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ABSTRACT

Context. Collision-free path planning in joint space for redundant robotic manipulators remains a challenging task due to the
high-dimensional configuration space and dynamically changing environments. Existing methods often struggle to balance search
time and path quality, which is crucial for real-time applications.

Objective. The aim of this study is to develop a new method to plan efficient, collision-free trajectories in real time for redundant
robotic manipulators.

Method. A novel sampling-based algorithm for collision-free joint space path planning for redundant robotic manipulators pre-
sented in this study. The algorithm is called the Recursive Random Intermediate State (RRIS). The RRIS algorithm primarily works
by generating a set of random intermediate states and iteratively selecting the optimal one based on the number of collisions along
the discretized path. Furthermore, the paper proposes an axis-aligned bounding box generation strategy and an early exit strategy to
improve algorithm speed. Finally, repeated calls of the algorithm are proposed to improve its reliability. The performance of the
RRIS algorithm is evaluated through a set of comprehensive tests and compared with the popular RRT Connect algorithm imple-

mented in Open Motion Planning Library.

Results. Experimental evaluations show that the RRIS algorithm under the test conditions produces collision-free paths with sig-
nificantly shorter average lengths and reduces search time by approximately three times compared to the RRT Connect algorithm.

Conclusions. The proposed RRIS algorithm demonstrates a promising approach to real-time path planning for redundant robotic
manipulators. By combining strategic intermediate state sampling with efficient collision evaluation and early termination mecha-

nisms, the algorithm offers a robust alternative to known methods.

KEYWORDS: path planning, redundant robotic manipulator, collision avoidance.

ABBREVIATIONS
RRIS is a Recursive Random Intermediate State;
RRT is a Rapidly-Exploring Random Trees;
OMPL is an Open Motion Planning Library [17];
DOF is degrees of freedom.

_ NOMENCLATURE

J'is the angle of the i-th joint of robotic arm;

S is a state of the robotic arm;

S; is the i-th state of discretized path between arm
states;

J/ is the angle of j-th joint of an i-th state of discre-
tized path between arm states;

|Path| is a norm of the path between two arm states;

Ss is a start arm state;

Sk is a final arm state;

S, is an intermediate arm state;

Sw is a middle state between start and final;

d is a step of displacement of the middle state in the
joint space for generating intermediate states;

Dir; is the step of displacement direction being made
for the i-th joint (can take values —1, 0, 1);

BB is a bounding box in joints space;

Mgg is a bounding box margin;

N; is a number of random intermediate states gener-
ated;

step is a discretization step in radians used to trace be-
tween two arm states;

Collisionss.s¢ is a number of collisions on discretized
path between start and final states;

Collisionss.» is a number of collisions on discretized
path between start and intermediate states;
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Collisions,.=¢ is a number of collisions on discretized
path between intermediate and final states;

Paths >, is a path between start and intermediate states;

Path,-f is a path between intermediate and final
states;

StateScoiiges 1s a list of states of discretized path be-
tween the start state and the final state which has colli-
sions;

Collisionsge is a current minimal number of collisions
on the discretised path from start state to intermediate and
from intermediate state to final;

Collisionsgg is a thershold number of collisions used
to check early exit condition during selecting intermediate
state;

|delta]yx is @ maximum absolute difference between
joint angles in two arm states;

|delta]manhattan is @ sum of absolute differences between
joint angles in two arm states.

INTRODUCTION

Articulated robots are currently used for a variety of
automation tasks. Industrial robotic arms with revolute
(articulated) joints are widely employed for tasks such as
palletizing, material handling, welding, quality inspection,
picking and placing objects [1], and many others.

Despite the fact that robotic arms perform different
types of tasks, in general, we can summarize the task for a
robotic arm: to move to a certain place at a specific time
without causing damage to surrounding objects or itself.
From this arises the problem of planning a collision-free
path for the robotic arm.
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The control of the arm takes place by specifying rota-
tion angles for each joint of the arm, that is, the control
program specifies coordinates in the state space of the
joints (or simply “joint space”). Meanwhile, the position
of the manipulator’s end point (the last link of the robotic
arm, if counting from the base, also known as the “end
effector”) is determined in Cartesian space.

