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ABSTRACT 

Context.  In today’s industrial development, significant attention is paid to systems for recognizing and predicting human activ-
ity in real time. Such technologies are key to the transition from the concept of Industry 4.0 to Industry 5.0, as they allow for im-
proved interaction between man and machine, as well as to ensure a higher level of safety, adaptability and efficiency of production 
processes. These approaches are particularly relevant in the field of internal logistics, where cooperation with autonomous vehicles 
requires a high level of coordination and adaptability.  

Objective. To create a technological solution for the prompt detection and prediction of complex human activity in the internal 
logistics environment by using sensor data from smart watches. The main goal is to improve cooperation between employees and 
automated systems, increase occupational safety and efficiency of logistics processes. 

Method. A decentralized data collection system using smart watches has been developed. A mobile application in Kotlin was 
created to capture sensor readings during a series of logistics actions performed by five workers. To process incomplete or distorted 
data, anomaly detection algorithms were applied, including STD, logarithmic transformation of STD, DBSCAN, and IQR, as well as 
smoothing methods such as moving average, weighted moving average, exponential smoothing, local regression, and Savitsky-Goley 
filter. The processed data were used to train models, with the employment of such advanced techniques as transfer learning, continu-
ous wavelet transform, and classifier stacking. 

Results. The pre-trained deep model with the DenseNet121 architecture was chosen as the base classifier, which showed an F1-
metric of 91.01% in recognizing simple actions. Five neural network architectures (single- and multi-layer) with two data distribution 
strategies were tested to analyze complex activity. The highest accuracy – F1-metric 87.44% – was demonstrated by the convolu-
tional neural network when using a joint approach to data distribution. 

Conclusions. The results of the study indicate the possibility of applying the proposed technology for real-time recognition of 
complex human activities in intra-logistics systems based on data from smart-watch sensors, which will improve human-machine 
interaction and increase the efficiency of industrial logistics processes. 

KEYWORDS: distributed system, smart watch, industrial personnel, basic classifier, complex activity, classification, prediction. 
 

ABBREVIATIONS 
HAR is a human activity recognition; 
AGV is an automated guided vehicle; 
ML is a machine learning; 
FL is a federating learning; 
ANN is an artificial neural network; 
CWT is a continuous wavelet transform; 
TL is a transfer learning; 
IQR is an interquartile range; 
STD is a standard deviation; 
Log-STD is a logarithmic standard deviation; 
MA is a moving average; 
WMA is a weighted moving average; 
ES is an exponential smoothing; 
LOWESS is a local regression;  
SG is a Savitsky-Goley filter. 

 
 

NOMENCLATURE 
X  is a set of raw multivariate signals; 

'X  is a cleaned time series; 
''X is a smoothed time series; 

xa  is a x-axis accelerometer point; 

ya  is a y-axis accelerometer point; 

za  is a z-axis accelerometer point; 

xg  is a x-axis gyroscope point; 

yg  is a y-axis gyroscope point; 

zg  is a z-axis gyroscope point; 

t  is a discrete time dimension; 
W  is a fixed duration of temporal windows; 

bY  is a set of classes of basic activities;
  

cY  is a set of classes of complex activities;
  

by  is a basic activity label; 
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cy  is a complex activity label; 

og  is an outlier detection function; 

fg  is a smoothing filter function; 

sourceD  is a pre-processed source dataset; 

ettD arg  is a labeled target dataset; 

N  is a number of consecutive windows; 

bf  is a basic activity classification function; 

cf  is a complex activity classification function; 

a  is a CWT scaling parameter; 
b  is a CWT translation parameter; 
  is a CWT mother wavelet function; 

I  is a 6-channel CWT representations of sensor sig-
nals; 

  is a model loss function; 

F  is a target classification function; 
*F  is an optimal target classification function; 

  is a set of a model’s inner parameters; 
S  is a higher-level sequence of basic activities. 

 
INTRODUCTION 

Human activity recognition (HAR) is a research area 
that has gained particular importance due to the wide-
spread adoption of wearable technologies. Practical appli-
cations of HAR cover a wide range of areas. In health-
care, HAR is used for fall detection and prevention, sei-
zure detection, and physical activity monitoring [1–4]. 
Security applications include abnormal activity recogni-
tion [5]. In sports, HAR is used to evaluate training effec-
tiveness and estimate calorie expenditure [6–8]. 

In the era of Industry 4.0 and the ongoing transition to 
Industry 5.0, new fields of HAR applications have 
emerged, including tasks such as employee well-being 
assessment and intelligent enterprise management [9–11]. 
Initially, the main focus of HAR research was on the task 
of basic activity classification, which has been largely 
solved. Today, the focus of researchers is on solving more 
complex tasks, such as recognizing, analyzing, and pre-
dicting complex human activities.  

In modern manufacturing environments, traditional 
production line systems, such as conveyor belts or hang-
ers, are increasingly being replaced by automated guided 
vehicles (AGVs). Unlike traditional systems, AGVs offer 
greater flexibility and adaptability in dynamic production 
processes. However, these systems require more complex 
coordination with human personnel, which makes the 
integration of advanced human activity recognition, pre-
diction, and analysis systems critically important [12]. 
These technologies, when integrated into intelligent en-
terprise management systems, allow for dynamic routing 
and optimization of AGV planning based on real-time 
data on personnel activities. Such a combination can sig-
nificantly improve the efficiency of production lines and 
internal logistics systems by quickly adapting to changes 
in the work environment. Therefore, it is relevant to study 
the application of smart watch-based HAR systems in 

such contexts, offering a new approach to process optimi-
zation in internal logistics systems of Industry 4.0. Solu-
tions based on the proposed approach can be incorporated 
into the intelligent enterprise management system to im-
prove the efficiency of the production line. 

Tasks in the HAR domain can be divided into two 
categories depending on the characteristics of the activity 
being studied. The first category includes simple, repeti-
tive actions involving basic human body movements and 
postures, such as running, sitting, or walking upstairs. 
These activities can be recognized relatively easily using 
statistical analysis of signals (so-called shallow features) 
and basic machine learning (ML) models. The second 
category includes complex, functional, and contextual 
activities associated with specific human activities. Ex-
amples of this category include working, cooking, playing 
sports, and driving. These activities are characterized by 
their complexity, which requires advanced approaches 
and models for detection, classification, and analysis. In 
addition, modern applications typically require recogni-
tion of these actions in real time, i.e., without the need for 
manual input of temporal start and end timestamps. While 
the task of recognizing basic human activities has been 
largely effectively solved, current research is increasingly 
focused on developing and improving methodologies for 
recognizing complex, multi-step activities in real time. 
The application of the task of recognizing complex human 
activities extends to areas such as intelligent enterprise 
management using AGVs in the context of Industry 4.0, 
healthcare, anomaly detection, and sports analytics. 

