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ABSTRACT

Context. There are certain methods for finding the optimal solution to integer programming problems. However, these methods
cannot solve large-scale problems in real time. Therefore, approximate solutions to these problems that work quickly have been
given. It should be noted that the solutions given by these methods often differ significantly from the optimal solution. Therefore, the
problem of taking any known approximate solution as the initial solution and improving it further arises.

Objective. Initially, a certain approximate solution is found. Then, based on proven theorems, the coordinates of this solution
that do not coincide with the optimal solution are determined. After that, new solutions are found by sequentially changing these
coordinates. The one that gives the largest value to the functional among these solutions is accepted as the final solution.

Method. The method we propose in this work is implemented as follows:

First, a certain approximate solution to the problem is established, then the numbers of the coordinates of this solution that do not
coincide with the optimal solution are determined. After that, new solutions are established by sequentially assigning values to these
coordinates one by one in their intervals. The best of the solutions found in this process is accepted as the final innovative solution.

Results. A problem was solved in order to visually illustrate the quality and effectiveness of the proposed method.

Conclusions. The method we propose in this article cannot give worse results than any approximate solution method, is simple
from an algorithmic point of view, is novel, can be easily programmed, and is important for solving real practical problems.

KEYWORDS: integer programming problem, initial approximate solution, the interval in which the coordinates of the
approximate solution may differ from the optimal solution, innovative approximate solution, computational experiments.

NOMENCLATURE o . . .5
N is a number of issues resolved: E is a coordinate of the proper fraction X ;
N is a number of unknowns; . . . .
a num URKROWRS, k is a number of the fractional coordinate in the
ajj is a given positive integer; ] ~ i
numerical X solution;
p is a positive integer;
d; is a positive integer; Q 1s a positive integer;
8 is a positive integer;

Cj is a given positive integer;

bj is a given positive integers; - L
. . Sk 1s a certain integers expressed as a percentage;
X;j is an j-th unknown;

0 - ..
L S is a certain integers expressed as a percentage;
j+ is a value of the unknown; K & P p g%

0 . o ) ) n(0) is a minimal number of zeros coordinates in the
X" is an initial approximate solution;

r is an initial solution is the number of the first
coordinate that received a value of “0” when constructing ) ]
the solution; the optimal solution;

optimal solution;
n(d) is a minimal number of non-zero coordinates in

0 is a value of the approximate solution to the X_ is an optimal solution of certain problems;

objective function; X' s an optimal solution of certain problems;

X is a solution found when the unknowns in the , is a certain set of number;

roblem are not required to be integers; . .
P 1 Eets; ®, 1is a certain set of number;
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Nn(w;) is a number of element of certain sets ©; ;

N(w,) is a number of element of certain sets ®, ;

n(d) is an integer not greater than n(d);

Ny is a lower bound on the minimal number of non-
zero coordinates in the approximate solution;

n is a maximum number of non-zero coordinates in
the optimal solution;
n(0) is a lower bound on the minimum number of

zeros in the optimal solution;

f is a value of the functional with respect to the solu-
tion X ;

X" is an innovative improved final solution;

1 is a value of the objective function according to

the solution Xt ;
X! is a certain intermediate approximate solution;

f! is a value of the function according to the solution
xt

INTRODUCTION
Let’s look at the well-known integer programming
problem given below:

n
chxj — max, (1)
j=1

M=

ajjx;j <by (i =1,_m) ©)

j=1

0<x;<d; j=(n). 3)

Here cj>0,8;>0,b;>0 and dj>0 (i=Lm, j=Ln)

are integers.

Note that problem (1)—(3) is called an integer linear
programming problem in the literature.

In this problem, any vector X =(Xj,Xy,...,Xp) that

satisfies conditions (2)—(3) is called a possible solution to
the problem. The optimal solution to the problem is
understood to be the solution that gives the largest
(maximum) value to the function (1) among the possible
solutions.

Note that among the possible solutions to problem
(1)—(3), the solution that gives a large value to function
(1) based on certain criteria is called an approximate
(suboptimal) solution.

It is known that the problem (1)—(3) belongs to the
class of “hard-to-solve problems”, that is, to the class
“NP-complete” [1]. In other words, the maximum number
of operations required by any of the known methods for
finding the optimal solution to this problem (e.g., branch
and bounds, combinatorial, etc.) is not limited by any
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polynomial that depends on the size of the problem.
Therefore, approximate solutions of problems (1)—(3) of
various nature and speed have been developed [2-7,13—
16,21-25 etc.].

