmentation results, as it al-
lows for accuracy for both positive and negative pixels
and provides a balanced evaluation based on all classes.
Since this indicator considers intersections and merges
between segmented courses, it gives a more objective
assessment of the model quality, which is especially im-
portant for tasks with several class objects (for example,
vehicles, roads, and other elements in images). In the ex-
perimental studies, the above metrics are used to compare
the effectiveness of different segmentation models and to
evaluate the results obtained using the proposed DeepLab
+ ResNet architecture. In particular, in the context of re-
search on ultra-high spatial resolution images, the evalua-
tion using PA, MA, and mloU allows for a detailed analy-
sis of the quality of vehicle segmentation.

5 RESULTS
Table 1 shows the results of correctly and incorrectly
classified pixels.
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Table 1 — Number of correctly and incorrectly classified pixels
for different models

Model TP N FP
DeepLab v3 8200 9500 1200
U-Net 8100 9400 1300
SegNet 7000 9200 1600
FCN8s 6800 9100 1700
ENet 6600 8900 2000
Proposed method 8600 9700 900

Table 2 shows the results for the Loss metric.

Table 2 — Loss function values during training and validation

Model Epochs Loss (training) | Loss (valida-
tion)
DeepLab v3 100 0.7 0.8
U-Net 100 0.8 0.9
SegNet 100 0.4 0.5
FCN8s 100 0.5 0.6
ENet 100 0.6 0.7
Proposed method 100 0.3 0.4

Table 3 shows the results of training and validation
accuracy for different models.

Table 3 — Training accuracy and validation results for different

models
Model Epochs Accuracy Accuracy
(training) (validation)

DeepLab v3 100 091 0.88

U-Net 100 0.9 0.85
SegNet 100 0.85 0.8

FCN8s 100 0.8 0.65

ENet 100 0.75 0.7
Proposed method 100 0.95 0.9

Table 4 shows the results for the Pixel Accuracy (PA)
metric.

Table 4 — PA metric results

Model PA (%)
DeepLab v3 91.8
U-Net 90.1
SegNet 81.2
FCN8s 86.4
ENet 74.8
Proposed method 95.1

Table 5 shows the results for the Mean Intersection
over Union (mloU) metric.

Table 5 — Results of the mloU metric

Model mloU (%)
DeepLab v3 74.0
U-Net 73.3
SegNet 56.7
FCN8s 56.7
ENet 70.8
Proposed method 82.3

Figure 2 shows the results of UAV image segmenta-
tion obtained using the proposed method. The image con-
sists of three parts: the original image (Fig. 2a), a seg-
mented image (Fig. 2b), and detected vehicles (Fig. 2c)
with color coding of different classes of objects.
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6 DISCUSSION

The results of the experimental study demonstrate the
superiority of the proposed neural network approach over
existing segmentation approaches in terms of key quality
assessment metrics. The analysis of Loss, Accuracy, PA,
and mloU indicators confirms the effectiveness of train-
ing and high segmentation accuracy.

The results presented in Table 1 allow us to evaluate
the effectiveness of various segmentation methods based
on the TP, TN, FP, and FN metrics. The proposed method
demonstrates the highest TP (8600) and TN (9700) val-
ues, indicating its ability to identify target objects and
accurately classify the background. In addition, the pro-
posed method has the lowest FP (900) and FN (600) val-
ues, which indicates a reduced number of false positive
and false negative classifications. It confirms its high ac-
curacy in detecting target objects while minimizing seg-
mentation errors. Compared to other models, such as
DeepLab v3, U-Net, and SegNet, the proposed method
shows a better balance between correct and false classifi-
cations, making it practical for the semantic segmentation
of transport vehicles.

The Loss metric reflects the discrepancy between the
predicted and actual values, i.e., the lower the Loss value,
the better the model fits the training data. According to
Table 2, the proposed method demonstrates the lowest
Loss values at the training (0.3) and validation (0.4)
stages. It indicates that the proposed neural network archi-
tecture minimizes errors during training and generalizes
acquired knowledge well to new and unknown data (vali-
dation sample). The low difference between the Loss val-
ues on the training and validation samples indicates the
stability of the learning process and the absence of over-
training.