An articulated robotic arm requires at least 6 joints to
achieve full 6-degree-of-freedom movement in Cartesian
space [2]. But despite the fact that a “6-joint arm with 6
independent joints can specify any position and orientation
of the manipulator” [3], robotic arms with a larger number
of joints (such robotic arms are also called redundant) and
degrees of freedom, respectively, are widely used in the
industry. The reasons for this are the ability to avoid the
problem of singularities in the robot’s workspace and the
solution to the problem of joint restrictions [3].

The large dimensionality of the state of the robotic
arm and the complexity of the inverse kinematics problem
(search for arm coordinates in joint space given coordi-
nates in the Cartesian space), as well as the presence of
many possible solutions to inverse kinematics due to the
redundant joint, make path planning task difficult. There
are plenty of parameters to optimize in path planning al-
gorithms while the most important among them are path
planning time and success rate. At present, there is no
universal path planning algorithm for redundant robotic
arms that would guarantee finding the optimal path, or
guarantee finding any path if it exists.

The object of study is the process of path planning
for redundant robotic manipulators.

The subject of study is the reliability and execution
speed of path planning algorithms.

The purpose of the work is to develop a new sam-
pling-based algorithm for path planning for redundant
robotic arms that selects an optimal intermediate point
based on the number of collisions along the path passing
through it.

1 PROBLEM STATEMENT

Before describing the developed algorithm, let’s clar-
ify the task it has to solve. Suppose we have a robotic arm
operating in an environment that changes its state during
the robot’s operation. We need to plan the path of the
robotic arm from one state in joint space to another state
in joint space. The arm should avoid collisions with the
surrounding environment along the found path.

The algorithm can use third-party tools for collision
checking at a certain state of the arm. The path segment
collision checking will be based on discretization of the
path with a given step and checking all discrete states for
collisions.

The state of the robotic arm is described by a vector of
rotation angles for each joint, starting from the arm’s fixa-
tion point. We can write it down in the next way:

s=110,91,.,900F 1} )
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The norm of the difference between two states will be
defined as the maximum absolute difference in rotation
angles for each joint of the robotic arm:

S - S5| = MAX (JP -39,90 =3}, aPOF-T JZDOH) )

The length of the path is the sum of the norms of the
differences between all neighboring states on the path:

N-1
|Path|= >"|Si,; - Si 3)
i=1

We’d like to get the result of the planning as soon as
possible, because we are building trajectories real-time.
So, the main criteria for evaluating a planning algorithm
are the success rate and the average time to build the path.
An additional parameter is the length of the found path, so
the shorter the path, the better is the solution.

2 REVIEW OF THE LITERATURE

The well-known path planning algorithms for a re-
dundant robotic arm among others include the following
algorithms:

— Probabilistic Roadmaps: it’s a sampling-based meth-
od for path planning where random samples from the con-
figuration space are used to create nodes, which are then
connected to create a roadmap [4];

— Rapidly-Exploring Random Trees (RRT): this algo-
rithm is particularly useful for high dimensional spaces
and real-time applications [5];

— Artificial Potential Fields: this method treats the ro-
bot as a particle moving under the influence of artificial
forces. The goal and obstacles generate attractive and
repulsive forces, respectively [6];

— Deep Reinforcement Learning based approaches: re-
cent works have proposed learning-based methods for
path planning, which can effectively handle redundant
manipulators [7].

Among others, worth noting one of the recent works
where Khan et al. proposed a model-free kinematic track-
ing controller for redundant robotic manipulators using
Zeroing Neural Networks (ZNN) and Beetle Antennae
Search (BAS). The ZNNBAS algorithm avoids traditional
Jacobian-based approaches by leveraging a meta-heuristic
optimization method in continuous time, eliminating the
need for precise kinematic modeling. Tested on a 7-DOF
manipulator, it achieved real-time redundancy resolution
with minimal tracking errors, demonstrating the potential
of hybrid optimization techniques for real-time path plan-
ning [8].