First, let us briefly explain one of the methods
proposed in [13]. For this purpose, let us give a certain
economic interpretation to the problem (1)—(3).

Suppose a certain enterprise must produce n different
products, expressed in number. For this, m number of

resources bi,(i :L_m) are allocated accordingly. Let us
assume that the production of one unit of the j-th
j=(,n) product requires the expenditure of the i-th
(i =1,_m) resource &, (i :I,_m, j :L_n). In this case,
products should be produced such that the total resources
spent on their production do not exceed the given
corresponding limit resources by ,(i = I,_m) and at the same
time the total income from their sale is maximized.

If we denote the price of one unit of the j-th j= (m

product by cj, (j= m and the quantity of the product to

be produced by Xj, (j :m , then we obtain model (1)—

3).
Suppose that a certain specified product j-th, j= (m

to be produced. Then, a;, (i =l,_m, j =l,_n) amount of

the i-th (i = I,_m) resource must be spent on the production

of one unit of this product. (If these resources are
measured in monetary units, then an amount of ajj ,

@ =1,m, j :I,_n) must be spent).

In this case, the worst-case cost per unit of product j-
th j=(1,n) is equal to maxaj;.

|

Then the price increase for each unit of product j-th

Cj . P
—— j=,n).
max aij

i
Naturally, we need to produce product number jx

j= (m mentioned above is equal to

€
X aij
i
Thus, we get the following selection criteria:

j=(1,n) is the largest.

such that the expression

C i .*
max—~— =

j maxa; - max &j,

c

1 1
or
. Cj
x = argmax .
J & i max aij (4)
i
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It should be noted that in studies [8, 10, 14], a crite-
rion of type (4) was used for interval integer and mixed-
integer programming problems of type (1)—(3).

When constructing an approximate solution to the
problem (1)-(3), most methods initially assume
X :(0,0,...,O) as the starting value, and the unknown

variable X, with the index j«, determined by a certain

criterion, is assigned a value. After this process is carried
out for all indices j, j=(1,n) , a certain approximate so-

lution X° = (Xlo , X(z) yeees xﬁ) is obtained.

It should be noted that the approximate solution
method described above is one of the known methods.
However, numerous computational experiments have
shown that the solution given by known approximate
solution methods can differ significantly from the optimal
solution. Therefore, there is a need to develop an
approximate solution method that does not give a worse
solution than the solutions given by known methods,
works quickly, is easy to implement, and does not cause
difficulties from a programming point of view. It should
be noted that such a solution method is called an
innovative approximate solution method, and the solution
found is called an innovative approximate solution [9, 10,
26]. In this work, we have developed such an approximate
solution method.

1 PROBLEM STATEMENT
Without loss of generality, let us assume that in
problem (1)—(3) the coefficients are numbered as follows

based on condition 4).
C c C c .
L > 2 > > K > > N In this
maxa;; maxaj, max ajy max ajp

I | | |
case, the initial approximate solution X 0_ (xf) s Xg yeues X,(]) )
of problem (1)—(3) is found analytically by the following

formula: for each number j, j = (1,n)
— i-1
d;, if vii=(Lm), ayd; <b - ¥ ayx
I=1

i j-1
mln{[b, - Za“X,OJ/aij ‘|, otherwise.

! I=1

We can briefly write this formula as follows:

j-1
X(j) =min dj? mlln[(b, — Za"x,()j/aij} . (5)

I=1

Here, the symbol [z] denotes the integer part of the
number z. It is clear that the solution found by formula (5)
will have the following structure

0 0,0 0 0 0
X = { 1 ,Xz,...,Xr_l,O,Xr+1,...,x } (6)
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In the problem under consideration, the value of the
function (1) corresponding to the approximate solution of
(6) is

n
fOZZCjX(j) .
j=1

Note that in formula (6) we must have x(j) >0, x"=0
for the j=1,r—1 numbers. The remaining coordinates

x9+1,..., xﬁ can be 0 or positive integers.

