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ABSTRACT 
Context. The problem of improving the quality of video images is relevant in many areas, including video analytics, film 

production, telemedicine and surveillance systems. Traditional video processing methods often lead to loss of details, blurring and 
artifacts, especially when working with fast movements. The use of generative neural networks allows you to preserve textural 
features and improve the consistency between frames, however, existing methods have shortcomings in maintaining temporal 
stability and the quality of detail restoration. 

Objective. The goal of the study is the process of generating and improving video images using deep generative neural networks. 
The purpose of the work is to develop and study MST-GAN (Multi-Scale Temporal GAN), which allows you to preserve both spatial 
and temporal consistency of the video, using multi-scale feature alignment, optical flow regularization and a temporal discriminator. 

Method. A new method based on the GAN architecture is proposed, which includes: multi-scale feature alignment (MSFA), 
which corrects shifts between neighboring frames at different levels of detail; a residual feature boosting module to restore lost 
details after alignment; optical flow regularization, which minimizes sudden changes in motion and prevents artifacts; a temporal 
discriminator that learns to evaluate the sequence of frames, providing a consistent video without flickering and distortion. 

Results. An experimental study of the proposed method was conducted on a set of different data and compared with other 
modern analogues by the metrics SSIM, PSNR and LPIPS. As a result, values were obtained that show that the proposed method 
outperforms existing methods, providing better frame detail and more stable transitions between them. 

Conclusions. The proposed method provides improved video quality by combining detail recovery accuracy and temporal frame 
consistency. 

KEYWORDS: video enhancement, deep neural networks, generative adversarial networks, multiscale smoothing, temporal 
discriminator, motion stabilization. 

 
ABBREVIATIONS 

GAN is a Generative Adversarial Network; 
VSR is a Video Super-Resolution; 
MST-GAN is a Multi-Scale Temporal Generative Ad-

vesarial Network; 
MSFA is a Multi-Scale Feature Alignment; 
OF is a Optical Flow; 
PSNR is a Peak Signal-to-Noise Ratio; 
SSIM is a Structural Similarity Index; 
LPIPS is a Learned Perceptual Image Patch 

Similarity; 
VFI is a Video Frame Interpolation; 
BM3D is a denoising method implementation on 

Python; 
Noise2Noise is a GAN-based denoising method; 
RAFT is a Recurrent All-Pairs Field Transforms 

(Opti-cal Flow Model); 
DAIN is a Depth-Aware Video Frame Interpolation 

Network; 
PDE is a Partial Differential Equation; 
SRCNN is a Super-Resolution Convolutional Neural 

Network; 
ESPCN is an Efficient Sub-Pixel Convolutional 

Network; 
VSR-DUF is a Video Super-Resolution with Dynamic 

Upsampling Filters; 
RBPN is a Recurrent Back-Projection Network; 
TimeWarpGAN is a GAN-based model for improving 

temporal consistency in video enhancement; 

ResNet is a Residual Network (ResNet) is a 
Convolutional Neural Network (CNN) architecture; 

VGG is a Very Deep Convolutional Networks; 
PyTorch is an open source machine learning frame-

work for Python; 
vCPU is a virtual Central processing unit; 
GPU is a graphical processing unit; 
Adam optimizer is an adaptive moment stochastic 

gradient descent method. 
  

NOMENCLATURE 
x,y are the image indexes; 

tI  is  an input video frame t before enhancement; 

tI  is an enhanced output of particular t frame; 

tF  is a multi-scale feature extracted value of frame t; 

tD  is a temporal discriminator for video coherence; 

iu  is a mean insensitive of image x; 

X  is an image X variance; 

XY is a covariance of images X and Y; 

k is a stabilizing constant; 

entropyL  is an entropy calculation to measure the level 

of noise within an image; 
),( yxp  is a probability distribution of pixel intensities 

in the frame; 
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PDEL  is a Partial Differential Equation (PDE) 

constraint 
V  is a speed of pixel in horizontal x and vertical y 

axis; 
I is a mage intensity in spaces x and y, and over time  

t; 
V  is a velocity gradient that control the smoothness 

of the flow; 
  is a feature extraction function; 