The RRT algorithm is the most popular solution to-
day. There are many variations of it. In particular, the
following should be mentioned:

RRT-Connect: this variation of RRT makes aggressive
attempts to connect the tree directly to the goal, leading to
faster solutions [9];

Bidirectional RRT (Bi-RRT): in this method, two
RRTs grow towards each other, one from the initial state
and the other from the goal. This can be more efficient in
some problem spaces [10, 18];
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RRT* (RRT Star): This variant of RRT introduces the
idea of an “optimal” path, gradually improving the path
quality by selectively rewiring nodes in the tree to mini-
mize total path cost [11].

The disadvantages of the RRT-based algorithms de-
scribed above can include their lack of evaluation for the
currently generated states in the tree. As a result, even if
the algorithm has almost found a collision-free path (i.e.,
one of the tree vertices can reach the target state with
minimal collision), it will not attempt to complete the
path, but will continue to generate states randomly with-
out additional changes [12].

Ganesan et al. propose Hybrid-RRT, a novel path-
planning algorithm that combines uniform and non-
uniform sampling to improve the performance of RRT*-
based motion planning. The hybrid approach balances
exploration and exploitation by dynamically selecting
between uniform and goal-directed non-uniform sam-
pling. Experimental results demonstrate that Hybrid-
RRT* achieves faster convergence, higher success rates,
and reduced node exploration compared to baseline algo-
rithms, including RRT*, Informed RRT*, and RRT*-N.
The method is particularly effective in complex environ-
ments, addressing limitations of both traditional uniform
and non-uniform sampling strategies [13].

One of the algorithms that changes its behavior based
on the current state assessment is Informed RRT* [14].
This is a further improvement to RRT*, it takes into ac-
count the best current path to guide the sampling process,
leading to faster convergence towards an optimal solution.
Despite the advantages of this approach, the idea of as-
sessing a specific state is not widely used today.

3 MATERIALS AND METHODS

The main idea of the newly developed Recursive Ran-
dom Intermediate State (RRIS) algorithm is that a set of
random intermediate states is generated. Then we iterate
through all of the states, and if a state has collisions, then
we need to skip it. If a state has no collisions, then we
need to calculate a penalty for this state. This penalty is
based on the number of states that have collisions on the
discretized path from initial state to intermediate state and
from intermediate state to final state.

Among all intermediate states we choose the one with
the lowest penalty. Then the task of finding a path from
the initial state to the final state is reduced to the task of
finding a path from the initial state to the intermediate
state and from the intermediate state to the final state. So
the algorithm calls itself recursively.

Algorithm will stop current recursion step execution
and in one of two cases:

— we found intermediate state, which creates path
without collisions;

— we checked all intermediate states and none of them
creates a path that is better than a straight one. Which
means that the number of states with collisions on discre-
tized path doesn’t get smaller on any checked intermedi-
ate state.
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These conditions may vary depending on the chosen
strategy and we will return to this later.

In the end, if both parts of the path are successfully
found, then we can build the whole path by merging the
path from initial state to intermediate state and path from
intermediate state to final state. And if we fail to find a
safe path in at least one of the parts, then we fail to find a
safe path.

The generation of intermediate states can depend on
the specific implementation. In particular, such options
can be used:

— select the step of displacement in the joint space
based on the length of the direct path, and for each joint
consider 3 displacement options: clockwise, counter-
clockwise, or zero displacement. Then the intermediate
state can be calculated using formula (4):

S, :{J,?,, +d-Dir®,J} +d~Dir1,...,J,\'ﬂOF’1+d~DirDOF’1} 4
Thus, we will have N = 3P°F intermediate states;

— build an axis-aligned bounding box around all col-
liding states on the straight path from initial to final state
(as described in Algorithm 4), generate a fixed number of
intermediate states randomly and uniformly within the
bounding box (as described in Algorithm 5).

Intermediate states generation using a bounding box
showed better results as can be seen in Table 3.