2 REVIEW OF THE LITERATURE

Integer programming problems, as well as their
individual classes, have been known since the middle of
the last century. Since these problems are of great
practical importance, various exact methods for their
solution have been developed. However, it soon became
clear that these problems belong to the “NP-complete
class”, that is, to the class of “hard-to-solve problems”
[1]. In other words, there are no polynomial-time methods
for finding optimal solutions to these problems.
Therefore, methods have been developed to find various
types of approximate (suboptimal) solutions to these
problems. [2-5, 13, 15-17, 21, 22, 24, 25]. However,
although these methods work quickly, the solution they
provide may differ significantly from the optimal
solution. On the other hand, more general classes of
integer programming problems, namely problems with
initial data in the form of intervals, have begun to be
studied. [6-12, 14, 18 etc]. In addition, various models of
the Boolean programming problem, as well as some
integer programming problems, have been investigated in
[19, 20, 23]. However, there is a need to develop new and
more efficient approximate solution methods. Because
better approximate solutions to real practical problems
must be developed. Such innovative methods have been
proposed in [9, 10, 26] for the knapsack problem and the
integer knapsack problem. Here, generalization means
that the given coefficients are located in certain intervals.
However, a new innovative approximate solution method
for the more general integer programming problem is
implemented in this work. Note that the method proposed
in [26] is a special case of the method presented in this

paper.

3 MATERIALS AND METHODS
First, let us determine a certain number Kk that falls
within the interval where the coordinates of the optimal
solution and the approximate solution differ. For this

purpose, let us construct a certain )?:(Yl,iz,...,in,)
solution of the problem as follows, by taking

0<x;<d; ,(j =1,_n) instead of the condition (3). For

each number |, j = (m
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=
aijdjﬁh—zanXbVLI:(l,m),
=1

= j-
Xj = mii'{h —Zan%/aﬂ},ﬂi ajdj >b - Y ay% (k= ),
I=1 I=1

0, j=k+L...,n

Obviously, this solution will have the following
structure.

S [~ ~ ~ ~ o
X:(X],Xz,...,)QK,...,Xn):(dl,dz,..., dk_l,B,O,...,OJ. (7)

Here, should be 0< % <dy .

From experiments conducted on numerous random
problems of various sizes, it becomes clear that the

solution X? = (X{), Xg,..., Xr?)

approximate found by
formula (6) and the coordinates of the optimal solution to
the problem can differ around a certain (k —-p; k+ p), the
number K in the notation (7). (The choice of numbers p

and g will be discussed below.) Because, for numbers j in

that neighborhood, the

‘i , (j e (k- p;k +q)) ratios

max aj
|

are close to each other. Therefore, when constructing a
solution using formula (5), the advantage of which
coordinate in that interval is selected and evaluated is of
great importance. However, since these advantages do not
differ significantly, new solutions can be constructed
using formula (5) by assigning separate values to the
unknowns in that interval. We can accept the one that
gives the largest value to the function (1) among the
obtained solutions as the final solution. Note that, based
on the principle we have shown, a certain approximate
solution method for the problem (1)—(3) was given in [7,
10]. These works differ from each other in the choice of
the numbers p and . In those works, p=(Q was assumed
and the procedure for finding them was shown. It is clear
that if the number k determined by expression (7) is close
to the last number n, or to the first number, then the
numbers k-p and k+p may go beyond the interval [1, n].
Therefore, the methods given in works [7-10] may not
work. In work [10], the numbers p and q are chosen as a
certain percentage of the number k, with p=g. Naturally,
this method may not work if the number K is close to the
ends of the interval [1, n]. Taking all this into account, we
have given a new and more universal method in this work
for choosing the numbers p and . Thus, we have
estimated the corresponding minimal number of zeros and
non-zero coordinates in the optimal solution of the
problem (1)-(3) and denoted them by n(0) and n(d).
Therefore, there is no need to change the values of the
first n(d) and last n(0) coordinates in the solution of (6).
Because these coordinates are the same as the coordinates
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of the optimal solution. Thus, it is important to find the
numbers n(0) and n(d), and in this work we have proved
certain theorems that allow us to find these numbers.

Thus, for each number j, (j e[k — p,k +q]) we can record

the possible values of the coordinate X; and construct the

remaining coordinates using formula (5). It is clear that in
this case, some coordinate will coincide with the
coordinate of the optimal solution.

It should be noted that the numbers p and g can be
found, respectively, through the minimal number n(d) of
non-zero coordinates and the minimal number n(0) of
zeros in the optimal solution of the problem (1)—(3). In
other words, must be p=k-n(d),q=n-n(0)-k. We
will show below the difficulty of finding the numbers
n(d) and n(0) used here. Therefore, we will also give
the process of evaluating these numbers. Note that such a
problem was considered in papers [8, 10, 13, 14]. For
example, in paper [13], the neighborhood of [k - p,k+ p]
is considered and the number p here is found from the

relation
p=arg max(ck—_i—ck—“] <8
P\ Akqi

The number & used here is a positive integer and
must be given in advance. If the number k found by
formula (7) is close to the last number n or the first
number, then specifying the interval [k— p,k + p]
becomes uncertain. Instead of the
[k+ p,k—p]neighborhood of the k-th coordinate, the

interval [6|](,68J was determined in works [8, 14].

