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ABSTRACT 

Context. Recommendation systems are important tools for modern businesses to generate more income via proposing relevant 
goods to clients and achieve more loyal attendees. With deep learning emergence and hardware capabilities evolution it became pos-
sible to grasp customer behavioral patterns in data-driven way. However, accuracy of prediction is dependent on complexity of sys-
tem, and these factors lead to increased delay in model’s output. The object of the study is the task of issuing sequential recommen-
dations, namely the next most relevant product, subject to restrictions on system response time. 

Objective. The goal of the research is the synthesis of a deep neural network that can retrieve relevant items for a large portion of 
users with minimal delay. 

Method. The proposed method of obtaining recommendation systems that leverages a mixture of Attention-based deep learning 
model architectures with application of knowledge graphs for prediction quality enhancement via explicit enrichment of recommen-
dation candidate pool, demonstrates the benefits of decoder-only models and distillation learning framework. The latter approach was 
proven to demonstrate outstanding performance in solving recommendation retrieval task while responding fast for large user batch 
processing. 

Results. A model of a recommender system and a method for its training are proposed, combining the knowledge distillation 
paradigm and learning on knowledge graphs. The proposed method was implemented via two-tower deep neural network to solve 
recommendation retrieval problem. A system for predicting the most relevant proposals for the user has been built, which includes 
the proposed model and its training method, as well as ranking indicators MAP@k and NDCG@k to assess the quality of the models. 
A program has been developed that implements the proposed architecture of the recommendation system, with the help of which the 
problem of issuing the most relevant proposals has been studied. When conducting experiments on a large amount of real data from 
user visits to an online retail store, it was found that the proposed method for designing recommender systems guarantees high rele-
vance of the recommendations issued, is fast and unpretentious to computing resources at the stage of receiving responses from the 
system. 

Conclusions. Series of conducted experiments confirmed that the proposed system effectively solves the problem in a short pe-
riod of time, which is a strong argument in favor of its use in real conditions for large businesses that operate millions of visits per 
month and thousands of products. Prospects for further research within the given research topic include the use of other knowledge 
distillation methods, such as internal or self-distillation, the use of deep learning architectures other than the attention mechanism, 
and optimization of embedding vector storage. 

KEYWORDS: knowledge distillation, knowledge graphs, decoder-only models, node embeddings, transformer models, atten-
tion mechanism, recurrent neural networks, long short-term memory networks, deep neural networks, personalized sequential rec-
ommendations, predicting the next most relevant product, user modeling. 

 
ABBREVIATIONS 

CBF is a content-based filtering; 
CF is a collaborative filtering; 
CNN is a convolutional neural network; 
DNN is a deep neural network; 
KD is a knowledge distillation process; 
KG is a knowledge graph; 
KLD is a Kullback-Leibler divergence; 
LSTM is a long short-term memory network; 

MAP is a mean average precision; 
NDCG is a normalized discounted cumulative gain; 
MHA is a multi-head attention network; 
NBO is a next-best offer problem; 
NBA is a next-best action problem; 
NDCG is a normalized discounted cumulative gain; 
PMI is a pointwise mutual information; 
RS is a recommender system. 
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NOMENCLATURE 
s is a session data; 
I is an item data; 
t  is a (discrete) time point; 

( )t
ji  is an item at time point t; 

ts  is a sample of time series; 

 |R    is a conditional probability mass function; 

G  is a weighted graph, i.e. KG; 
V is a set of users and items – the vertices of G; 
 v  is a set of neighbors of node v in a graph G; 

 P is a projection operator over graph G; 
 Pr  is a probability mass function in PMI definition; 

 ,Pr  is a joint probability mass function in PMI;  

σ is a sigmoid activation function; 
T  is a softmax temperature; 
L  is a RS loss function; 

th  is a hidden state of neural network at time 

t , hth ; 

hb  is a bias vector for hidden state of a recurrent neu-

ral network; 

ub  is a bias vector for output state of a recurrent neu-

ral network; 

hW  is a weight matrix for hidden state of a recurrent 

neural network; 

uW  is a weight matrix for output state of a recurrent 

neural network; 
α is a PMI threshold,   ; 

iv  is a logit for the i-th score produced by the student 

model; 

iz  is a logit by teacher model; 

iq  is a soft target output for i-th score produced by the 

student model;  
ˆiq  is a soft target output for i-th score produced by the 

teacher model; 


||  is a vector concatenation operator; 

AQ  is an attention query weight matrix;  

AK  is an attention key weight matrix;  

AV  is an attention value weight matrix; 

Kd  is a number of columns in matrix K. 

 
 

INTRODUCTION 
Users’ purchase decisions are significantly influenced 

not only by their general preferences but also by their 
most recent interactions with a given platform or market-
place. Understanding user behavior patterns is crucial for 
any customer-oriented business, as this obtained knowl-
edge allow to propose the most relevant items to a given 
customer base, increasing revenue in both short- and 

long-term perspective. Such item proposal systems are 
called recommendation systems. 

A recommendation system (RS) consists of a set of 
statistical models that analyze a user’s interaction history, 
along with knowledge about the user and the items avail-
able, to generate relevant content recommendations [1]. 
Relevance, in this context, refers to the likelihood of a 
user engaging with the items presented. Consequently, 
there exists a broad spectrum of recommendation ap-
proaches, including non-personalized, semi-personalized, 
and personalized methods [1]. This work focuses specifi-
cally on the development of personalized recommenda-
tion systems, and thus, the terms “recommendation sys-
tem” and “personalized recommendation system” are used 
interchangeably.  

