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ABSTRACT

Context. Recommendation systems are important tools for modern businesses to generate more income via proposing relevant
goods to clients and achieve more loyal attendees. With deep learning emergence and hardware capabilities evolution it became pos-
sible to grasp customer behavioral patterns in data-driven way. However, accuracy of prediction is dependent on complexity of sys-
tem, and these factors lead to increased delay in model’s output. The object of the study is the task of issuing sequential recommen-
dations, namely the next most relevant product, subject to restrictions on system response time.

Objective. The goal of the research is the synthesis of a deep neural network that can retrieve relevant items for a large portion of
users with minimal delay.

Method. The proposed method of obtaining recommendation systems that leverages a mixture of Attention-based deep learning
model architectures with application of knowledge graphs for prediction quality enhancement via explicit enrichment of recommen-
dation candidate pool, demonstrates the benefits of decoder-only models and distillation learning framework. The latter approach was
proven to demonstrate outstanding performance in solving recommendation retrieval task while responding fast for large user batch
processing.

Results. A model of a recommender system and a method for its training are proposed, combining the knowledge distillation
paradigm and learning on knowledge graphs. The proposed method was implemented via two-tower deep neural network to solve
recommendation retrieval problem. A system for predicting the most relevant proposals for the user has been built, which includes
the proposed model and its training method, as well as ranking indicators MAP@k and NDCG(@k to assess the quality of the models.
A program has been developed that implements the proposed architecture of the recommendation system, with the help of which the
problem of issuing the most relevant proposals has been studied. When conducting experiments on a large amount of real data from
user visits to an online retail store, it was found that the proposed method for designing recommender systems guarantees high rele-
vance of the recommendations issued, is fast and unpretentious to computing resources at the stage of receiving responses from the
system.

Conclusions. Series of conducted experiments confirmed that the proposed system effectively solves the problem in a short pe-
riod of time, which is a strong argument in favor of its use in real conditions for large businesses that operate millions of visits per
month and thousands of products. Prospects for further research within the given research topic include the use of other knowledge
distillation methods, such as internal or self-distillation, the use of deep learning architectures other than the attention mechanism,
and optimization of embedding vector storage.

KEYWORDS: knowledge distillation, knowledge graphs, decoder-only models, node embeddings, transformer models, atten-
tion mechanism, recurrent neural networks, long short-term memory networks, deep neural networks, personalized sequential rec-
ommendations, predicting the next most relevant product, user modeling.

ABBREVIATIONS MAP is a mean average precision;
CBF is a content-based filtering; NDCQG is a normalized discounted cumulative gain;
CF is a collaborative filtering; MHA is a multi-head attention network;
CNN is a convolutional neural network; NBO is a next-best offer problem;
DNN is a deep neural network; NBA is a next-best action problem,;
KD is a knowledge distillation process; NDCG is a normalized discounted cumulative gain;
KG is a knowledge graph; PMI is a pointwise mutual information;
KLD is a Kullback-Leibler divergence; RS is a recommender system.
LSTM is a long short-term memory network;
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NOMENCLATURE
S is a session data;
| is an item data;
t is a (discrete) time point;
L(t
Ij( )
St is a sample of time series;

is an item at time point t;

R ( | ) is a conditional probability mass function;

G is a weighted graph, i.e. KG;

V is a set of users and items — the vertices of G;

N(v) is a set of neighbors of node V in a graph G;

P is a projection operator over graph G;

Pr(~) is a probability mass function in PMI definition;
Pr(-,-) is a joint probability mass function in PMI;

o is a sigmoid activation function;

T is a softmax temperature;

L is a RS loss function;

hy is a hidden state of neural network at time

t,hyeh;
by, is a bias vector for hidden state of a recurrent neu-

ral network;
b, is a bias vector for output state of a recurrent neu-

ral network;
W,, is a weight matrix for hidden state of a recurrent

neural network;
W,, is a weight matrix for output state of a recurrent

neural network;
o is a PMI threshold, e R ;

V; is a logit for the i-th score produced by the student
model;

Z; is a logit by teacher model;

gj is a soft target output for i-th score produced by the

student model;
G, is a soft target output for i-th score produced by the

teacher model;
|| is a vector concatenation operator;

Qp 1s an attention query weight matrix;
K is an attention key weight matrix;
V, is an attention value weight matrix;

dk is a number of columns in matrix K.

INTRODUCTION

Users’ purchase decisions are significantly influenced
not only by their general preferences but also by their
most recent interactions with a given platform or market-
place. Understanding user behavior patterns is crucial for
any customer-oriented business, as this obtained knowl-
edge allow to propose the most relevant items to a given
customer base, increasing revenue in both short- and
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long-term perspective. Such item proposal systems are
called recommendation systems.

A recommendation system (RS) consists of a set of
statistical models that analyze a user’s interaction history,
along with knowledge about the user and the items avail-
able, to generate relevant content recommendations [1].
Relevance, in this context, refers to the likelihood of a
user engaging with the items presented. Consequently,
there exists a broad spectrum of recommendation ap-
proaches, including non-personalized, semi-personalized,
and personalized methods [1]. This work focuses specifi-
cally on the development of personalized recommenda-
tion systems, and thus, the terms “recommendation sys-
tem” and “personalized recommendation system” are used
interchangeably.