Existing solutions for monitoring and recognizing in-
dustrial personnel actions are typically based on image 
analysis, the use of portable sensors, or a hybrid of both 
approaches. Although image analysis-based approaches 
are widely used, they have several drawbacks, including 
privacy concerns, the need for full coverage of the pro-
duction area, and significant financial investment. In addi-
tion, such solutions often impose restrictions on personnel 
movement, requiring their constant presence in the field 
of view of the cameras. This limitation is particularly 
problematic in dynamic sectors such as flexible manufac-
turing and intralogistics, where human personnel often 
move around vast industrial spaces. Integrating cameras 
with portable sensors can mitigate some of these prob-
lems. However, this approach also has certain disadvan-
tages, including the high cost of the equipment, the need 
to develop complex sensor data synthesis systems, and the 
need for large computing resources. On the other hand, 
solutions based on wearable sensors avoid these prob-
lems, as the sensors are placed directly on the worker’s 
body, do not require large area coverage and are relatively 
cheap. Therefore, this study primarily focuses on develop-
ing an approach and solution for classifying and predict-
ing complex personnel activities based on the use of 
wearable sensors. 

The object of study is the process of recognizing 
complex human activities in real-time within intralogis-
tics systems using autonomous guided vehicles. This 
process is influenced by many factors, including the qual-
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ity and reliability of sensor data, the presence of noise and 
missing values, the effectiveness of preprocessing and 
feature extraction techniques, the choice of machine 
learning models, and the computational constraints of 
real-time processing.  

The subject of study is the evaluation of methods for 
recognizing and predicting complex human activities in 
real-time within dynamic environments, focusing on the 
integration of signal collection, outlier detection, filtra-
tion, continuous wavelet transform and the use ANN with 
transfer learning (TL).  

The purpose of the work is to recognize complex 
human activities in real-time within intralogistics systems 
using smartwatch sensor data to enhance human-machine 
interaction, optimize the coordination of AGVs, improve 
workplace safety, and increase the overall efficiency of 
industrial logistics processes. 

 
1 PROBLEM STATEMENT 

Let T
ttXX 1}{   be a multivariate time series 

collected from a smartwatch worn by an industrial 

worker. Each 6RXt  consists of six sensor readings: 

three-axis accelerometer ),,( zyx aaa  and three-axis gy-

roscope ),,( zyx ggg . The data is segmented into tempo-

ral windows of fixed duration, resulting in windowed se-
quences (1): 

 
6)(1)( ,}{ 0

0


  WiWt

ttt
i RXXX . (1)

 
Each window is associated with a basic activity label 

b
i

b Yy )(  (e.g., sit, stand, run). A sequence of N  con-

secutive windows forms a higher-level sequence 
N
i

i
b

i yXS 1
)()( ),(   with a corresponding complex activity 

label cc Yy   (e.g., “working on a machine”, “performing 

assembly tasks”). Classification function (2) maps a se-
quence of N  consecutive windows of low-level sensor 
data to a complex activity label: 

 

c
N
i

i yXF 1
)( }{: . (2)

 
The objective is to find an optimal function (3) given a 

labeled target dataset )},{arg cett ySD  ,  that minimizes 

a loss function  , ensuring the accuracy of predictions, 

and maximizes the F1-score, ensuring a balanced trade-off 
between precision and recall: 
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The following limitations should be considered during 
the development of *F : 

1. The collected signals may contain outliers due to 
sensor noise or incorrect readings. Missing values may 
arise due to transmission errors or temporary disconnec-
tions, requiring robust preprocessing techniques.  

2. Only wearable sensor data is used, excluding video-
based or multimodal approaches that might provide addi-
tional context. This constraint necessitates effective fea-
ture extraction and signal representation techniques to 
compensate for the absence of visual cues.  

3. The approach is designed to be compatible with dis-
tributed computing and federated learning, ensuring data 
privacy and security. This requires models that can be 
trained in a decentralized manner without centralizing raw 
sensor data. 
 

2 REVIEW OF THE LITERATURE 
Methods for recognizing and analyzing basic human 

activities have been studied in many publications. In [13], 
the authors used logistic regression, KNN and SVM to 
analyze the smartphone accelerometer signal to recognize 
the actions of boarding and disembarking from a bus. The 
KNN classifier demonstrated high performance, achieving 
an accuracy of 95.3%. In the study [14], the authors clas-
sified accelerometer and gyroscope signals collected from 
an iPod Touch using C4.5, DT, multilayer perceptron and 
naive Bayesian classifier, LR, KNN, and meta-algorithms 
such as boosting and bagging to classify 13 activities. The 
results show that the KNN classifier is highly effective for 
HAR tasks based on wearable sensors. For more robust 
activity classification using shallow features, extreme 
gradient boosting [15, 16] and ensemble learning [17, 18] 
have been widely used. 

In recent years, deep learning-based approaches have 
gained considerable popularity in the field of HAR. The 
authors [19] conducted a comparative analysis of RF, 
SVM, and Convolutional Neural Network (CNN) algo-
rithms for HAR problems using accelerometer data. The 
experimental results concluded that deep learning models 
outperformed traditional classifiers. In another study [20], 
the authors evaluated the effectiveness of one-
dimensional CNN and hybrid models, such as CNN-
LSTM and CNN-GRU, for classifying human mobility 
gestures. The CNN-LSTM architecture demonstrated high 
performance, achieving accuracies of 99.89%, 97.28%, 
and 96.78% on the WISDM, PAMAP2, and UCI-HAR 
datasets, respectively. In [21], the performance of nine 
popular CNN architectures for HAR problems was com-
pared. The authors also applied methods such as Continu-
ous Wavelet Transform (CWT) and TL to improve per-
formance. The model based on the DenseNet121 architec-
ture with the Morlet 256 CWT configuration was found to 
be the most effective model for sensor-based HAR. 

Despite the large number of available solutions for ba-
sic activity recognition, a limited number of works have 
been published in the field of complex human activity 
recognition. In [22], the authors proposed the CHARM 
model, which consists of a two-stage ANN. The first 
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stage is an encoder that compresses fixed-size signals into 
a continuous feature representation. The second stage is 
designed to classify high-level activities based on the out-
put sequences of the low-level encoder. The model was 
tested on the Opportunity dataset for the classification of 
four daily activities, such as morning routine, tea, lunch, 
and cleaning. The authors compared the proposed model 
with SVM, RF, and MLP classifiers, as a result of which 
CHARM outperformed classical algorithms. The advan-
tage of the proposed approach is that it does not require 
labeling of basic activities. However, because the two-
stage ANN is trained using an end-to-end approach, it 
makes it difficult to integrate distributed computing and 
use federated learning, which is critical for Industry 4.0 
applications. 