The content filtering (CBF) approach for recommen-
dation systems construction is based on idea that the user 
is interested in items that are similar to items that were 
already interesting to this user earlier. Unlike collabora-
tive filtering (CF) models, the similarity of items is de-
termined not by a set of user actions, but based on the 
internal characteristics of the items themselves. To ad-
dress the problem of items’ feature descriptions extrac-
tion, deep learning methods are often used in the process 
of content filtering systems construction. 

In recent years, RS have achieved substantial success 
across various real-world applications, including e-
commerce platforms, streaming services, and online re-
tail. A particularly notable application of recommendation 
systems is the next best offer (NBO) task, which involves 
predicting the items a user is likely to view or purchase 
after interacting with a platform. 

NBO, also referred to as next best action (NBA) [2], 
or more broadly as next-basket recommendation (NBR) 
[3], is a prevalent use case for any enterprise engaged in 
business-to-consumer (B2C) operations. Marketing teams 
in these enterprises have been implementing NBO/NBA 
projects for many years, though many of these initiatives 
have failed to meet expectations [2]. Several factors con-
tribute to this underperformance, including reliance on 
traditional methods, failure to update NBO models with 
new features (resulting in underutilization of both the 
breadth and depth of available data), inadequate campaign 
validation methods, technological shortcomings, and 
more. 

The advent of machine learning and, consequently, 
deep neural networks (DNN) has introduced new oppor-
tunities for NBO/NBA by enabling the utilization of ad-
vanced technologies and large data sets to improve and 
optimize basket recommendations more effectively than 
ever before. 

For instance, by leveraging deep learning techniques, 
the delivery of personalized offers and recommendations 
has been significantly enhanced, leading to notable im-
provements in customer engagement. These advance-
ments can increase customer satisfaction and loyalty, ul-
timately driving higher sales and revenue for businesses 
[3, 4].  
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The object of study is the next-best offer (NBO) rec-
ommendation problem. NBO is a difficult task, since 
most session-based models’ prediction pool is too narrow 
to accomplish the goal of grasping long-term inter-item 
dependencies and user behavior patterns. On the other 
hand, leveraging ubiquitously used collaborative filtering 
(CF) models do not capture short-term dependencies be-
tween items, what may be unsuitable for marketing cam-
paigns design. Therefore, it is proposed to construct a new 
model, based on multi-head attention (MHA) mechanism, 
knowledge graphs (KG) and knowledge distillation (KD) 
techniques. 

The subject of study is methods for sequential rec-
ommendation retrieval.  

The purpose of the work is to create fast and scalable 
RS to solve NBO/NBA task for a large number of users. 

 
1 PROBLEM STATEMENT 

For a given multiset ∈|{ )( jis t
j ∈,≤, tIj } of 

items in some set of available items (goods) I  and t  is a 
(discrete) time, called session, it is desired to model a 
likelihood function R  such that:  

 

 
i

t siPi |maxarg)( 


. (1)

 
Suppose the items and users are described by many 

categorical and numerical (continuous) features. Each 
categorical feature is presented by an embedding vector, 
thus generalizing the concept of latent variables in matrix 
factorization.  

The main difficulty of such task is that it should be 
approached both by CBF and CF methods, since solving 
(1) solely with respect to the given user’s session may 
diminish the explorative capabilities of RS, while apply-
ing only collaborative filtering, considering the demand of 
such models to be trained on large historical interactions 
datasets, may result in a system which cannot adapt to 
drift in the user behavior and is feasible to use for recog-
nition of general preferences of users. The second chal-
lenge arises on the inference step – it is preferrable to 
update the recommendations on-line, adapting them to the 
newest user actions, thus limiting the complexity of the 
obtained RS. Current research addresses these challenges 
by developing a hybrid method of building RS. 

 
2 REVIEW OF THE LITERATURE 

Considering the variability in user session lengths, it 
becomes essential to capture both short- and long-term 
dependencies that exist between items within a session 
and the potential future items that a user might interact 
with. This challenge has led to the emergence of models 
based on high-order Markov chains, which offer a sophis-
ticated approach to understanding and predicting user 
behavior. Among these models, context tree models (CT) 
[5, 6] and Markov chain similarity models [7] have 
proven particularly effective. 

Context tree models function by first constructing a 
partition tree that represents each user session. This parti-
tion tree is then traversed to define a high-order Markov 
chain, allowing the model to encapsulate the user session 
[6]. The hierarchical structure of the partition tree pro-
vides a powerful framework for modeling the sequential 
nature of user interactions, enabling the recommendation 
system to account for complex patterns and long-term 
dependencies that simpler models might overlook. 

In addition to context tree models, another promising 
approach involves integrating high-order Markov chains 
with similarity-based methods, such as sparse linear 
methods (SLIM) and factored item similarity models 
(FISM). This hybrid approach leverages the strengths of 
both Markov chains and similarity measures to capture a 
comprehensive range of relationships within the data. By 
combining these methodologies, the model is capable of 
simultaneously addressing short-term and long-term de-
pendencies between users and items, as well as item-to-
item relationships, thereby offering a more nuanced and 
accurate prediction of user preferences [7]. The integra-
tion of similarity-based techniques with high-order 
Markov chains enhances the model’s ability to generalize 
across different users and sessions, ultimately leading to 
more personalized and effective recommendations. 

Aside from Markov chain-based models, deep learn-
ing techniques have increasingly gained traction in ad-
dressing the challenges imposed by sequential recom-
mendation tasks. Among the various deep neural net-
works (DNN) architectures, recurrent neural networks 
(RNNs) have emerged as a leading choice due to their 
capacity to model sequences of data, capturing both the 
short-term and long-term dependencies that characterize 
user interactions over time. 