To compare paths that goes through different interme-
diate states, we can minimize the number of collisions in
at least two ways:

1. Minimize the total number of collisions on two path
parts. In this case, we assume that a smaller total number
of collisions means that we will need to expend fewer
efforts to avoid collisions in the subsequent steps.

2. Minimize the maximum number of collisions on
two path parts. In this case, we believe that even if the
number of collisions through the intermediate path in-
creases, but they are both less than the maximum, then we
will have to circumvent fewer in each of the two parts of
the path, making it easier to bypass them.

Both approaches show good results and it’s shown in
Table 3.

Depending on the input data and the sequence of gen-
erated intermediate states, the algorithm may not get an
intermediate state that would lead us to the goal without
collisions. However, a sufficiently “good” state, a path
through which contains a small number of collisions, may
appear among the first. During the recursive descent we
often can build a collision-free path through a “good”
state quite quickly.

Therefore, instead of always iterating through the en-
tire set of intermediate states, a check for quick exit from
the iteration can be introduced. We propose the following
condition for early exit: if both parts of the path through
the intermediate state have fewer than half collisions of
the direct path, then we choose this intermediate state and
exit the iteration.
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The use of the early exit strategy significantly im-
proved the algorithm’s speed, which is evident in the re-
sults section in Table 3.

The algorithm described above, despite its high speed,
still has one major drawback. Due to the fact that the al-
gorithm has no backtracking tool, in some cases it will get
stuck in local minima. As shown in Table 3 the failure
rate of an algorithm on a test set with a single run is about
90 percent. And the most common reason for an algo-
rithm to fail is stucking in local minima.

In Table 3 can be seen that the failure rate of different
variations of this algorithm is much higher than that of the
RRTConnect algorithm from OMPL [17]. Therefore, we
decided to add a simple way to escape from the local min-
ima. Specifically — rerunning the algorithm a certain num-
ber of times until a path is found.

In the results section in Table 4 the testing results of
the algorithm that initiates the search path up to 5 times in
case of failures in previous steps are presented.

The pseudo code description of an optimal version
(based on test results) of the RRIS algorithm is described
below together with additional algorithms used by main
algorithm. Intermediate states generated uniformly ran-
dom in the axis-aligned bounding box. Intermediate states
comparison is based on minimizing the maximum number
of collisions on two path parts. And an early exit strategy
applied.

Data: Ss. Sp. Algorithm options (Mgg. N,. step)
Result: Path from Ss to Sg or failure
Collisionss_.p + CountCollisions(Ss, Sr,step, o0)
if Collisionss_,p =0 then

| return direct path (Ss,Sg) :
end

Statescoiides < CollidingStatesList(Ss, Sk, step):

BB « ComputeBoundingBox(Statesc uige., Mpg):

States; + GenerateRandomStates(BB, N,);

Sort States; by total path distance (ascending);

Shest ¢ NULL:

Collisionsy,.; < Collisionsg ,p;

Collisionsgg + Collisionss ,p/2:

foreach S; = States; do
if 5; has collisions then

| continue:
end
Collisionss_y + CountCollisions(Ss, S7, step, Collisionspe.: ):
Collisions;_,p < CountCollisions(S;, S, step, Collisionss,.. )
if Collisionsz_,; < Collisionsgg and
Collisions;—.r < Collisionsg e then

Spest < Sr:
break:

end
if Collisionsg .y + Collisions; ,p < Collisions,,,, then
Collisions,,., + Collisionsg_,; + Collisions;_, p:
5;.,_-.\-9 — 51:

end

/* Path is collision-free */

end
if S;..; = NULL then
| return failure :
end
Paths_.; « CollisionFreePathPlanning(Ss, Speet, Mas, N, step):
Path;_.p «+ CollisionFreePathPlanning(S..., S, Mgz, N,, step);
if Paths_.; and Path;_p found then
| return concatenated path (Paths_.;, Pathr—.r);
end
return failure;

Algorithm 1 — Collision-Free Path Planning

/* No valid path found */
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To speed up the path planning additional parameter
Collisions,,, is passed to CountCollisions and Colliding-
StatesList methods. This parameter used to interrupt algo-
rithm if collisions count exceeds the collisions limit.