The authors [23] proposed an adaptive multitask 
learning approach that consists of two components. The 
first component provides a feature representation for 
complex actions and encodes the temporal relationship 
between the main activities. The output of this component 
is a set of frequent patterns for the activity. The second 
component is the a MTL algorithm that captures the rela-
tionship between complex actions and selects prominent 
features. The proposed approach was applied to recognize 
five ADLs from the Opportunity dataset, demonstrating 
promising performance. A potential limitation of this ap-
proach is its questionable scalability and extensibility, 
especially when adding new actions or fitting to new data. 
The authors [24] proposed a method for recognizing hu-
man interactions using the analysis of consecutive image 
frames. The presented model consists of several levels, 
namely the body part selection level, the pose recognition 
level, the gesture recognition level, and the interaction 
level. The model was applied to recognize eight interac-
tion types (approach, retreat, pointing, handshake, hug, 
hit, kick, and push), achieving an overall accuracy of 
91.70%. In [25], the authors developed a framework for 
detecting composite actions for recognizing complex ac-
tivities using video data. This approach uses the intrinsic 
associations between activities and high-level activities to 
develop a classification network. The proposed approach 
was tested on the Breakfast Actions dataset, which con-
tains ten complex activities, achieving an accuracy of 
80.51%. Although the solutions proposed in the reviewed 
works achieved promising results, they use a video cam-
era-based approach, which implies certain limitations in 
applications in Industry 4.0 due to the problems men-
tioned earlier. 

Several publications are devoted to the development 
of methods and tools for HAR in the context of Industry 
4.0. The authors of [26] investigated the performance of 
various frequency and time domain functions and popular 
ML algorithms for classifying activities in logistics sys-
tems. The SVM, DT, RF and XGBoost algorithms were 
used to classify inertial measurement device signals from 
the LARa dataset. The best results were achieved by the 
XGBoost classifier using time and frequency domain 
functions with an average accuracy of 78.61%. In [27], an 
approach for HAR using video from a 360-degree camera 

is proposed. The authors investigated different ANN 
models for tracking the direction of movement of people 
using data collected from the AGVs. Each model was 
trained using the LboroHAR dataset. The study showed 
that the Shi-Tomasi angle detection method is the most 
effective technique for this application. The authors [28, 
29] proposed a solution for activity recognition in indus-
trial environments that uses multimodal data from cam-
eras and wearable sensors. The limitations of this solution 
are the need for the camera to cover the entire production 
area and the requirement for the worker to remain station-
ary, which is impractical in a dynamic environment where 
operators interact with the AGV, move between loading 
and unloading points, and perform multiple tasks simulta-
neously. An alternative solution that does not use cameras 
and does not restrict worker movement is proposed in 
[30]. This approach uses body capacitance sensors and 
IMUs with the subsequent use of CNN and LSTM [31] to 
perform data fusion, which allowed the recognition of 11 
actions. The disadvantage of this approach is the need to 
develop special 10-channel sensors with a total of 20 
channels in the system, which requires special equipment 
capable of operating in specific industrial conditions. In 
addition, the complexity of such systems increases sig-
nificantly when collaborative robots that support human 
work are used in the enterprise, since data from people, 
AGVs, and CoBots must be combined [32]. 

CWT offers several advantages over the traditional 
Fourier transform and the short-time Fourier transform 
[33]. First, the CWT provides a more accurate representa-
tion of the transients and peaks that are characteristic of 
biomedical signals, such as signals from accelerometers 
or gyroscopes. Second, this transform handles the non-
stationary nature of such signals by representing both 
temporal and localized spectral information. Hence, the 
application of the CWT in various studies has led to im-
proved model performance and mitigated overfitting 
problems [21, 34–38]. 

In this paper, a solution is proposed that uses smart 
watches to recognize the actions of industrial personnel. 
This approach provides a low-cost alternative that avoids 
the aforementioned limitations, such as the need for com-
plex equipment for signal fusion, the need for full cover-
age of the production area, or the limitation of personnel 
mobility. By using a stacking architecture of classifiers, 
the proposed solution is easily scalable and can be ex-
tended to include new actions, facilitating the use of fed-
erating learning (FL) and edge computing. The objective 
is to develop a system and technology for classifying and 
predicting complex activities of industrial personnel in 
real time, which requires only a smart watch. This device 
is widely used in sports, is relatively cheap and is allowed 
by internal policies of enterprises. The only change from 
the smart watch is the installation of a program for col-
lecting data from sensors. Depending on the requirements, 
the data can be processed directly on the device or trans-
mitted to an edge server. Additionally, the stack architec-
ture of the proposed approach supports the implementa-
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tion of distributed computing and FL, ensuring confiden-
tiality and adaptability. 

The following goals were outlined: 
1. Analyze the current state and challenges of the 

HAR domain. Consider available solutions for recogniz-
ing personnel activities. Highlight the limitations of mod-
ern systems and approaches. 

2. Develop a system for collecting data from smart 
watch sensors on the activities of industrial personnel. 
The developed software solution should allow simultane-
ous receipt of data from many subjects in real time. 

3. Collect a dataset containing smart watch sensor sig-
nals from industrial personnel. The dataset should reflect 
typical personnel activity when performing tasks in the 
internal logistics systems of enterprises with AGVs. 

4. Use methods to detect and eliminate outliers, noise, 
and partially lost data. Verify the effectiveness of the 
methods on data collected from industrial personnel's 
smart watches. 

5. Develop a data preprocessing algorithm to isolate 
outliers and prepare data for training ML models. De-
velop a strategy for separating the collected data. 

6. Develop an artificial neural networks (ANN) archi-
tectural framework that will allow classifying and predict-
ing complex activities of industrial personnel in real time. 
The developed architecture should support distributed 
computing and FL. 

7. Verify the effectiveness of different models and 
configurations for classifying and predicting complex 
activities. Apply modern techniques to improve the effec-
tiveness of models, such as TL and CWT. 

 
3 MATERIALS AND METHODS 

The proposed methodology is based on the use of ad-
vanced signal processing methods and the following us-
age of classifier stacking with TL to recognize and predict 
the complex activity label based on sensor signals. Fig. 1 
illustrates the general structure of the described method-
ology. 

 

 
Figure 1 – General structure of the proposed methodology 
 
In the first stage, the dataset undergoes preprocessing, 

where potential outlier detection and removal interrup-
tions and noise smoothing are taken into account, result-
ing in continuous, fixed sequences of 6-channel signal 
fragments that represent the execution of a particular unit. 
Given raw sensor readings X  , an outlier detection func-
tion is applied: )(' XgX o . After that, smoothing filter is 

used to remove noise: )'('' XgX f . 