Consider the sample of time series sst   and the re-

maining time series tTs  . RNN in this case is a mapping 

function sTt ssf : , and that function is a chain of 

non-linear transformations over affine transformations 
that are provided by state-space modeling of tTs   [8]. 

Vanilla RNN models these chains in a following way: 
 

)( hthhtxht bhWxWh  , 

)( uthuttT bhWus  . 

 
RNN is aimed to maximize logarithmic likelihood 

),,,,|(log cVWUssP ttT  [8]. However, despite its ability 

to model non-stationary time series, RNN has a couple of 
significant drawbacks – disability to parallelize hidden 
states computations, and consequently gradient vanishing, 
which is directly caused by its architecture [8]. 

Long short-term memory networks (LSTMs), firstly 
introduced in 1997 [9] have become the most widely 
adopted variant of RNNs for sequential recommendation 
tasks. LSTMs are designed to overcome the limitations of 
traditional RNNs, particularly the issues of vanishing and 
exploding gradients, by introducing memory cells that can 
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maintain and update information over long sequences. 
This makes LSTMs particularly effective at modeling the 
temporal dependencies within user sessions, allowing 
them to predict future interactions with a high degree of 
accuracy. Moreover, modifications of LSTMs, such as bi-
directional LSTMs, further enhance the model’s capabil-
ity by enabling it to consider both past and future context 
when making predictions [10, 11]. Bi-directional LSTMs, 
contrary to “classic” ones, estimate parameters by travers-
ing input sequences in both in forward and backward di-
rections, i.e, at each time step, the outputs of the forward 
and backward LSTMs are concatenated (or combined) to 
form the final output. This allows the network to have 
access to both past and future context when making pre-
dictions. However, due to their architecture, these models 
are prone to violate causality requirements on sequential 
data, and the requirement to have all sequence available to 
perform backward pass make them unsuitable for online 
recommendation engines. 

As an alternative to recurrent neural networks, rela-
tively new family of deep learning approaches, called 
attention networks, have recently become ubiquitous 
choice for analyzing sequential data. Attention networks 
are based on attention mechanism, introduced in 2017 
[12]. It allows the model to focus on specific parts of the 
input sequence when producing an output, enabling it to 
handle long-range dependencies more effectively than 
LSTMs or RNNs. 

In traditional sequence-to-sequence models, such as 
those used in machine translation, the encoder processes 
the input sequence into a fixed-length context vector, 
which is then used by the decoder to generate the output 
sequence. However, this fixed-length context vector can 
be a bottleneck, especially for long sequences, as it forces 
the model to compress all information into a single vector. 

The attention mechanism addresses this issue by al-
lowing the decoder to access different parts of the en-
coder’s output sequence directly, enabling it to focus on 
the most relevant parts of the input when generating each 
element of the output sequence [12]. 

Several variants of the attention mechanism exist, de-
pending on the application and architecture. Self-attention 
used in transformer models, where the attention mecha-
nism is applied to the same sequence, allowing each ele-
ment to attend to all other elements in the sequence. The 
formula for scaled dot-product attention is: 

 

A
K

AA
AAA V

d

KQ
VKQ
















T
),,(Attention , 

 
where Kd  is a number of columns in key matrix, )(  is a 

softmax function. 
The other popular modification of attention mecha-

nism is multi-head attention (MHA). It extends self-
attention by applying multiple attention mechanisms 
(heads) in parallel, each with different learned parameters, 

and then concatenating their outputs. This allows the 
model to focus on different parts of the input sequence. 

Attention-based networks have become increasingly 
prevalent in recommendation retrieval tasks due to their 
ability to effectively model complex relationships in data. 
These networks, such as hierarchical attention networks, 
are designed to process and analyze inputs that capture 
both user-item and item-item interactions. By considering 
these interactions simultaneously, hierarchical attention 
networks can more accurately predict subsequent user 
actions, leading to more personalized and relevant rec-
ommendations [13]. 

Moreover, stochastic self-attention networks represent 
an another advancement in this domain. These networks 
leverage the self-attention mechanism to dynamically 
assess the importance of different elements within the 
input sequence, thereby generating candidate recommen-
dations with enhanced precision. The stochastic nature of 
these models introduces an element of randomness, which 
can help in exploring a broader range of potential recom-
mendations, thereby improving the diversity and rele-
vance of the suggested items [14]. 

In summary, attention networks play a critical role in 
the evolution of recommendation systems. Their ability to 
incorporate complex interactions and adapt to various 
input dynamics makes them indispensable tools for en-
hancing the accuracy and diversity of recommendations in 
modern retrieval tasks. 

 
3 MATERIALS AND METHODS 

Since the main drawback of sequential recommenda-
tion is in narrow candidate pool, it is crucial to enrich 
recommendation proposals beyond trending items and 
short-term user-item and item-item relationships. To 
overcome this challenge, it is proposed to change the 
structure of received data and augment the given RS with 
some external context. 

The relationships between users and items, as well as 
between users themselves and items themselves, can be 
naturally represented by a graph  fwEVGG ,,, , where 

IUV ,  denotes the set of users and items – the verti-

ces of the graph – and   ViVuiuE  ,|,  represents 

the set of edges connecting users with items, items with 
items and users with users. The edge weights w  , are 
assigned through a mapping f . Since this graph repre-

sents stable relationships between items and users, it is 
proposed to name this structure a knowledge graph (KG). 

Given this graph-based representation, geometric deep 
learning frameworks, such as graph neural networks 
(GNNs), are well-suited for addressing recommendation 
retrieval tasks. 