The content filtering (CBF) approach for recommen-
dation systems construction is based on idea that the user
is interested in items that are similar to items that were
already interesting to this user earlier. Unlike collabora-
tive filtering (CF) models, the similarity of items is de-
termined not by a set of user actions, but based on the
internal characteristics of the items themselves. To ad-
dress the problem of items’ feature descriptions extrac-
tion, deep learning methods are often used in the process
of content filtering systems construction.

In recent years, RS have achieved substantial success
across various real-world applications, including e-
commerce platforms, streaming services, and online re-
tail. A particularly notable application of recommendation
systems is the next best offer (NBO) task, which involves
predicting the items a user is likely to view or purchase
after interacting with a platform.

NBO, also referred to as next best action (NBA) [2],
or more broadly as next-basket recommendation (NBR)
[3], is a prevalent use case for any enterprise engaged in
business-to-consumer (B2C) operations. Marketing teams
in these enterprises have been implementing NBO/NBA
projects for many years, though many of these initiatives
have failed to meet expectations [2]. Several factors con-
tribute to this underperformance, including reliance on
traditional methods, failure to update NBO models with
new features (resulting in underutilization of both the
breadth and depth of available data), inadequate campaign
validation methods, technological shortcomings, and
more.

The advent of machine learning and, consequently,
deep neural networks (DNN) has introduced new oppor-
tunities for NBO/NBA by enabling the utilization of ad-
vanced technologies and large data sets to improve and
optimize basket recommendations more effectively than
ever before.

For instance, by leveraging deep learning techniques,
the delivery of personalized offers and recommendations
has been significantly enhanced, leading to notable im-
provements in customer engagement. These advance-
ments can increase customer satisfaction and loyalty, ul-
timately driving higher sales and revenue for businesses

(3, 4].
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The object of study is the next-best offer (NBO) rec-
ommendation problem. NBO is a difficult task, since
most session-based models’ prediction pool is too narrow
to accomplish the goal of grasping long-term inter-item
dependencies and user behavior patterns. On the other
hand, leveraging ubiquitously used collaborative filtering
(CF) models do not capture short-term dependencies be-
tween items, what may be unsuitable for marketing cam-
paigns design. Therefore, it is proposed to construct a new
model, based on multi-head attention (MHA) mechanism,
knowledge graphs (KG) and knowledge distillation (KD)
techniques.

The subject of study is methods for sequential rec-
ommendation retrieval.

The purpose of the work is to create fast and scalable
RS to solve NBO/NBA task for a large number of users.

1 PROBLEM STATEMENT
For a given multiset S = {igt) [JEN,] £|I|,t eN} of

items in some set of available items (goods) | and t isa
(discrete) time, called session, it is desired to model a
likelihood function R such that:

i® = argmax P(I s). (1)

Suppose the items and users are described by many
categorical and numerical (continuous) features. Each
categorical feature is presented by an embedding vector,
thus generalizing the concept of latent variables in matrix
factorization.

The main difficulty of such task is that it should be
approached both by CBF and CF methods, since solving
(1) solely with respect to the given user’s session may
diminish the explorative capabilities of RS, while apply-
ing only collaborative filtering, considering the demand of
such models to be trained on large historical interactions
datasets, may result in a system which cannot adapt to
drift in the user behavior and is feasible to use for recog-
nition of general preferences of users. The second chal-
lenge arises on the inference step — it is preferrable to
update the recommendations on-line, adapting them to the
newest user actions, thus limiting the complexity of the
obtained RS. Current research addresses these challenges
by developing a hybrid method of building RS.

2 REVIEW OF THE LITERATURE

Considering the variability in user session lengths, it
becomes essential to capture both short- and long-term
dependencies that exist between items within a session
and the potential future items that a user might interact
with. This challenge has led to the emergence of models
based on high-order Markov chains, which offer a sophis-
ticated approach to understanding and predicting user
behavior. Among these models, context tree models (CT)
[5, 6] and Markov chain similarity models [7] have
proven particularly effective.
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Context tree models function by first constructing a
partition tree that represents each user session. This parti-
tion tree is then traversed to define a high-order Markov
chain, allowing the model to encapsulate the user session
[6]. The hierarchical structure of the partition tree pro-
vides a powerful framework for modeling the sequential
nature of user interactions, enabling the recommendation
system to account for complex patterns and long-term
dependencies that simpler models might overlook.

In addition to context tree models, another promising
approach involves integrating high-order Markov chains
with similarity-based methods, such as sparse linear
methods (SLIM) and factored item similarity models
(FISM). This hybrid approach leverages the strengths of
both Markov chains and similarity measures to capture a
comprehensive range of relationships within the data. By
combining these methodologies, the model is capable of
simultaneously addressing short-term and long-term de-
pendencies between users and items, as well as item-to-
item relationships, thereby offering a more nuanced and
accurate prediction of user preferences [7]. The integra-
tion of similarity-based techniques with high-order
Markov chains enhances the model’s ability to generalize
across different users and sessions, ultimately leading to
more personalized and effective recommendations.

Aside from Markov chain-based models, deep learn-
ing techniques have increasingly gained traction in ad-
dressing the challenges imposed by sequential recom-
mendation tasks. Among the various deep neural net-
works (DNN) architectures, recurrent neural networks
(RNNs) have emerged as a leading choice due to their
capacity to model sequences of data, capturing both the
short-term and long-term dependencies that characterize
user interactions over time.

Consider the sample of time series Sy — S and the re-

maining time series S;_, . RNN in this case is a mapping

function f:s; — Sy_g, and that function is a chain of

non-linear transformations over affine transformations
that are provided by state-space modeling of st_; [8].