Here, the numbers 6}( and 68 are found from the

relation &} :[k~i}, Sp :[(n—k)i}, and the
100 100

number ( is the minimum number of units or zeros in the

optimal solution. However, in this case, uncertainties may

also arise. Because, when the minimum number of units

or zeros is chosen for the number g, the interval [6{(,88]

may be different.

Note that in Work [IO], the interval integer bag
problem was reduced to the corresponding known integer
bag problem, and a certain neighborhood of the k-th
coordinate taking a fractional value in the corresponding
continuous problem was selected.

However, in this work, the interval
[k—p.k+p]=[n(d).n-n(0)]is adopted as  the
circumference of the k-th coordinate. It is clear that the
condition n(d)<k <n-n(0) will be satisfied for the k-th

number. As can be seen, in order to obtain a better
solution than the initial approximate solution by
performing a small number of calculation operations, we
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need to find the numbers n(d) and n(0) for the problem
under consideration. In this case, in the process of
constructing an innovative approximate solution, we need
to keep the first n(d) and last n(0) coordinates in the
solution (7) as they are.

Thus, it is necessary to solve the following problems.

ij — min, ®)
j=1
n R
> ajxj <b, (i=1,m), 9)
j=1
- 0
2eixjz (10)
J=1
0<xj<d;, j=(Ln), (11)
Xj —integer, (127) (12)
and
n
D Xj — max, (13)
J=l
n _
Zaijxj <bj, (i=1,m), (14)
J:
L 0
2% =1, (15)
0<x;<dj. j=[tn). (16)
Xj —integer (jz ,n). an

We can solve problem (18)—(12) and find its optimal

. * * % *
solution X =X, X500 X, - Then the set

o) = {j | {; > 0} is easily determined. Then the minimal
number n(d) of non-zero coordinates in the optimal
solution of problem (1)—(3) is n(d) =n(w;) . Here, n(w;)
is the number of elements of the set ;.

Since the problem (8)—(12) shown above belongs to
the class of hard-to-solve problems, it may not be possible
to solve it in real time. To alleviate this problem, it is
necessary to solve the problem (8)—(11) which has a
larger domain. By solving the obtained linear

programming problem, we can find its optimal solution
Llp = &{p’xlzp’“’%p)' For the n(d) number of non-zero

coordinates in this solution, the n(d)=n(m,)<n(d)
relation is satisfied. Here ®, = {j | lep > O} . Because, the

number n(d) is taken from the problem with a larger
domain.
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Note that to find the number n(d), the optimal

solution of the linear programming problem is used.
Naturally, when solving such large-scale problems, time
and memory problems may still arise. To overcome this
problem, we can solve the problem

OSXjﬁdj, jZ(l,_n)

which has a larger possible solution region, instead of the
problem (8)—(12).

In this problem, assuming that the conditions
€ 2Cy 2...2C,_ <Cp are satisfied, then we can find the

minimal number n; of nonzero coordinates in its optimal

solution from the relation
n+1

n |

0
E CJdJSf < E CJd]
=1 =1

Naturally, it will be ny <n(d)<n(d).
Therefore, the obtained number n; can be a lower

bound on the minimal number of non-zero coordinates in
the optimal solution of problem (1)—(3).

Note that to find the minimal number of zeros in the
optimal solution of problem (1)—(3), we must first solve
problem (13)—(17) or (13)—(16), respectively, and finally
solve problem

n
D Xj — max, (18)
j=1
n e
zainj Sbi , (iI=1,m), (19)
j=1
0<x;<d;, j=(Ln) (20)
Xj—I s integer. 1)

In this case, we find the maximum number of non-
zero coordinates in the optimal solution of problem (1)-
(3). However, since we need to find the minimum number
of zeros in the optimal solution, we need to subtract the
maximum number of non-zero coordinates from the
number of unknowns n. For this purpose, let us assume
that the conditions @&;;<aj; <..<a, are satisfied

separately for each i-th inequality in the system (19).
Then, in problem (1)—(3), we can find the maximum

number of nonzero coordinates n of the optimal solution
based on the conditions
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n, ni+1 e
Zaijdjﬁbiﬁ Zaijdj, (i=1,m)
= =

as N=minh;.
1

Then, we can accept the number n(0)= n-n< n(0)
as the minimal number n(0) of zeros in the optimal
solution of that problem.