GNNs are a class of deep learning models specifically 
designed to operate on data that is represented as graphs 
[15, 16]. These networks excel in tasks that require infer-
ence over graph-structured data by iteratively updating 
the representations of vertices through the aggregation of 
information from their neighboring vertices. 
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During the training process, each vertex Vv    
within the graph  EVGG ,  refines its feature represen-

tation by incorporating features from its adjacent vertices. 
This iterative process of feature aggregation and represen-
tation updating can be expressed as: 

 

 
  













 





vu

kk
u

kk
v bhWh )()()()1( , (2)

 

where )(k
vh  denotes the feature vector of vertex v  at the 

k -th layer,  v  represents the set of neighboring verti-

ces of v. The parameters )(kW and )(kb  are the weights 
and biases specific to k-th layer, respectively. The func-
tion σ is a non-linear activation function, for example, 
sigmoid. 

The iterative aggregation (2) allows GNNs to effec-
tively capture and propagate local structural information 
throughout the network, leading to a more comprehensive 
understanding of the graph’s global structure. As a result, 
GNNs are well-suited for a variety of tasks, including 
node classification, link prediction, and graph classifica-
tion, where the relationships and dependencies between 
entities are naturally modeled as graphs. The ability of 
GNNs to leverage the inherent graph structure makes 
them particularly powerful for applications in domains 
such as social network analysis, molecular chemistry, 
recommendation systems, and more. 

To process categorical data, embeddings are used that 
form a dense representation of each category.   

For instance, [17] demonstrates an approach that inte-
grates the attention mechanism with graph convolutional 
networks [15] to effectively learn embeddings from the 
user-item graph. This combined model is then leveraged 
to generate recommendations for the next item a user is 
likely to interact with. 

In the current work it is proposed to modify MHA by 
referencing not only input sequence (i.e. self-attention 
heads), but to aggregate first-order neighbors of each in-
put of a sequence with respect to the given knowledge 
graph.  

More specifically, consider the heterogenous graph: 
 

 PfwEVGG ,,,, , (3)
 

where P is an edge properties set. Let’s define such 
projection operator over (3) as follows:  
 

pGpGP →,: , 

 pPfwEVGGp  ,,,, . 
(4)

 
It is obvious that graph pG  is weighted graph where 

only those edges preserved that share same property, e.g. 
user-movie graph that contain only US-based users. 

The proposed attention modification, named as Mixed 
Attention, applies self-attention over the given session 
multiset s and operator (4) over the KG (3), performing 
the following computation: 

 

 .,,Attention||

),,(tionMixedAtten

ppp
sPp

AAA

VKQ

VKQ





 (5)

 
This application of graph-based learning methods is 

called to enhance the potential of Attention Networks in 
capturing the intricate relational structures inherent in 
recommendation systems, improving the accuracy of the 
recommendations produced.  

However, this computation implies traversing two 
structures – knowledge graph  PfwEVGG ,,,,  (3), (4) 

and session s simultaneously to find each item nearest 
neighbors, hence the same computations are required on 
each inference step, which may increase complexity and 
latency of proposed RS. This problem could be mitigated 
by knowledge distillation (KD) techniques. 

Knowledge distillation is a model compression tech-
nique that is designed to transfer the knowledge encapsu-
lated within a large, highly complex model, known as the 
teacher, to a smaller and more computationally efficient 
model, referred to as the student [18, 19]. The principal 
idea underlying knowledge distillation is to enable the 
student model to mimic the behavior of the teacher model. 
This is achieved by training the student model to replicate 
the output distributions produced by the teacher model, in 
addition to the conventional training on labeled data. To 
facilitate learning, the concepts of learning on logits is 
introduce. 

There exist multiple ways to perform KD, but the cho-
sen one in the current proposal is performed via teacher’s 
output distribution temperature scaling. 

By transferring knowledge from teacher to student in a 
classification problem, we minimize the loss function of 
the class distribution predicted by the teacher model. Let 
us consider the case of accurate model, when the predic-
tion of the probability of one of the classes (the correct 
one) is close to unity, and all others are close to zero. 
Such data is usually of little help for the student model, 
since it practically does not differ from the original labels. 
Therefore, a softmax temperature (normally set to 1) is 
introduced [18], which helps the student model to repeat 
not the classification labeled data, but the probability dis-
tribution, and allows the student model to better adopt the 
teacher’s behavior. Let iv  denote the logits or pre-

softmax outputs for the i-th score produced by the student 
model. The corresponding student soft target output iq  

for i-th score is computed as follows: 

 



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













j

j

i

i

T

z
T

z

q

exp

exp
. 

130



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 3 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 3 

 
 

© Androsov D. V., Nedashkovskaya N. I., 2025 
DOI 10.15588/1607-3274-2025-3-12  
 

Higher values of a temperature parameter T produce 
softer probability distributions, which contain more in-
formation about the relative confidence levels across 
classes.  

Suppose the teacher model has logits iz , which pro-

duce soft target probabilities ˆiq , and distillation is per-

formed at temperature T. Then, the gradient of the cross-
entropy function CEL  with respect to each logit iv  of the 

student model is given by [18]: 
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If T is high in comparison with the logits iv , the gra-

dient of loss CEL  can be approximated as follows: 
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Let the logits iv  and iz  have a zero mean separately 

for each transfer case. Then, equation (6) is simplified to 
the following: 
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NTv
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




2

1 , 

 

and distillation is equivalent to minimizing  2
2

1
ii vz   

under the above conditions. 
If T is relatively low, distillation practically ignores 

large negative logits (which are much more negative than 
the average). On the one hand, this is an advantage, since 
such logits could be very noisy. It has been shown in [18] 
that intermediate temperatures T work best when the stu-
dent model is much too small in comparison with the 
teacher model. 