The Accuracy metric measures the percentage of cor-
rectly classified pixels and is an essential indicator of the
model’s performance in segmentation tasks. The Valida-
tion accuracy reflects the ability of the model to general-
ize the acquired knowledge to new knowledge, which is
vital for assessing its generalization ability and resistance
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c
Figure 2 — UAV images: a — original dataset; b — result of proposed neural network approach to semantic vehicle segmentation; ¢ —
result of segmentation of the class “vehicles” on the original image using the proposed neural network approach

to customization. According to Table 3, the proposed
method demonstrates the highest validation accuracy
(90%), indicating its ability to classify pixels in new im-
ages effectively. It also achieves high accuracy on the
training set (95%), indicating good model convergence.
DeepLab v3 (88%) and U-Net (85%) show slightly lower
validation accuracy results but still demonstrate relatively
effective generalization. The SegNet (80%), FCNS8s
(65%), and ENet (70%) models have significantly lower
validation accuracy values, indicating limited generaliza-
tion ability and higher validation error.

In Table 4, the proposed method achieves the highest
Pixel Accuracy (95.1%), which is higher than the results
of all other considered models, including PSANet
(94.8%), DANet (94.6%), and OCNet (92.1%). The high
PA accuracy indicates the model’s ability to effectively
identify objects in the image, minimizing background
noise classification errors and false vehicle detections.

The mloU metric is one of the key indicators for as-
sessing image segmentation quality. It determines the
degree of correspondence between the predicted and ac-
tual object segments by calculating the ratio of their inter-
section area to the area of their union. A high mloU value
indicates the model’s ability to accurately identify object
boundaries, reducing the number of misclassified pixels to
ensure high segmentation accuracy. The proposed method
reached 82.3%, which is significantly higher than Dee-
pLab v3 (74.0%), ENet (70.8%), and U-Net (73.3%). At
the same time, SegNet and FCN8s have the same value
(56.7%), which indicates their limited ability to separate
objects accurately.

Experimental results show that the proposed method
demonstrates high efficiency in vehicle segmentation in
UAYV images, achieving the best results in terms of PA
and mloU metrics and a low Loss value. It is a testament
to its ability to classify peak villages and segment objects
accurately.

The high values of PA and mloU achieved by the pro-
posed method can be explained by using multiscale fea-
tures and transposed convolutions, which allow for effec-
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tive detection and segmentation of objects of different
sizes and shapes. The low value of Loss indicates practi-
cal model training.

A visual analysis of the results confirms the effective-
ness of the proposed method in the task of semantic seg-
mentation of vehicles. As shown in Figure 2, the proposed
method provides clear and accurate detection of vehicles,
which is confirmed by the quality of the binary mask and
color segmented image.

In particular, vehicles are correctly identified on the
binary mask without significant gaps or false positive
segmentations. In addition, the segmented image demon-
strates high accuracy in separating classes of objects such
as roads, green spaces, and buildings. An essential factor
is that the proposed method effectively distinguishes ob-
jects with similar spectral characteristics, which is often a
problem for traditional approaches.

Compared to existing models, the proposed method
demonstrates better preservation of object contours and
minimization of noise in segmentation. It is essential for
applications requiring a high level of detail in the results,
such as traffic monitoring, parking zone analysis, and
urban planning.

The experimental results show that the proposed
method demonstrates high efficiency in vehicle segmenta-
tion in UAV images, achieving the best results in terms of
PA and mloU metrics and a low value of Loss. It reflects
its ability to classify peak villages and segment objects
accurately.

The high values of PA and mloU achieved by the pro-
posed method can be explained by using multiscale fea-
tures and transposed convolutions, which allow for effec-
tive detection and segmentation of objects of different
sizes and shapes. The low value of Loss indicates the
model’s practical training.