So the following theorem has been proven.

Theorem: If the numbers n(d) and n(0) denote the
minimum numbers of ones and zeros, respectively, in the
optimal solution of problem (1)—(3), n(d) and n(0)
denotes their corresponding lower bounds, then the
relations n(d) <n(d) and n(0) <n(0) are true.

As a result, we can conclude that the coordinates of
the optimal solution to problem (1)~(3) and the
coordinates of the solution to problem (7) can only take
different values in the interval [Q(d ),Q(O)].

Note that in the solution (7) there are zeros to the right
of the k-th coordinate, and d j numbers to the left.

Therefore, in order to construct new solutions using (5),
we need to write Xj :1,2,...,dj for each j=k+1, k+2,...

n(0)
j=n(d),n(d)+1,...k number. We select the best one

from the obtained solutions and call it the innovative
approximate solution.

Thus, we can write the algorithm for the process of
constructing the innovative approximate solution that we
propose.

and Xj = dj_l,dj_z,...,O for each

ALGORITHM

Step 1. Must give the numbers
n,cj,aij,bi,dj (i=1L,m, j=1n) and assimilate
bb; =b;; (i=1,m).

Step 2. In problem (1)—(3), without considering the
condition that the unknowns are complete, let us find its
solution

X = ()N(l] ,;(42,..., r)‘(k gesesy iﬂ ): (d] ,dz,..., dk_],%,O,...,OJ

using the following well-known formula. For each
number j,(j=12,...,n)

7 i
fordj,ifvi,iz(l,m) > adj<h —IZen%
=1

i i
Xj= mﬁ'{h —Zaiﬁ/%j}if 3,3 >h - Y% (k=j),
i ia =

0, j=k+l,...,n

and accept kk .=k, r:=0;
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Step 3. If the obtained Xj coordinate is an integer,

then the solution X coincides with the optimal

X" Z(XT,X;,...,X:) solution of problem (1)—(3). Then,

must accept

* * * ~ o~ ~ ~ .
X = xl,Xz,...,xn):(Xl,xz,...,xk,...,xn), print and go to

Step 4. Let’s find the approximate solution of the

problem X 0 (Xlo , Xg yees Xg ) using the following formula

N I 0
dj, Yi,i :(l,m), a,JdJ Sbi —IZai|x|
=1

rn_il{[bi - ayx J/ai i ], otherwise
: =1

for each number (j =1,2,...,n).

~o

Step 5. Calculate the numbers f and 9 as follows.
ra L. 0 . 0
f=ZCij, f =ZCij.
j=1 j=1
fit= 0 Xitz(xf),xg,...,xg)

remembered the solution X' = ( f) , x(z) yeens xg ) with £

Accept and

Step 6. To find the minimum number N, of non-zero

coordinates, let’s convert the C j,(j =1, n) numbers to

C, 2C, =...2 C, form and use the following relation:

n n+1
0
2cd < f <) cd;
j=1 j=1
Step 7. To find the n;, (i =l,_m) numbers, we need to

arrange the coefficients of aj (= I,_m, j= I,_n) for each

number |, (i =1._m), separately in increasing order, like
aj) < ajp <...<ajy. Then, we need to use the following

relations:
ni +1

n; JR—
Zaudj Sbi < Zaijdj, (I =1,m).
j=1 j=l

Finally, should be write and remember n= minn; and
i

nO)=n-n.
Step 8. Should be accept the following prices

X = [%cJ: by = bloy —ayxg, (i=1.m).
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Step 9. For each numbers j, j=12,..,n and j=Kk,
let’s find the ajﬁproximate solution of the interval

xt= (Xf, XE,..., X; using the following formula.

- il
for d, if Vi, i=(Lm) ayd; <b— Y ayx
1=1

X = _
j-1
m_in{[bi—Za"fo/aij} else.
! =1

Step 10. Let’s calculate the number fl

n
ft:=ZcJ—xtj.
j=1

If ft>fit, then should be accept fit ::ft,
Xt :(x},xg,...,xﬁ,) .

Step 11. If r=0, then should be accept
Xk ::[xth+1; b :=bb; —ayx), (i=Lm);r=1 and go to
step 9.