Vanilla RNN models these chains in a following way:

he = s(Wyn Xt +Whnh +by),
ST_t =Uy =c(Wpyhe +by).

RNN is aimed to maximize logarithmic likelihood
log P(st_¢ | st,U,W,V,c) [8]. However, despite its ability
to model non-stationary time series, RNN has a couple of
significant drawbacks — disability to parallelize hidden
states computations, and consequently gradient vanishing,
which is directly caused by its architecture [8].

Long short-term memory networks (LSTMs), firstly
introduced in 1997 [9] have become the most widely
adopted variant of RNNs for sequential recommendation
tasks. LSTMs are designed to overcome the limitations of
traditional RNNs, particularly the issues of vanishing and
exploding gradients, by introducing memory cells that can
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maintain and update information over long sequences.
This makes LSTMs particularly effective at modeling the
temporal dependencies within user sessions, allowing
them to predict future interactions with a high degree of
accuracy. Moreover, modifications of LSTMs, such as bi-
directional LSTMs, further enhance the model’s capabil-
ity by enabling it to consider both past and future context
when making predictions [10, 11]. Bi-directional LSTMs,
contrary to “classic” ones, estimate parameters by travers-
ing input sequences in both in forward and backward di-
rections, i.e, at each time step, the outputs of the forward
and backward LSTMs are concatenated (or combined) to
form the final output. This allows the network to have
access to both past and future context when making pre-
dictions. However, due to their architecture, these models
are prone to violate causality requirements on sequential
data, and the requirement to have all sequence available to
perform backward pass make them unsuitable for online
recommendation engines.

As an alternative to recurrent neural networks, rela-
tively new family of deep learning approaches, called
attention networks, have recently become ubiquitous
choice for analyzing sequential data. Attention networks
are based on attention mechanism, introduced in 2017
[12]. It allows the model to focus on specific parts of the
input sequence when producing an output, enabling it to
handle long-range dependencies more effectively than
LSTMs or RNNs.

In traditional sequence-to-sequence models, such as
those used in machine translation, the encoder processes
the input sequence into a fixed-length context vector,
which is then used by the decoder to generate the output
sequence. However, this fixed-length context vector can
be a bottleneck, especially for long sequences, as it forces
the model to compress all information into a single vector.

The attention mechanism addresses this issue by al-
lowing the decoder to access different parts of the en-
coder’s output sequence directly, enabling it to focus on
the most relevant parts of the input when generating each
element of the output sequence [12].

Several variants of the attention mechanism exist, de-
pending on the application and architecture. Self-attention
used in transformer models, where the attention mecha-
nism is applied to the same sequence, allowing each ele-
ment to attend to all other elements in the sequence. The
formula for scaled dot-product attention is:

, Qa"Ka
Attention(Qp, Ka,Va) =¢ === Va,

Vdk
where dy is a number of columns in key matrix, g(-) is a

softmax function.

The other popular modification of attention mecha-
nism is multi-head attention (MHA). It extends self-
attention by applying multiple attention mechanisms
(heads) in parallel, each with different learned parameters,
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and then concatenating their outputs. This allows the
model to focus on different parts of the input sequence.

Attention-based networks have become increasingly
prevalent in recommendation retrieval tasks due to their
ability to effectively model complex relationships in data.
These networks, such as hierarchical attention networks,
are designed to process and analyze inputs that capture
both user-item and item-item interactions. By considering
these interactions simultaneously, hierarchical attention
networks can more accurately predict subsequent user
actions, leading to more personalized and relevant rec-
ommendations [13].

Moreover, stochastic self-attention networks represent
an another advancement in this domain. These networks
leverage the self-attention mechanism to dynamically
assess the importance of different elements within the
input sequence, thereby generating candidate recommen-
dations with enhanced precision. The stochastic nature of
these models introduces an element of randomness, which
can help in exploring a broader range of potential recom-
mendations, thereby improving the diversity and rele-
vance of the suggested items [14].

In summary, attention networks play a critical role in
the evolution of recommendation systems. Their ability to
incorporate complex interactions and adapt to various
input dynamics makes them indispensable tools for en-
hancing the accuracy and diversity of recommendations in
modern retrieval tasks.

3 MATERIALS AND METHODS

Since the main drawback of sequential recommenda-
tion is in narrow candidate pool, it is crucial to enrich
recommendation proposals beyond trending items and
short-term user-item and item-item relationships. To
overcome this challenge, it is proposed to change the
structure of received data and augment the given RS with
some external context.

The relationships between users and items, as well as
between users themselves and items themselves, can be
naturally represented by a graph G = G(V, E,w, f ), where

V= <U, I> denotes the set of users and items — the verti-
ces of the graph — and E ={(u,i)|ueV,ieV} represents

the set of edges connecting users with items, items with
items and users with users. The edge weights weR , are
assigned through a mapping f . Since this graph repre-

sents stable relationships between items and users, it is
proposed to name this structure a knowledge graph (KG).

Given this graph-based representation, geometric deep
learning frameworks, such as graph neural networks
(GNNs), are well-suited for addressing recommendation
retrieval tasks.