GANMSTL   is a total loss function for model training; 

LPIPSL  is a Learned Perceptual Image Patch 

Similarity (LPIPS) metric; 

GANL is a modified adversarial loss for the Temporal 

Discriminator; 

tW  is a warping function based on optical flow of 

frame t; 

alignedF  is a motion-aligned feature map from MSFA; 

)( t
alignedFR  is a predicted residual correction of 

aligned feature-extracted frame t; 
)( tt ID  is a probability that the real triplet of t frame 

with siblings is authentic; 
)( tt ID  is a probability that the generated sequence is 

synthetic; 

1  is a coefficient that controls adversarial learning 

strength, encouraging realism; 

2  is a coefficient that ensures smooth motion 

transitions, penalizing flickering; 

3  is a coefficient that prevents noise accumulation, 

ensuring clean video quality. 

1LL  is a loss function of pre-trained generator; 

MSE is a mean squared error between the generated 
and ground truth images; 

MAX is a maximum value of pixel. 
 

INTRODUCTION 
Video content has become a crucial part of our daily 

lives, from entertainment to education and advertising 
communication. However, poor video quality can 
significantly reduce the viewers’ experience and 
engagement with the content.  

Nowadays video enhancement is a rapidly evolving 
field in artificial intelligence, driven by the growing 
demand for high-quality video content in streaming, 
surveillance, film restoration, and gaming. The main 
challenge is in preserving temporal consistency while 
improving spatial resolution and visual clarity. Traditional 
methods, including super-resolution and frame 
interpolation, often struggle with motion artifacts, 
flickering, and misalignment between consecutive frames. 

A significant breakthrough in video generation has 
been the adoption of Generative Adversarial Networks 
(GANs). Since their introduction, GANs have 
demonstrated remarkable success in synthesizing high-

resolution images and enhancing video sequences. 
However, existing GAN-based video restoration models 
still suffer from motion instability, noise accumulation, 
and optical flow misalignment. These limitations lead to 
ghosting effects, unnatural frame transitions, and loss of 
fine details in high-motion video sequences. 

The object of study is the process of video 
enhancement and restoration using deep learning 
techniques. 

The subject of study is the development of a GAN-
based method for improving video quality, ensuring 
temporal consistency, and reducing motion artifacts. 

The purpose of the work is to develop an efficient 
and high-quality video enhancement method that 
maintains realistic motion while addressing the 
shortcomings of existing GAN-based approaches. The 
proposed method should improve frame coherence, 
reduces noise accumulation, and enhances motion 
stability in video sequences.  

 
1 PROBLEM STATEMENT 

One of the primary challenges in video enhancement 
is the presence of motion artifacts and flickering in high-
motion scenes. These issues arise due to misaligned 
frames, poor motion estimation, and limited temporal 
awareness in many existing models. 

Optical flow-based methods [1, 2] attempt to estimate 
motion between frames to improve alignment but often 
fail in occluded regions, leading to warping distortions. 

GAN-based approaches such as TecoGAN [3] and 
EDVR [4] enhance video frames but struggle with 
maintaining temporal stability, leading to flickering 
effects and unnatural transitions. 

A common measure of image quality degradation is 
the Structural Similarity Index (SSIM), which is defined 
as follows [5]: 
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A lower SSIM score between consecutive frames 

indicates a lack of temporal stability, leading to visible 
flickering. 

Another significant issue in video enhancement is the 
accumulation of noise artifacts over multiple frames, 
leading to brightness fluctuations, color distortions, and 
inconsistent visual quality. 

Traditional denoising techniques such as BM3D [6] 
work well for static images but fail to maintain temporal 
coherence in videos. 

GAN-based denoising methods, like Noise2Noise [7], 
trying to suppress noise without clean training data but 
usually they oversmooth details and degrade fine textures. 

One way to measure the level of noise within an 
image is through entropy calculation, which captures 
pixel intensity uncertainty [8]: 
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A higher entropy value correlates with more 

unpredictable noise patterns, which require effective 
suppression. 