In the second stage, CWT is applied to each channel 
of sensor signals to generate time-frequency representa-
tions (4): 
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The output is a 6-channel two-dimensional heat map 

(scalogram), which allows us to translate the problem of 
time series classification into an image classification 
problem. This transition allows us to take advantage of 
the significant breakthrough in the problem of image clas-
sification over the past decade, with many deep and 
highly efficient models and architectures available. Fig. 2 
shows an example of the transformed X-axis signal of an 
accelerometer using the CWT with the parent Morlet 
wavelet and scaling parameter values from 0 to 128. 

 

 
Figure 2 – Accelerometer signal converted using CWT 

 
Third, two classification functions are introduced: (5) 

for the basic activity recognition using a deep learning 

classifier maps each window )(iX  to a basic activity la-
bel: 

 
)()(: i

b
i

b yXf  , (5)

 
and (6)  for the complex activity recognition using a se-
quence-based model that classifies complex activities 
based on sequences of basic activity predictions: 

 

c
N
i

i
b

i
c yyXf 1

)()( ),(: . (6)

 
TL approach is employed to the bf  in order to im-

prove the basic human activities classification accuracy. 
Pre-processed source dataset 

sourceN
i

i
sb

i
ssource yID }),({ )()(  consists of labeled 6-

channel time-frequency representations of sensor signals 
6)(  WHi

s RI  via CWT from raw sensor readings, and 

the corresponding basic activity label sb
i

sb Yy )(  from the 

source dataset. The deep learning classifier bf  is trained 
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(7) on this dataset by minimizing the categorical cross-
entropy loss function b : 
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TL is performed via fine-tuning. The feature extrac-

tion layers of bf  are initialized with pre-trained weights 

s . The top classification layers are replaced with a new 

randomly initialized classifier adapted to the target data-
set’s class distribution. Then, the model (8) is trained on 
the smartwatch dataset: 
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This approach allows the model to leverage pre-

trained knowledge from a larger dataset while adapting to 
the specific characteristics of the target domain, improv-
ing classification performance on basic activities. After 
that, labels for all basic activities in the dataset are rede-
fined based on the training from the top-level neurons of 
the trained base classifier.  

In the fourth stage, a metaclassifier (for the complex 
activity recognition task) is trained (9) on fixed-size se-
quences of classification results of the base classifier:  
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The sequence-based model cf  takes as input the se-

quence of basic activity predictions N
i

i
by 1

)( )(   and classi-

fies the complex activity. 
 

4 EXPERIMENTS 
To achieve the goals of this work, a distributed data 

collection and analysis system was developed. The main 
components of the system are the Samsung Galaxy Watch 
5 smart watch, an application for the WearOS operating 
system and a cloud server. The application collects data 
from hardware sensors, provides functionality for control-
ling the experiment execution process through the user 
interface and sends data to the cloud. The Kotlin pro-
gramming language was used as a modern development 
standard for the WearOS operating system. 

The cloud server was developed using the MySQL-
Server software solution, which works under the plat-
form-as-a-service (PaaS) model. The cloud solution, in 
particular the PaaS model, was chosen due to its high 
scalability and wide data protection capabilities. The sys-
tem architecture is aimed at the possibility of simultane-
ously receiving data from different subjects, which in-
creases the efficiency of the research methodology. Fig. 3 
illustrates the general structure of the system. 

 
Figure 3 – Structure of the developed data collection system 

 

The application collects data from a three-axis accel-
erometer and a three-axis gyroscope (six data channels in 
total) with a sampling rate of 100 Hz. On the smartwatch 
side, no signal filtering is performed, and gravitational 
acceleration is excluded from the accelerometer signal. 
For each channel, a 3-second frames of the signal, along 
with additional information such as the hand on which the 
watch is worn, the frames start/stop timestamps, and the 
data collection subject identifier, is compressed and sent 
as a data frame. 

Data frames containing less than three seconds of sig-
nal recording (which can occur during interrupted data 
collection sessions or loss of connectivity) are not sent to 
the cloud and are discarded by the application. During the 
dataset generation phase, data frames with the same start 
timestamps are combined into a single six-channel signal 
(data frame group). If one or more channels are lost, in-
complete data frame groups are discarded. 

The term “aggregate” refers to a sequence of basic ac-
tivities or actions that are continuously executed in a spe-
cific order. Data on aggregates is also collected using the 
program. It is important to note that since this work fo-
cuses on recognizing complex activities in real time, time 
markers indicating the start and end of a specific instance 
of aggregate execution are not recorded. Instead, informa-
tion related to aggregates is obtained during experimental 
sessions where participants participate in the continuous 
execution of a specific aggregate. Events related to an 
aggregate, such as the start and end of data collection ses-
sions, are sent to the cloud as an “aggregate event” data 
structure. 

During the experimental sessions, users entered in-
formation about the start and end of the aggregate execu-
tion data collection sessions into the application. In case 
of connection problems, aggregate events are queued and 
resent when the connection is restored. 

In summary, sensor signal data is transmitted as a 3-
second data frame for each sensor channel, resulting in a 
total of six channels. Tags related to basic activities are 
included as a field in the data frame. Aggregate execution 
data is collected in the form of aggregate events contain-
ing time stamps of the start and end of the aggregate exe-
cution data collection sessions. 

The implementation program for the smartwatch and 
the cloud server is presented in Fig. 2. The application is 
developed for the Samsung Galaxy Watch 5 smartwatch 
based on the WearOS operating system. The main pur-
pose of the program is to collect sensor data, send it to the 
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cloud server, and provide an interface for controlling the 
data collection process. WearOS was chosen as the oper-
ating system due to its robust API and high degree of 
adaptability for hardware sensor interaction. The Kotlin 
programming language is used as the current standard for 
the development of WearOS and AndroidOS. Some of the 
application user interface screens are shown in Fig. 2, 
namely: the start/stop sensor data collection screen; the 
screen for managing data collection sessions and aggre-
gates; the basic activity selection screen; the data collec-
tion subject selection screen; the screen displaying sensor 
information. Examples of some application user interface 
screens are shown in Fig. 4. 

 

 
Figure 4 – Examples of application user interface screens 
 

The cloud server solution, implemented in the PaaS 
model, provides scalability and enhanced security capa-
bilities, and also allows simultaneous data acquisition 
from different objects, thus ensuring effective data man-
agement and significantly increasing the efficiency of the 
research methodology. The main purpose of the cloud 
server is to store the collected data and make it available 
for further processing and analysis. In addition, the 
MySQL server software was used due to its high per-
formance and scalability characteristics, ensuring optimal 
data management and integrity during the research proc-
ess. This choice was due to the easily available cloud so-
lutions compatible with MySQL, as well as a wide range 
of WearOS libraries and plugins that support it. This 
makes it a more pragmatic and effective choice for our 
requirements. 