GNN:s are a class of deep learning models specifically
designed to operate on data that is represented as graphs
[15, 16]. These networks excel in tasks that require infer-
ence over graph-structured data by iteratively updating
the representations of vertices through the aggregation of
information from their neighboring vertices.
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During the training process, each vertex veV
within the graph G =G(V,E) refines its feature represen-

tation by incorporating features from its adjacent vertices.
This iterative process of feature aggregation and represen-
tation updating can be expressed as:

hH) _ g z(w(kmgmb(k)) ’ @
ueN(v)

where h\gk) denotes the feature vector of vertex V at the

k -th layer, N (V) represents the set of neighboring verti-

ces of v. The parameters W® and b® are the weights
and biases specific to k-th layer, respectively. The func-
tion ¢ is a non-linear activation function, for example,
sigmoid.

The iterative aggregation (2) allows GNNs to effec-
tively capture and propagate local structural information
throughout the network, leading to a more comprehensive
understanding of the graph’s global structure. As a result,
GNNs are well-suited for a variety of tasks, including
node classification, link prediction, and graph classifica-
tion, where the relationships and dependencies between
entities are naturally modeled as graphs. The ability of
GNNs to leverage the inherent graph structure makes
them particularly powerful for applications in domains
such as social network analysis, molecular chemistry,
recommendation systems, and more.

To process categorical data, embeddings are used that
form a dense representation of each category.

For instance, [17] demonstrates an approach that inte-
grates the attention mechanism with graph convolutional
networks [15] to effectively learn embeddings from the
user-item graph. This combined model is then leveraged
to generate recommendations for the next item a user is
likely to interact with.

In the current work it is proposed to modify MHA by
referencing not only input sequence (i.e. self-attention
heads), but to aggregate first-order neighbors of each in-
put of a sequence with respect to the given knowledge
graph.

More specifically, consider the heterogenous graph:

G=G(V,E,w,f,P), 3)

where P is an edge properties set. Let’s define such
projection operator over (3) as follows:

P:G,p—G,,
4
Gp,=G(V,E,w,f,P=p). )

It is obvious that graph G, is weighted graph where

only those edges preserved that share same property, e.g.
user-movie graph that contain only US-based users.
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The proposed attention modification, named as Mixed
Attention, applies self-attention over the given session
multiset S and operator (4) over the KG (3), performing
the following computation:

MixedAttention(Qa,Ka,Va) =
= || Attention(Qp,K p,Vp ) (5)

pePus

This application of graph-based learning methods is
called to enhance the potential of Attention Networks in
capturing the intricate relational structures inherent in
recommendation systems, improving the accuracy of the
recommendations produced.

However, this computation implies traversing two
structures — knowledge graph G = G(V, E,w, f,P) 3), @
and session S simultaneously to find each item nearest
neighbors, hence the same computations are required on
each inference step, which may increase complexity and
latency of proposed RS. This problem could be mitigated
by knowledge distillation (KD) techniques.

Knowledge distillation is a model compression tech-
nique that is designed to transfer the knowledge encapsu-
lated within a large, highly complex model, known as the
teacher, to a smaller and more computationally efficient
model, referred to as the student [18, 19]. The principal
idea underlying knowledge distillation is to enable the
student model to mimic the behavior of the teacher model.
This is achieved by training the student model to replicate
the output distributions produced by the teacher model, in
addition to the conventional training on labeled data. To
facilitate learning, the concepts of learning on logits is
introduce.

There exist multiple ways to perform KD, but the cho-
sen one in the current proposal is performed via teacher’s
output distribution temperature scaling.

By transferring knowledge from teacher to student in a
classification problem, we minimize the loss function of
the class distribution predicted by the teacher model. Let
us consider the case of accurate model, when the predic-
tion of the probability of one of the classes (the correct
one) is close to unity, and all others are close to zero.
Such data is usually of little help for the student model,
since it practically does not differ from the original labels.
Therefore, a softmax temperature (normally set to 1) is
introduced [18], which helps the student model to repeat
not the classification labeled data, but the probability dis-
tribution, and allows the student model to better adopt the
teacher’s behavior. Let V; denote the logits or pre-
softmax outputs for the i-th score produced by the student
model. The corresponding student soft target output G

for i-th score is computed as follows:

Feu7)
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Higher values of a temperature parameter T produce
softer probability distributions, which contain more in-
formation about the relative confidence levels across
classes.

Suppose the teacher model has logits Z;, which pro-
duce soft target probabilities ¢;, and distillation is per-
formed at temperature T. Then, the gradient of the cross-
entropy function L. with respect to each logit V; of the
student model is given by [18]:

Aol ol |
A7) oty

If T is high in comparison with the logits V;, the gra-

oce _ 1
oy T

dient of loss L can be approximated as follows:

Zj Vi
TSl S A i ©
avi T ZZJ ZVJ
N+ — N+
T T

Let the logits V; and Z have a zero mean separately

for each transfer case. Then, equation (6) is simplified to
the following:

and distillation is equivalent to minimizing %(zi -V )2

under the above conditions.

If T is relatively low, distillation practically ignores
large negative logits (which are much more negative than
the average). On the one hand, this is an advantage, since
such logits could be very noisy. It has been shown in [18]
that intermediate temperatures T work best when the stu-
dent model is much too small in comparison with the
teacher model.

Thus, in the paper, in process of training the student
model, it is proposed to minimize Kullback-Leibler diver-
gence (KLD) measure between student and teacher mod-
els, defined as:

+ o
o q(x)
KL(q[g)= O{Q(X)logq(x) dx.. (7

By learning from the teacher’s soft targets, the student
model can generalize better on unseen data, often leading
to improved performance compared to directly training
the smaller model from scratch.
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The proposed method consists of the following stages:

1. To construct the teacher model, which consists of
the following elements:

— knowledge graph (3), (4);

— mixed attention, that consumes both user session
and traverses knowledge graph to compute the operation
(5);

— multi-layer perceptron with several hidden layers,
which takes results of the mixed attention operations an
input and has the softmax output layer to produce some
probability distribution.