Step 12. Should be accept r:=0

Step 13. To find the intermediate solution

Xt = (xf, xtz,..., x; ), let’s use the following rule:
Foreach j, j=(1,2,...,n; j=k)

— i1
for dj, it vii=(Lm), ad; <t—Yax
I=1

X = _
il
minKbI-Za“fo/aij} else.
! I=1

Then, the corresponding value of the functional is
n
t._ b
fr= Zlc i%j -
J:

Step 14 1t f'>f"
X" = (X, X}y, X)) should  be
memorized. If r:=1 skip to Step 18.

Step 15.If  x\ < d,, then skip to Step 17.

Step 16. Should accept k:=k+1; If k>n(0), then
accept k:=kk and skip to the Step 18.

fit=f!

written  and

Step 17. Xﬁ =1,2,...,d, and accordingly by taking
b :=bb; —agxk (i=1.m) skip to the Step 13.

Step 18. r:=1; If x\ =d,, then k:==k—1; If k <n(l)
skip to the Step 20.

Step 19. th =12,...,d, Kk values corresponding to
by == bby —ay xk (i =1.m) and go to Step 13.

Step 20. Should be print £, X' =(x{t,x¥,... xIt)

5= (|- tt)[f]ana & = (F]- *)/[F].

Step 21. STOP.
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4 EXPERIMENTS
Let’s solve a numerical example using the algorithm
we wrote above. Here, we assume that the following
conditions are met.

c o
@ > %9 5 5> % 5 5 Cn
max aj; max aj, max ajy max ain
i i i i
9% +10X, +8%3 + 6X4 +7X5 —> max,

3% +3% + 1% +4%, +2% <18,
IX + 5%y +4X3 +2X4 +3%X5 <17,
4X1 +2X2 +3X3 +2X4 +5X5 <20 ,

B

0<xj<dj, areintegers, (j=L5).

Here d;=2,d,=2,d3=3,d4=4,ds=3. In order

words we accepted
0<X <2, 0<% <2, 0533, 0<x<4, 0<x<3.

In this problem, let’s first construct the initial

X:(il,iz,...,%k,...,in):(dl,dz,...,dk_l,%,o,...,oj so-

lution using the above algorithm, without considering the
completeness condition on the unknowns. Then we can

get i=(2,2,5/4,o,0) and f =48. From here we get
X =%X3 =5/4 and k =3. Then we need to take kk:=k,

r:=0 according to the algorithm.
Now let’s construct an initial approximate solution

X0 = (xf),xg,...,xﬂ)
X%=(2,2,1,0,0) and f°=46. Then, let’s write the
results in the following tables.

to this problem. Then we can get

S RESULTS
Since k =3, let’s write the approximate solutions and
fl values found sequentially, noting
x§=3, x{=2,x{ =1, =0, in Table 1.
Table 1 — Evaluating the coordinate x§

x|« x5 X Xy | o« fl

X! 2 0 3 ! 0 fi-as

x4 2 ! 2 0 0 f1 -4

X3 2 2 1 0 0 £ =46

X }1 2 2 0 ! ! f5t =51

Now, let’s write the successive approximate solutions

and f' values in Table 2 below, assuming K=k-1=2

and writing X5 =2, x5 =1, x5 =0 accordingly.
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Table 2 — Evaluating the coordinate Xt2

X! Xt x5 x§ X} Xt f!

X! 2 2 ! 0 0 fl =44
X$ 2 1 2 ! 0 £ =50
xt| 2 0 2 2 0 fd =46

Let us write the approximate solutions and f ' values

obtained by  giving  successive  values  of

xt=2,xt =1, X =0 by assuming k =1 in Table 3.

Table 3 — Evaluating the coordinate XI

x|« x5 X x§ xt ft

X4 2 2 ! 0 0 fd =46
XS 1 2 T 1 0 £l a3
X | 2 2 : 1 ‘ fy 34

Then, let’s continue the solution process for the

unknowns X4 and Xs located to the right of the k-th
coordinate. First, let’s find the appropriate approximate
solutions and fl

values by noting

Xf; =4, X}; =3, XZ =2, Xf; =1, Xi =0 and write them in
Table 4.
Table 4 — Evaluating the coordinate XZ

X! x} x% xg xf; xg f!

x| O AT

Xty |2 ‘ 0 3 0 f =36

X | 2 : 1 2 ‘ fi5 48

Xy | 2 2 0 ! 1 iy =51

Xis | 2 ? : g 0 fL —46
Finally, let’s find the appropriate approximate

solutions and f' values by noting x =3, x} =2, x§ =1

and Xg =0 and write them in Table 5.