During data collection, the subject manually sent ag-
gregate stop and start events to the program. In case of 
loss of connection, all events were queued and resent after 
the connection was established. The structure of the data-
base schema is shown in Fig. 5. The architecture includes 
two main node tables: “Dataframes” and “Aggrega-
teEventLogs”. The “Dataframes” table is dedicated to 
operations on sensor data, storing this information accord-
ing to the data structure. Meanwhile, the “Aggrega-
teEventLogs” table is an integral part of the aggregate-
related functionality, recording events. In addition, the 
“Devices” table is used to manage devices, facilitating the 
integration of new WatchOS data collection devices into 
the system. The system also includes other tables that 
contribute to data normalization and provide system 
flexibility through periodic cleanups. 

During the experiments, data was collected from five 
industrial personnel involved in the continuous execution 
of one of two predefined aggregates. Participants were 
required to use an application on their smartwatch to re-
cord the start and end timestamps of each experimental 
session and each major activity they performed during 
these sessions. 

 
Figure 5 – Structure of the cloud database schema 

 
The topological configuration of each aggregate is de-

picted in Fig. 6. Both aggregates start from the same start-
ing point. The first unit covers the following sequence of 
actions: sitting (at point 1), moving from sitting to stand-
ing, standing, walking to point 2, performing a 90-degree 
turn, walking to point 3, standing, moving from standing 
to sitting, and then sitting. These actions are then per-
formed in reverse order to return to the starting point. The 
second aggregate consists of the following sequence: sit-
ting (at point 1), moving from sitting to standing, stand-
ing, walking to point 2, performing a 180-degree turn in 
any direction, walking back to point 1, standing, moving 
from standing to sitting, and then sitting. 

 

 
Figure 6 – Topological configuration of the first (a) and sec-

ond (b) aggregates 
 

All participants wore a smartwatch on either their left 
or right wrist. During the data collection phase, there were 
instances where the connection was temporarily inter-
rupted or participants intentionally paused the experiment 
by pressing the “Stop” button in the app. These incidents 
will be reviewed and corrected during the pre-processing 
phase of the dataset to ensure data integrity and continu-
ity. 

The dataset collected from this study covers a total of 
3.28 hours of six-channel sensor data of a three-axis ac-
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celerometer and gyroscope, accumulated during 18 ex-
perimental sessions. During these experiments, subjects 
continuously performed one of two aggregates and re-
corded their activities. This dataset contains a unique base 
activity identifier for each data frame and information 
about the subject from whom it came, as well as detailed 
records of the start and end of the experimental sessions. 

The distribution of data frames in the collected dataset, 
classified by activity, personnel identifiers, and associa-
tions with aggregates, is depicted in Fig. 7. The activity 
identifiers are labeled as follows: 1-standing, 2-sitting, 5-
transitions between standing and sitting (and vice versa), 
and 12-walking. 

 

 
Figure 7 – data frames distribution by a – basic activities;  

b –  subjects; c – aggregates 
A feature of this dataset is its inherent imbalance, 

which can be expected given the context of the study. 
This imbalance is explained by the nature of the studied 
aggregates, where certain actions (e.g. walking) dominate, 
which occupies the majority of the dataset. 

Outliers in the data affect the accuracy of the collected 
data of the system in the following ways: 

– accelerometer – data loss can lead to errors in the 
location or speed of the object. Since accelerometers 
measure changes in speed, the absence of data can nega-
tively affect the accuracy of calculating the trajectory and 
angle of inclination. 

– gyroscope – data loss affects the accuracy of calcu-
lating the orientation and angular position of the object. 
Since gyroscopes measure angular velocity, in the event 
of data loss, directional errors (gyro bias) can accumulate. 

The Kolmogorov-Smirnov statistic indicates a certain 
deviation from the normal distribution (0.133112). The 
extremely low p-value (0.0000000347) confirms that the 
deviation is statistically significant, which means that the 
data does not follow a normal distribution. Fig. 8 shows a 
histogram of the distribution of accelerometer values 
along the x-axis. 

 
Figure 8 – Histogram of the distribution of accelerometer 

values along the x-axis 
 

Most of the values are centred around zero, with some 
deviations in either direction. This indicates that the bulk 
of the data is concentrated in the central part, but there are 
some outliers. Figure 9a shows a histogram with outlier 
thresholds determined using the standard deviation 
(STD). The red vertical lines show the limits at which 
values are considered outliers. Most values are within 
these thresholds, but there are some values that fall out-
side the limits, indicating the presence of outliers. Figure 
9b shows a histogram with outlier thresholds determined 
using the interquartile range (IQR). The red vertical lines 
also show the outlier limits. As in the previous case, most 
values are within these thresholds, but there are some 
outliers. Figure 9c shows a histogram of log-transformed 
data with outlier thresholds determined using the STD. It 
helped reduce the impact of large values, but there are 
still some outliers. 

Figure 10 shows a histogram with outliers determined 
using the DBSCAN algorithm with parameters eps=0.01, 
min_samples=10. The percentage of outliers for each 
method is: STD- 10.80%, IQR- 12.00%, Log-STD- 
8.60%, DBSCAN: 26.00%. The STD and IQR methods 
detect approximately the same number of outliers, indicat-
ing their similarity in determining outlier thresholds. 

Logarithmic standard deviation (Log-STD) reduces 
the number of outliers, which can be useful for data with 
large deviations. The DBSCAN method detects the larg-
est number of outliers, which may indicate its sensitivity 
to anomalies in the data. Therefore, for further analysis, it 
is recommended to use a combination of outlier detection 
methods to obtain more accurate results. In general, loga-
rithmic transformation can be useful for reducing the im-
pact of large values, but it should be noted that it can 
change the structure of the data. Using DBSCAN can be 
useful for detecting more anomalies, but caution should 
be exercised with its sensitivity. 

103



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 3 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 3 

 
 

© Pavliuk O. M., Medykovskyy M. O., Mishchuk M. V., Zabolotna A. O., Litovska O. V., 2025 
DOI 10.15588/1607-3274-2025-3-10  
 

 
Figure 9 – Histogram with outlier thresholds: a – using standard deviation; b – using interquartile range; c – using log-transformed 

data with outlier thresholds determined using standard deviation 
 

 
Figure 10 – Outlier detection using STD, Log-STD, DBSCAN, IQR methods 

 
Detected outliers in sensor data in the control system 

can lead to incorrect analysis of industrial personnel 
movements, incorrect behaviour of automated devices, or 
a decrease in the overall efficiency of the production 
process. Assignment, interpolation, filtering, and smooth-
ing methods are used to minimize the impact of noise on 
partially lost and distorted data. The filter helps to smooth 
out noise and eliminate gaps. Smoothing methods are 
effectively used to restore distorted or partially lost data 
based on adjacent values. Fig. 11 shows the results of 
using such filters as moving average, weighted moving 
average, exponential smoothing, local regression, and the 
Savitsky-Goley filter. 