Thus, in the paper, in process of training the student 
model, it is proposed to minimize Kullback-Leibler diver-
gence (KLD) measure between student and teacher mod-
els, defined as:  
 

∫
∞

∞
)(ˆ
)(

log)()ˆ|(


 dx
xq

xq
xqqqKL . (7)

 
By learning from the teacher’s soft targets, the student 

model can generalize better on unseen data, often leading 
to improved performance compared to directly training 
the smaller model from scratch. 

The proposed method consists of the following stages: 
1. To construct the teacher model, which consists of 

the following elements:  
 – knowledge graph (3), (4); 
– mixed attention, that consumes both user session 

and traverses knowledge graph to compute the operation 
(5);  

– multi-layer perceptron with several hidden layers, 
which takes results of the mixed attention operations an 
input and has the softmax output layer to produce some 
probability distribution. 

2. To construct the student model, which consists of 
the following elements: 

– multi-head attention that takes as an input the user 
session sequence; 

– convolutional neural network with several filters, 
consuming the attention scores, obtained at the previous 
stage along outputting softmax-mapped vector of the 
same size as the teacher model output. 

3. To perform student model learning: the KL diver-
gence (7) between model outputs is minimized. 

 

4 EXPERIMENTS 
It is proposed to solve the problem of NBO/NBA rec-

ommendation leveraging information retrieved from user 
interaction history and item properties.  

More precisely, consider the dataset retrieved from an 
anonymous multi-brand and multi-category e-commerce 
store, which schema is provided in Table 1. 

The dataset contains historical data from October 2019 
to November 2019, overall storing approximately 6.5 
million user sessions, or 69 million records.  

Let us predict the final item for each user session lev-
eraging the proposed method. 

As a baseline model for solving the problem (1), an 
LSTM-based architecture is chosen (Fig. 1). 

As a teacher model, the proposed extension of atten-
tion mechanism (5) is introduced instead of LSTM mod-
ule, thus allowing the model to capture long-term rela-
tionships from a given KG (Fig. 2).  

It could be observed, that the proposed architecture 
(Fig. 2) combines both content-based RS (via considering 
past interaction history) and collaborative filtering (via 
considering user-item model branching). 
 

Table 1 – Dataset fields description 
Field Name Data Type Description 

Session Id Base64 Unique identifier of user visit 

Product Id Integer Stock keeping unit (SKU) of an 
item 

Product Descrip-
tion 

String Description of item 

Brand String Brand name 

Category String Category of item, e.g. furniture 

Price Integer Price in cents 

Action String User action over item, e.g. add 
to cart, view 

Timestamp Timestamp Date and time of interaction 
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Figure 1 – LSTM-based Baseline model architecture 
 
The general purpose of model is to generate embed-

dings for NBO/NBA candidate items. Thus, for solving 
task (1) it is proposed to minimize cross-entropy loss L  
between obtained embedding obtainede  and ground truth 

truee : 

 

)log(),( true
T

obtainedtrueobtained eeeeL  . 

 
It is worth mentioning that the construction of KG is 

done in data-driven way by thresholding pointwise mutual 
information (PMI) between item pairs.  

 

 
Figure 2 – The proposed Mixed Attention-based model  

architecture 
 

KG is obtained by choosing only pairs of items where 
PMI value is greater than α. The selected threshold is de-
fined at the 25-th percentile of all PMI values. 

PMI between two items i and j is defined as: 
 

   
   








ji

ji
ji

PrPr

,Pr
log,PMI , 

 
where  ji,Pr  is the joint probability of items i  and j  

co-occurring,  iPr  and  jPr  are the individual prob-
abilities of items i and j occurring independently [20].  

Item embeddings could be chosen in two ways – ran-
dom initialization or leveraging pre-trained embeddings. 
To achieve the latter from the obtained KG, it is proposed 
to apply Node2Vec algorithm [21]. 

The main purpose of Node2Vec is to capture both the 
local and global network structure of a given graph. It 
does this by performing biased random walks on the 
graph, by balancing between breadth-first search (BFS) 
and depth-first search (DFS). This allows Node2Vec to 
generate node embeddings that reflect both the commu-
nity structure (via BFS) and functional similarity (via 
DFS) within the graph [21]. For the experiment purposes, 
the only adjusted hyper-parameter is embedding dimen-
sion, which should align with the corresponding hyper-
parameter in all proposed architectures.  

The next step is to define the student model, parame-
ters of which will be optimized via temperature scaling. 
This model is utilizing MHA module, thus eliminating the 
need for constantly traversing KG for each recommenda-
tion suggestion. The schematic representation of proposed 
model is shown in Fig. 3. 

The student model learns the probability distribution 
of the teacher; thus, it is proposed to minimize KL diver-
gence (7) between student model and teacher model. 

Concluding, the following hyper-parameters are set 
for baseline model: 

1. Embedding dimension – 64. 
2. Multi-Layer Perceptron layer number – 2. 
3. LSTM cell size – 64. 
Consequently, the following hyper-parameters are set 

for teacher model: 
1. Embedding dimension – 64. 
2. Multi-Layer Perceptron layer number – 2. 
3. Query, Key and Value matrix size – 64. 
4. Causal mask – applied to guarantee that current de-
cisions don’t affect previous ones. 
On the other side, since student model utilizes convo-

lutional neural networks (CNN) instead of MLP, the fol-
lowing hyper-parameters are picked: 

1. Stride size – 1. 
2. Padding – “same”. 
3. Dropout rate – 50%. 
4. Number of heads in MHA – 2. 
5. Embedding dimension – 64. 
6. Query, Key and Value matrix size – 64. 
7. Temperature T – [0.5, 1, 2, 5]. 
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Figure 3 – The proposed teacher-student architecture  

  
The choice of padding type and stride size is influ-

enced by the constraint on output of NN to be an embed-
ding of next item, given users’ previous interactions data. 