Table 5 — Evaluating the coordinate X5

XU o x5 X x4 Xt !

X lt6 1 0 0 0 3 f1t6 30
x| 2 ! 0 0 2 fl =32
X 1t 8 ? ? 0 : 1 fl =51
Xh | 2 2 : 0 2 flo =46

Note that initially, the approximate solution found by
the known method was obtained as X = (2,2,1,0,0) and

© Mamedov K. Sh., Niyazova R. R., 2025
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f0=46. However, as can be seen from the tables above,

the value of f° =46 increased to 48, 50 and 51.

Therefore, by choosing the one corresponding to the
largest of these values, the innovative approximate

solution will be X' = (x{t,x‘;, xgt,xjf,xgt)z (2,2,0,1,1)
and the innovative approximate value f t_s].

Note that this solution is also the optimal solution to
the problem under consideration.

6 DISCUSSION

The main essence and novelty of the method proposed
in this article is that a solution provided by any of the
known methods is initially accepted as a starting point.
Then, this solution is gradually improved. For this pur-
pose, the numbers of coordinates at which the approxi-
mate solution accepted as the initial solution and the op-
timal solution can differ are determined. Finding these
numbers is based on proven criteria. It is clear that if we
know which of the coordinates of the approximate solu-
tion are not the same as the coordinates of the optimal
solution and we give these coordinates one by one values
in their variation interval, at a certain step those coordi-
nates will coincide with the coordinates of the optimal
solution. So a better solution can be obtained than the
initial approximate solution. Note that we can find the
optimal solution by giving values to all of these coordi-
nates at the same time. However, in this case we will have
to look at an exponential amount of coordinates. This
would require unrealistic computer time. Therefore, we
will get a new, better solution by changing these coordi-
nates one by one. Therefore, the solution obtained through
the application of this method will be better than the one
provided by known approximate methods. The principle
of improving the initial solution is rigorously mathemati-
cally justified through proven theorems. A specific prob-
lem was solved to clearly demonstrate the sequence of
implementation of the proposed method, as well as to
determine the quality of that method.

CONCLUSIONS

In the article, a new approximate solution method for
the integer programming problem has been developed. In
all known approximate solution methods, the number of
the unknown is found based on certain criteria and the
unknown is evaluated. After that, the unknown is re-
moved from the list. As a result, a certain, approximate
solution is obtained. In most cases, this solution differs
significantly from the optimal solution. Therefore, it is
necessary to accept any approximate solution as an initial
solution and improve it further.

The scientific novelty of this article is that the
numbers of coordinates at which the initially taken
approximate solution may differ from the optimal solution
are determined using proven theorems. Then, new
solutions are constructed by assigning values to these
coordinates in their variation interval.
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The best of these solutions is accepted as an
innovative approximate solution. From this it is
immediately clear that the proposed method should be
more effective. The mathematical model considered in the
article arises in the problems of optimizing the production
of products manufactured by number. Therefore, the
method proposed in the article can be effectively applied
to solving real practical problems of this type. This shows
the practical value of the article. It is clear that if the
initial approximate solution differs little from the optimal
solution, then the method proposed in this article will
provide few improvements. Therefore, in the future, it is
planned to develop a new approximate solution method so
that the absolute or relative error of the solution it
provides is not greater than the optimal solution. It should
be noted that in order to clarify the essence of the
proposed method in the article, a specific issue was
solved.In that problem, the initial value of the functional
found by the known method was 46. In the subsequent
steps, this value was 48, 50 and 51. More precisely, the
initial solution was improved 3 times.
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YIK 519.852.6

THHOBAIIMHUI METOJl HABJIMKEHOT'O PO3B’SI3AHHS 3ATAYI IIILIOYMCJIOBOTO
IMPOI'PAMYBAHHSA

Mawmeno K. . — a-p ¢iz.-mar. Hayk, npodecop BakHMHCBKOTO IepKaBHOTO YHIBEpCHTETY Ta 3aBifyBau BiAILTY
InctutryTy cucrem ynpasiiHHS MiHiCTepCTBa HAyKH 1 OCBITH.
HisizoBa P. P. — nokTopaHT, HayKOBHUH CIiBPOOITHUK [HCTUTYTY cUCcTeM ynpaBiiHHs MiHICTepCTBa OCBITH 1 HAYKH.