The results of calculating the deviations of all methods 
are presented in Table 1. According to the results, it is 
advisable to smooth the noise by local regression. Since it 

is used to smooth the data by constructing a local poly-
nomial regression with small intervals between the data. 
Therefore, it effectively processes nonlinear data by ad-
justing the degree of the polynomial in each interval, lo-
cally adapting it to the shape of the trend in each interval. 
But this requires a sufficient amount of data in each inter-
val. 

In this work, the following parameters of the CWT 
were chosen: the Morlet mother wavelet, the value of the 
parameter a from 0 to 256 and the value of the parameter 
b from 0 to 300. This choice was based on studies [3, 21], 
where these parameters were determined to be the best for 
HAR problems based on wearable sensors when used in 
combination with the DenceNet121 model. 

 
 

 

 
Figure 11 – Comparison of smoothing methods using filters 
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Table 1 – Deviations of smoothing filters 
Devia-

tion 
Orig. 
Data 

MA WMA ES LO- 
WESS 

SG 

X, axe 0.2824 0.2021 0.2086 0.2291 0.1795 0.2477 
Y, axe 0.5635 0.4323 0.4472 0.4618 0.4284 0.5160 
Z, axe 1.0584 0.5361 0.5248 1.1328 0.4430 0.9993 
X, hyr 0.2244 0.2040 0.2073 0.2074 0.2143 0.2225 
Y,  hyr 0.1189 0.1076 0.1103 0.1095 0.1130 0.1182 
Z,  hyr 0.1962 0.1929 0.1934 0.1897 0.1913 0.1964 
Disper

sion 
Orig. 
Data 

MA WMA ES LO- 
WESS 

SG 

X, axe 0.0798 0.0408 0.0435 0.0525 0.0322 0.0613 
Y, axe 0.3175 0.1869 0.2000 0.2133 0.1835 0.2662 
Z, axe 1.1203 0.2874 0.2754 1.2832 0.1962 0.9987 
X, hyr 0.0504 0.0416 0.0430 0.0430 0.0459 0.0495 
Y,  hyr 0.0141 0.0116 0.0122 0.0120 0.0128 0.0140 
Z,  hyr 0.0385 0.0372 0.0374 0.0360 0.0366 0.0386 

 
This study proposes a six-step dataset preprocessing 

pipeline, shown in Fig. 12. It receives a set of data frames 
collected during experimental sessions as input, and pro-
duces datasets with fixed-size continuous sequences as 
output. In the first step, data frames recorded outside the 
experimental sessions are deleted based on their time-
stamps to eliminate possible outliers. In the second step, 
gaps in the data frame sequences are identified and high-
lighted using the time delta criterion. To do this, the time-
stamp of the end of one data frame is compared with the 
timestamp of the start of the next frame. If the interval 
exceeds 500 milliseconds, this indicates a possible pause 
in the experimental session or a hardware failure. In this 
case, this marks the end of one continuous sequence and 
the beginning of a new one. In the third step, the continu-
ous data frame sequences are reduced to a fixed size of 20 
frames (equivalent to 60 seconds). This size is chosen 
based on the fact that the initial activities of both units are 
the same. Hence, it is expected that a minute will be 
enough for the subject to perform some basic activities 
and the metaclassifier and predictor will have enough 
information to distinguish them. In the fourth stage, 50% 
overlap between fixed sequences is performed to expand 
the dataset.  

 

 
Figure 12 – Dataset preprocessing pipeline 

 
In the fifth stage, shuffling is performed, after which 

the dataset is divided into subsets for training, testing, and 
validation. In this study, two strategies are used to divide 
the dataset, which are illustrated in Fig. 13. In the first 
partitioning strategy, 40% of the dataset is used to train 
the base classifier and validate the meta-classifier, the 
other 40% is used to train the meta-classifier and validate 
the base classifier, and the last 20% is used for testing. 
This strategy provides unique data for training the models 
at each level, which is the “ideal” scenario, but potentially 

provides insufficient data for training the meta-classifier 
because it does not use TL. The second strategy allocates 
40% to train both classifiers, another 40% to validate the 
base classifier and further train the meta-classifier, and 
the remaining 20% for testing. The second strategy pro-
vides more data for the meta-classifier, but may result in 
it not capturing errors from the base classifier on new 
data. Finally, in the sixth step, the CWT is applied to each 
of the six channels of the data frames using the Morlet 
mother wavelet and scaling parameter values from 0 to 
256. 

 
Figure 13 – The dataset partitioning strategies 

 
In this work, the model proposed in [21, 39] was used 

as the baseline classifier. It is based on the DenseNet121 
architecture and is specifically designed for HAR tasks. 
This model is pre-trained on the KU-HAR dataset [40], 
and CWT was used to improve performance. The pro-
posed model achieved an F1 score of 97.52% on the KU-
HAR dataset, which outperformed state-of-the-art works 
and demonstrated improved performance on small data-
sets when using layer freezing. 

The original KU-HAR dataset contains 20,750 non-
overlapping samples with three-axis accelerometer and 
three-axis gyroscope signals collected using a smartphone 
for 18 different activity classes. Fig. 14 illustrates the 
methodology used to apply knowledge transfer from the 
KU-HAR dataset to the collected dataset. 

 

 
Figure 14 – Knowledge transfer approach used for the base  

classifier 
 

To fit the DenseNet121 model pre-trained on the KU-
HAR dataset, several manipulations are made. First, the 
top fully connected layer of the pre-trained model is re-
moved and replaced with a new one initialized using the 
Xavier scheme. The new layer contains four neurons, 
which corresponds to the number of activity classes in the 
collected dataset. According to the study [39], freezing 
the layers of the pre-trained DenseNet121 can improve 
the performance of the model on small HAR datasets, 
with the optimal number being 136 layers. Accordingly, 
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the same configuration is used in this work. Additionally, 
appropriate class weights are used when training the base 
classifier to mitigate the problem of imbalance in the 
dataset. 

The hyperparameters for training the base classifier 
were chosen experimentally and include the Adam opti-
mizer, 100 training epochs, and a batch size of 32. Call-
backs such as “Model checkpoint”, “Early stop”, and 
“Reduce training intensity at plateau” were used during 
training. The model was trained 10 times, and the results 
of the best performing instance are presented in this study. 