In order to examine the ability of models to retrieve 
relevant items, the following ranking metrics were cho-
sen: 

1. Mean average precision @ k (MAP @ k) – ranking 
metric used to evaluate the accuracy of a ranked list of 
items up to a cutoff rank k. 

2. Normalized discounted cumulative gain @ k 
(NDCG @ k) – measure of ranking quality that considers 
the position of relevant items in the ranked list up to a 
cutoff rank k and applies penalty to relevant items that 
appear lower in the list by applying a logarithmic dis-
count. 

For both metrics, k values 1, 10 and 100 are consid-
ered. 

Also, since the complexity of system affects recom-
mendation candidate calculation time, mean retrieval time 
is proposed as the auxiliary metric to consider along with 
ranking ones. 

 
5 RESULTS 

In the Tables 2–3 MAP@k and NDCG@k metrics for 
given k ranking cut-off for LSTM baseline and Mixed 
Attention model statistics are provided. The best Mixed 
Attention model is selected as the teacher model.  
 

Table 2 – Results of Baseline and Mixed Attention models 
benchmarking by MAP metric 

Model MAP@1 MAP@10 MAP@100 

Baseline 0.1492 0.2766 0.2859 

Baseline + 
Node2Vec 

0.1453 0.2740 0.2824 

Mixed 
Attention 

0.1769 0.3003 0.3082 

Mixed At-
tention + 
Node2Vec 

0.2 0.3316 0.3378 

 
 

 

Table 3 – Results of Baseline and Mixed Attention models 
benchmarking by NDCG metric 

Model NDCG@1 NDCG@10 NDCG@100 

Baseline 0.1529 0.3296 0.3767 

Baseline + 
Node2Vec 

0.1509 0.3276 0.374 

Mixed Atten-
tion 

0.1755 0.3487 0.3865 

Mixed At-
tention + 
Node2Vec 

0.2025 0.3794 0.417 

 
On the other hand, Table 4 and Table 5 reflect the val-

ues of MAP@k and NDCG@k results of KD for different 
temperature values, respectively. Table 6 summarizes 
models time performance. Figures 4–7 depict the evolu-
tion of ranking metrics with each epoch.  

 
Table 4 – Results of KD benchmarking by MAP metric 

T MAP@1 MAP@10  MAP@100 

0.5 0.1977 0.2727 0.2773 

1 0.1952 0.325 0.3315 

2 0.0832 0.1441 0.1487 

5 0.076 0.1352 0.1789 

 
Table 5 – Results of KD benchmarking by NDCG metric 

T NDCG@1 NDCG@10 NDCG@100 

0.5 0.198 0.3041 0.33 

1 0.1948 0.3745 0.374 

2 0.0831 0.1708 0.1956 

5 0.0368 0.1180 0.1417 

 
Table 6 – Average time per 1000 requests per model 

Model Average time per 1000 re-
quests, s 

Baseline 1.01 

Mixed Attention + Node2Vec 2.67 

Proposed student model 0.189 
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Figure 4 – MAP@k per epoch for baseline models 

 

 
Figure 5 – NDCG@k per epoch for baseline models 

 
6 DISCUSSION 

As follows from Table 2 and Table 3, proposed Mixed 
Attention approach strongly outperforms LSTM-based 
baseline models. However, the fact that Node2Vec pre-
trained embeddings cause little-to-no impact on ranking 
metrics for non-graph-based model but significantly en-
hances predictive capabilities of models that utilize KGs, 
is quite surprising and contradicts the initial suggestion 
that “implicit” knowledge, reflected solely in pre-trained 
embeddings could enhance sequential models.  

It is worth noticing that this behavior persists for each 
epoch, as shown on Fig. 4 and 5 for Baseline models and 
Fig. 6 and 7 for Mixed Attention models, respectively.  

Since the best model by all ranking metrics is Mixed 
Attention model with Node2Vec pre-trained embedding, 
this model is used as a teacher model. 
 

 
Figure 6 – MAP@k per epoch for Mixed Attention models 

 

After performing temperature scaling with different 
values of parameter T, various student models were ob-
tained. Since the bigger temperature, the more output dis-
tribution is uniform-like. Whilst very low value can intro-
duce overconfidence to model decisions, it was predict-
able that both high and low T values could decrease pre-
dictive capabilities of model. The overall dependencies 
between temperature scaled outputs of teacher model and 
student model performance are listed in Tables 4 and 5. 

The best model was obtained without performing 
temperature scaling of teacher model outputs. It is also 
worth noticing that results are only slightly worse than 
teacher’s model ones, namely Mixed Attention + 
Node2Vec models in Tables 2 and 3. 
 

 
Figure 7 – NDCG@k per epoch for Mixed Attention models 

 

It is also worth noticing the graph representation qual-
ity of the recommender system, obtained with the pro-
posed KG and distillation method (Fig. 3). On Fig. 8 one 
can see the top-5 recommendations given that user has put 
Nike shoes to the basket or purchased this item. As one 
can see, the proposed model captures associations from 
the KG with a decent accuracy, grasping relationships 
between sport shoes and fitness vehicles and equipment, 
although the model itself gives irrelevant recommendation 
to buy desktop. 
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Figure 8 – Top-5 recommendations, obtained using the proposed model 

 

The final assessment is conducted between best mod-
els in each category – LSTM, Mixed Attention and dis-
tilled student model. The main objective is to measure 
average time per 1000 requests for retrieving 100 most 
relevant items, given user sessions data. The received 
measures, recorded into Table 6, show that the proposed 
architecture (Fig. 3) and method significantly outperforms 
baseline solution by offering the main benefit of trans-
former-like architecture over RNNs – high degree of 
computations parallelization. 