2. To construct the student model, which consists of
the following elements:

— multi-head attention that takes as an input the user
session sequence;

— convolutional neural network with several filters,
consuming the attention scores, obtained at the previous
stage along outputting softmax-mapped vector of the
same size as the teacher model output.

3. To perform student model learning: the KL diver-
gence (7) between model outputs is minimized.

4 EXPERIMENTS

It is proposed to solve the problem of NBO/NBA rec-
ommendation leveraging information retrieved from user
interaction history and item properties.

More precisely, consider the dataset retrieved from an
anonymous multi-brand and multi-category e-commerce
store, which schema is provided in Table 1.

The dataset contains historical data from October 2019
to November 2019, overall storing approximately 6.5
million user sessions, or 69 million records.

Let us predict the final item for each user session lev-
eraging the proposed method.

As a baseline model for solving the problem (1), an
LSTM-based architecture is chosen (Fig. 1).

As a teacher model, the proposed extension of atten-
tion mechanism (5) is introduced instead of LSTM mod-
ule, thus allowing the model to capture long-term rela-
tionships from a given KG (Fig. 2).

It could be observed, that the proposed architecture
(Fig. 2) combines both content-based RS (via considering
past interaction history) and collaborative filtering (via
considering user-item model branching).

Table 1 — Dataset fields description

Field Name Data Type Description

Session Id Base64 Unique identifier of user visit

Product Id Integer Stock keeping unit (SKU) of an
item

Product Descrip- String Description of item

tion

Brand String Brand name

Category String Category of item, e.g. furniture

Price Integer Price in cents

Action String User action over item, e.g. add
to cart, view

Timestamp Timestamp | Date and time of interaction
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Session Data Item Data
-y k
Embeddings Embeddings
¥
LSTM
k

Multi-Layer Perceptron

|

Dot Praduct

Figure 1 — LSTM-based Baseline model architecture

The general purpose of model is to generate embed-
dings for NBO/NBA candidate items. Thus, for solving
task (1) it is proposed to minimize cross-entropy loss L
between obtained embedding €gpaineq and ground truth

Ctrue -
L(€obtained: € = € bined | log(e
( obtained > true)_ obtained Og( true)'
It is worth mentioning that the construction of KG is

done in data-driven way by thresholding pointwise mutual
information (PMI) between item pairs.

Session Data Knowledge Graph Item Data
Embeddings Embeddings

l

Mixed Attention

|

Multi-Layer Perceptron

e

l

Dot Product

Figure 2 — The proposed Mixed Attention-based model
architecture
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KG is obtained by choosing only pairs of items where
PMI value is greater than a. The selected threshold is de-
fined at the 25-th percentile of all PMI values.

PMI between two items i and j is defined as:

Pri, j) J
Pr(i)Pr(j) )"

where Pr(i, j) is the joint probability of items i and j

PMI(i, j)= log(

co-occurring, Pr(i) and Pr(j) are the individual prob-
abilities of items i and j occurring independently [20].

Item embeddings could be chosen in two ways — ran-
dom initialization or leveraging pre-trained embeddings.
To achieve the latter from the obtained KG, it is proposed
to apply Node2Vec algorithm [21].

The main purpose of Node2Vec is to capture both the
local and global network structure of a given graph. It
does this by performing biased random walks on the
graph, by balancing between breadth-first search (BFS)
and depth-first search (DFS). This allows Node2Vec to
generate node embeddings that reflect both the commu-
nity structure (via BFS) and functional similarity (via
DFS) within the graph [21]. For the experiment purposes,
the only adjusted hyper-parameter is embedding dimen-
sion, which should align with the corresponding hyper-
parameter in all proposed architectures.

The next step is to define the student model, parame-
ters of which will be optimized via temperature scaling.
This model is utilizing MHA module, thus eliminating the
need for constantly traversing KG for each recommenda-
tion suggestion. The schematic representation of proposed
model is shown in Fig. 3.

The student model learns the probability distribution
of the teacher; thus, it is proposed to minimize KL diver-
gence (7) between student model and teacher model.

Concluding, the following hyper-parameters are set
for baseline model:

1. Embedding dimension — 64.

2. Multi-Layer Perceptron layer number — 2.

3. LSTM cell size — 64.

Consequently, the following hyper-parameters are set
for teacher model:

1. Embedding dimension — 64.

2. Multi-Layer Perceptron layer number — 2.

3. Query, Key and Value matrix size — 64.

4. Causal mask — applied to guarantee that current de-

cisions don’t affect previous ones.

On the other side, since student model utilizes convo-
lutional neural networks (CNN) instead of MLP, the fol-
lowing hyper-parameters are picked:

1. Stride size — 1.

2. Padding — “same”.

3. Dropout rate — 50%.

4. Number of heads in MHA — 2.

5. Embedding dimension — 64.

6. Query, Key and Value matrix size — 64.

7. Temperature T —[0.5, 1, 2, 5].
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Teacher Mode

Knowledge Graph

» Embeddings

» Embeddings

——  Mixed Attention

—— Multi-Head Attention ———»

e MLP Softmax

h 4

ComviD Softmax

A 4

Figure 3 — The proposed teacher-student architecture

The choice of padding type and stride size is influ-
enced by the constraint on output of NN to be an embed-
ding of next item, given users’ previous interactions data.