In this study, LSTM, BiLSTM, GRU, BiGRU, and 
CNN architectures were used as meta-classifiers. These 
models were chosen because of their ability to capture 
temporal dependencies in fixed-size sequential data, 
which is important in our case. Regarding the CNN-based 
model, the architecture of the meta-classifier used is illus-
trated in Fig. 15. The input to the meta-classifier is a ma-
trix (20×4) representing a sequence of 20 classification 
results from the top-level neurons of the base classifier. 
The architecture of the meta-classifier based on the CNN 
includes two convolutional blocks with pooling and batch 
normalization layers, as well as two fully connected 
blocks. The Leaky ReLU activation function is used, 
which prevents the problem of “dying neurons”. Dropout 
layers were enabled during training to improve generali-
zation. 

For the LSTM, BiLSTM, GRU and BiGRU models, 
experiments were conducted with both single-layer and 
multi-layer configurations. Each layer consists of 64 neu-
rons, and the models include a fully connected layer with 
two neurons and a softmax activation function. In multi-
layer configurations, two consecutive layers were used, 
each containing the same number of neurons. 

 

 
Figure 15 – Architecture of a meta-classifier based on CNN 

 
The hyperparameters used in training the meta-

classifiers include a simple gradient descent optimizer, 
500 training epochs, and a batch size of 16. As with the 
base classifier, the same training callbacks were enabled 
and class weights were set. Each model configuration was 
trained 100 times, and the results of the best models are 
reported in this study. 

 

5 RESULTS 
Table 2 presents the performance metrics of the base 

classifier on the test subset [41]. The model generalization 
result from the base classifier training data is high. Fur-
thermore, the validation accuracy and loss rates show 
minimal changes with increasing epochs, indicating that 
the model converges relatively early due to the pre-
training. The results demonstrate extremely high accuracy 
and significant F1 scores. Given that the F1 score metric 
is insensitive to dataset imbalance, this alignment sug-
gests that the model generalizes well and maintains un-
bias across activities. 

 
Table 2 – Classification results of the base classifier on a subset 

of tests 
Accuracy Precision Recall AUC F1-score 
90.90% 91.33% 90.69% 97.26% 91.01% 

 

After training and evaluating the base classifier, the 
dataset labels for all samples were updated based on the 
output from the top fully connected layer neurons of the 
trained base classifier.  

The performance metrics of the metaclassifiers trained 
using the first dataset partitioning strategy [41] are shown 
in Table 3. The precision, recall, and F1 scores were cal-
culated using a “weighted” approach. In this method, the 
metrics are calculated for each class and then the average 
is weighted by the support (the number of true instances 
for each class), which is a valid approach in the case of 
class imbalance. The results show that the CNN-based 
model showed a rougher performance, achieving an F1 
score of 79.07%. Another model with satisfactory accu-
racy is the single-layer BiLSTM network, which achieved 
an F1 score of 73.89%. The remaining models showed 
comparable performance, with F1 scores of approxi-
mately 76%. The multilayer BiGRU model was the least 
efficient with an F1 score of 73.89%. 

 

Table 3 – Classification results of meta-classifiers on the test 
subset (first partitioning strategy). 

Classifier 
Accu-
racy 

Preci-
sion 

Recall AUC 
F1-

score 
CNN 79.17% 79.01% 79.17% 84.34% 79.07% 
Single-
layer 
LSTM 

75.00% 76.11% 75.00% 78.03% 75.32% 

Multi-
layer 
LSTM 

76.39% 77.15% 76.39% 77.41% 76.63% 

Single-
layer 
BiLSTM 

77.78% 78.84% 77.78% 79.13% 78.07% 

Multi-
layer 
BiLSTM 

75.00% 75.49% 75.00% 79.91% 75.19% 

Single-
layer GRU 

76.39% 76.21% 76.39% 84.51% 76.28% 

Multi-
layer GRU 

75.00% 75.00% 75.00% 79.92% 75.00% 

Single 
layer 
BiGRU 

75.00% 74.45% 75,00% 78.13% 74.48% 

Multi-
layer 
BiGRU 

73.61% 74.42% 73.61% 79.68% 73.89% 
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Interestingly, increasing the number of layers in the 
BiLSTM, GRU, and BiGRU-based architectures did not 
lead to an increase in performance, but rather to a de-
crease in it. This may be a case of overfitting with insuffi-
cient training data to utilize the additional layers in these 
architectures. Furthermore, the close correspondence be-
tween accuracy and F1 score in all models indicates that 
the model was not disproportionately affected by the more 
prevalent class. This was achieved by including class 
weights during training.  

Table 4 presents the classification results of the meta-
classifiers for the second partitioning strategy [41]. As 
can be seen, the CNN-based model also showed good 
performance, achieving an F1 score of 87.44%. Further-
more, when applying the second partitioning strategy, this 
model showed higher performance compared to the first. 
This indicates that the model using the second strategy 
benefited from the extended knowledge obtained from the 
shared training data, while effectively using the informa-
tion from the second subset to mitigate the inaccuracies 
inherent in the base classifier. Interestingly, applying the 
second partitioning strategy resulted in a decrease in per-
formance for the other models, indicating their inability to 
adapt both the extended knowledge and the errors of the 
base classifier. Among all the models, the single-layer 
LSTM network showed the lowest performance in terms 
of precision, granularity, recall, and F1 score. Notably, 
the inclusion of the second splitting strategy shows that 
the introduction of multiple levels in the LSTM, 
BiLSTM, and BiGRU models leads to an overall per-
formance improvement. This suggests that the additional 
complexity of these models is an advantage when using 
the second splitting strategy.  

 
Table 4 – Classification results of meta-classifiers on the test 

subset (second partitioning strategy). 

Classifier 
Accu-
racy 

Preci-
sion 

Recall AUC 
F1-

score 

CNN 87.50% 87.43% 87.50% 92.40% 87.44% 

Single-
layer 
LSTM 

69.44% 71.42% 69.44% 76.93% 69.96% 

Multi-
layer 
LSTM 

72.22% 72.75% 72.22% 78.70% 72.43% 

Single-
layer 
BiLSTM 

72.22% 75.04% 72.22% 78.43% 72.75% 

Multi-
layer 
BiLSTM 

73.61% 74.42% 73.61% 78.76% 73.89% 

Single-
layer 
GRU 

72.22% 76.08% 72.22% 79.74% 72.77% 

Multi-
layer 
GRU 

72.22% 72.22% 72.22% 80.84% 72.22% 

Single-
layer 
BiGRU 

72.22% 75.04% 72.22% 77.93% 72.75% 

Multi-
layer 
BiGRU 

73.61% 76.92% 73.61% 80.84% 74.13% 

In light of the observed results, we propose a CNN-
based metaclassifier with a second partitioning strategy as 
the optimal configuration among the tested ones. Consid-
ering the challenges encountered, including the similarity 
of the aggregates, different execution speeds, and the pos-
sibility of overlap between the main activity labels in the 
data frames when subjects choose actions during data 
collection, we evaluate the performance of the metaclassi-
fier as satisfactory. It is important to acknowledge the 
potential limitations associated with the proposed ap-
proach, in particular with regard to the generation of sca-
lograms. The computational intensity of the CWT may 
make it difficult to directly implement our method on 
wearable devices such as smartwatches or smartphones. 
However, this limitation can be mitigated by using edge 
computing and FLs, which provide decentralized data 
processing and model training, thereby reducing the com-
putational constraints of individual devices. 