 

CONCLUSIONS 
The problem of next best offer prediction is solved in 

this work using multiple deep learning-based approaches.  
The scientific novelty of obtained results shows that 

by combining learning on graphs and knowledge distilla-
tion it is feasible to build scalable, fast and precise rec-
ommendations systems.  

The practical significance of current work and its re-
sults is that implemented models could be applied to fore-
cast users next interactions on the enterprise scale. 

Prospects for further research are to examine other 
architectural approaches, different from decoder-only 
models, and propose alternatives to Attention networks. 
 

ACKNOWLEDGEMENTS 
This study was funded and supported by National 

Technical University of Ukraine “Igor Sikorsky Kyiv 
Polytechnic Institute” (NTUU KPI) in Kyiv (Ukraine), 
and also financed in part of the NTUU KPI Science-
Research Work by the National Academy of Sciences of 
Ukraine “Development of models and methods for solv-
ing predictive problems based on large amounts of poorly 
structured information in conditions of uncertainty” (State 
Reg. No. 0122U000671). 

 
REFERENCES 

1. Falk K. Practical Recommender Systems. Shelter Island, 
Manning, 2019, 432 p. 

2. Rasool A. Next Best Offer (NBO) / Next Best Action 
(NBA) – why it requires a fresh perspective? [Electronic 
resource]. Access mode:  
https://www.linkedin.com/pulse/next-best-offer-nbo-action-
nba-why-requires-fresh-azaz-rasool/  

3. Wang S., Wang Y., Hu L.  et al. Modeling User Demand 
Evolution for Next-Basket Prediction, IEEE Transactions on 
Knowledge and Data Engineering, 2023, Vol. 35, Issue 11, 
pp. 11585–11598. DOI: 10.1109/TKDE.2022.3231018. 

4. Eliyahu K. A. Achieving Commercial Excellence through 
Next Best Offer models. [Electronic resource]. Access 
mode: https://www.linkedin.com/pulse/achieving-
commercial-excellence-through-next-best-offer-kisliuk/ 

5. Wang S., Hu L., Wang Y. et al. Sequential Recommender 
Systems: Challenges, Progress and Prospects, International 
Joint Conference on Artificial Intelligence : Twenty-eighth 
international joint conference, IJCAI 2019, Macao, 10–16 
August 2019 : proceedings. Macao: International Joint 
Conference on Artificial Intelligence, 2019, pp. 6332–6338. 
DOI: 10.24963/ijcai.2019/883. 

6. Garcin F., Dimitrakakis C., Faltings B. Personalized News 
Recommendation with Context Trees, Recommender 
systems : Seventh ACM conference, RecSys'13, Hong-Kong, 
12–16 October 2013 : proceedings. New York, Association 
for Computing Machinery, 2013, pp. 105–112. DOI: 
10.1145/2507157.2507166.  

7. He R., McAuley J.  Fusing Similarity Models with Markov 
Chains for Sparse Sequential Recommendation, ArXiv, 
2016. DOI: 1609.09152v1. 

8. Geron A. Hands-On Machine Learning with Scikit-Learn 
and TensorFlow. Sebastopol, O’Reilly Media Inc., 2017, 
760 p. 

9. Hochreiter S., Schmidhuber J.  Long short-term memory, 
Neural computation, 1997, Vol. 9, № 8, pp. 1735–1780. 

10. Xia Q., Jiang P., Sun F. et al. Modeling Consumer Buying 
Decision for Recommendation Based on Multi-Task Deep 
Learning, Information and Knowledge Management :  
Twenty-seventh ACM international conference, CIKM '18, 
Torino, 22–26 October 2018 : proceedings. New York, 
Association for Computing Machinery, 2018, pp. 1703–
1706. DOI: 10.1145/3269206.3269285. 

11. Zhao C., You J., Wen X., Li X. Deep Bi-LSTM Networks 
for Sequential Recommendation, Entropy (Basel), 2020, 
Vol. 22, Issue 8, P. 870. DOI: 10.3390/e22080870. 

135



p-ISSN 1607-3274   Радіоелектроніка, інформатика, управління. 2025. № 3 
e-ISSN 2313-688X  Radio Electronics, Computer Science, Control. 2025. № 3 

 
 

© Androsov D. V., Nedashkovskaya N. I., 2025 
DOI 10.15588/1607-3274-2025-3-12  
 

12. Vaswani A., Shazeer N., Parmar N.  et al. Attention is all 
you need, Neural Information Processing Systems : Thirty-
first international conference, NIPS '17, Long Beach, 
California, 04–09 December 2017 : proceedings. New 
York: Curran Associates Inc., 2017, pp. 6000–6010. 

13. Ying H., Zhuang F., Zhang F. et al. Sequential 
Recommender System based on Hierarchical Attention 
Network, International Joint Conference on Artificial 
Intelligence :  Twenty-seventh international joint 
conference, IJCAI '18, Stockholm, 13–19 July 2018 : 
proceedings. Menlo Park, AAAI Press, 2018, pp. 3926–
3932. DOI: 10.24963/ijcai.2018/546. 

14. Fan Z., Liu Z., Wang Y.  et al. Sequential Recommendation 
via Stochastic Self-Attention, ACM Web Conference 2022, 
WWW '22, Lyon, 25–29 April 2022 : proceedings. New 
York, Association for Computing Machinery, 2022, 
pp. 2036–2047. DOI: 10.1145/3485447.3512077. 