CONCLUSIONS

The paper proposes a neural network approach to se-
mantic segmentation of vehicles in ultra-high spatial reso-
lution images. Using the DeepLab + ResNet architecture
with multiscale feature extraction and a loss function
based on the Dice coefficient allows for achieving high
accuracy of vehicle segmentation, particularly in the con-
text of multi-class segmentation, where it is essential to
solve the problem of class imbalance effectively.

Experimental studies have shown that the proposed
method achieves high segmentation accuracy, outper-
forming the results of other well-known architectures
such as U-Net, SegNet, FCN8s, and ENet. In particular,
the analysis of the Loss metric showed that the proposed
method demonstrates the lowest values at the training and
validation stages, which indicates the stability of the train-
ing process and the efficient generalization of the model.
Similarly, the Accuracy validation results confirmed the
proposed method’s high efficiency, which reached 95%
accuracy on the training set and 90% on the validation set,
which exceeds the results of other models. It indicates the
effectiveness of pre-training on specialized datasets, adap-
tation of the loss function, and application of multiscale
feature extraction mechanisms.
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The scientific novelty of the results is that a neural
network approach was proposed for the semantic segmen-
tation of vehicles in ultra-high spatial resolution images.
This approach is based on the DeepLab + ResNet archi-
tecture with multi-level feature extraction. The use of
retraining on specialized datasets, adaptation of the loss
function, and the application of mechanisms for multis-
cale feature extraction and concatenation (feature fusion)
allows for achieving significantly higher accuracy and
efficiency compared to other known models such as U-
Net, SegNet, FCN8s, and ENet. The method also consid-
ers the problem of class imbalance in multi-object seg-
mentation, for which a customized loss function based on
the Dice coefficient was proposed, which increases the
efficiency of recognizing classes with low representation.

The practical significance of the proposed approach
lies in its ability to provide accurate and efficient vehicle
segmentation in UAV images for real-time traffic moni-
toring, congestion detection, and emergencies.

Prospects for further research include optimizing
the neural network architecture, expanding the dataset,
using additional data sources, developing methods for
real-time operation, adapting to different lighting and
weather conditions, segmenting video streams, and 3D
segmentation. These research areas will improve the accu-
racy and efficiency of vehicle segmentation in ultra-high
spatial resolution images and expand the possibilities of
its application in various industries.
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VK 004.8
HENPOMEPEXEBUM X 0 CEMAHTUYHOI CETMEHTAILILL TPAHCIIOPTHHAX 3ACOBIB HA
30BPA’KEHHSAX HAZIBUCOKOI'O ITPOCTOPOBOI'O PO3PI3HEHHSI
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Kasumupenko O. B. — acniipant kadenpu iHpopmamiiHIX TEXHOJIOTiH Ta KOMIT I0TepHOI iHKeHepii HarioHampHOTO TEXHIYHOTO
yHiBepcuTeTy «JIHINpoBchka moiTexHikay, JJHinpo, Ykpaina.

Pagionos €. JI. — acnipanT xadeznpu iHpopMaIiifHIX TEXHOIOTIH Ta KOMII'I0TepHO] imkeHepii HanioHampHOro TEXHIYHOTO YHi-
BepcuTeTy «JIHIMpoBChKa MoJiTexHikay, JHinpo, Ykpaina.

AHOTAIIA

AxTyanbHicTh. CeMaHTHYHA CErMEHTALlisl TPAHCIIOPTHUX 3aCO0IB Ha a8POKOCMIYHHX 300paKEHHSIX HAJIBHCOKOTO IIPOCTOPOBOIO
PO3PI3HEHHS € BaXJIMBUM 3aBIAHHAM U1 PO3BUTKY IHTENEKTYaJIbHUX TPAHCIIOPTHHUX CHCTEM, A03BOJISAE aBTOMATU3yBaTH yIIPaBiliH-
HS IOPOXKHIM PyXOM Y pealbHOMY 4Yaci, BUSBIIATH 3aTOPH Ta aBapiifHi CUTyaIii.