 
6 DISCUSSION 

This study proposes a real-time, multi-stage, complex 
HAR approach that is applicable to, but not limited to, 
intralogistics systems using AGVs. The proposed ap-
proach uses a smartwatch and techniques such as classi-
fier stacking, CWT, and TL. In the context of this study, a 
distributed data collection system based on a smartwatch 
was developed. A dataset containing readings from five 
industrial personnel performing continuous sequences of 
actions representing typical intralogistics tasks was also 
collected and published. 

A HAR-specific pre-trained DenseNet121 model us-
ing CWT was used as the base classifier, achieving an F1 
score of 91.01% for the base activity classification. For 
the multi-stage activity classification task, metaclassifiers 
based on convolutional neural networks (CNN), long-
short-term memory (LSTM), bidirectional LSTM, recur-
rent gating unit (GRU), and bidirectional GRU were 
compared. Two strategies for using the dataset were 
tested to optimize metaclassifier training. The most effec-
tive model using CNN and shared training data between 
classifiers resulted in the metaclassifier obtaining an F1 
value of 87.44%. It is important to note that the temporal 
resolution of the data for the baseline activities is limited 
by the duration of the data frame, which is 3 seconds. 
This limitation creates a potential problem, since baseline 
activities with a duration shorter than this interval (e.g., a 
subject walk for 1 second) may overlap with the next 
baseline activity. Similarly, if a data frame contains data 
for two different baseline activities (e.g., 2 seconds of 
walking followed by 1 second of standing), the label cor-
responding to the last activity (standing in this case) will 
be assigned. This behavior is a potential problem that 
could affect the performance of classifiers and will be 
addressed in future research. 

We hypothesize that the overall performance of the 
model can be improved by expanding the dataset, includ-
ing data from more subjects, and including additional 
baseline activities such as rotation. Furthermore, the prob-
lem of overlapping activities in a time window can be 
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addressed by assigning labels based on the majority dura-
tion within a particular activity class rather than relying 
on the last activity. Furthermore, hybrid architectures 
combining CNNs with LSTMs or GRUs can yield supe-
rior results, suggesting promising directions for future 
research. 

With appropriate modifications, the proposed ap-
proach can be integrated into an intelligent enterprise 
management system using CWT, improving the produc-
tivity of human-machine interaction and increasing the 
overall efficiency of the production line. 

 
CONCLUSIONS 

The current problem of developing an innovative ap-
proach for recognizing complex human actions in real 
time, focused on internal logistics systems using AGVs, is 
being solved. 

The scientific novelty of the results is the creation of 
an innovative system for recognizing and predicting com-
plex human activities in industrial intralogistics of enter-
prises in real time. For this purpose, a data collection sys-
tem based on a smart watch was developed. This ap-
proach combines advanced data preprocessing methods 
and state-of-the-art machine learning models, including 
hybrid machine learning technologies based on Dense-
Net121 and CNN architectures, to achieve high accuracy 
of classification and prediction of activities.  

The practical significance of the study in making in-
dustrial environments safer and more efficient by recog-
nizing and predicting worker activities in real time. The 
system can be integrated into workplaces to streamline 
processes and support smarter decision-making in fast-
paced conditions. By fostering smoother collaboration 
between humans and machines, it not only enhances pro-
ductivity but also prioritizes the well-being and comfort 
of employees, aligning with the principles of Industry 5.0. 

Prospects for further research are to focus on ex-
panding the dataset to include more subjects, units, and 
major activities, and using hybrid models to improve 
model accuracy. Other promising directions include inte-
grating FL technology and using the proposed architec-
tural framework to predict worker activity. 
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AНОТАЦІЯ 
Актуальність. У сучасному промисловому виробництві значна увага приділяється системам розпізнавання та прогнозування 

людської активності в реальному часі. Такі технології є ключовими для переходу від Індустрії 4.0 до Індустрії 5.0, оскільки вони 
забезпечують покращену взаємодію між людиною і машиною, а також вищий рівень безпеки, адаптивності та ефективності вироб-
ничих процесів. Ці підходи особливо актуальні в галузі внутрішньої логістики, де співпраця з автоматизованими транспортними 
засобами вимагає високого рівня координації та гнучкості.  

Мета. Створити технологічне рішення для оперативного виявлення та прогнозування складної поведінки людини у системах 
внутрішньої логістики шляхом використання сенсорних даних зі розумних годинників. Основна ціль – підвищити рівень взаємодії 
між працівниками та автоматизованими системами, збільшити безпеку праці й ефективність логістичних процесів.  

Метод. Розроблено децентралізовану систему збору даних із використанням розумних годинників. У мобільному додатку, на-
писаному мовою Kotlin, фіксувалися показники сенсорів під час виконання серії логістичних активностей п’ятьма працівниками. 
Для обробки неповних або спотворених даних застосовано алгоритми виявлення аномалій, зокрема STD, логарифмічне перетво-
рення STD, DBSCAN та IQR, а також методи згладжування, такі як ковзне середнє, зважене ковзне середнє, експоненційне згла-
джування, локальна регресія й фільтр Савіцького-Голея. Оброблені дані використовувалися для навчання моделей із застосуванням 
таких сучасних підходів, як передавальне навчання, неперервне вейвлет-перетворення та стекінг класифікаторів.  

Результати. У ролі базового класифікатора обрано попередньо натреновану глибоку модель з архітектурою DenseNet121, яка 
показала F1-метрику 91,01 % при розпізнаванні простих дій. Для аналізу складних активностей випробувано п’ять архітектур ней-
ронних мереж (однашарових і багатошарових) з двома стратегіями розподілу даних. Найвищу точність – F1-метрику 87,44 % – 
продемонструвала згорткова нейронна мережа при використанні об’єднаного підходу до розподілу даних. 

Висновки. Результати дослідження свідчать про можливість застосування запропонованої технології розпізнавання складної 
людської діяльності в режимі реального часу в інтралогістичних системах на основі даних з сенсорів смартгодинника яка покра-
щить взаємодію людини та машини та підвищить ефективність промислових логістичних процесів. 

КЛЮЧОВІ СЛОВА: вибірка, фрактальна розмірність, метрика якості, кластер, формування вибірок.  
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