Data: 5,. 5, step, Collisionsa.

Result: Collisions count

return |CollidingStatesList( Sy, Sy, step, Collisionsa. )|
Algorithm 2 — Count Collisions on Discretized Path

Data: S,, 5, step, € "olli 1018 0.
Result: Set of colliding states States
States + ;
Path « Linear Discretization(S,, Sy, step):
foreach S; € Path do

if S; collides in PyBullet then

| Add S; to States:

end

if |States| > Clollisions,,,, then

| return States:;

end
end
return States:

Algorithm 3 — Colliding States List

Data: Statesc,iges. Mpg
Result: BB
foreach joint j in the arm do
foreach state S; in Statesconides do
BB,.;n|j| ¢+ min(S;[j] — Mgg, BB 7))
BB,,..|j| + max(5;[j] + Mpp.BB,,..[j]):
end
Clip BB, .;..|j|. BB,,...|j] to joint limits:
end
return BB;
Algorithm 4 — Compute a Bounding Box in a Joint Space

Data: BB. N,
Result: Set of random states States
States + (I
fori=1to N, do

Generate S; uniformly in BB;

Add S; to States:
end
return States:

Algorithm 5 — Generate Random States

Data: S, Si, step
Result: List of discretized states Path
Path « [S.);
i+ [|Ss — Sa|/step];
fori=1ten—1do
Si 4 Sati- 220y
Append S; to Path:
end
Append S; to Path;
return Path;

Algorithm 6 — Linear Dicretization of Path Between Two States
Please note, that separate runs of an algorithm are ab-

solutely independent, and the rerunning process is not
included in algorithm description.
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4 EXPERIMENTS

Before starting to describe the results of the algo-
rithm’s work let’s clarify which auxiliary software prod-
ucts were used, for what hardware the test trajectories
were constructed and what is the working space of the
robotic arm.

The auxiliary software used for algorithm develop-
ment includes:

— Bullet Collision Detection & Physics Library — a li-
brary for collision detection and physics simulation, used
in the algorithm for collision search [15];

— software code by Somatic Holdings LTD, which al-
lows for quick simulation and visualization of the motion
planning results of the robotic arm in a working environ-
ment.

The test trajectories were constructed for the following
robotic arm:

UFACTORY xArm 7 Robotic Arm — a 7-degree-of-
freedom robotic arm with revolute joints [16].

Visual representation of a robot with robotic arm in-
stalled and test working environment shown in Fig. 1 and
Fig. 2 and the working range for each joint can be seen in
Table 1.

The parameters of OMPL’s RRT-Connect algorithm
used for comparison in testing process are:

— state space: a 7-dimensional RealVectorStateSpace,
corresponding to the 7 degrees of freedom (DOF) of the
robotic arm;

— joint limits: the search space is bounded using a
margin of 120 degrees and limited with arm joint limits;

— collision checking resolution: set the portion of 0.05
of the state space’s maximum extent (0.05 / space-
>getMaximumExtent());

— planner time limit: the algorithm attempts to find a
solution within maximum 20.0 seconds, but interrupts as
soon as any solution is found.

5 RESULTS

In Table 2 we represent four versions of the RRIS al-
gorithm that are tested and compared. Base version of the
algorithm is the one with generating states in the bound-
ing box, intermediate states paths comparison minimizing
the maximum number of collisions on two path parts and
early exit strategy applied. In three other versions we
checked how changing states generating strategy, states
comparison method or early exit usage affects algorithm
performance. So, the first algorithm version is a base al-
gorithm, in the second version states generating strategy
changed to middle state displacement, in the third version
states comparison method changed to minimize the sum
of collisions on path parts, in the fourth version early exit
strategy disabled.

Also, RRIS based algorithm versions compared with
RRTConnect algorithm (one of the most efficient nowa-
days), presented in OMPL.