In order to examine the ability of models to retrieve
relevant items, the following ranking metrics were cho-
sen:

1. Mean average precision @ k (MAP @ k) — ranking
metric used to evaluate the accuracy of a ranked list of
items up to a cutoff rank k.

2. Normalized discounted cumulative gain @ k
(NDCG @ k) — measure of ranking quality that considers
the position of relevant items in the ranked list up to a
cutoff rank k and applies penalty to relevant items that
appear lower in the list by applying a logarithmic dis-
count.

For both metrics, k values 1, 10 and 100 are consid-
ered.

Also, since the complexity of system affects recom-
mendation candidate calculation time, mean retrieval time
is proposed as the auxiliary metric to consider along with
ranking ones.

5 RESULTS
In the Tables 2-3 MAP@k and NDCG@k metrics for
given k ranking cut-off for LSTM baseline and Mixed
Attention model statistics are provided. The best Mixed
Attention model is selected as the teacher model.

Table 2 — Results of Baseline and Mixed Attention models
benchmarking by MAP metric

Model MAP@1 MAP@10 MAP@100
Baseline 0.1492 0.2766 0.2859
Baseline + 0.1453 0.2740 0.2824
Node2Vec

Mixed 0.1769 0.3003 0.3082
Attention

Mixed At- 0.2 0.3316 0.3378
tention +

Node2Vec
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Table 3 — Results of Baseline and Mixed Attention models
benchmarking by NDCG metric

Model NDCG@! NDCG@10 | NDCG@100
Baseline 0.1529 0.3296 0.3767
Baseline + 0.1509 0.3276 0.374
Node2Vec

Mixed Atten- 0.1755 0.3487 0.3865

tion

Mixed At- 0.2025 0.3794 0.417
tention +

Node2Vec

On the other hand, Table 4 and Table 5 reflect the val-
ues of MAP@k and NDCG@k results of KD for different
temperature values, respectively. Table 6 summarizes
models time performance. Figures 47 depict the evolu-
tion of ranking metrics with each epoch.

Table 4 — Results of KD benchmarking by MAP metric

T MAP@] MAP@10 MAP@100
0.5 0.1977 0.2727 0.2773
1 0.1952 0.325 0.3315
2 0.0832 0.1441 0.1487
5 0.076 0.1352 0.1789

Table 5 — Results of KD benchmarking by NDCG metric

T NDCG@1 NDCG@10 NDCG@100
05 0.198 0.3041 0.33

1 0.1948 0.3745 0.374

2 0.0831 0.1708 0.1956

5 0.0368 0.1180 0.1417

Table 6 — Average time per 1000 requests per model

Model Average time per 1000 re-
quests, s

Baseline 1.01

Mixed Attention + Node2Vec 2.67

Proposed student model 0.189
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0.29
0.28
0.27
0.26 -
0.25
—— Plain LSTM MAP@100
0.24 Plain LSTM MAP@10
—— LSTM + Node2Vec MAP@100
—— LSTM + Node2Vec MAP@10
0.23 . . : : : :
0 5 10 15 20 25 30
epoch
Figure 4 - MAP@k per epoch for baseline models
0.38
0.36
0.34 1
0.32 1
0.30 1 —— Plain LSTM NDCG@100
Plain LSTM NDCG@10
—— LSTM + Node2Vec NDCG@100
—— LSTM + Node2Vec NDCG@10
0.28 1
0 5 10 15 20 25 30

epoch

Figure 5 — NDCG@k per epoch for baseline models

6 DISCUSSION

As follows from Table 2 and Table 3, proposed Mixed
Attention approach strongly outperforms LSTM-based
baseline models. However, the fact that Node2Vec pre-
trained embeddings cause little-to-no impact on ranking
metrics for non-graph-based model but significantly en-
hances predictive capabilities of models that utilize KGs,
is quite surprising and contradicts the initial suggestion
that “implicit” knowledge, reflected solely in pre-trained
embeddings could enhance sequential models.

It is worth noticing that this behavior persists for each
epoch, as shown on Fig. 4 and 5 for Baseline models and
Fig. 6 and 7 for Mixed Attention models, respectively.

Since the best model by all ranking metrics is Mixed
Attention model with Node2Vec pre-trained embedding,
this model is used as a teacher model.
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0.36 1 —— KG + Node2Vec + Mixed Attention MAP@100
KG + Node2Vec + Mixed Attention MAP@10
—— KG + Mixed Attention MAP@100

0.34 —— KG + Mixed Attention MAP@10

0.32

0.30

0.28

0.26

0.24
T T T T T T T
0 5 10 15 20 25 30

epoch

Figure 6 — MAP@k per epoch for Mixed Attention models

After performing temperature scaling with different
values of parameter T, various student models were ob-
tained. Since the bigger temperature, the more output dis-
tribution is uniform-like. Whilst very low value can intro-
duce overconfidence to model decisions, it was predict-
able that both high and low T values could decrease pre-
dictive capabilities of model. The overall dependencies
between temperature scaled outputs of teacher model and
student model performance are listed in Tables 4 and 5.

The best model was obtained without performing
temperature scaling of teacher model outputs. It is also
worth noticing that results are only slightly worse than
teacher’s model ones, namely Mixed Attention -+
Node2Vec models in Tables 2 and 3.