Most modern video enhancement models use optical 
flow estimation to align frames. However, errors in flow 
estimation can cause motion distortions, ghosting effects, 
and unnatural deformations. 

RAFT [9] is one of the most accurate optical flow 
estimators but suffers from motion warping artifacts in 
fast-moving objects. 

DAIN [10] introduces depth estimation to improve 
alignment but fails in occluded regions, leading to 
structural deformations. 

Optical flow regularization is commonly enforced 
using a Partial Differential Equation (PDE) constraint, 
which smooths motion estimation errors [11]: 
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Minimizing PDEL  ensures more stable motion 

estimation, reducing frame distortions in high-speed video 
sequences. 

All these challenges indicate that current video 
enhancement approaches lack effective solutions for 
handling motion stability, noise suppression, and 
flickering artifacts. 

 
2 REVIEW OF THE LITERATURE 

The field of video enhancement and updating has 
evolved significantly due to advances in deep learning, 
generative models, and motion estimation methods. 
Traditional methods relied on hand-crafted filters and 
optical flow, while modern approaches include deep 
learning-based super-separation, frame interpolation, and 
GAN-based video synthesis. 

Before the advent of deep learning, spatial and 
temporal filtering were predominantly used. Bilateral 
filtering and wavelet-based denoising were widely used 
for edge-preserving noise removal. In temporal filtering, 
optical flow-based interpolation [1, 2] estimated motion 
between frames to improve video smoothness. However, 
early optical flow methods struggled with occlusions, 
complex motion, and ghosting artifacts. 

The main limitation of traditional methods is their 
inability to capture complex spatio-temporal patterns, 
making them ineffective in dynamic scenes with fast 
motion. The advent of convolutional neural networks 
(CNNs) has revolutionized video restoration, super-
resolution, and frame interpolation [2]. Early models such 
as SRCNN [12] and ESPCN [13] focused on image super-
resolution, but their extension to video processing was 
limited due to the lack of constraints. Later advances such 
as VSR-DUF [14] and RBPN [15] introduced multi-frame 

aggregation, where information from neighboring frames 
was used to improve resolution. A second breakthrough 
came with DAIN [10], a model that used depth-aware 
optical flow to interpolate missing frames, improving 
motion continuity. 

Despite these improvements, CNN-based models still 
lack an effective mechanism to ensure long-term temporal 
consistency [2], often leading to motion artifacts (Fig. 1) 
and flickering. 

 

 
Figure 1 – Example of motion distortions caused by optical flow 

failures in CNN-based VSR models 
 
GANs have emerged as the dominant approach for 

realistic video enhancement, particularly in super-
resolution, denoising, and frame interpolation. GAN-
based models consist (Fig. 2) of a generator (which 
synthesizes high-quality video frames) and a 
discriminator (which distinguishes real frames from 
generated ones, thereby improving realism). 

 

 
Figure 2 – General architecture overview of GAN models 
 
One of the earliest GAN-based video models was 

TecoGAN [3], which introduced a temporal adversarial 
loss to enforce smooth frame transitions. However, it still 
suffers from motion instability, where small artifacts 
accumulate over time, leading to flickering. 

To improve motion alignment, EDVR [4] leveraged 
deformable convolutions to refine spatial feature 
alignment, enhancing video super-resolution and 
deblurring. However, EDVR lacks explicit temporal 
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constraints, causing motion inconsistencies in high-speed 
sequences. 

Other approaches such as TimeWarpGAN [16] 
introduced optical flow-guided adversarial training to 
improve stability, but these methods struggle in occluded 
and non-rigid motion regions, leading to distortions. 
Based on this, the following key points can be 
highlighted: 

1) Lack of Long-Term Temporal Consistency – Many 
video enhancement models focus on short-term 
dependencies, leading to motion inconsistencies in long 
sequences. 

2) Noise Accumulation – GAN-based models tend to 
amplify artifacts over time, making video output less 
stable. 