15. Kipf T. N., Welling M. Semi-Supervised Classification with 
Graph Convolutional Networks, International Conference 
on Learning Representations :  Fifth international 
conference, ICLR 2017, Toulon, 24–26 April 2017 : 

proceedings. New York, Curran Associates Inc., 2017. DOI: 
10.48550/arXiv.1609.02907. 

16. Wu Z., Pan S., Chen F. et al. A Comprehensive Survey of 
Graph Neural Networks for Knowledge Graphs, IEEE 
Transactions on Neural Networks and Learning Systems, 
2022, Vol. 32, № 1, pp. 4–24. DOI: 
10.1109/TNNLS.2020.2978386.  

17. Hekmatfar T., Haratizadeh S., Razban P., Goliaei 
S.]Attention-Based Recommendation On Graphs, ArXiv, 
2022. DOI: 2201.05499. 

18. Hinton G., Vinyals O., Dean J.  Distilling the knowledge in 
a neural network, ArXiv, 2015. DOI: 1503.02531.  

19. Ba L. J., Caruana R.  Do Deep Nets Really Need to be 
Deep?  Advances in Neural Information Processing Systems, 
2014, Vol. 27, pp. 2654–2662. DOI: 1312.6184. 

20. Church K. W., Hanks P. Word association norms, mutual 
information, and lexicography, Computational Linguistics, 
1990, Vol. 16, № 1, pp. 22–29.  

21. Grover A., Leskovec J. Node2vec: Scalable Feature Learn-
ing for Networks, ArXiv, 2016. DOI: 1607.00653. 

Received 11.05.2025. 
Accepted 04.07.2025. 

 

УДК 004.852 
 

ПРОСТІ, ШВИДКІ ТА МАСШТАБОВАНІ РЕКОМЕНДАЦІЙНІ СИСТЕМИ ЗАСНОВАНІ НА ФІЛЬТРАЦІЇ ЗНАНЬ 
ВІД ВЧИТЕЛЯ 

 

Андросов Д. В. – аспірант кафедри штучного інтелекту Навчально-наукового Інституту прикладного системного аналізу 
Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського», Київ, Украї-
на. 

Недашківська Н. І. – д-р техн. наук, професор кафедри математичних методів системного аналізу Навчально-наукового 
Інституту прикладного системного аналізу Національного технічного університету України «Київський політехнічний ін-
ститут імені Ігоря Сікорського», доцент, Київ, Україна. 

 

AНОТАЦІЯ 
Актуальність. Системи рекомендацій – важливі інструменти для сучасного бізнесу, які дають змогу отримувати біль-

ший дохід за рахунок пропозиції клієнтам відповідних товарів та залучення більш лояльних відвідувачів. З появою глибоко-
го навчання та розвитком апаратних можливостей стало можливим уловлювати моделі поведінки клієнтів на основі даних. 
Однак точність прогнозу залежить від складності системи, і ці фактори призводять до збільшення затримки виведення на 
основі моделі. Об’єктом дослідження є задача видачі послідовних рекомендацій, а саме – наступного найбільш релевантно-
го товару в умовах наявності обмежень по часу відповіді системи. 

Ціль. Метою дослідження є синтез глибокої нейронної мережі, яка з мінімальною затримкою може отримувати 
релевантні елементи для більшості користувачів. 

Метод. Пропонований метод отримання систем рекомендацій, який використовує поєднання архітектур моделей глибо-
кого навчання на основі уваги із застосуванням графів знань для підвищення якості прогнозування за допомогою явного 
збагачення пулу кандидатів для рекомендацій, демонструє переваги моделей декодування та структури дистиляційного на-
вчання. Було доведено, що підхід дистиляції знань є надзвичайно продуктивним під час вирішення завдань пошуку рекоме-
ндацій, одночасно швидко реагуючи на пакетну обробку великих обсягів даних користувачів. 

Результати. Запропоновано модель рекомендаційної системи та метод її навчання, що поєднує парадигму дистиляції 
знань та навчання на графах знань. Запропонований метод був реалізований через двобаштову глибоку нейронну мережу 
для вирішення проблеми пошуку рекомендацій. Побудовано систему прогнозування найбільш релевантних наступних про-
позицій для користувача, яка включає пропоновану модель та метод її навчання, а також показники ранжування MAP@k та 
NDCG@k для оцінки якості роботи моделей. Розроблено програму, яка реалізує пропоновану архітектуру рекомендаційної 
системи, за допомогою якої досліджена проблема видачі найрелевантніших наступних пропозицій. Під час проведення екс-
периментів на великій кількості реальних даних візитів користувачів до онлайн магазину роздрібної торгівлі було встанов-
лено, що пропонований метод конструкції рекомендаційних систем гарантує високу релевантність виданих рекомендацій, є 
швидким та невибагливим до обчислювальних ресурсів на етапі отримання відповідей від системи.  

Висновки. Проведені експерименти підтвердили, що запропонована система ефективно вирішує поставлену задачу за 
малий проміжок часу, що є вагомим аргументом на користь її застосування в реальних умовах для великих бізнесів, що опе-
рують мільйонами візитів на місяць та тисячами товарів. Перспективи подальших досліджень в рамках заданої теми дослі-
дження включають в себе використання інших методів дистиляції знань, таких як внутрішня або само-дистиляція, викорис-
тання відмінних від механізму уваги архітектур глибинного навчання, а також оптимізація сховища векторів вкладень.  

КЛЮЧОВІ СЛОВА: дистиляція знань, графи знань, декодувальні моделі, вкладення вершин графів, архітектури типу 
«трансформер», механізм уваги, рекурентні нейронні мережі, мережі довгострокової короткої пам’яті, глибинні нейронні 
мережі, персоналізовані послідовні рекомендації, прогнозування наступного найбільш релевантного товару, моделювання 
користувача. 
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