Table 1 — Joint limits for xArm7 robotic arm [16]

Joint number 0 1 2 3 4 5 6
Minimum angle | -360° | —118° | -360° | —11° | -360° | —97° | —360°
Maximum angle | 360° 120° 360° | 225° | 360° | 180° | 360°

Figure 1 — Robot and working environment (robot side view)
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Figure 2 — Robot and working environment (robot back view)

Test set containing 104 pairs of states. It is guaranteed
under experimental conditions that there is always a path
without collisions between these pairs of states. Only 4
test cases have no collision on a straight path, requiring
pathfinding in 96% of cases. There are three different
types of tools installed to the arm wrist: sprayer, tip and
vacuum. Vacuum (on Fig. 1 and Fig. 2) is much larger
than two others and the wide majority of failures occurred
with this tool.

Test cases contain various difficult situations like: arm
should go from one side of the wall to another side, arm
should move from one side of the robot to another side,
arm should move between two boxes, and a lot of other
complicated variations.

All the algorithm versions take 0.05 radians as a colli-
sion check step. The bounding box margin is set to 60
degrees for algorithm version 1, 3, and 4. Number of
states generated on each recursive function call is 1000
for 1, 3, 4 versions and 37 = 2187 for version number 2.
Step for middle state displacement for version 2 calculates
by formula (5).

d =0.1-[Sg = Sg|y, +0.1|Sg (5)

_SS‘Manhattan'

Here the constant 0.1 selected experimentally and can
be configured for other robotic arms and work environ-
ments.

Table 2 — Tested algorithms versions

Version Num States Generating Comparison method | Early Exit

1 Bounding Box Minimize Max Yes

2 Middle State Displacement Minimize Max Yes

3 Bounding Box Minimize Max Yes

4 Bounding Box Minimize Max No

Table 3 — Testing algorithm versions results

Algorithm Version Version 1 | Version2 | Version3 | Version4 | RRTConnect from OMPL
Found Paths 92/104 92/104 91/104 94/104 104/104
Average straight path length* (radians) 3.474 3.605 3.508 3.603 3.731
Average path without collisions length* (radians) 5.750 5.857 5.652 5.756 44.167
Average search time (s) 0.555 1.341 0.582 1.825 1.109
Collision check count 4235.07 10164.01 4204.25 14421.64 10408.2

* — average straight path length and average path without collisions length calculated only for test cases where path

was found

Table 4 — Comparing RRIS with repetitive calls and RRTConnect

Algorithm RRIS algorithm with 5 attempts | RRTConnect from OMPL
Found Paths 104/104 104/104

Average straight path length (radians) 3.731 3.731

Average path without collisions length (radians) 7.427 44.167

Average search time (s) 0.36 1.109

Collision check count 2958.808 10408.2
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Table 3 presents the summarized results of the per-
formance of different versions of the algorithm.

We use the RRT Connect algorithm (OMPL imple-
mentation) to compare with the described algorithm. We
tested RRT Connect with margins 60, 90, 120, 150 de-
grees and selected 120 degrees as it shows the best results
with this margin value.

As can be seen in Table 3 RRIS algorithm with single
run has a success rate of 87.5% — 90.4% depending on
algorithm version.

In Table 4 we present the results of the RRIS algo-
rithm that initiates the search path up to 5 times in case of
failures in previous steps and compares it to the
RRTConnect from OMPL. We are using version 1 (see
Table 2) algorithm but reducing the number of generated
states to 500. And we call it repeatedly until a path is
found (but no more than 5 times).

As shown in Table 4 multi-run RRIS algorithm has
100% success rate as well as RRTConnect from OMPL,
but it has 3.08 times smaller average path search time and
3.52 times smaller collisions check count. Also, multiple
algorithm runs allowed to decrease the number of gener-
ated states from 1000 to 500, which decreased average
search time from 0.555s to 0.36s.

6 DISCUSSION

As shown in Table 3 generating random states in the
bounding box gives us better results than displacing the
middle state. Probably, the reason for this may be better
flexibility of this type of solution. It could generate states
close or far from initial and final states and find the best
option in most cases faster.

Also, results presented in Table 3 shows that early exit
strategy has a great impact on algorithm productivity. It
means that ideas described in section 3 are correct.