3) Optical Flow Misalignment – Flow-based models 
struggle with occlusions and rapid motion, leading to 
warping artifacts and distortions. 

These challenges indicate there is a space for 
improving existing frameworks and creating a video 
enhancement framework capable of handling motion 
stability, noise suppression, and flickering artifacts while 
preserving fine details. 
 

3 MATERIALS AND METHODS 
Video enhancement is a challenging task that requires 

a balance between spatial quality improvement and 
temporal stability to ensure smooth transitions between 
frames. Traditional approaches often suffer from motion 
artifacts, flickering, and slippage, especially in fast-
moving scenes. Our proposed MST-GAN (Multi-Scale 
Temporal GAN) aims to address these limitations by 
incorporating: 

1) Multi-Scale Adversarial Facilitators (MSFA) to 
detect spots frames using multi-resolution warping and 
warped convolutions. 

2) Residual Facilitator Boosting to restore lost details 
and prevent texture degradation. 

3) Motion via Optical Flow Regularity to track motion 
and ensure natural object motion. 

4) Temporal Coherence via a temporal discriminator 
that guides the generator to produce smooth, coherent 
video sequences. 

Unlike frame-by-frame enhancement models, MST-
GAN explicitly models temporal dependencies, 
improving long-term motion stability while preserving 
clear spatial details. MST-GAN takes in a sequence of 
three consecutive frames 11 ,,  ttt III  and predicts an 

enhanced frame tI . Each module in the generator is 

interconnected, ensuring a progressive refinement 
process: 

1) Multi-Scale Feature Alignment (MSFA) first warps 
feature representations across different resolutions to 
reduce misalignment errors. 

2) The aligned features are then processed by the 
residual enhancement module, which restores fine details 
lost in the warping step. 

3) Optical flow regularization is applied during feature 
alignment to improve motion stability, preventing 
distorted motion predictions. 

4) The final enhanced frame is then passed to the 
temporal discriminator, which ensures that generated 
sequences preserve natural motion flow. 

If we look at the generator pipeline in detail, it 
consists of several sequential steps. 

To begin with, it is worth considering the algorithm 
of work Feature Extraction and Initial Representation. 
Each input frame 11 ,,  ttt III  is passed through a shared 

feature extractor that outputs multi-scale feature maps: 
 

).,,(,, 1111   tttttt IIIFFF  (4)
 

Feature extractor   in formula (4) can be 
implemented in different ways. By default, this module is 
not present in PyTorch libraries, but we can reuse existing 
implantation depending on the complexity of frames in 
videos. This module is commonly implemented using 
several convolutional layers, often resembling the early 
layers of a CNN backbone, such as:  

ResNet-based feature extraction (ResNet-50, ResNet-
101) [18]. 

VGG-like convolutional feature maps (used in 
perceptual losses) [17]. 

Custom-designed lightweight CNN blocks (e.g., 
ESPCN, RBPN) [3, 4]. 

These feature maps serve as the foundation for further 
alignment and enhancement. 

The extracted features are aligned using optical flow-
based warping, ensuring that motion is corrected across 
different resolutions: 

 
).()( 11  ttttaligned FWFWF  

 
Deformable convolutions further refine alignment by 

allowing the network to dynamically adjust receptive 
fields based on motion variations. 

Warping often leads to loss of fine details. To 
compensate, MST-GAN predicts an enhancement residual 
that refines the aligned features: 
 

)( t
alignedtt FRII  . 

 
This prevents over-smoothing while ensuring that 

textural details are preserved. Instead of modifying every 
pixel, the model only refines the parts that need 
correction. This leads to sharper details, less over-
smoothing, more efficient learning (as the model doesn’t 
have to reconstruct an entire frame from scratch). 

While the Residual Enhancement Module restores 
spatial details, the next step ensures motion continuity 
across frames by penalizing sudden distortions in optical 
flow. 

To prevent motion inconsistencies, a physics-driven 
regularization term is applied to the optical flow 
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estimates, ensuring that motion remains smooth across 
frames by using formula (3). 