Merta po6oTu — po3poOka Ta omiHKa eeKTHBHOCTI HEHPOMEPEKEBOTO MiIXOAYy IJIs CETMEHTAIlli TPaHCIOPTHUX 3aco0iB Ha ae-
POKOCMIYHUX 300pa)KCHHSAX HAJBHUCOKOTO PO3PI3HEHH:, LI0 3a0e3ledyye BHCOKY JETali3alilo Ta KOPEKTHE BIATBOPEHHS IPaHHI(b
00 €KTiB.

Meton. Bukopucrano apxitektypy DeepLab i3 ResNet-101 six Backbone mns 36epexenHs rpanieHTiB i GararomacmraGHOro
aHami3y o3Hak. [IpoBeneHo HaBuanHs Ha maHux DOTA Ta joHaBYaHHS Ha CHEHiali30BaHUX HAO0Opax i3 KJlacaMu: TPAHCIIOPTHI 3aC0-
6u, 3eneHi 30HH, OyaiBii, moporu. J{ns 3MeHIIeHHs aucOaTaHCy KiiaciB 3acTocoBaHo (YHKINIO BTpaT Ha OCHOBI koediuienta Dice.
Ie mo3Bossie epeKTUBHO BHUPILIUTH MpobiieMy AucOAIaHCy KIIAciB Ta MOKPAIINTH TOYHICTh CErMEHTALil 00 €KTIB pi3HUX PO3MIpIB.
Bukopucranus ResNet-101 3amicte Xception y MaricTpainbHii MepexkKi 103BOsI€ 30€perTd rpafieHT IpH 30UIbIIeHH] TTHOUHHE Me-
pexi.

Pe3yabTaTn. ExcriepuMeHTaNbHI JOCTI/DKEHHS MiATBEPIWIN €(EKTUBHICTE 3aIPONOHOBAHOTO IIJXOAY, IO JOCSATAE TOYHOCTI
cermenTarii monan 90%, nepeBepryoun icHyIodi aHaJIord. BukopucTanus 6araroMacmTabHOrO aHalli3y O3HAK J03BOJISIE 30epiraTu
TEKCTYPHI 0COOIHMBOCTI 00 €KTiB, 3MeHIIyoun XnuOHi kinacudikarnii. [TopiBaseanit anani3 i3 merogamu U-Net, SegNet, FCN8s Ta
IHIIMMY HiITBEPPKYE BUILY IIPOIYKTUBHICTB 3aIIporoHoBaHoro miaxoxy 3a merpukamu mloU (82.3%) ta Pixel Accuracy (95.1%).

BucHoBku. EKCriepUMEHTH MiATBEPKYIOTh €DEKTHBHICTD 3aIIPOIIOHOBAHOTO METOJy CEMAaHTHYHOI CErMEHTAIl TPAaHCIIOPTHUX
3ac00iB Ha 300pa)KCHHSX HAJBHUCOKOTrO IPOCTOPOBOro po3pisHeHHs. Bukopucranus DeepLab v3+ ResNet-101 3nauHo mokpairye
SIKICTh CEeTMEHTALlil TPAaHCIOPTHHX 3aC00iB B ypOaHi30BaHOMY CepeoBHILi. BHCOKI MEeTpHU4HiI MOKa3HUKH POOISITH HOTO MepCreKTH-
BHUM JUIS 3aCTOCYBaHHSA Yy 3afadax iH(PAaCTPyKTypHOTO MOHITOPHHTY Ta IUTaHYBaHHS JOPOKHBOTO pyxy. Ilomamemni mocimimkeHHs
OymyTh 30cepeDKeHi Ha afanTamnii MOAes i 1O HOBIX Ha0OPiB JaHUX.

KJIIOYOBI CJIOBA: cemanTn4Ha cerMeHTallis, TpaHCIIOPTHI 3aco0u, riiboki HeliponHi Mepexi, ResNet-101, DeepLab, 6ara-
ToMacmTabHMI aHaii3, 300paXKeHHsT HAABUCOKOTO PO3PI3HEHHS.
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