On the other hand, we can’t see much difference be-
tween minimizing maximum collisions count and mini-
mizing the sum of collisions count strategies. One strat-
egy works better in one part of test cases and the other
strategy works better for the other part.

Calling the algorithm multiple times significantly im-
proved its reliability as shown in Table 4. The issue of
local minima is significantly reduced now. Also, this al-
lowed for a reduction in the number of generated states in
a single iteration without degrading the algorithm’s per-
formance.

Compared to the RRTConnect algorithm implemented
in the OMPL library, the algorithm proposed in this paper
not only has better performance but also constructs a
shorter path on average (as shown in Table 4). The OMPL
library has an integrated path improvement system that
works very well, but still the initial result path of the algo-
rithm proposed in this paper is on average 5.947 times
shorter.

However, the comparison between the performance of
the RRIS algorithm and RRT-Connect depends signifi-
cantly on the specific parameter settings of RRT-Connect.
A deeper investigation is required to make a better com-

parison between these algorithms.
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The core idea of the algorithm — to select an interme-
diate state based on collisions count criteria shows its
effectiveness. Despite the fact that the test dataset con-
tained many trajectory scenarios that were challenging to
search for, still algorithms managed to find a path in these
situations.

CONCLUSIONS

A new motion planning sampling-based algorithm was
developed for solving the problem of collision-free path
planning for redundant robotic manipulators in joint space
in real-time mode. The algorithm is based on the principle
of selecting an optimal intermediate point based on the
number of collisions along the discretized path that passes
from the initial to the final point through the intermediate
point.

A strategy for generating intermediate points within
an axis-aligned bounding box was proposed for this algo-
rithm. Additionally, an early exit strategy was proposed to
improve the algorithm’s speed.

The algorithm demonstrated high efficiency. An im-
plementation of this algorithm with iterated calls managed
to find a path in test cases 3.08 times faster than the
RRTConnect algorithm implemented in OMPL under the
testing conditions. Also, the length of original paths found
by algorithm is on average 5.947 times shorter than paths
found by RRTConnect in the presented tests set.

The scientific novelty of obtained results is a newly
developed sampling-based algorithm called the Recursive
Random Intermediate State (RRIS) algorithm. This algo-
rithm is able to plan the path in a dynamic environment in
real time. Besides, we propose an axis-aligned bounding
box generation strategy and an early exit strategy to im-
prove algorithm speed.

The practical significance of this study lies in the
development of the Recursive Random Intermediate State
algorithm, which enables real-time path planning for re-
dundant robotic arms.

Prospects for further research include enhancing the
RRIS algorithm by incorporating machine learning tech-
niques for adaptive intermediate state selection.
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V]IK 004.94

IJIAHYBAHHSA IJIAXY IJISI HAJJIMIIKOBUX POBOPYK 3 BUKOPUCTAHHSAM AJITOPUTMY
PEKYPCHUBHOI'O BUITAJIKOBOTI'O NPOMI’)KHOI'O CTAHY

Mensine A. 1. — acmipant kadeapu Cuctem Lltyunoro Intenexrty, HamioHanpuuii yHiBepcuteT «JIbBiBCbKa MOJITEXHIKa»,
JIbBiB, YKpaiHa.

SIkoBuna B. C. — 1-p TexH. Hayk, npodecop kapenpu Cucrem Ltyunoro Intenexry, HamionansHuii yHiBepcuteT «JIpBiBChKa
moJiTexHikay, JIbBiB, YKpaina.

AHOTANIA

AKTyaJabHicTb. [I1aHyBaHHS NUIIXY 0€3 3iTKHEHb B MIPOCTOPi CYTI00iB I HAUTHIIKOBUX POOOPYK (pOoOOTH30BaHNX MaHIITyIs-
TOPIB) 3aJMIIAETHCS CKJIATHOIO 33Javyelo depe3 BUCOKY BHMIPHICTh KOH(IrypaniifHoro mpocropy i JUHaMIi4Hy 3MiHY CepeIoBHIIA.
IcHyrowi MeToaM IIaHYBaHHS YacTO CTHKAIOTHCS 3 TPYJHOLIAMH y OalaHCYBaHHI MiIX YacOM IIOMIYKY Ta SKIiCTIO TPA€KTOpIii, IO €
KPUTHYHO BOKJIMBHUM JUIS 3CTOCYBaHb y PEXKUMI PEAIbHOTO Yacy.