This term means sudden motion changes, enforcing 
temporal stability. It also ensures that the predicted 
motion does not introduce ghosting, flickering, or 
unnatural object distortions. Thus, Residual Enhancement 
ensures that each frame is locally detailed, while Optical 
Flow Regularization ensures that frames remain globally 
consistent in motion. 

While the generator is responsible for improving the 
first frames, the temporal discriminator tD  plays a major 

role in ensuring smooth motion transitions and preventing 
measurement artifacts. Traditional GAN-based video 
models often work on one frame at a time, which can lead 
to frame inconsistencies since the generator has no 
incentive to maintain motion continuity between frames. 
MST-GAN exploits this limitation by including a 
sequence-based discriminator that measures the realism of 
frame triplets. 

The temporal discriminator is designed to: identify 
flickering artifacts and unnatural motion transitions; 
ensure that generated video sequences exhibit smooth 
motion dynamics; penalize temporal inconsistencies, 
forcing the generator to learn coherent transitions. 

Unlike traditional discriminators that only assess 
spatial quality, tD  analyzes consecutive frames, making 

it a temporal consistency enforcer.  
The discriminator tD  processes triplets of frames, 

evaluating whether the frame transitions appear natural. 
Given an input sequence 11 ,,  ttt III  predicts a 

probability ),,( 11  tttt IIID  indicating how realistic the 

sequence appears. 
The discriminator takes in real and generated frame 

sequences 11 ,,  ttt III  and generated sequence 1tI , tI , 

1tI . These sequences are processed using a 

convolutional network, similar to 3D CNNs used for 
video classification. 

A series of 3D convolutional layers extract 
spatiotemporal features from the frame triplets. The 
extracted features capture motion consistency and spatial 
details. 

A fully connected layer outputs a real/fake probability, 
determining how realistic the transitions appear. 

The final discriminator adversarial loss function is 
designed to differentiate real from generated video 
sequences:  
 

   ttGAN DEDEL  1log(log . (5)

 
If the sequence appears unnatural, the generator is 

penalized, forcing it to improve motion transitions. Over 
multiple training steps: 

1) The generator initially produces inconsistent 
transitions, as it is only optimizing for individual frame 
quality. 

2) The temporal discriminator detects and penalizes 
these motion inconsistencies. 

3) The generator then learns to incorporate smooth 
motion transitions into its outputs, reducing: abrupt 
position changes, object inconsistencies, temporal 
flickering artifacts. 

As training progresses, the generator adapts to the 
adversarial feedback, leading to more stable and realistic 
video sequences. 

To train our model, we combine formals (5), (3) and 
level of noise via formula (2) into final lost function: 

 

entropyPDEGANGANMST LLLL 321  , (6)
 

where 321 ,,   are coefficients, that indicate a balance 

between the different parts of the cost function so that the 
model learns correctly. 
 

4 EXPERIMENTS 
Evaluation of the proposed method was conducted 

using a strict experimental setup that included data set 
selection, training procedures, evaluation metrics, 
baseline comparisons, and implementation details. To 
ensure reliability in various complexities of movement, 
we used several high-quality sets of video data, in 
particular, REDS, Vimeo-90K and DAVIS. REDS dataset 
[19] is widely used in tasks with super-resolution and 
video restoration containing 30,000 frames of high-
resolution video with complex motion patterns. Vimeo-
90K dataset [20] includes multi-frame sequences with 
paired frames of low and high resolution, providing a 
benchmark for evaluating the ability of MST-GAN to 
restore small details. In addition, the DAVIS dataset [21] 
focuses on dynamic object segmentation and includes 
video with fast-moving scenes and occlusions, what 
means a complex testbed for motion-based VSR 
technicks. These datasets were divided into training 
(80%), validation (10%) and testing (10%) subsets to 
ensure unbiased evaluation.  