0.44 4 —— KG + Node2Vec + Mixed Attention NDCG@100
KG + Node2Vec + Mixed Attention NDCG@10
0.42 —— KG + Mixed Attention NDCG@100
—— KG + Mixed Attention NDCG@10
0.40 1
0.38 1
0.36 1
0.34 1
0.32 1
0.30 1
0.28 1
T T T T T T T
0 5 10 15 20 25 30

epoch

Figure 7 — NDCG@k per epoch for Mixed Attention models

It is also worth noticing the graph representation qual-
ity of the recommender system, obtained with the pro-
posed KG and distillation method (Fig. 3). On Fig. 8 one
can see the top-5 recommendations given that user has put
Nike shoes to the basket or purchased this item. As one
can see, the proposed model captures associations from
the KG with a decent accuracy, grasping relationships
between sport shoes and fitness vehicles and equipment,
although the model itself gives irrelevant recommendation

to buy desktop.
OPEN a ACCESS
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kids.toys.skytech

kids.dolls.batman sport.bicycle.progress

construction.components.faucet.es

label apparel.shoes. keds.nike

Search By
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appliances.environment.water_heater.aquaverso

appliances.personal.scales.elenberg
EID.’)”EH.’?[!S.GHVI[O'II’\"CHI vacuum.samsung

Figure 8 — Top-5 recommendations, obtained using the proposed model

The final assessment is conducted between best mod-
els in each category — LSTM, Mixed Attention and dis-
tilled student model. The main objective is to measure
average time per 1000 requests for retrieving 100 most
relevant items, given user sessions data. The received
measures, recorded into Table 6, show that the proposed
architecture (Fig. 3) and method significantly outperforms
baseline solution by offering the main benefit of trans-
former-like architecture over RNNs — high degree of
computations parallelization.

CONCLUSIONS

The problem of next best offer prediction is solved in
this work using multiple deep learning-based approaches.

The scientific novelty of obtained results shows that
by combining learning on graphs and knowledge distilla-
tion it is feasible to build scalable, fast and precise rec-
ommendations systems.

The practical significance of current work and its re-
sults is that implemented models could be applied to fore-
cast users next interactions on the enterprise scale.

Prospects for further research are to examine other
architectural approaches, different from decoder-only
models, and propose alternatives to Attention networks.
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VIK 004.852
MPOCTI, IBUJKI TA MACIITABOBAHI PEKOMEHJAIIMHI CHCTEMM 3ACHOBAHI HA ®LIbTPAIII 3HAHb
BIJ BUNTEJIA

AwnapocoB /1. B. — acnipant kadeapu mryysoro intenekty HaB4yanbHO-HAyKOBOro [HCTUTYTY NPHUKIIaAHOTO CUCTEMHOTO aHAi3y
HauionanbHOro TexHi4HOTO yHiBepcuTeTy YKpainn «KuiBchkuii momitexHidnuii inctTutyT imMeHi Iropst Cikopebkoroy, Kuis, Ykpai-
Ha.

HepamkiBeska H. 1. — 1-p TexH. Hayk, npodecop kadeapn MaTeMaTHIHUX METOJIIB CHCTEMHOTO aHaii3y HaBuampHO-HAYKOBOTO
THCTUTYTY NPUKIAJHOTO CHCTEMHOro aHaiizy HauioHanbHOro TeXHIYHOro yHiBepcuteTy Ykpainu «KHiBCbKHH MONMITEXHIYHMIT iH-
ctutyt imeHi Iropst Cikopcekoro, noueHt, Kuie, Ykpaina.

AHOTAIIA

AxTyanbHicTh. CHCTEMH peKOMEHJAMii — BaKJIMBI IHCTPYMEHTH IS CydacHOro Oi3Hecy, sIKi JaloTh 3MOTY OTPHMYBaTH Oilb-
LM JOXIZ 32 paXyHOK IPOIO3HLIT KJIIEHTaM BiJIITOBITHUX TOBApiB Ta 3aJIyYEHHs OLIBII JIOSUIBHHUX BiZBiAyBadiB. 3 MOSBOIO IIIMOOKO-
IO HaBYaHHS Ta PO3BUTKOM alapaTHUX MOXKIMBOCTEH CTaJI0 MOXJIMBUM YJIOBJIFOBATH MOJEII MOBEIHKH KII€HTIB HA OCHOBI JJaHUX.
OnHaK TOYHICTH MPOTHO3Y 3aJEXKUTh Bil CKIAJHOCTI CHCTEMH, 1 Li (aKTOPU MPU3BOAATH [0 30LIBIICHHS 3aTPUMKH BHUBEICHHS Ha
ocHOBI Mozem. O0’eKTOM TOCTIKEHHS € 3a7a4a BHIadi MOCTiJOBHIUX PEKOMEHAALIH, a caMe — HaCTYITHOTO HalOUIbII peleBaHTHO-
TO TOBapy B YMOBAaX HasBHOCTiI OOMEXEHb 10 Yacy BiJIIOBiIi CHCTEMH.

IMisab. MeToro JOCTIIKEHHS € CHHTE3 IIMOOKOI HEHpOHHOI Mepexi, sfika 3 MiHIMaJbHOI 3aTPUMKOI0 MOXE OTPHMYBaTH
peneBaHTHI eleMeHTH JuIsl GUIBIIOCTI KOPHUCTYBaYiB.