Meta po6oTH — po3p0oOKa HOBOTO METO/Iy TUIAHYBaHHS TPAEKTOPii 0€3 3ITKHEHb B PEXKKUMI PEANbHOTO Yacy Ui POOOPYK 3 Hal-
JIMIIKOBUMH Cyrio0amu.

Metoa. YV 1upoMy JOCTIDKEHHI NPEICTAaBICHUH HOBUIl aJrOpUTM IUIAHYBaHHS LUIIXY 0€3 3iTKHEHb Y MPOCTOpi CyrioGiB s
HaUTUIIKOBUX PoOOpPYK, IO MPAIfOe€ Ha OCHOBI TeHepalii BUIaJKOBUX CTaHIB. ANTOPHTM OTpHUMaB Ha3By PexypcuBHOro Bumanko-
Boro [Ipomixknoro Crany (PBIIC). Ilpuaiium poGOTH aaropuTMy IMOJSTaE y TeHepallil Habopy BHIAIKOBHX MPOMDKHHUX CTaHIB i3
MOAANBIINM ITEPaTHBHIM BHOOPOM ONTHUMAIEHOTO Ha OCHOBI KiJIBKOCTI 31TKHEHB y3/I0BX JIHCKPETH30BaHOI TpaekTopii. KpiM Toro, y
CTaTTi MIPOIIOHYETHCS CTPATETis MOOYZOBH OOMEXYBAIFHOTO MPSMOKYTHOTO Tapanernemninena (bounding box) ta crpaTeris paHHEOTO
BUXOMY JUISl MiJBUINEHHS LIBHAKOCTI poOOTH anroputMy. HapewnTi, s mifBUINEeHHS HaIiiHOCTI IPONOHYETHCS IIOBTOPHE BHUKIIH-
kaHHs anroput™my. EpexruBHicTs anroputmy PBIIC OLiHIOETECS NUIIXOM HNPOBEICHHS KOMIUIEKCHHUX TECTIB Ta MOPIBHIOETHCS 3 MO-
nymsipauM aaroputMoM RRT Connect, peanizoBanuM y 6i6mioreni Open Motion Planning Library.

Pe3yabraTn. ExcriepiMeHTanbHi IOCIIDKEHHS TOKa3yioTh, mo anroputMm PBIIC 3a ymMoB TecTyBaHHs 3abe3nedye TpaeKkTopii
0e3 3ITKHEeHb 31 3HAYHO KOPOTIIOI CEPEIHBOI0 JOBXKUHOIO T4 CKOPOUYE Yac MOUTYKY MPUOIM3HO Y TPH pasd MOPIBHIHO 3 aITrOPHT-
moM RRT Connect.

Bucnoskn. 3anponoHoBanuii anroputM PBIIC nemoHCTpye MepCHeKTHBHUM MIIXiX 0 IUIaHYBaHHS TPAEKTOPIH y pexuMi pe-
aJIFHOTO Yacy AV HaJUTUIIKOBUX POOOTH30BaHMX MaHIIMy ATOpiB. [loemHyIoun crpareridny BUOipKy MpPOMIXKHUX CTaHIB i3 epeKTHB-
HOIO OILIiHKOIO 3iTKHEHb Ta MEXaHi3MaMHt PaHHbOTO 3aBEPIICHHS, AITOPHTM IIPOIIOHY€E HaJliiHY aJbTepHATHBY BiJIOMHM METO/AM.

KJIFOYOBI CJIOBA: manyBaHHs IUISIXY, HAJUIMIIKOBUI POOOTH30BaHUH MAHIITYJIATODP, YHUKHEHHS 3iTKHEHb.
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