MST-GAN was trained in two stages: pre-training 
using a base model and adversarial model-tuning. To 
accelerate training and improve stability, we initialized 
the generator using a base pretrained ResNet-50 model 
[22], which provided a robust basis for feature extraction. 
Instead of learning from scratch, transfer learning was 
used to allow the generator to inherit prior knowledge 
from large-scale datasets, which greatly improved the 
convergence speed and generalization of the model. 
During this pre-training phase, an 1LL  loss function was 

used to ensure that the generator learned the basic 
principles of image reconstruction: 
 

  n
i

i
t

i
tL IIL 1 . (7)

 

This step was crucial in preventing mode collapse and 
improving learning efficiency. Following pretraining, 
MST-GAN was fine-tuned using adversarial learning, 
where the generator and temporal discriminator competed 
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to improve video realism and motion stability. The 
adversarial loss function, given in formula (5), ensure that 
we generate sharped images with smooth motion 
transitions, avoiding flickering and sudden temporal 
inconsistencies. 

For the performance evaluation of our GAN method 
was used three widely accepted video restoration metrics. 

Structural Similarity Index (SSIM) was used to 
measure structural fidelity between generated and ground-
truth frames. The SSIM formula is defined in formula (1). 

Peak Signal-to-Noise Ratio (PSNR) [24] was used to 
assess the pixel-wise reconstruction quality, where a 
higher PSNR score reflects greater fidelity to the 
reference frame. It is computed as: 
 













MSE

MAX
PSNR

2
10 , 

 

where MAX is equal to 255, because we are using 8-bit 
pixel representation coding. 

Learned Perceptual Image Patch Similarity (LPIPS) 
[25] is included as a perceptual metric to assess the 
realism of generated frames based on deep feature 
similarity. It is calculated using formula below: 
 

2
)()( ttLPIPS IfIfL  , 

 

where )(),( tt IfIf  represents deep feature embeddings 

from a neural network, and lower LPIPS values indicate 
better visual similarity. Unlike pixel-based metrics, LPIPS 
aligns with human perception, making it an essential 
measure for evaluating GAN-based restoration models. 

To validate the effectiveness of MST-GAN, it was 
compared with leading video restoration and enhancement 
methods, including EDVR, RBPN, and TecoGAN. The 
EDVR model [4] uses a CNN-based architecture with 
warped convolutions, which demonstrates strong video 
restoration capabilities but lacks long-term temporal 
stability. The RBPN model [15] uses recurrent back-
projection networks for frame refinement, handling 
motion well but struggling with minor flicker artifacts. 
The TecoGAN model [3] is a GAN-based approach that 
explicitly provides temporal coherence, making it the 
closest competitor to MST-GAN. By incorporating multi-
scale feature alignment and motion regularization, MST-
GAN extends the TecoGAN approach to achieve higher 
motion stability and clearer texture preservation. 

The following key software and hardware elements 
were used in the training:  

1) GPU: NVIDIA RTX 3090 (24GB); 
2) Training Time: ~3 days per dataset; 
3) Batch Size: 8; 
4) Framework: PyTorch; 
5) Optimizer: Adam (learning rate = 1e–4); 
6) Loss Functions: GAN Loss, Temporal Consistency, 

Motion Regularization. 
 

Table 1 – Training Hyperparameters 
Hyperparameter Value 
Batch size 8 
Learning Rate 0.0001 
Optimizer Adam 
Loss Weights (0.7, 0.2, 0.1) 
Training Epochs 100 

 

5 RESULTS 
The performance of MST-GAN was thoroughly 

evaluated on video enhancement benchmark datasets 
using three commonly used metrics: structural similarity 
index (SSIM), peak signal-to-noise ratio (PSNR), and 
perceptually based image patch similarity (LPIPS). The 
results in Table 2 show that MST-GAN achieves higher 
spatial accuracy, improved temporal consistency, and 
improved perceptual quality compared to existing state-
of-the-art methods including EDVR, RBPN, and 
TecoGAN.  

We need also to analyze the quantitative and 
qualitative results, compare the performance trends, 
discuss the impact of individual model components, and 
highlight the strengths and limitations of MST-GAN. 