Mertoa. IIporoHoBaHHiA METOl OTPUMAHHS CHCTEM PEKOMEH/ALIIH, IKHI BUKOPUCTOBYE MOEAHAHHS apXiTEKTYp MoJelei rinbo-
KOr0 HaBYaHHS Ha OCHOBI yBard i3 3aCTOCYBaHHsSM rpadiB 3HaHb JUIsL MTiJBHUIICHHS SKOCTI MPOTHO3YBAHHS 3a JOMOMOIO0 SIBHOTO
30araueHHs IyJly KaHIMAATIB Ul PEKOMEH/IAIH, IEMOHCTPY€ MepeBaru Mojiesieil IeKOlyBaHHs Ta CTPYKTYPU AUCTHIALIHHOTO Ha-
BYaHHS. Byo noBeneHo, Mo miaxia JUCTHIALIT 3HaHb € HaJA3BUYAiHO NPOAYKTHBHUM IIiJ] Yac BUPILICHH 3aBIaHb MOIIYKY peKoMe-
HZIaLii, 0MHOYAaCHO IIBUIKO pearylodn Ha MaKeTHY 00poOKy BEIHKUX OOCSTIB TaHUX KOPHUCTYBAUiB.

PesysbTaTi. 3anporoHOBaHO MOJENb PEKOMEHIALIHHOT CHCTEMH Ta METO[ il HaBYaHHS, IO MOEAHYE MAPaAUrMy AUCTHIILIL
3HaHb Ta HaBYaHHs Ha rpadax 3HaHb. 3alPOIOHOBaHUI MeToJ OyB peasi3oBaHHMil yepe3 ABOOAIITOBY IIMOOKY HEHPOHHY MEPEKy
JUIsL BUPILICHHS TIPOGJIeMH MOIIYKY pekoMeHawii. IToGy10BaHO CHCTEeMy MPOrHO3YBaHHsS HAfOINbII PEeBaHTHUX HACTYITHUX IIPO-
MO3MLIH AJI1 KOPUCTYBayYa, sika BKJIIOYA€E MPONIOHOBAHY MO/ICIb Ta METO/ ii HABYAHHS, a TAKOX MOKAa3HUKH pamkyBaHHI MAP@k Ta
NDCG@k nuist ouinku sikocti po6oTH Mozeieil. Po3pobieno mporpamy, sika peaitizye IpOINOHOBAaHY apXiTEeKTypy PeKOMEHIAIiHOT
CHCTEMH, 3a JIOTIOMOTrOI0 K0T TOCIiKeHa mpobiieMa BHAa4i HaiipeaeBaHTHIMIMX HACTYNHUX npono3uuii. ITix 4ac mpoBeneHHs ekc-
MEPHUMEHTIB Ha BENHUKiil KITBKOCTI peasbHUX JaHUX Bi3UTIB KOPHCTYBAUiB /10 OHJIAlH MarasuHy po3/piOHOI Toprisii OyjIo BCTaHOB-
JICHO, 1110 HPOIIOHOBAHUI METOJ KOHCTPYKIIT pEKOMEHIAI[IHHUX CHCTEM TapaHTy€e BUCOKY PEJICBaHTHICTh BUIAHUX PEKOMEHALH, €
IIBUJIKAM Ta HEBUOATIIMBHM JI0 O0UHCITIOBANEHIX PECYPCiB HA €Talli OTpUMAaHH BiJIIOBiCH Bill CHCTEMH.

Bucnosku. IIpoBesieHI SKCIIEPUMEHTH MiATBEPANIIH, IO 3alPOIIOHOBaHa cHCTeMa eEeKTHBHO BHPIIIY€E HOCTABICHY 3a1ady 3a
MaJnit IPOMIXKOK Yacy, [0 € BArOMUM apryMEHTOM Ha KOPHUCTb i1 3aCTOCYBaHHS B pealbHUX YMOBaxX JUIsl BEJMKUX Oi3HECIB, 1[0 OIle-
PYIOTh MiIbIfOHAMH Bi3WTIB Ha MiCSALb Ta THCSYaMH TOBapiB. [IepCIICKTHBY MOJANBIINX JOCTIIXKEHb B paMKaX 3a/IlaHOi TEeMH JI0CITi-
JDKCHHS BKIIFOYAIOTh B ce0e BUKOPHUCTAHHSI 1HIIMX METO/IB JUCTHIISLII 3HAHb, TAKHX SK BHYTPIIIHS 200 caMO-IHUCTHIIALIS, BUKOPHC-
TaHHS BIAMIHHHUX BiJ] MEXaHI3My yBar apXiTeKTyp IJIMOMHHOIO HaBYaHHSI, @ TAKOXK ONTHMI3allis CXOBHIIA BEKTOPIB BKJIA/ICHb.

KJUIFTOYOBI CJIOBA: nmuctuisinist 3HaHb, Tpady 3HaHb, IEKOAyBalIbHI MOAEINI, BKIaACHHS BEpIINH IpadiB, apXiTEeKTypH THILY
«TpaHchOpMep», MEXaHi3M yBaru, peKypeHTHI HEHPOHHI Mepexi, Mepexki TOBrOCTPOKOBOI KOPOTKOI mam’sTi, TTMOMHHI HEHpOHHI
MepexXi, epcoHaNi30BaHi NOCHIIOBHI peKOMEHIalii, MPOTHO3yBaHHS HACTYIMHOTO HAaHOIIBII PEJIEBAaHTHOTO TOBApY, MOJCIIOBAHHS
KOpHCTyBaua.
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