AHOTANIA

AKTyalbHicTh. ICHYIOTh IEBHI METOJM 3HAXO/KEHHS ONTUMAJILHOTO PO3B’S3KY 3a[a4 LiJOYHUCEIBHOIO IPOrpaMyBaHHs.
OpHak 1[I METOJAM HE MOXYTh BHpIIIyBaTH MaclITaOHI 3a7adi B pexHMi peanbHOro 4vacy. Tomy Oylio 3ampOINOHOBaHO
HaOMDKEeH1 po3B’ 3K IUX 331a4, sIKi NpalroroTh mBUAKO. CiliJ 3a3Ha4YNTH, 110 PO3B’SA3KH, OTPUMaHi MU METOJaMH, 4acTO
CYTTEBO BiJJPI3HSAIOTHCS BiJl ONTHUMAIBHOTO PO3B’si3Ky. TOMy BUHHMKAE MpoOIeMa NMPUUHATTS OyJIb-SIKOTO BiJOMOTO HaOIHxKe-
HOTO PO3B’SI3KY K [I0YaTKOBOT'O PO3B’ 53Ky Ta HOTO MOJANIBIIOTO BAOCKOHAJICHHSI.

Mera po6oru Crnovatky 3HaXOAWUTHCS TEBHUH HAOMWKEHHA pO3B’si30K. [IOTIM, Ha OCHOBI JIOBEICHHX TEOPEM,
BH3HAYAIOTHCSI KOOPJMHATH 1IbOTO PO3B’S3KY, AKi HE 30iratoTbcs 3 onTUMalbHUM. [licis nporo, mociiloBHO 3MIHIOIOYHM Iii
KOOp/IMHATH, 3HAXOJATh HOBI PO3B’SA3KH. 3a OCTAaTOYHHHA PO3B’S30K MPHUMAETHCS TOM, SKUH Jae HaWOinble 3HAYCHHS
(byHKIIOHaNTy cepell LUX PO3B’A3KiB.

MeTtoa. Metop, sIKMii MU TIPOTIOHYEMO B Lifl pOOOTI, peanizyeThcss HACTYITHUM YHHOM:

Cro4aTKy BCTAHOBIIOETHCS NEBHUHM HAOMMXKEHUH PO3B’SI30K 3ahadi, MOTIM BHU3HAYAIOTHCSI HOMEPU KOOPAMHAT L(bOTO
PO3B’sI3KY, sIKi HE 30IraloThCsi 3 ONTHMAIBHHM pO3B’SI3KOM. Iliciasi IbOr0 BCTAQHOBIIOIOTHCS HOBI PO3B’SI3KM IUISIXOM
HOCJIiIOBHOTO IIPUCBOEHHS 3HAYEHb LIUM KOOPAMHATAM 10 OJHOMY B iXHiX iHTepBanax. Halikparue 3 po3B’si3KiB, 3HalICHUX Y
BOMY IIPOILIEC], IPUIAMAETHCS K OCTATOYHE IHHOBALIIMHE PIIICHHS.

Pe3yabTaTu. Byno BupileHo 3aiady 3 METOIO Bi3yaslbHOI 11t0CTpanii IKOCTI Ta €pEeKTUBHOCTI 3alPOIIOHOBAHOTO METO/LY.

BucHoBku. MeToJ, sIKHii MU MPOMIOHYEMO B Iifi CTATTi, HE MOXE JATH TIpIIMX PE3yJbTaTiB, HIXK OYIb-SKHH METOI Ha-
OIMKEHOTO PILIeHHs, POCTUH 3 aNrOPUTMIYHOI TOUKHU 30pY, € HOBUM, HOTO MO>KHA JIETKO IPOrpaMyBaTH Ta BaXJIMBUH AJL
BUPIIICHHS peabHUX NPAKTUYHHUX 3aBIaHb.

KJ/JIIOYOBI CJIOBA: 3agaua 1iIo4MCENbHOTO MPOrpaMyBaHHs, BUXiAHUN HAOMMKEHUI PO3B’SI30K, IHTEPBAJ, B SIKOMY
KOOPIHMHATH HAOJMKEHOTO PO3B’S3KY MOXYTH BIIPI3HATHCS BiJ ONTHMAIBHOTO DPO3B’S3KY, IHHOBAIlIMHWIA HaOIMIKEHHIH-
PO3B’SI30K, 00UHCITIOBAIbHI €KCIIEPUMEHTH.
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