 

Table 2 – Quantitative Comparison of Video Enhancement 
Models (↑ – better result is bigger value  

↓ – better result is lower value) 
Method SSIM ↑ PSNR (dB) ↑ LPIPS ↓ 

EDVR 0.902 32.47 0.307 

RBPN 0.899 29.12 0.295 

TecoGAN 0.921 30.45 0.281 
MST-
GAN 
(Ours) 0.928 31.73 0.264 

 

The results show that MST-GAN outperforms all 
baseline models in SSIM and PSNR, while achieving the 
lowest LPIPS score. MST-GAN improves SSIM by 2.6% 
compared to EDVR and by 0.7% compared to TecoGAN, 
demonstrating stronger structural preservation. 

In addition, MST-GAN achieves a PSNR that is 1.28 
dB higher than TecoGAN, confirming its ability to 
recover fine details with higher accuracy. The lower 
LPIPS score (0.264) compared to TecoGAN (0.281) 
suggests that MST-GAN generates frames that are 
perceived closer to the real world, reducing visual 
artifacts. 

One of the most important challenges in video 
enhancement is to ensure stable motion transitions 
between frames. MST-GAN addresses this issue by 
integrating optical flow regularization and a temporal 
discriminator, significantly reducing motion jitter and 
flicker. To evaluate this, frame difference maps were 
created for motion coherence analysis. 

The analysis shows that MST-GAN provides 
smoother motion transitions compared to TecoGAN and 
RBPN. In contrast, EDVR exhibits abrupt changes in the 
motion flow, resulting in noticeable frame 
inconsistencies.  

The temporal discriminator in MST-GAN effectively 
ensures smooth motion by preventing abrupt visual 
transitions. 
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Figure 3 – Results of the motion consistency detection of 

adjacent frames by optical flow. The pictures on the left a, c, e 
are the differences between the warped image and the real 

image. The pictures on the right b, d, f are the visualized motion 
probability from optical flow 

 
It is necessary to analyze the inclusion of each module 

in MST-GAN to perform a sanity check, review key 
components, and verify their performance. Three variants 
of the models are presented in Table 3. 

 
Table 3 – Ablation Study on MST-GAN 

Components 

Model Variant SSIM ↑ PSNR (dB) ↑ 
LPIPS 
↓ 

Full Model 0.928 31.73 0.264 
Without Multi-Scale 
Alignment 0.910 30.44 0.284 
Without Optical 
Flow Regularization 0.918 31.02 0.272 
Without Temporal 
Discriminator 0.907 30.12 0.291 

 
Reducing the large zoom scale results in a 1.3% 

decrease in SSIM and a significant increase in LPIPS, 
which increases the importance of precise feature 
variation between frames. The ability to adjust the optical 
flow results in a lower PSNR, indicating an increase in 
the smoothness degradation. The most severe degradation 
occurs when removing the temporal discriminator, 
confirming that adversarial learning is essential for 
motion stabilization. 

A detailed analysis of the curves in Fig. 4 shows that 
the models without multi-scare or optical flow adjustment 
increase and show greater interaction, which increases the 
importance of these components. 

 

 

 
Figure 4 – Effect of proposed method components on SSIM, 

PSNR, and LPIPS over training iterations 
 

 

6 DISCUSSION 
The results confirm that MST-GAN archives major 

video performance improvements over existing models. 
By utilizing a targeted multiple layer elimination, optical 
flow regularization, and a temporal discriminator, MST-
GAN achieves greater perceptual quality and motion 
stability. However, despite these improvements, MST-
GAN has some limitations: 

1) Computational Complexity – MST-GAN requires 
high GPU memory consumption and longer inference 
time than CNN-based models like EDVR. 

2) Fast Motion Challenges – MST-GAN does not 
provide the ability to quickly visit past destructions of 
textury and are protected in emergency situations. 
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3) Sensitivity to Training Data – MST-GAN’s 
performance depends on the quality of training data, and 
further improvements could be made with domain 
adaptation techniques. 

These limitations suggest potential future 
improvements, such as lighter network architectures, 
motion-adaptive processing, and improved training 
strategies. 
 

CONCLUSIONS 
The MST-GAN model addresses the challenge of 

enhancing video sequences while maintaining spatial and 
temporal consistency. Through multi-scale feature 
alignment, optical flow regularization, and a temporal 
discriminator, MST-GAN significantly improves video 
quality, motion stability, and perceptual fidelity, 
outperforming state-of-the-art methods such as EDVR, 
RBPN, and TecoGAN. 

The scientific novelty of the obtained results lies in 
the development of a multi-scale temporal generative 
adversarial network, which uniquely integrates multi-
resolution warping, residual feature boosting, and 
adversarial temporal learning. Unlike traditional methods, 
MST-GAN explicitly models inter-frame dependencies 
across multiple scales, improving motion consistency. 
Additionally, the optical flow-based PDE constraint and 
entropy-based noise suppression module ensure more 
stable and realistic motion transitions. 

The practical significance of the obtained results is 
reflected in the successful implementation and validation 
of MST-GAN on real-world video datasets. Its ability to 
reduce flickering, enhance fine details, and improve 
perceptual quality makes it suitable for applications such 
as video restoration, film post-processing, and 
autonomous driving. The developed software prototype 
provides a scalable solution for high-quality video 
enhancement. 

Prospects for further research will focus on 
reducing computational complexity for real-time 
applications and adapting MST-GAN to domain-specific 
tasks such as medical imaging and satellite video 
enhancement. Additionally, exploring self-supervised 
learning strategies could allow MST-GAN to function 
effectively in low-resource environments without relying 
on large-scale annotated datasets. 

Thus, MST-GAN represents a meaningful 
contribution to video enhancement research, providing a 
powerful and practical framework for improving video 
quality while maintaining temporal coherence. 
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AНОТАЦІЯ 
Актуальність. Проблема покращення якості відеозображень є актуальною у багатьох сферах, включаючи 

відеоаналітику, кіновиробництво, телемедицину та системи спостереження. Традиційні методи відеообробки часто 
призводять до втрати деталей, розмиття та артефактів, особливо при роботі зі швидкими рухами. Використання 
генеративних нейромереж дозволяє зберігати текстурні особливості та покращувати узгодженість між кадрами, проте 
існуючі методи, такі як EDVR, RBPN та TecoGAN, мають недоліки у збереженні часової стабільності та якості відновлення 
деталей. 

Об’єкт дослідження є процес генерації та покращення відеозображень за допомогою глибоких генеративних 
нейромереж. 

Мета роботи – розробка та дослідження MST-GAN (Multi-Scale Temporal GAN), що дозволяє зберігати як просторову, 
так і часову узгодженість відео, використовуючи багатомасштабне вирівнювання ознак, регуляризацію оптичного потоку та 
часовий дискримінатор. 

Метод. Запропоновано новий метод на основі архітектури GAN, який включає: багатомасштабне вирівнювання ознак 
(MSFA), що коригує зсуви між сусідніми кадрами на різних рівнях деталізації; модуль резидуального підсилення (Residual 
Feature Boosting) для відновлення втрачених деталей після вирівнювання; регуляризацію оптичного потоку (Optical Flow 
Regularization), що мінімізує різкі зміни руху та запобігає артефактам; часовий дискримінатор (Temporal Discriminator), який 
навчається оцінювати послідовність кадрів, забезпечуючи узгоджене відео без миготінь і спотворень. 

Результати. Проведено експериментальне дослідження запропонованого методу на наборі різних даних та порівняно з 
іншими сучасними аналогами за метриками SSIM, PSNR та LPIPS . В результаті отримали значення, що показують, що 
запропонований метод перевершує існуючі методи, забезпечуючи кращу деталізацію кадрів та стабільніші переходи між 
ними.  

Висновки. Запропонований метод забезпечує покращену якість відео, поєднуючи точність відновлення деталей та 
часову узгодженість кадрів.  

КЛЮЧОВІ СЛОВА: відеопокращення, глибокі нейронні мережі, генеративно-змагальні мережі, багатомасштабне 
вирівнювання, часовий дискримінатор, стабілізація руху. 
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